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Abstract

Estimating conditional quantiles of financial time series is essential for risk
management and many other financial applications. For time series models with
conditional heteroscedasticity, although it is the generalized autoregressive con-
ditional heteroscedastic (GARCH) model that has the greatest popularity, the
quantile regression for this model usually gives rise to non-smooth non-convex
optimization which may hinder its practical feasibility. This paper proposes an
easy-to-implement hybrid quantile regression estimation procedure for the GARCH
model, where we overcome the intractability due to the square-root form of the
conditional quantile function by a simple transformation. The proposed method
takes advantage of the efficiency of the GARCH model in modeling the volatility
globally as well as the flexibility of the quantile regression in fitting quantiles at
a specific level. The asymptotic distribution of the proposed estimator is derived
and is approximated by a novel mixed bootstrapping procedure. A portmanteau
test is further constructed to check the adequacy of fitted conditional quantiles.
The finite-sample performance of the proposed method is examined by simulation
studies, and its advantages over existing methods are illustrated by an empirical

application to Value-at-Risk forecasting.

Keywords and phrases: Bootstrap method; Conditional quantile; GARCH; Nonlinear

time series; Quantile regression.



1 Introduction

Time series models with conditional heteroscedasticity have been known to be greatly
successful at capturing the volatility clustering of financial data since the appearance
of Engle’s (1982) autoregressive conditional heteroscedastic (ARCH) model and Boller-
slev’s (1986) generalized autoregressive conditional heteroscedastic (GARCH) model; see
Francq and Zakoian (2010). One of many popular applications of these models is to es-
timate quantile-based risk measures such as the Value-at-Risk (VaR) and the Expected
Shortfall (ES), and for such problems, quantile regression (Koenker and Bassett, 1978)
naturally makes an appealing tool (Engle and Manganelli, 2004; Francq and Zakoian,
2015).

In the literature, feasible quantile regression has remained challenging for the ar-
guably most important conditional heteroscedastic time series model, Bollerslev’s (1986)

GARCH model:
q p
Ty = nt\/}Tta ht = Qo+ Z aix?_i + Z ﬁjht—jv (11)
i=1 j=1

where {n;} are independent and identically distributed (i.i.d.) innovations with mean
zero and variance one. Denote the 7th quantile of 1, by @,, and the information set

available at time t by F;. In estimating the conditional quantile of x; in (1.1), i.e.,

q p
Q- (| Fic1) = Qray | 00 + D aia?  + > Bihyy, 0<7<1, (1.2)
=1

j=1

there are two key challenges that make the quantile regression highly intractable:

(i) The square root in (1.2), along with the check function p,(z) = x[r — I(x < 0)],
leads to a non-smooth objective function which is non-convex even for the ARCH
case.

(ii) The recursive form of the unobservable {h;} in (1.1) adds another layer of difficulty

to the already complicated theoretical derivation and numerical optimization.

Before introducing our approach to addressing these challenges, let us consider the

following variant of model (1.1), i.e., Taylor’s (1986) linear GARCH model:

q p
Yr = 0¢€t,  0p = Qo+ Zaz‘|yt—i| + Z Biot—j, (1.3)
i=1 j=1



where {¢;} are i.i.d. innovations with mean zero. Denote the 7th quantile of ¢, by Q..

Notice that Challenge (i) is never an issue for model (1.3), as

q p
Qr (ye| Fi1) = (Oéo + Z | ye—i| + Z 5j0t—j> Qre, 0<7<L
i=1

j=1
If there were no o;_; in (1.3), the problem would be just a linear quantile regression,
which was considered in Koenker and Zhao (1996). For the general case, Xiao and
Koenker (2009) proposed to replace the o,_;’s with some initial estimates obtained by
the quantile regression for sieved ARCH models and thereby circumvented Challenge (ii).
Unfortunately, due to Challenge (i), easy-to-implement quantile regression procedures for
Bollerslev’s (1986) original GARCH model in (1.1) have been seemingly impossible.

In this paper, we tackle this open problem by applying a simple transformation to
the conditional quantile in (1.2). With the square root in (1.2) in mind, we naturally
look for a transformation 7'(-) which is

(a) the inverse of the square-root function in some sense, and
(b) a continuous and nondecreasing function from R to R.

