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ABSTRACT Monitoring water quality is an important challenge in both developed and developing countries.
Remote sensing data can form a highly frequent dataset with acceptable spatial coverage that can be used
to remotely monitor water quality. This paper presents a novel automated model for remotely monitoring
water quality to address the problem of insufficient samples and save the time and cost of sample collection.
The proposed model estimates both optical and non-optical water quality parameters via Sentinel-2A data.
A bio-inspired hybrid model of a Binary Whale Optimization Algorithm (BWOA) and Artificial Neural
Network (ANN) (BWOA-ANN) is applied to determine the relationship between extracted reflectance
values from Sentinel-2A images and analyzed samples. The novelty of this model is to solve two main
problems of remote water quality monitoring: poor applicability and low non-optical parameter estimation
accuracy. For the first problem, a proposed fully automated model with band selection using the BWOA
to automatically select the optimal features (Sentinel-2A bands) that are suitable for each water quality
parameter. The second problem is addressed by automatically detecting the relationship between non-optical
parameters, such as the total phosphorus, and optical parameters, such as chlorophyll-a. Three datasets
with different locations, seasons, and parameters were selected to test the proposed BWOA-ANN. The
experimental results demonstrated good regression with a mean R2 value of 0.916 for optical parameters
and 0.890 for non-optical parameters. The proposed model was found to outperform the ANN with an R2

value higher by 40% and 52% for the optical and non-optical parameters, respectively.

INDEX TERMS Artificial Neural Network (ANN), feature selection, Sentinel-2, Whale Optimization
Algorithm (WOA), water quality monitoring.

I. INTRODUCTION

Water is one of the most vital elements for the survival of
humans, plants, and animals. Water quality has the same
importance as water itself because of its key role in sus-
tainable development [1], human health, fishing habits, and
human food [2]–[5]. Contaminated water consumption is the
cause of approximately 502,000 global deaths each year,
mostly in economically challenged countries [6]. Many fac-
tors affect the water quality, such as that caused by agri-
cultural and industrial residues, and anthropogenic activi-
ties [5]. Therefore, at the beginning of the 20th century,
water quality started being taken more seriously [2]. Many
studies have been tried to investigate mechanisms to improve
water quality [7]–[10]. This, in turn, requires continuous
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monitoring of water quality to assess these methods and test
their effectiveness, demonstrating the need for a low-cost and
easy-to-use yet robust and scientifically proven method for
determining water quality.

Taking samples from different locations along the water
surface and analyzing them in a laboratory is the common
way to assess water quality parameters [4], [11]. Although
in situ measurements provide accurate results, they require a
large amount of time and cost [5], are labor-intensive, and
do not provide satisfactory results on temporal and spatial
ranges [12]. Furthermore, water quality is not constant along
the water surface [13] or in different seasons [4], [13]. These
limitations are thus significant obstacles for water quality
assessment using in situ measurement methods [14].

Remotely sensed data has the capability of covering large
spatial scale with frequently revisit times [2], [15]. Conse-
quently, this advantagesmake remote sensing data considered
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as a good repository for environmental condition monitoring,
such as soil moisture estimation [16], precipitation estima-
tions [15], water level monitoring [17], water qualitymonitor-
ing [2], and flood mapping [18]. For water quality monitoring
control, satellite images can cover large spatial and temporal
scales, which cannot be accomplished by in situ sampling.
According to remote sensing, water quality parameters can

be classified as optical parameters and non-optical param-
eters. Optically active parameters include Chlorophyll-a
(Chl-a), Total Dissolved Solids (TDS), Temperature (Temp),
Transparency (Trans), Total Suspended Solids (TSS), and
Turbidity [2], [19], [20]. The non-optical water quality
parameters include Dissolved Oxygen (DO), Chemical Oxy-
gen Demand (COD), Nitrate (NO3), Phosphate (PO4),
Total Phosphorus (TP), and Total Nitrogen (TN) [2], [19],
[21], [22]. It should be noted that most of the studies focused
on optically active parameters and detected non-optical
parameters with low accuracy [23]–[26]. However, a number
of vital water quality parameters, such as TN, TP, PO4, NO3,
and ammonia nitrogen (NH3 −N ), have not been thoroughly
examined due to their poor optical features, which is a key
challenge in remote water quality monitoring [25], [27].
Many researchers widely use classical regression analysis

to estimate water quality parameters. The performance of
these methods is strongly affected by the variation of season,
case study, and investigated parameters [2] as the optical
properties of local water sources are not stable at all times [2].
Usually, these studies manually define the best bands for a
specific water source for a certain season, so it is not appli-
cable for any other water quality parameter or another water
source. Accordingly, to solve this problem and improve the
performance of water quality parameter estimation, there is a
need to build a generalized model that can be automatically
updated according to the case study and the investigated
parameters.
Feature selection is an important step in the preprocess-

ing phase. It aims to select the best features that positively
affect the model performance [28]. The brute-force method
is not a good solution for feature selection tasks as it leads
to high computational time. Also, manually selecting these
optimal features is not a practical solution. Recently, many
meta-heuristic algorithms such as Genetic Algorithm (GA),
Grey Wolf Optimization (GWO), Cuckoo-Search Algo-
rithm (CSA), Whale Optimization Algorithm (WOA), Bat
Algorithm (BA), etc. are efficiently used as solutions for
feature selection [28], [29]. Accordingly, in this paper,
to improve the estimation of optical and non-optical water
quality parameters, we designed a band selection process,
based on Binary Whale Optimization Algorithm (BWOA).
The aim of the current research is to develop a novel pre-

dictive bio-inspired hybrid model to estimate both optical and
non-optical water quality parameters with accurate results
using Sentinel-2A data. An automatic band selection process
based on Binary Whale Optimization Algorithm (BWOA)
and Artificial Neural Network (ANN) (BWOA-ANN) is
designed to improve regression accuracy by automatically

selecting the appropriate Sentinel-2A bands for each water
quality parameter. This process allows the model to be
applied to different case studies, and seasons. Poor estima-
tion accuracy is avoided for non-optical parameters by auto-
matically detecting the relationship between non-optical and
optical parameters. The applicability of the proposedmodel is
tested and validated on different real-world datasets (obtained
by in situ sampling) for different seasons and locations.

The remainder of this paper is organized as follows.
Section (II) presents state-of-the-art studies related to water
quality parameters monitoring using remote sensing data.
Section (III) describes the selected locations for this study,
the in situ data, and the selected sensor. Section (IV) explains
an overview about the methods used in the proposed model.
Then, Section (V) describes the different phases of the pro-
posed model. Section (VI) discusses the experimental results,
and Section (VII) presents the conclusions.

