
Hybrid Programming Model for Implicit PDE

Simulations on Multicore Architectures

Dinesh Kaushik1, David Keyes1, Satish Balay2, and Barry Smith2

1 King Abdullah University of Science and Technology, Saudi Arabia
{dinesh.kaushik,david.keyes}@kaust.edu.sa

2 Argonne National Laboratory, Argonne, IL 60439 USA
{balay,bsmith}@mcs.anl.gov

Abstract. The complexity of programming modern multicore processor
based clusters is rapidly rising, with GPUs adding further demand for
fine-grained parallelism. This paper analyzes the performance of the hy-
brid (MPI+OpenMP) programming model in the context of an implicit
unstructured mesh CFD code. At the implementation level, the effects
of cache locality, update management, work division, and synchroniza-
tion frequency are studied. The hybrid model presents interesting algo-
rithmic opportunities as well: the convergence of linear system solver is
quicker than the pure MPI case since the parallel preconditioner stays
stronger when hybrid model is used. This implies significant savings in
the cost of communication and synchronization (explicit and implicit).
Even though OpenMP based parallelism is easier to implement (with in
a subdomain assigned to one MPI process for simplicity), getting good
performance needs attention to data partitioning issues similar to those
in the message-passing case.

1 Introduction and Motivation

As the size of multicore processor based clusters is increasing (with decreasing
memory available per thread of execution), the different software models for
parallel programming require continuous adaptation to match the hierarchical
arrangement at the hardware level. For physically distributed memory machines,
the message passing interface (MPI) [1] has been a natural and very successful
software model [2, 3]. For another category of machines with distributed shared
memory and nonuniform memory access, both MPI and OpenMP [4] have been
used with respectable parallel scalability [5]. However, for clusters with sev-
eral multicore processors on a single node, the hybrid programming model with
threads within a node and MPI among the nodes seems natural [6–8]. OpenMP
provides a portable API for using shared memory programming model with po-
tentially efficient thread scheduling and memory management by the compiler.

Two extremes of execution of a single program multiple data (SPMD) on
hybrid multicore architectures are often employed, due to their programming
simplicity. At one extreme is the scenario in which the user explicitly manages
the memory updates among different processes by making explicit calls to up-
date the values in the ghost regions. This is typically done by using MPI, but can

B.M. Chapman et al. (Eds.): IWOMP 2011, LNCS 6665, pp. 12–21, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Hybrid Programming Model 13

also be implemented with OpenMP. The advantage of this approach is good per-
formance and excellent scalability since network transactions can be performed
at large granularity. When the user explicitly manages the memory updates,
OpenMP can potentially offer the benefit of lower communication latencies by
avoiding some extraneous copies and synchronizations introduced by the MPI
implementation. The other extreme is the case in which the system manages
updates among different threads (or processes), e.g., the shared memory model
with OpenMP. Here the term “system” refers to the hardware or the operating
system, but most commonly a combination of the two. The advantages are the
ease of programming, possibly lower communication overhead, and no unneces-
sary copies since ghost regions are never explicitly used. However, performance
and scalability are open issues. For example, the user may have to employ a tech-
nique like graph coloring based on the underlying mesh to create non-overlapping
units of work to get reasonable performance. In the hybrid programming model,
some updates are managed by the user (e.g., via MPI or OpenMP) and the rest
by the system (e.g., via OpenMP).

In this paper, we evaluate the hybrid programming model in the context of an
unstructured implicit CFD code, PETSc-FUN3D [9]. This code solves the Eu-
ler and Navier-Stokes equations of fluid flow in incompressible and compressible
forms with second-order flux-limited characteristics-based convection schemes
and Galerkin-type diffusion on unstructured meshes. This paper uses the incom-
pressible version of the code to solve the Euler equations over a wing.

The rest of this paper is organized as follows. We discuss the primary per-
formance characteristics of a PDE based code in Section 2. We present three
different implementations of the hybrid programming model (using OpenMP
within a node) in Section 3. These implementations strike a different balance of
data locality, work division among threads, and update management. Finally,
the performance of pure message-passing and hybrid models is compared in Sec-
tion 4.

2 Performance Characteristics for PDE Based Codes

The performance of many scientific computing codes is dependent on the per-
formance of the memory subsystem, including the available memory bandwidth,
memory latency, number and sizes of caches, etc. In addition, scheduling of
memory transactions can also play a large role in the performance of a code.
Ideally, the load/store instructions should be issued as early as possible. How-
ever, because of hardware (number of load/store units) or software (poor quality
assembly code) limitations, these instructions may be issued significantly late,
when it is not possible to cover their high latency, resulting in poor overall per-
formance. OpenMP has the potential of better memory subsystem performance
since it can schedule the threads for better cache locality or hide the latency of a
cache miss. However, if memory bandwidth is the critical resource, extra threads
may only compete with each other, actually degrading performance relative to
one thread.