This interestingly leads to T'(x) = z?* sgn(x), where sgn(-) is the sign function, and then,
q P
T[Q+ (w4 Firr)] = QAT ()| Fica] = (0 + Y cuay, + . Bihuj | T(Qry).  (1.4)
i—1 j=1

The linearity of (1.4) enables a convenient hybrid three-step estimation procedure as fol-
lows: (1) obtain initial estimates of {h;} by fitting the GARCH model in (1.1) with the
Gaussian quasi-maximum likelihood method; (2) estimate Q,[1'(z;)|F:—1] by a weighted
linear quantile regression; and (3) use the relationship Q, (x| F;_1) = T-HQ [T (z¢)| Fi-1]}
to estimate Q. (z¢|Fi_1), where T71(x) = 1/|z| sgn(z) is the inverse function of T'(-).
The proposed hybrid procedure contains two main estimation steps with different
purposes. As a preliminary estimation of the global model structure, Step (1) exploits
the general suitability of the GARCH model in volatility modeling. Subsequently, the
quantile regression in Step (2) targets a particular quantile level of interest and allows a
more flexible characterization of the conditional quantile structure while inheriting the
GARCH modelling strategy. In the literature, there exist conditional quantile estimation
methods that essentially utilize only Step (1) or Step (2), and the leading examples are
the filtered historical simulation (FHS) method (Kuester et al., 2006) and the CAViaR
method (Engle and Manganelli, 2004). Roughly speaking, the FHS method uses the
GARCH structure only for the global estimation of the volatility, but not for the quantile
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estimation. On the contrary, the CAViaR method focuses on the local approximation at
a particular quantile level, and it adopts the GARCH-type structure only for the quantile
estimation. The current paper tries to exploit the GARCH structure in both the global
estimation of the volatility and the local estimation of quantiles, and the proposed hybrid
method can have superior performance in practice, since the actual “truth” usually lies
somewhere in between the global model and the quantile model. More specifically, as
the FHS method is reliant solely on the GARCH modelling, it is less robust than the
proposed method when the quantile structure actually varies in shape across the quantile
levels, which is a feature frequently encountered in practice (Engle and Manganelli, 2004).
Although the CAViaR method imposes the structure at only a particular quantile level
and offers full flexibility, it can lack efficiency at commonly used quantile levels, e.g.,
7 = 0.05 and 0.01, where the data are very sparse. Moreover, the computation of the
CAViaR method is generally challenging. The proposed hybrid method combines the
advantages of both approaches and is supposed to be more potent in practice.

As the estimation of the asymptotic covariance matrix of the proposed estimator
is complicated by the innovation density function involved, a bootstrapping procedure
is needed. A straightforward approach is to adopt the random-weighting bootstrap
method in Jin et al. (2001) in both Steps (1) and (2), where the minimands of the
corresponding objective functions are perturbed by random weights. By replacing the
first perturbation with sample averaging, we alternatively propose a novel mixed method
to avoid repeating the optimization in Step (1) many times. As a result, the computation
time is reduced significantly. Furthermore, we construct a portmanteau test to check the
adequacy of fitted conditional quantiles based on the residual quantile autocorrelation
function (QACF) in Li et al. (2015).

The rest of the paper is organized as follows. Sections 2 and 3 propose the hybrid
estimation and mixed bootstrapping procedures, and Section 4 proposes the portmanteau
test. Section 5 presents the simulation experiments, and Section 6 provides an empirical
analysis on VaR forecasting. Section 7 concludes with a short discussion. The appendix
gives proof sketches of the theorems, and due to space limitations, the detailed proofs
are given in a separate supplementary file. Throughout the paper, —,; denotes the
convergence in distribution, o,(1) denotes a sequence of random variables converging to

zero in probability, and o} (1) corresponds to the bootstrap probability space.