II. RELATED LITERATURE

Previously, many studies used Landsat TM [2] to retrieve
water quality parameters. The long repeated temporal range
and reduced radiometric resolution of Landsat TM restrict
it from being used for water quality monitoring, how-
ever [2], [30]. Recently, studies have shown the utility of
Landsat-8 [19], [21], [22], [31]–[33], Sentinel-2 [19], [22],
[24], [32]–[35], and Sentinel-3 [25], [32], [36]. Sentinel-2 and
Sentinel-3 present an excellent opportunity to monitor optical
water quality parameters over the water source owing to the
fine spatial resolution for the first sensor and the fine spec-
tral resolution for the second sensor, high data quality, and
availability [24], [32], [34]. Additionally, in [37], Buma et. al
differentiated between Sentinel-2 and Landsat-8 capabilities
and confirmed that Sentinel-2 overcomes Landsat-8 in some
advantages. Sentinel-2 has more fine temporal resolution and
spectral resolution than Landsat-8. Also, the authors illus-
trated that Sentinel-2 has a lower Signal to Noise Ratio (SNR)
compared to Landsat-8 [37].

According to the literature, many studies have also applied
band ratio algorithms using Sentinel-2 to analyze and
define the appropriate bands for some specific water quality
parameter [38], [39]. Brezonik, et al. [32] used Sentinel-2,
Sentinel-3, and Landsat-8 data to study factors that have a
high impact on Colored Dissolved Organic Matter (CDOM)
estimation including spectral resolution and season variation.
The main advantage of this study is to deeply analyze various
long term datasets. The authors noted that CDOM concentra-
tion visually varies in (400–700 nm) among surface waters
and by the time in a given water body. This study, unfortu-
nately, aimed to define which specific bands are suitable for
estimating CDOM, so it is not applicable for any other water
quality parameter or another case study.

Additionally, Yuchao et al. [40] tried to work on the chal-
lenge of large turbidity ratio and big biomass in shallow
lakes in China. The authors performed Baseline Normalized
Difference Bloom Index (BNDBI) using Band4 and Band1 of
Moderate Resolution Imaging Spectroradiometer (MODIS)
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data. BNDBI has an advantage that the absorption of Chl-a
near to 572 nm wavelength is minimum and near to 667 nm
wavelength is maximum. BNDBI is characterized as a vital
approach to monitor algal progress but within the optical
scope (aquatic and atmospheric). The authors continue their
work in [41] using a different algorithm that uses the cor-
relation between surface Chl-a and algal biomass of water
at different depths to calculate the total algal biomass under
the non-algae bloom conditions. Validation sites proved that
the proposed approach is consistent with in-situ samples and
stable. It was observed that the performance of this algorithm
reduced the Root Mean Square Error (RMSE) from 77.9%
(in case of using BNDBI) to 32.5%. Also, Ha et al. [34]
are ones of those who investigated specific bands for Chl-a
estimation using Sentinel-2A data and in-situ measurements.
The authors achieved R2 values of 0.68 using 560 nm and
665 nm wavelengths and R2 values of 0.29 using 705 nm and
665 nm wavelengths for Vietnams Lake Ba Be. Moreover,
Masocha et al. in [21], investigated Landsat-8 data capability
against estimating some of the water quality parameters for
tow lakes in Zimbabwe. The authors concluded that the Near-
infrared/Red band was suitable for Chl-a estimation with the
less polluted lakes, and the red band was suitable for the more
polluted one.

In [24], Karaoui et al. built a relationship between in-situ
measurements and Sentinel-2 data reflectance values. The
authors aimed to prove that Sentinel-2 could be used as a
good tool for water quality monitoring. Stepwise regression
achieved R2 values greater than 0.52 for all of Chl-a, DO,
NO3, PO4, and TP. It is worth noting that non-optical param-
eters had lower values of R2.

Most of the previously mentioned studies make a classical
regression analysis that does not achieve satisfactory accu-
racy because of the complexity of the nonlinear relations
of the problem. However, intelligent models -such as Sup-
port Vector Machine SVM, ANN, and Fuzzy Logic- offer a
good solution to deal with these complex systems. Regarding
this, Batur and Maktav [19] applied Principal Component
Analysis (PCA) data fusion using Landsat-8 Operational
Land Imager (OLI), Sentinel-2A, and Gokturk-2 data to esti-
mate Chl-a, DO, TSS, SDD, TDS, and pH values in Lake
Gala, Turkey.Moreover, the authors comparedmultiple linear
regression, ANN, and SVM results which were applied to the
three sensors data. It was demonstrated that PCA results were
the most correlated with in-situ measurements achieving R2

about 0.92, 0.89, 0.89, 0.88, 0.73, and 0.88 for Chl-a, TSS,
DO, SDD, TDS, and pH, respectively.

In [36], Blix et al. tested the capability of Sentinel-3 Ocean
and Land Color Instrument (OLCI) to monitor optically
active water quality parameters (Chl-a, CDOM, and Total
Suspended Matter (TSM)). The authors used the Automatic
Model Selection Algorithm (AMSA) [42] to rank the spectral
bands and combine the most related bands to Chl-a retrieval.
Gaussian Process Regression (GPR) was applied for each
combination of features. The previous step was applied for
each station in the observed lake to guarantee that GPRwould

not be spectrally affected by water conditions changes. The
model selected Band3 and Band5 as the appropriate bands to
estimate Chl-a concentration with an R2 value of 0.82. It was
observed that the proposed AMSA GPR model performance
was decreased when all Sentinel-3 OLCI remote sensing
bands were added, achieving an R2 value of 0.7909.

The neural network has great potential to be used for
water quality parameter estimation via remote sensing. ANN
was indirectly used in [43], [44] to improve Chl-a retrieval
for both open and complex water sources via atmospheric
correction. Also, Govedarica and Jakovljevic [33] used ANN
and SVM to analyze the relationship between in-situ mea-
surements and the reflectance values of images. The authors
used Sentinel-2 and compared it with Landsat-8 results.
It was illustrated that Landsat-8 needed atmospheric correc-
tion before applying the model that pushed the authors to
give the advantage to Sentinel-2 to estimate TP and TN.
Du et al. in [25] improved the accuracy of TP concentra-
tion estimation-as non-optical parameter-by applying a new
optical classification method that classified water into two
different types. The authors applied Data Regression Anal-
ysis and Fitting (DRF), Backpropagation Neural Network
(BPNN), and Random Forest (RF) on Sentinel-3 data. The
authors indicated that DRF performed best results with an R2

value of 0.80 and an RMSE value of 0.034. In a similar vein,
Sharaf El-Din et al. in [45], proposed a framework based
on the BPNN, but the authors in this work used Landsat-8
data. The BPNN results were compared with SVM, BPNN
outperformed SVM with R2 values of 0.991, 0.933, 0.937,
0.930, and 0.934 for turbidity, TSS, COD, BOD, and DO,
respectively.