14 D. Kaushik et al.

To achieve high performance, a parallel algorithm needs to effectively uti-
lize the memory subsystem and minimize the communication volume and the
number of network transactions. These issues gain further importance on mod-
ern architectures, where the peak CPU performance is increasing much more
rapidly than the memory or network performance.

In a typical PDE computation, four basic groups of tasks can be identified,
based on the criteria of arithmetic concurrency, communication patterns, and the
ratio of operation complexity to data size within the task. For a vertex-centered
code (such as PETSc-FUN3D used in this work), where data is stored at cell
vertices, these tasks can be summarized as follows (see a sample computational
domain in Figure 1):

– Vertex-based loops
• state vector and auxiliary vector updates (often no communication, point-

wise concurrency)
– Edge-based “stencil op” loops

• residual evaluation, Jacobian evaluation (large ratio of work to datasize,
since each vertex is used in many discrete stencil operations)

• Jacobian-vector product (often replaced with matrix-free form, involving
residual evaluation)

• interpolation between grid levels, in multilevel solvers
– Sparse, narrow-band recurrences

• (approximate) factorization, back substitution, relaxation/smoothing
– vector inner products and norms

• orthogonalization/conjugation
• convergence progress checks and stability heuristics

Each of these groups of tasks stresses a different subsystem of contemporary
high-performance computers. After tuning, linear algebraic recurrences run at
close to the aggregate memory-bandwidth limit on performance, flux computa-
tion loops over edges are bounded either by memory bandwidth or instruction
scheduling, and parallel efficiency is bounded primarily by slight load imbalances
at synchronization points [9].

3 Three Implementations of OpenMP

While implementing the hybrid model, the following three issues should be con-
sidered.

– Cache locality
• Both temporal and spatial are important. For a code using an unstruc-

tured mesh (see Figure 1), a good reordering technique for vertex num-
bering such as the Reverse Cuthill-McKee algorithm (RCM) [10] should
be used.

• TLB cache misses can also become expensive if data references are dis-
tributed far apart in memory.

Hybrid Programming Model 15

Fig. 1. Surface mesh over ONERA M6 wing. The unstructured mesh used here requires
explicit storage of neighborhood information. The navigation over mesh is done by
going over edges, which can be represented as a graph. These meshes can be divided
among subdomains using any graph partitioner.

– Work Division Among Threads
• This can be done by the compiler or manually. For unstructured mesh

codes, it is very difficult for the compiler to fully understand the data ref-
erence patterns and work may not be divided in an efficient and balanced
way.

– Update Management
• The shared arrays need to be updated carefully and several techniques

can be used for conflict resolution among threads. The extra memory
allocation for private arrays and subsequent gathering of data (usually
a memory bandwidth limited step) can be expensive.

• There is potential for some redundant work for conflict resolution, which
should be acceptable in phases that are not CPU-bound.

In an unstructured finite volume code, the residual calculation (or function
evaluation) is a significant fraction of the execution time, especially when a
Jacobian-free Newton-Krylov approach is used [11]. This calculation traverses all
the edges in a subdomain (including those among the local and ghost vertices).
The updates to the residual vector are done only for a local vertex while the
ghost vertices are needed in the ’read-only’ mode.

16 D. Kaushik et al.

This work can be divided in several ways among threads with different bal-
ance of cache locality, extra memory allocation for private arrays, and update
management. We discuss here three implementations we have employed in this
paper next.

3.1 Edge Coloring for Vertex Update Independence

In Figure 2, we show an ordering of edges so that no vertex is repeated in a color.
All the threads can safely operate within each color (resolving conflicts without
any extra memory overhead for private arrays). However, the temporal cache
locality can be extremely poor, especially when the subdomain (or per MPI
process problem size) is reasonably big (to fully utilize the available memory on
the node). In this case, no vertex data can be reused and no gathering of shared
data is needed later. This technique was widely used for vector processors but lost
appeal on cache-based processors. However, this may become important again
for heterogeneous multicore processors where the fine division of work should
happen among thousands of threads under tight memory constraints.

3.2 Edge Reordering for Vertex Data Locality

This variant is presented in Figure 3 where edges are reordered to provide reason-
able temporal cache locality but residual vector updates are a challenge. There
are several ways in which this reordering can be done. We have implemented a
simple approach where vertices at the left ends of edges are sorted in an increas-
ing order (with duplicates allowed). A typical edge-based loop will traverse all
the neighbors of a given vertex before going to the next vertex. This reordering
(when combined with a bandwidth reducing technique like RCM [10]) implies
high degree of data cache reuse. However, each thread here needs to allocate
its private storage for the shared residual vector. The contribution from each
thread needs to be combined at the end of the computation. This update be-
comes a serialized memory-bandwidth limited operation, presenting limitations
on scalability.