2 The hybrid conditional quantile estimation

2.1 The proposed hybrid estimation procedure

Let {z;} be a strictly stationary and ergodic process generated by model (1.1) with
parameter vector 0 = (g, a1, ..., 01,...,0p), where ag > 0, a; = 0 for 1 < i < g,
and f; = 0 for 1 < j < p; see Bollerslev (1986). The necessary and sufficient condition
for the existence of a unique strictly stationary and ergodic solution to the model is given
in Bougerol and Picard (1992). Let F; be the o-field generated by {z;,z;_1,...}, and let
b, = T(Q.,) and 6, = b0, where Q. is the 7th quantile of 7, and T'(z) = 2 sgn(x).

Then, the Tth quantile of the transformed variable y;, = T'(z;) conditional on F;_; is

Qr(ye| Fi1) = by (a0+2aajt l—l—Zﬁ]ht ]> =0z 0<7<]l, (2.1)

where z; = (1,27 ,,... ,xf_q, hi1,...,hi—p). Notice that if {h;} were observable, then
we would be able to estimate @, (y;|F;—1) by a linear quantile regression.

For 0 < w < w and 0 < py < 1 with pw < po, define © = {6 : 1 + - + 3, <
Po, W mln(amala--'?aq?ﬁl?" 517) maX(Ofo,Oél,...,Oéq,ﬁl,.. ﬁp) w} < RZ:"Q"Fl

where R, = (0,0); see Berkes and Horvath (2004). Let the true value of § be 6y =

Y

(a0, o1, - - -, Qog, Bots - - -, Bop)’s and let 09 = b.0y. Define h,(#) recursively by
q p
he(0) = a0+ Y. cwaf ; + > B (0). (2.2)
i=1 j=1

Then hy(6y) = hy. As hy(0) in (2.2) depends on infinite past observations, initial values for
{22, ... ,x%_q, ho, ..., hi_p} are needed. We set them to m™" > " | 7 for a fixed number
m, say m = 5 in our numerical studies, and denote the resulting h;(#) by ?Lt(O); fixing
the initial values will not affect our asymptotic results.

We propose the hybrid conditional quantile estimation procedure as follows.

o Step E1 (Estimation of the global model structure). Perform the Gaussian quasi-
maximum likelihood estimation (QMLE) of model (1.1),

~

0, = argmin » {;( 2.3
Gge® ;t ( )

where ;(0) = xt/ht( ) + log 14(8); see Francq and Zakoian (2004). Then compute
the initial estimates of {h,} as hy = hy(6,,).



o Step E2 (Quantile regression at a specific level). Perform the weighted linear quan-

tile regression of g, on 2, = (1,27 ,,...,27_, hyi, ... ,%t,p)’ at quantile level 7,
0., = argminZ Et_lpf(yt —0.z). (2.4)
O =1

Thus the 7th conditional quantile of 3; can be estimated by @T(yt\]-"t,l) = é’m,?t
e Step E3 (Transforming back to x;). Estimate the 7th conditional quantile of the
original observation z; by Q. (z:|Fi_1) = T-1(0., %), where T~1(z) = /|2 sgn(x).

Assumption 1. (i) 0y is in the interior of ©; (i) n? has a non-degenerate distribution
with En} = 1; (iii) The polynomials 331 ca’ and 1 — 330, B’ have no common root;

(iv) En} < o.

Assumption 2. The density f(-) of e, = T(n) is positive and differentiable almost

everywhere on R, with its derivative f satisfying that SUD,cRr |f(x)| < 0.

Assumption 1 is used by Francq and Zakoian (2004) to ensure the consistency and
asymptotic normality of the Gaussian QMLE gn, which is known as the sharpest result.
It implies only a finite fractional moment of x4, i.e., E|z,/** < oo for some &y > 0 (Berkes
et al., 2003; Francq and Zakoian, 2004). For the GARCH model, imposing a higher-order
moment condition on x; would reduce the available parameter space ©; see Francq and
Zakoian (2010, Chapter 2.4.1). Assumption 2 is made for brevity of the technical proofs,
while it suffices to restrict the positiveness of f(-) and the boundedness of |f()| in a
small and fixed interval [b, — 7, b, + r] for some r > 0.