Other significant literature tried to apply Case 2 Regional
CoastColour (C2RCC) to measure water quality parameters
via remote sensing [46]. C2RCC uses a neural network and
has been trained on extreme ranges of scattering and absorp-
tion properties. C2RCC is applicable for almost of ocean
color sensors as well as Sentinel-2 and Sentinel-3 [46], [47].
The C2RCC processor contains two main parts: the atmo-
spheric correction part, and the in-water part. In [47],
the authors tested C2RCC with Sentinel-3A OLCI data to
retrieve Inherent Optical Properties (IOPs), and some of
the optical water quality parameters from the Baltic sea.
It was concluded that C2RCC performed reasonable results
in case of atmospheric correction, but it did not perform well
in retrieving water quality parameters. The authors demon-
strated that the neural network in C2RCC needs more train-
ing with the actual data to output accurate results. Also,
Ansper et al. [48] tested the standard C2RCC in Chl-a esti-
mation but with Sentinel-2 data. The authors also ensured that
the C2RCC processor needs more validation data to provide
reasonable results and investigated that C2RCC results are
not accurate with small and narrow lakes. Sidrah et al. [49]
compared C2RCC with machine Learning algorithms for the
retrieval of optical water quality parameters. The applied
ANN in [49] outperformed the C2RCC results in terms of
RMSE. Consequently, many studies confirmed that C2RCC
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FIGURE 1. Study area 1: Nasser Lake and locations of in situ measurements taken on August 2016.

needs more training [46], [47] and does not perform well in
most cases of water quality parameters retrieval [49], [50].
Deep learning well performs with the most remote sensing

problems [51], but there are rarely studies that used it for
water qualitymonitoring. A novelmodel that used deep learn-
ing is proposed in [22]. The authors developed progressively
decreasing deep neural networks and implement it on both
Landsat-8 and Sentinel-2 data. The proposed model in [22]
outperforms Multiple Linear Regression (MLR), Support
Vector Machine Regression (SVR), and Extreme Learning
machine Regression (ELR) with the most popular remotely
investigated water quality parameters. The resulting R2 were
0.839, 0.926, 0.894, and 0.883 for turbidity, Fluorescent Dis-
solved Organic Matter (fDOM), DO, and Chl, respectively.
It was observed that the performance of the proposed water
quality estimation model is not stable against different optical
and non-optical parameters. However, deep learning is more
powerful with the various applications of remote sensing,
there are still some limitations that lead to extra challenges
of using deep learning with remote sensing [27] because of
the lack of used in-situ and remote sensing data.

III. MATERIALS

This section presents an overview of the study areas, in situ
data, and Sentinel-2 data.

A. STUDY AREAS AND IN SITU DATA

The proposedmodel is applied based on real datasets, namely,
two datasets for different seasons for Nasser Lake, Egypt, and
a dataset for the Bin El Ouidane Reservoir, Morocco [24].
Two different water sources were selected with diverse envi-
ronmental conditions to prove that the model well performed
against various water sources.

1) STUDY AREA 1 (NASSER LAKE, AUGUST 2016)

Nasser Lake is considered the main strategic fresh water stor-
age in Egypt with over 95% of the total Egyptian freshwater

proceeds [52], [53], and is deemed the second largest lake
in the world [52]. This lake extends from the southern
part of Egypt to the northern part of Sudan [53]. It has
a length of approximately 500 km, of which 350 km are
in Egypt. The total area of Nasser Lake is approximately
6,276 km2, of which 5,237 km2 are in Egypt at 180 m over
the mean sea level [53]. Chl-a is the dominating of the
watercolor for the lake. TSM is the more effective during
the flood period (late July-October) in the southern sector.
Chl-a mainly absorbs the energy from wavelengths of red
and blue lights and reflects the green light, causing Chl-a
to be appeared as green [2], [30]. The lake’s bottom can not
be seen. Water depth of all surface samples are illustrated
in Table 2. Moreover, Aerosol concentrations increase during
the summer and autumn due to the northward extension of the
Sudan monsoon trough. Study area 1 of the proposed model
was defined by a bounding box with coordinates between
22◦00′ − ‘23◦58′N and 31◦19′ − 33◦15′E of Nasser Lake,
as illustrated in Figure 1(a). Water samples were collected
in August 2016 from five sectors along the main channel,
including the Aswan, Wadi Abyad, El Madiq, Tushka, and
Abu-Simbel sectors. Three sites were selected in each sector
at the eastern and western banks in addition to the main
channel for a total of 15 sites (see Fig. 1b). Subsurface water
samples were collected using a 2L Ruttner water sampler bot-
tle that was kept in well-cleaned plastic bottles in an icebox.
Water temperature (0 C), pH, and conductivity (EC, µs/cm)
were measured in situ using the Hydrolab model (Multi Set
430i WTW) after applying a calibration procedure. Trans-
parency was measured using a Secchi disk with a diameter
of 30 cm. The chemical parameters of the water samples were
determined using the standard methods of American Public
Health Association (APHA) [54].

2) STUDY AREA 2 (NASSER LAKE, APRIL 2016)

The second study area was defined by a bounding box with
coordinates between 21◦54′−‘23◦58′N and 30◦00′−33◦15′E

VOLUME 9, 2021 65733



G. Hassan et al.: Hybrid Predictive Model for Water Quality Monitoring Based on Sentinel-2A L1C Data

FIGURE 2. Study area 2: Nasser Lake and locations of in situ measurements taken on April 2016.

FIGURE 3. Study area 3: Bin El Ouidane Reservoir and locations of in situ measurements taken on May 2017.

of Nasser Lake, as illustrated in Figure 2(a). Water samples
were collected in April 2016 from 11 sectors along the main
channel, including the Kalabsha, Gurf Hussein, El Alaaki,
El Madiq, Wadi El Arab, Ebreem, Tushka, Abu-Simbel,
Adendan, Sara, and Arkeen sectors. Three sites were selected
in each sector at the eastern and western banks in addition to
the main channel for a total of 33 sites (see Fig. 2(b)). Water
samples of study area 2 were collected with the same method
as used for study area 1.