3.3 Manual Subdivision Using MeTiS

Here the subdomain is partitioned by a graph partitioner (such as MeTiS [12])
in an appropriately load balanced way. Each MPI process calls MeTiS to fur-
ther subdivide the work among threads, ghost region data is replicated for each
thread, and “owner computes” rule is applied for every thread. Note that this
is the second level of partitioning done in this way (while the first is done for
MPI). This creates a hierarchical division of computational domain. This hierar-
chy can be implemented using a MPI sub-communicator, Pthreads, or OpenMP.
We have used OpenMP in this paper. The vertices and edges can be reordered
after partitioning for better cache locality. In essence, this case gives the user
complete control over the work division, data locality, and update management.
We expect this implementation to perform better than the first two cases. How-
ever, this is achieved at the expense of the simplicity of OpenMP programming

Hybrid Programming Model 17

Edge Coloring

1 2
3 4
7 8
2 6
1 5
2 3
6 8
4 5
3 6

1 2
2 6
3 4
1 5
2 3
4 5
7 8
6 8
3 6

Fig. 2. Edge coloring allows excellent update management among threads but produces
poor cache locality since no vertex can repeat within a color

model (such as incremental parallelism). The user must also face the additional
complexity at the programming level. However, this implies the same level of
discipline (for data division) as was done for the pure MPI case (where several
application codes begin anyway).

4 Results and Discussion

There are several implementations of the hybrid programming model possible
that strike a different balance of memory and data synchronization overheads. In
Table 1, we study the three implementations presented in the previous section
on 128 nodes of Blue Gene/P (with 4 cores per node). The mesh consists of
2.8 million vertices and about 19 million edges. As expected, the MeTiS divided
case performs the best among the three. We have observed that the differences
among the three cases diminish as the subdomain problem size gets smaller since
the problem working set size will likely be fitting in the lowest level of cache (L3
in the case of Blue Gene/P).

In Table 2, we compare the MeTiS divided implementation of the hybrid
model with the pure MPI model. The performance data in Table 2 on up to 1,024
nodes (4,096 cores) appears promising for the hybrid model. As the problem size

18 D. Kaushik et al.

Edge Reordering

1 2
1 5
2 6
2 3
3 4
3 6
4 5
6 8
7 8

1 2
2 6
3 4
1 5
2 3
4 5
7 8
6 8
3 6

Fig. 3. Vertex localizing edge reordering (based on sorting the vertices at one end)
gives good cache locality but allows updates that can overwrite the data in an array
shared among threads

per MPI process (from the global 2.8-million vertex mesh) gets smaller (there
are only about 674 vertices per MPI process on 4,096 cores), the two models
perform close to each other. However, mesh sizes much larger than 2.8 million
are needed in real life to resolve the complex flow field features (say, around full
configuration airplanes) and we may not be able to afford the partitioning at this
fine granularity. For larger mesh sizes, the difference in performance are expected
to grow. Nevertheless, the lessons learned from this demonstration comparing
these two different programming models are relevant, especially at the small
node count level.

We note that the performance advantage in the case of hybrid programming
model primarily stems from algorithmic reasons (see Table 3). It is well known
in the domain decomposition literature that the convergence rate of single level
additive Schwarz method (parallel preconditioner in PETSc-FUN3D code [9])
degrades with the number of subdomains, weakly or strongly depending on the
diagonal dominance of the underlying operator. Therefore, the preconditioner is
stronger in the hybrid case since it uses fewer subdomains as compared to pure
MPI case. We believe this to be one of the most important practical advantages of
the hybrid model, on machines with contemporary hardware resource balances.

Hybrid Programming Model 19

Table 1. Overall execution time for the different OpenMP implementations on 128
nodes of IBM Blue Gene/P (four 850 MHz cores per node)

Threads per Node
Implementation 1 2 4

Edge Coloring for Vertex Update Independence 211 107 54
Edge Reordering Vertex Data Locality 198 103 57

Manual Subdivision Using MeTiS 162 84 44

Table 2. Execution time on IBM Blue Gene/P for function evaluations only, compar-
ing the performance of distributed memory (MPI alone) and hybrid (MPI/OpenMP)
programming models

MPI Processes Threads per Node
per Node in Hybrid Mode

Nodes 1 2 4 1 2 4

128 162 92 50 162 84 44
256 92 50 30 92 48 26
512 50 30 17 50 26 14

1024 30 17 10 30 16 9

Table 3. Total number of linear iterations for the case in Table 2

MPI Processes per Node
Nodes 1 2 4

128 1217 1358 1439
256 1358 1439 1706
512 1439 1706 1906

1024 1706 1906 2108

In particular, the number of iterations decreases, and with it the number of
halo exchanges and synchronizing inner products that expose even minor load
imbalances.