Let 1 = E[n?I(n < Qr,y)] — 7 and kg = En} — 1. Define the (p+q+1) x (p+q+1)
matrices: J = E{h;[0hi(00)/00][0h(00)/00']}, Qo = E(z2)), Qi = E(h;'%zl), H; =
E[h; " 200,(60)/00') and T = Elh; "z 330 Boj0hy—;(60)/06'] for i = 1 and 2,

2 K1b, 1

LTyt ST (T J 7 HY + HyJ7'TY) + mob2Ded 7T | Q50 (25)

B0 et )

and

2 K1 b-,—

S i
— Qo+ ——(TyJ'H! + HJ T AT, J T QL
| F2(b) 0+ f(bf)( 1 1+ 1) + r2brly R

Theorem 1. If Assumptions 1 and 2 hold, then \/ﬁ(ém —0r0) —a N(0,%;).

Ny = Q!

The weights {h; '} in (2.4) are used to improve the efficiency, as y, — Q- (y|Fi_1) =
hi(e; — br). Removing the weights gives the unweighted estimator

~

Orn = argmin ) p,(yr — 0,%),
)



and as the following corollary shows, the asymptotic normality of ém requires a higher-

order moment condition on x;, which will entail a smaller available parameter space.

Corollary 1. If E|z** < o for some 1o > 0, and Assumptions 1 and 2 hold, then
V(0 — 029) =4 N(0,55).

For the ARCH case, we can show that s — > is always nonnegative definite; i.e.,
§m is asymptotically more efficient than 0. A general comparison of >; and X5 for the
GARCH model is very difficult due to the complicated forms of the two matrices. How-
ever, given the true parameter vector, the innovation distribution and 7, we can obtain
theoretical values of the constants b,, f(b,), k1 and ky and estimate all matrices involved
in Xy and X5 by the corresponding sample averages, based on a generated sequence with
a large sample size. Then, we can obtain the asymptotic relative efficiency (ARE) of
0., to 0,,, defined as ARE(@W, 5m) = (|Zs]/|31])Y®+a+D) | where | - | is the determinant
of a matrix; see Serfling (1980). As shown in the supplementary material, the weighted
estimator is always asymptotically more efficient than the unweighted estimator, i.e.,
ARE(@M, ém) > 1, for GARCH(1, 1) models with different parameter values, innovation

distributions and quantile levels. Therefore, we will focus on the weighted estimator ém

from now on.

Corollary 2. If the conditions in Theorem 1 hold, then

~

Qe (Wn11Fn) = Qr(Uni1|Fn) = iy (B — 0) + 2y (B — Or0) + 0 (n12),
where U,41 = b, Zﬁ?zl BojOhni1-(00)/00.

When b, # 0, it further holds for the 7th conditional quantile estimator of x,,; that

~

Uy i1 (On = 00) + 201 (O — 0r0)

2 V |b7'hn+1|

In practice, multiple quantile levels are often considered simultaneously, say m <

Qr(Tn1Fn) = Qr (@il F) = +op(n12). (2.6)

Ty < -+ < Tg. Although {@Tk(ynﬂ\fn)},ﬁl from the proposed procedure may not be
monotonically increasing in k, it is convenient to employ the rearrangement method in

Chernozhukov et al. (2010) to fix the quantile crossing problem after the estimation.

2.2 Relationship with existing methods

In this subsection, we discuss the relationship between the proposed hybrid method
and two important approaches in the literature: the filtered historical simulation (FHS)

method (Kuester et al., 2006) and the CAViaR method (Engle and Manganelli, 2004).
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We first consider the FHS method. Notice that Q. (y¢|Fi—1) = 0.2zt = byhy. If we
ignore the GARCH structure and consider a simple weighted linear quantile regression

only for the parameter b, in the second stage, we have

[ argminz ’];t_lpﬂ'(yt - b%t)- (2.7)
b

t=1

It is not difficult to see that Em is just the 7th empirical quantile of {yt/ﬁt}. Thus,

the corresponding procedure, with a simplified second stage estimation, reduces to the

~

FHS method, with the estimates @T(yt\]—}_l) = gm?zt = g’m%’t, where 5771 = 'Emen is
the corresponding FHS estimator of .. The FHS method relies heavily on the global
GARCH structure to fit the conditional quantiles. Specifically, as it allows only b, to
change across the quantiles, it will suffer from inflexibility in practice, since the real data
rarely behave exactly like a GARCH model. The additional simulation results in the
supplementary material also demonstrate that the FHS method always has much larger
biases than the proposed method.