3) STUDY AREA 3 (BIN EL OUIDANE RESERVOIR, MAY 2017)

The Bin El Ouidane Reservoir is located in the center of
the northern portion of Morocco in the Azilal area (Tadla
Azilal region). This reservoir is the third largest reservoir in
Morocco in terms of stored water [24]. The total area of the
Bin El Ouidane Reservoir is approximately 36 km2, and the
reservoir contains 1,384 million m3 of water [24]. Study area
3 was defined by a bounding box with coordinates between
32◦88′ − ‘32◦92′N and 6◦43′ −6◦45′E of the Bin El Ouidane
Reservoir, as illustrated in Figure 3(a).

Additional information on this study area is available
in [24]. A total of 19 samples were collected downstream of

the reservoir in several hours owing to climate fluctuations
(see Fig. 3(b)).

B. SENTINEL-2 DATA

Sentinel-2A Level-1C (L1C) data were obtained from
the Sentinels Scientific Data Hub (https://scihub.copernicu
s.eu/). Sentinel-2A L1C images consisted of 100 km2, each
with a volume of approximately 500 MB. These images
underwent geometric and radiometric correction including
orthorectification. The Sentinel-2A L1C images were resam-
pled with a constant ground sampling distance of 10, 20,
and 60 m depending on the resolution of the various spectral
bands (see Table 1) [55]. The Sentinel Application Plat-
form (SNAP) version 6.0.0 with the Sentinel-2 Toolbox
(S2TBX) version 6.0.4 Windows 10 (64-bit) was used to
process the Sentinel-2 images.

IV. PRELIMINARIES

A. ARTIFICIAL NEURAL NETWORKS

ANNs can learn, recognize, and handle various complex tasks
in engineering and science by considering examples without

65734 VOLUME 9, 2021



G. Hassan et al.: Hybrid Predictive Model for Water Quality Monitoring Based on Sentinel-2A L1C Data

TABLE 1. Spectral bands, central wavelengths (nm), bandwidths (nm),
and corresponding spatial resolutions (m) of Sentinel-2A L1C sensor.

needing to be programmed using task-specific rules [56].
ANNs are effective learningmodels that can produce satisfac-
tory results for many large supervised/unsupervised machine
learning challenges [57]. In addition, they can handle com-
plex linear and non-linear problems [58]. ANNs can also
achieve more accurate and robust prediction results than
linear models [59], and may surpass conventional statistical
techniques [59], [60]. Although ANNs have demonstrated
their ability to handle remotely sensed data [61], most pub-
lished studies on remote water quality monitoring used linear
regression [2].
ANN comprises a set of connected units called neurons that

keep the biological concept of brain neurons [57]. The neu-
rons are spread over many fully connected neural networks.
The neurons take input (X1,X2, . . . ..,Xm) as the first step,
collect the input with their internal state (activation) and an
optional threshold using an activation function (the second
step as shown in Fig. 4(a), and output the result (output
value y) based on an output function. There are connections
between neurons, each connection supply the output of one
neuron as an input to another neuron [57]. The connections
have weights (W1,W2, . . . ..,Wm) that indicate their relative
importance (see Fig. 4(a)). A given neuron can have multiple
input connections. The input of a neuron is calculated from
the output of their previous neurons and their weighted sum
by applying the propagation function. A bias term is usually
added to the propagation result (see Fig. 4(a)). The neurons
are distributed over multiple layers, one input layer, hidden
layers -at least one- and one output layer (see Fig. 4(b)).

B. WHALE OPTIMIZATION ALGORITHM

WOA is a search algorithm [62] that is based on mimick-
ing the social behavior of humpback whales in their hunt-
ing strategy. Humpbacks whales track the location of prey
and surround them. The optimal design position is initially
unknown; thus, the WOA assumes that the target prey is the

FIGURE 4. Artificial Neural Network (ANN).

current best candidate solution or is close to the optimum.
Finally, the optimal solution becomes known, and all search
space agents update their positions with respect to the optimal
value. Equations (1) and (2) illustrate this behavior as follows:

−→
W = |

−→
C .

−→
X ∗(t) −

−→
X (t) | (1)

−→
X (t + 1) =

−→
X ∗(t) −

−→
A .

−→
W (2)

Here, the current iteration is denoted t ,
−→
W refers to the

distance of the ith whale to the best solution obtained so
far,

−→
A and

−→
C are coefficient vectors, and

−→
X ∗ represents

the best solution position vector for the current iteration t .
In each iteration,

−→
X ∗ should be updated based on the results

of the better solution. The coefficient vectors
−→
A and

−→
C are

measured as illustrated in equations (3) and (4).
−→
A = 2−→a −→r −

−→a (3)
−→
C = 2−→r (4)

To balance exploration and exploitation, vector −→a is used.
It is linearly reduced over the iterations from 2 to 0. −→r is a
random vector ranging from 0 to 1 to ensure that all agents can
wander in any position in the search space, thus guaranteeing
exploration. Equation (2) allows any agent in the search space
to update its position according to the current best solution.
At the same time, this equation achieves a simulation of
encircling the prey. Another behavior of humpback whales
in hunting prey called the bubble-net strategy represents
the exploitation phase in the algorithm. The two following
approaches mathematically model this behavior:

• Shrinking encircling mechanism: The value of
−→
A

should decrease by reducing the−→a value in equation (3).
From another perspective,

−→
A is a random value ranging

from−a to a, where a has a value decreasing from 2 to 0

over the iterations. The agent in the search space updates
its value with a new value anywhere between the original
position and the position of the current best agent.
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• Spiral updating position: This technique first measures
the distance between the whale position (agent position
in the search space) and the prey position (current best
solution). Then, a spiral equation (5) is modeled between
both the whale and prey positions to imitate humpback
whales in their helix-shaped movement.

−→
X (t + 1) =

−→
W ′

.ebl .cos(2π l) +
−→
X∗(t) (5)

where the distance between the whale and its prey
is

−→
W , b represents the shape of the spiral, and l denotes

a random value with the limited range [-1, 1].
Humpback whales on a route to hunt their prey may take
either a shrinking circle or spiral-shaped route. For the
algorithm to exhibit biomimicry and be closer to nature,
a probability of 50% is imposed to select the shrinking encir-
cling mechanism or spiral model in updating the position
of the whale. This can be mathematically modeled as in
equation (6):

−→
X∗(t + 1) =

{ −→
X∗(t) −

−→
A .