5 Conclusions and Future Work

We have demonstrated the superior performance of hybrid programming model
to that of pure MPI case on a modest number of MPI processes and threads.
The data partitioning similar to the message-passing model is crucial to get
good performance. As the number of processors and threads grows, it is im-
portant from execution time and memory standpoints to employ a hierarchy of
programming models. This hierarchy can be implemented in several ways such
as MPI+OpenMP, MPI+MPI, and MPI/CUDA/OpenCL.

20 D. Kaushik et al.

Our past work [3] has demonstrated the scalability of MPI+MPI model (using
MPI communicators for a six dimensional problem in particle transport) on the
petascale architectures available today. The pure (flat) MPI case will impose
too much memory overhead at the extreme scale. As the system size grows, we
expect algorithmic advantages (in terms of convergence rate) to be increasingly
dominant. The synchronization frequency is another important factor at the
extreme scale, especially when hundreds of threads (e.g., in a GPU) are used
to accelerate the important kernels of the code, such as function evaluation or
sparse matrix vector product. Our future work will focus on parallel algorithms
and solvers that will require less synchronization at both fine- and coarse-grain
levels on heterogeneous as well as homogeneous architectures.

Acknowledgments

We thank William Gropp of University of Illinois at Urbana Champaign for
many helpful discussions. For computer time, this research used resources of
the Supercomputing Laboratory at King Abdullah University of Science and
Technology (KAUST), and the Argonne Leadership Computing Facility (ALCF)
at Argonne National Laboratory. ALCF is supported by the Office of Science of
the U.S. Department of Energy under contract DE-AC02-06CH11357.

References

1. MPI Forum, http://www.mpi-forum.org
2. Sahni, O., Zhou, M., Shephard, M.S., Jansen, K.E.: Scalable Implicit Finite Ele-

ment Solver for Massively Parallel Processing with Demonstration to 160K Cores.
In: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, SC 2009, pp. 68:1–68:12. ACM, New York (2009)

3. Kaushik, D., Smith, M., Wollaber, A., Smith, B., Siegel, A., Yang, W.S.: Enabling
High-Fidelity Neutron Transport Simulations on Petascale Architectures. In: Pro-
ceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, SC 2009, pp. 67:1–67:12. ACM, New York (2009)

4. The OpenMP API specification for parallel programming, http://www.openmp.org
5. Mallón, D.A., Taboada, G.L., Teijeiro, C., Touriño, J., Fraguela, B.B., Gómez, A.,

Doallo, R., Mouriño, J.C.: Performance evaluation of MPI, UPC and openMP
on multicore architectures. In: Ropo, M., Westerholm, J., Dongarra, J. (eds.)
PVM/MPI. LNCS, vol. 5759, pp. 174–184. Springer, Heidelberg (2009)

6. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP Parallel Programming
on Clusters of Multi-Core SMP Nodes. In: 2009 17th Euromicro International
Conference on Parallel, Distributed and Network-based Processing, pp. 427–436
(Febraury 2009)

7. Lusk, E., Chan, A.: Early Experiments with the OpenMP/MPI Hybrid Program-
ming Model. In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS,
vol. 5004, pp. 36–47. Springer, Heidelberg (2008)

8. Cappello, F., Etiemble, D.: MPI versus MPI+OpenMP on the IBM SP for the
NAS Benchmarks. In: ACM/IEEE 2000 Conference on Supercomputing, p. 12
(November 2000)

http://www.mpi-forum.org
http://www.openmp.org

Hybrid Programming Model 21

9. Gropp, W.D., Kaushik, D.K., Keyes, D.E., Smith, B.F.: High Performance Parallel
Implicit CFD. Journal of Parallel Computing 27, 337–362 (2001)

10. Cuthill, E., McKee, J.: Reducing the Bandwidth of Sparse Symmetric Matrices.
In: Proceedings of the 24th National Conference of the ACM (1969)

11. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov Methods: A Survey of Ap-
proaches and Application. Journal of Computational Physics 193, 357–397 (2004)

12. Karypis, G., Kumar, V.: A fast and high quality scheme for partitioning irregular
graphs. SIAM Journal of Scientific Computing 20, 359–392 (1999)

	Hybrid Programming Model for Implicit PDE Simulations on Multicore Architectures
	Introduction and Motivation
	Performance Characteristics for PDE Based Codes
	Three Implementations of OpenMP
	Edge Coloring for Vertex Update Independence
	Edge Reordering for Vertex Data Locality
	Manual Subdivision Using MeTiS

	Results and Discussion
	Conclusions and Future Work
	References