−→
W , if K < 0.5

−→
W ′

.ebl .cos(2π l) +
−→
X∗(t), if K ≥ 0.5

(6)

To ensure the exploitation of the algorithm,
−→
A is used

with random values less than −1. If
−→
A has a value greater

than 1, the search agent moves far away from the reference
whale, which guarantees exploration. Then, the search agent
position is updated according to a randomly selected search
agent instead of the best search agent of the current iteration.
Thus,

−→
A > 1 ensures global search. Equations (7) and (8)

present a mathematical model of this exploitation process.
−→
W = |

−→
C .

−−→
Xrand −

−→
X | (7)

−→
X (t + 1) =

−−→
Xrand −

−→
A .

−→
W (8)

Here,
−−→
Xrand is a random whale that is selected from the

current population. Generally, the WOA has an effective
exploration process that allows the optimization algorithm
to avoid falling into local minima [62]. The WOA balances
the two main processes of the algorithm (exploration and
exploitation), which leads the algorithm to reaches the opti-
mal solution with an adequate convergence time [62], [63].

V. PROPOSED HYBRID WATER QUALITY PREDICTION

MODEL

The proposed model consists of the following two phases.
1) Pre-processing phase: In this phase, images are resam-
pled and their reflectance values are extracted. 2) Binary
WOA (BWOA) and ANN (BWOA-ANN) prediction phase:
In this phase, the BWOA-ANN is proposed to calculate
the water quality parameter values. Figure 5 illustrates the
BWOA-ANN process.

A. PRE-PROCESSING PHASE

This phase aims to atmospherically correct Sentinel-2A L1C
images, and resample the Sentinel-2A L1C bands using
SNAP to equalize the spatial resolution of all bands and

simplify the handling of different bands of the image. Then,
the Bottom of the Atmosphere (BOA) reflectance values
are extracted for specific pixels that belong to the collected
samples, as illustrated in Algorithm (1).

Algorithm 1 Pre-Processing
1: Input: Sentinel-2A images.
2: Using Sentinel-2A toolbox of SNAP which contains

C2RCC atmospheric correction to atmospherically cor-
rect the images.

3: Resample the bands of each image to 10 m.
4: Extract the reflectance values of the previously men-

tioned in situ samples (with the information of the coor-
dinates) from all bands of Sentinel-2A images.

5: Output: 13 vectors (bands) with BOA reflectance values
of samples coordinates Vs = (RB1,RB2, . . . ..RB13).

B. BIO-INSPIRED HYBRID BWOA-ANN PREDICTION

PHASE

There are two main challenges in this phase. First, existing
models cannot be applied for different water sources, sea-
sons, or remote sensor data, especially with hyper-spectral
space-borne sensors and airborne sensors [2], [64]. This prob-
lem exists due to the instability of water from one source to
another [2], the change in the spectral and spatial resolution of
bands from one sensor to another, and the difference in water
quality parameter concentration in different seasons [12].
Therefore, the BWOA is integrated with the ANN to select or
optimize the influencing features (bands) and avoid selecting
constant bands whose effect varies for different sensors or
seasons [2]. Finally, the model predicts the values of water
quality parameters. Algorithm (2) presents the detailed steps
of this phase. The BWOA has a binary search space that
takes the value 0 or 1. Each search agent is represented in
an n-dimensional space. For instance, a search agent in a
4-dimensional search space (e.g., 1010) acts as the solution
where the first and third features are selected. The Root Mean
Square Error (RMSE), as expressed in Equation (9), is used
as a fitness function that is minimized to obtain the optimal
features.

RMSE =

√

√

√

√

1

n

n
∑

i=1

(Si − Ei)2 (9)

where Ei represents the observed values, Si represents the
estimated values, and n represents the number of observa-
tions. The second challenge in the prediction phase is that
the existing studies do not thoroughly examine non-optical
parameters, which is due to the poor optical features of these
parameters [2], [23], [24]. Therefore, the proposed algorithm
is applied to the optical parameters, and after ensuring high
R2 value with minimum RMSE value, the predicted optical
parameters are used as features (in addition to bands). This
mechanism improves the non-optical prediction accuracy.
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FIGURE 5. Proposed Binary Whale Optimization Algorithm and Artificial Neural Network (BWOA-ANN) model.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. IN SITU DATA

Table 2 presents the laboratory measurements of the collected
samples of dataset-1 (Nasser Lake, summer [August] 2016)

in terms of 12 water quality parameters. Dataset-1 has five
sectors from south to north as follows: Abu-Simbel, Tushka,
El Madiq, Dahmit, and Aswan. For each sector, three sites
were selected. The code section presents the site located
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Algorithm 2 Proposed BWOA-ANN
1: Input: Vs, all features from the previous phase, and in

situ measurements training data.
2: Begin: Generate search space solutions, where the values

of whales are randomly generated {0,1}, and each whale
is represented as n-dimensional (n value is assigned
according to the feature number).

3: Initially, for each search agent in the search space, the fit-
ness value f is calculated according to Equation (9),
and fs, the features selected in a search agent, are
calculated.

4: Randomly select X∗ (the best search agent) as the initial
value.

5: Verify whether the error rate becomes stable.
6: Update a, A, C, l, and K values.
7: Verify whether K is less than 0.5.
8: If the condition in step 7 is satisfied check again if | A |

whether less than 1.
9: If the condition in step 8 is satisfied, the position of the

current search agent Xc is updated by Equation (1).
10: If the condition in step 8 is not satisfied (| A | is greater

than or equal to 1), Xrand (a random search agent) is
selected, and the position of the current search agent is
updated according to Equation (8).

11: If the condition in step 7 is not satisfied (K is greater than
or equal to 0.5), the position of the current search agent
is updated according to Equation (5).

12: Repeat step 6 for all search agents in the search space.
13: PerformANN on each whale in the population and calcu-

late f, the fitness value according to Equation (9), on the
training set.

14: If there is a better solution, X∗ is updated, and if f(Xc)
is equal to f(X∗) and fs(Xc) < fs(X∗), then update X∗

with Xc.
15: Repeat step 5 as long as the condition is satisfied.
16: Output: Set of optimal features (bands) of Sentinel-2A

L1C that minimize the error rate and the predicted water
quality parameter values.

inside the sector: eastern (E), western (W), middle of themain
channel (M), and surface water (S). Dataset-2 (Nasser Lake,
spring [April] 2016) contained 11 sectors from south to north
as follows: Arkeen, Sara, Adendan, Abu-Simbel, Tushka,
Ebreem, Wadi El Arab, El Madiq, El Alaaki, Gurf Hussein,
and Kalabsha. The samples in dataset-2 were collected with
the same procedure as for dataset-1. For each sector, three
samples were selected with ES, MS, WS codes. Table 3
presents the laboratory measurements of the collected sam-
ples of dataset-2 concerning seven water quality parameters.
Table 4 presents the laboratory measurements of 19 samples
of dataset-3 (Bin El Ouidane Reservoir, spring [May] 2017)
concerning five water quality parameters [24]. Every dataset
was divided into a training set and test set at a ratio of 60%
and 40%, respectively.

B. SELECTION OF SENTINEL-2 IMAGES

Sentinel-2 images were selected based on several criteria. The
selected images were cloud-free and were obtained within
at most four days of the in situ measurements [65], [66].
Table 5 presents the Sentinel-2 image dates corresponding to
the datasets and water quality samples.

C. PERFORMANCE MEASURES

The accuracy measures of the model were tested using the
RMSE, R-squared (R2), and adjusted R-squared (R2adj). Addi-
tional details of the RMSE are provided in equation (9) in
Section (V). R2 is a factual proportion of how closely the data
are fitted to the regression line, and is sometimes called the
coefficient of determination. Equation (10) expresses how to
calculate R2, which is the proportion of explained variation
VExplained divided by the total variation VTotal . R2adj differs
from R2 that the first consider only the effected independent
variables that well interpret the dependent variable. R2adj can
be mathematically calculated in terms of R2, the number of
predictors (independent variables) K , and total sample size N
according to equation (11).

R2 =
VExplained

VTotal
(10)

R2adj = 1 −
1 − N

N − (K + 1)
(1 − R2) (11)

Also, the significance value (p-value) was calculated. The
p-value measure is commonly used to demonstrate the signif-
icant similarity between the estimated and observed results.

D. ATMOSPHERIC CORRECTION RESULTS

Based on the recommendations of the previous studies
[47], [67], we applied C2RCC for the atmospheric correction
phase to the three datasets. To validate the results of the atmo-
spheric correction, C2RCC retrievals were compared with
in situ reflectances measured in the lakes and reservoir. The
results of C2RCC are displayed in Table 6, which presents the
R2 and RMSE values concerning Sentinel-2A spectral bands.
It can be observed that C2RCC performed acceptable results
with R2 range between 0.61 to 0.98, except for dataset-3 with
Band8b is equal to 0.35. RMSE is between 0.0002 to 0.0020.

E. EXPERIMENTAL SCENARIOS

The proposed model was evaluated under different scenarios.
The first scenario used only the ANN, while the second
scenario used the proposed integrated BWOA-ANN model.
The BWOA-ANN was designed to evaluate the best fea-
tures (bands) for each optical and non-optical water quality
parameter and subsequently estimate thewater quality param-
eters. All scenarios were implemented using Python (Spyder
3.3.6) with the Anaconda environment 1.9.7 and tested on
a computer with Core i7-8750H, processor (2.20 GHz) and
8 GB of memory.
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TABLE 2. Laboratory measurements of the collected samples for the Nasser Lake summer (August) dataset 2016.

TABLE 3. Laboratory measurements of the collected samples for the Nasser Lake spring (April) dataset 2016.

In an ANN, the number of neurons in the input layer is
equal to the input number, while the number of neurons in the
output layer is equal to the number of outputs [56]. The num-

ber of neurons in the hidden layer influences both forecasting
precision and the convergence of the model. Various opera-
tors can affect the number of neurons in the hidden layer, such
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TABLE 4. Laboratory measurements of the Bin El Ouidane Reservoir
spring (May) dataset 2017 [24].

as the number of hidden layers, the dataset dimensions, and
the number of computations of the activation function [58].
Many studies have presented a variety of rules that specify
the number of hidden neurons [58], and the network that is
effective on the test set with a minimal number of hidden
neurons should be selected [58].
In the proposed model, the neural network was modeled in

Keras with three layers (one input layer, one hidden layer,
and one output layer). The number of input layer neurons
was changed according to the optimal features selected by
the BWOA, while the output layer consisted of one output
variable (the target water quality parameter). The number of
neurons in the hidden layer was set to 8. The rectified linear
unit (ReLu) activation function was used for neurons in the
hidden layer, while the linear activation function was used
for neurons in the output layer.

1) TRADITIONAL ANN EVALUATION

This scenario aimed to test the prediction accuracy of apply-
ing only the ANN to the extracted reflectance values from the
pre-processing phase for all 13 bands to estimate the optical
and non-optical water quality parameters. The results of the
ANN are displayed in Table 7, which presents the R2 and
RMSE values for each optical and non-optical parameter. The
ANN generated R2 values for all optical parameters with a
mean of 0.51, 0.51, and 0.54 for the test data of dataset-
1, dataset-2, and dataset-3, respectively. For all non-optical
parameters, the ANN achieved R2 values with a mean of 0.36,
0.39, and 0.34 for the test data of dataset-1, dataset-2, and
dataset-3, respectively. These results are unsatisfactory, how-
ever, and can be improved.

2) BWOA-ANN EVALUATION

The proposed model, BWOA-ANN, was evaluated for two
sub-scenarios. The first sub-scenario tested the BWOA-ANN
for optical parameter estimation, where each parameter was
estimated separately. The second sub-scenario tested the
model for non-optical parameter estimation using the results
from the first sub-scenario. The BWOA is a parameterized
algorithm; therefore, the parameters must first be assigned
with appropriate values [62] to ensure that the algorithm
performs with fast convergence. Table 8 presents the initial
parameters of the BWOA algorithm.

In the first sub-scenario, the BWOA-ANN was used to
select the appropriate bands for only the optical parame-
ters and then estimate the water quality optical parameters.
Table 9 reports the experimental results of this sub-scenario
for the three datasets. In addition, it presents the Sentinel-2A
bands’ relationship with each optical parameter, and illus-
trates the R2 and RMSE values for each parameter. Table 9
indicates that instead of performing many manual trials to
determine the optimal Sentinel-2A bands for each parameter,
the BWOA-ANN can automatically identify the bands as fol-
lows. Three common features over the three datasets (Band3,
Band5, and Band6) were automatically selected for Chl-a
estimation. Previous studies specified that a reflectance peak
height between 700 and 720 nm should be used for Chl-a esti-
mation [2]. Three common features over the datasets (Band3,
Band4, and Band8a) were the appropriate bands of Sentinel-
2A for TDS estimation. This ensured that our proposedmodel
achieved accurate results, as dissolved solids absorption is the
highest in the blue band and diminishes exponentially with an
increasing wavelength [2]. The BWOA-ANN generated R2

values over all optical parameters with a mean of 0.93, 0.92,
and 0.90 for dataset-1, dataset-2, and dataset-3, respectively,
when the model was applied to the test dataset. As illustrated
in Table 9, the BWOA-ANN proved to be robust against
different optical parameters over different datasets.
A stopping criteria was set such that the algorithm stopped

when it reached the convergence (stable) state (i.e., best
optimal features), and this occurred when the proposedmodel
detected that there were no more changes in the RMSE value
(fitness function). In this scenario, the maximum number of
BWOA iterations to reach the optimal value (best solution)
was 16 with an average central processing unit (CPU) time
of 36.5661 s for one parameter.
Also, the BWOA-ANN was used to select the appropriate

bands for the non-optical parameters and estimates them.
The BWOA-ANN generated R2 values over all non-optical
parameters with a mean of 0.61, 0.53, and 0.60 for dataset-
1, dataset-2, and dataset-3, respectively, when the model
was applied to the test dataset. But these results could be
improved. After ensuring that the optical parameters were
predicted with an R2 value greater than 0.90 in the first
sub-scenario and based on the conclusion that there are rela-
tionships between the different water quality parameters [68],
these optical parameters were added as features in addi-
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TABLE 5. Dates of Sentinel-2A L1C satellite images and respective corresponding datasets and water quality samples.

TABLE 6. Performance measurements of the atmospheric correction phase.

TABLE 7. Optical and non-optical parameter performance measurements for traditional Artificial Neural Network (ANN).
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TABLE 8. Initial parameters selected for Binary Whale Optimization
Algorithm (BWOA) implementation.

tion to the Sentinel-2A bands in the second sub-scenario to
enhance the detection of non-optical parameters. Table 10
presents the experimental results of the second sub-scenario.
This table presents the relationship between the Sentinel-2A
bands and each non-optical parameter. In addition, it illus-
trates the correlated optical parameters, and tabulates the
R2 and RMSE values for each parameter. These results
were obtained with a significant correlation between the
different chemical parameters in several water sources [68].
The BWOA-ANN generated R2 values over all non-optical
parameters with a mean of 0.89, 0.89, and 0.87 for dataset-
1, dataset-2, and dataset-3, respectively, when the model was
applied to the test dataset. The R2 and RMSE values were
preserved with few changes for different non-optical param-
eters. However, the problem dimension increased, as optical
parameters other than bands were introduced as additional
features. Nonetheless, the model accuracy was not negatively
affected, which demonstrates the robustness of the proposed
model against various water quality parameters and increased
problem dimensions. In this experiment, the maximum num-
ber of BWOA iterations to reach the optimal value (best
solution) was 24 with an average CPU time of 59.792 s for
one parameter.

Also, Table 11 presents the average R2, R2adj, and p-value
measurements of the proposed BWOA-ANN prediction
model considering the three datasets over 30 independent
runs. It was observed that the p-value was less than 4.35E-03
over the three datasets, which indicated the high-level signif-
icance relation between the estimated and observed results.
Moreover, the generated R2 values over all optical parameters
with a mean of 0.93, 0.92, and 0.88 with R2adj values with
a mean of 0.92, 0.92, and 0.87 for dataset-1, dataset-2, and
dataset-3, respectively, when themodel was applied to the test
dataset. For non-optical parameters, the generated R2 values
with a mean of 0.90, 0.89, and 0.88 with R2adj values with
a mean of 0.88, 0.87, and 0.87 for dataset-1, dataset-2, and
dataset-3, respectively, when the model was applied to the
test dataset.

Both ANN and BWOA-ANN models were tested against
optical and non-optical parameters over the datasets.
Table 7, 9, and 10 reveal that the results obtained from
the BWOA-ANN model were superior to those from the
traditional ANN, which doesn’t apply the band selection

process, with the R2 value approximately 40% higher for
optical parameters and up to 52% higher for non-optical
parameters. Generally, the BWOA-ANN demonstrated vast
improvement over the traditional ANN with good general-
ization over datasets from different locations with diverse
conditions. The proposedmodel can thus be applied to a range
of optical and non-optical water quality parameter estimation
scenarios while preserving its generalization, as illustrated
in Table 9 and 10.

Our model can update itself according to the water source
or season due to the automatic feature selection process. This
process selects the appropriate bands and features for the
season or location. The model does not require modifications
when applying it to another place or another season, only by
training it for the first time on a specific lake, thus it can be
used to identify the water quality parameters for the same
lake in any other season. Generally, to prove that the model
has a good generalization performance, we test the model
on four different seasons for Nasser lake after the model
had been trained on dataset-1. Fifteen water samples were
collected from the lake for each season with the same method
of dataset-1 and dataset-2. Table 12 presents the average R2,
R2adj, and RMSEmeasurements of the proposed BWOA-ANN
prediction model considering the four seasons of Nasser lake.
It was observed that the generated R2 values over all available
optical parameters with a mean of 0.91, 0.92, 0.94, and
0.95 with R2adj values with a mean of 0.89, 0.90, 0.90, and
0.91 and RMSE values with a mean of 3.32, 3.30, 1.76,
and 2.74 for seasons (March) 2019, (July) 2019, (Novem-
ber) 2019, and (June) 2020, respectively. For non-optical
parameters, the generated R2 values with a mean of 0.89,
0.88, 0.92, and 0.90 with R2adj values with a mean of 0.88,
0.87, 0.90, and 0.88 and RMSE values with a mean of 3.39,
3.75, 2.41, and 2.83 for seasons (March) 2019, (July) 2019,
(November) 2019, and (June) 2020, respectively. Based on
the presented results, it can be observed that the proposed
model achieved stable results against the different seasons
and different optical and non-optical parameters.

The proposed model was subsequently used to clarify the
current maps of the year 2020 to evaluate the quantitative
water quality estimation model. Two Sentinel-2A L1C scenes
were selected to investigate several water quality parameters.
The first scene was for Nasser Lake on May 30, 2020,
where Chl-a, Turbidity, COD, and DO were identified as
parameters to be estimated. The second Sentinel-2A L1C
scene was selected for the Bin El Ouidane Reservoir on
June 27, 2020, where DO, TP, and NO3 were identified as
parameters to be estimated. The trained BWOA-ANN was
applied for each parameter to the selected scenes, generating
the maps illustrated in Figure 6. Figure 6(a-d) illustrates
the variation of the four parameters for Nasser Lake. The
Chl-a concentration varied between 2 and 30 µg/l and was
generally less than 4 over the entire lake, which is consid-
ered excellent quality according to Egyptian Governmental
Decree No. 92/2013 [69]. The far south of the lake had high
values of Chl-a ranging between 25 and 30 µg/l, which is
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TABLE 9. Optical parameter performance measurements and their corresponding Sentinel-2A bands for the proposed Binary Whale Optimization
Algorithm and Artificial Neural Network (BWOA-ANN) model.

TABLE 10. Non-optical parameters performance measurements, correlated bands, and their Sentinel-2A correlated bands for the proposed Binary Whale
Optimization Algorithm and Artificial Neural Network (BWOA-ANN) model.

TABLE 11. Performance measurements of the proposed BWOA-ANN model with testing datasets over 30 independent runs for optical and non-optical
parameters.

considered poor quality according to Egyptian Governmental
Decree No. 92/2013 [69] (see Fig. 6(a)). Turbidity concentra-
tion demonstrated excellent values of less than 5 NTU in the
majority of the lake and satisfactory values in the far north

and south (see Fig. 6(b)). The COD concentration varied
along the lake with values between 5 and 15 mg/l, it is not
observed any bad ranges for COD along the lake according
to Egyptian Governmental Decree No. 92/2013 [69] (see
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FIGURE 6. Estimated water quality parameters map: a, b, c, and d Nasser lake on May 30,2020; e, f, and g Bin El Ouidan Reservoir on
June 27, 2020.

Fig. 6(c)). With respect to the DO concentrations of the
lake, good values ranged between 6.66 and 7.51 mg/l in the
center of the lake. Proper values were noticed in the range

5.30-6.66 on some lakesides with weak values in the far north
and south (see Fig. 6(d)). Figure 6(e-g) presents the second
scene maps for the Bin El Ouidane Reservoir, which were
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TABLE 12. Performance measurements of the proposed BWOA-ANN model with testing datasets for different seasons of Nasser lake.

TABLE 13. Comparison of the proposed model and other existing remotely monitor water quality models.
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ranged according to the water quality levels of Moroccan
Official Bulletin [70]. The DO concentration was in the range
5-8 along the water body, and satisfactory values of DO were
observed in the center of the reservoir with values greater
than 7. The reservoir contained excellent values of TP within
the range 0.01-1 in the majority of the reservoir. Concerning
the NO3 concentration, good values ranged between 10 and
25 along the reservoir with excellent values less than 10 along
the reservoir sides.
Table 13 illustrates a comparative summary for specifica-

tions of the proposed model against several existing remotely
monitor water quality models. From Table 13, it is observed
that the proposed model outperformed the models proposed
in [32], [34], [40], and [21] with R2 and RMSE ratios.
In addition, these proposed models investigates only the opti-
cal parameters. Moreover, the proposed model was tested
against various water sources, and the model robustness
was not negatively affected with all optical and non-optical
parameters as can be noticed with the model proposed in [21],
which reported instability of Chl-a accuracy with different
lakes and weather conditions. Compared to the models pro-
posed in [71], and [24], which investigated some of the
optical and non-optical parameters, the proposed model out-
performs all of them in terms of R2 and RMSE. On the
other hand, the proposed model shows almost equal accuracy
with the proposed models in [26] and [22], but our proposed
model was tested against 11 different optical and non-optical
parameters and different water sources while preserving the
obtained accuracy over three datasets. In addition, the pro-
posed model automatically selects suitable satellite bands
for each parameter, and dynamically investigates the relation
between optical and non-optical parameters.
Also, we tested the standard C2RCC in Chl-a and TSS

estimationwith our three datasets. C2RCC has been trained in
large scales of scattering and absorption properties, however,
it is observed from Table 13 that C2RCC performed little per-
formance comparing with our model. Moreover, the results
vary from one season to another for the same lake, with R2

difference equals to 0.6 and 0.7 for Chl-a and TSS, respec-
tively. On the other hand, it is clear fromTable 13 that C2RCC
does not work well with small reservoirs (Bin El Ouidan
Reservoir), achieving an R2 value of 0.25 and RMSE value
of 18.75. And till now, there is no estimation for non-optical
water quality parameters in the C2RCC processor.

Finally, up to our knowledge, the proposed model is the
first model, which uses the bands optimization process and
dynamically investigates the relation between optical and
non-optical parameters in the field of remotely monitor water
quality. This optimization process enables the model to be
applied to another satellite without needing to change the
model steps; thus, the model is applicable to different case
studies and satellites.

VII. CONCLUSION AND FUTURE WORK

Many existing studies in remote water quality monitoring
have low robustness against changes in geographic regions

and seasons, and cannot be applied to other study areas.
This paper presents an alternative prediction model that
can be applied to various study areas, seasons, and satellite
images. The model achieved satisfactory results for both
optical and non-optical parameters, and had meaningful rela-
tionships between non-optical and optical parameters that
were confirmed by previous literature. The results illus-
trate that Sentinel-2 data have an important role in remote
water quality monitoring, as they can perfectly map opti-
cal parameters (Chl-a, Trans, TDS, Turbidity, and TSS) and
non-optical parameters (DO, COD, BOD, PO4, NO3, TP, and
TN). The proposed model was tested against three datasets
from diverse locations in different seasons obtaining a mean
R2 value of 0.916 for optical parameters and a mean R2

value of 0.890 for non-optical parameters for three different
datasets. Moreover, it was observed that using the band selec-
tion process for the proposed BWOA-ANN outperformed the
performance of ANN by 40% and 52% for optical parameters
and non-optical parameters, respectively. We implemented
multiple experiments with three datasets achieving the mean
R2 and R2adj values of 0.910 and 0.903, respectively, for
optical parameters. For non-optical parameters, the model
obtained the mean R2 and R2adj values of 0.890 and 0.870,
respectively. The proposed model outperformed the state-of-
the-art in terms of R2, R2adj, and RMSE for both optical and
non-optical parameters. Also, the proposedmodel, in general,
outperformed the state-of-the-art in terms of automatically
selecting the satellite bands and dynamically investigating
optical and non-optical parameters relation.

In future work, the BWOA-ANN model can be further
applied using other sensors, such as high spectral space-borne
sensors and airborne sensors whose spectral bands can reach
224 bands, as the proposed model can automatically select
optimal bands. Also, Data fusion can be performed between
different sensors to fill temporal gaps.
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