On the other hand, applying the CAViaR method of Engle and Manganelli (2004) to

the transformed observations y; by assuming the linear form in (2.1), we have

Doy = arg?inzn: prlye — 0"y ()], (2.8)
t=1

where v (9) = (1,27 1,..., 27 ,, q—1(0), ..., q—p(V)) with ¢s() = V'vs(?). Unlike the
proposed @n and the FHS estimator 6~m which both converge to 0.y = b.60y, the CAViaR
estimator 1§m converges to U, := (brago, by, - . ., brawg, Bot, - - -, Pop)’- Notice that this
approach will lead to the unweighted estimator 5Tn in the previous subsection if we first
obtain initial estimates of {¢;(¢)}, and hence those of v;(1)) in (2.8), by replacing ¥ with
the more efficient Gaussian QMLE 5,“ and then perform the quantile regression in (2.8).
As a result, the CAViaR method is even less efficient than the unweighted method in
the previous subsection, although it enjoys greater flexibility than the FHS method since
it imposes a structure at only the quantile level 7. Moreover, the computation of the
CAViaR method is generally challenging, which actually requires grid search.

We may interpret the proposed method as a hybrid version of the FHS and CAViaR
methods. It combines the efficiency of the former and the flexibility of the latter, and
hence may perform better in practice. However, when the data are exactly generated

by a GARCH model, the proposed estimator (‘)Am may be less efficient than the FHS



estimator gm. Let

2
where By = (0,...,0,Bo1, -, Bop) € RPYL and Xy = 0,8, + Boby. If the conditions in
Theorem 1 hold, we can show that /n(f,, — 6,0) —4 N(0,%3); see also Gao and Song
(2008) and Francq and Zakolan (2015). In particular, for ARCH models, ¥; and %3
reduce to (7 — 72)J 71/ f2(b;) and (7 — 72)006)/f(b;) + k2b2(J 1 — 0y0}), respectively.

>3 Yo + /ﬁlgbz(zo + J1— 9096),

Then, we can further show that ¥3 — ¥; is nonnegative definite if and only if (7 —
72)/f2(b;) — kab? < 0, which depends on the specific innovation distribution and quantile
level 7. For the GARCH model, similar to our discussion on the unweighted estimator in
the previous subsection, we have computed the ARE of the proposed estimator ém to the
FHS estimator 0~m for GARCH(1, 1) models for different parameter settings, innovation
distributions and quantile levels. As expected, the FHS estimator gm is asymptotically
more efficient in general, while the proposed estimator §m can be asymptotically more

efficient when {7;} become more heavy-tailed; see the supplementary material for details.

3 A mixed bootstrapping procedure

To circumvent difficulties due to the density function in the asymptotic covariance matrix
in Theorem 1, we propose a bootstrapping procedure to approximate the asymptotic
distribution of gm, which benefits from both the convenience of the random-weighting
bootstrap method in Jin et al. (2001) and the time-efficiency of sample averaging.

From the proof of Theorem 1, the Gaussian QMLE 5n affects the asymptotic distribu-
tion of the proposed estimator é\m through the relationship \/ﬁ(@n—ﬁﬂ)) = O, T,/ f(by)—
b, Q5 Ton/n(0, — 6o) + 0p(1), where Ty, = n~ V237" (g, — br)z/hy, with 9, (z) =
T — I(z < 0). Apparently, the random-weighting bootstrap should be incorporated in
both Steps E1 and E2, leading to the following bootstrapping procedure:

o Step B1. Perform the randomly weighted Gaussian QMLE,

0 = argmin > w,l(6), (3.1)

n ==
LSS —

where {w;} are i.i.d. non-negative random weights with mean and variance both

equal to one, and then compute the initial estimates of {h,} as h¥ = hy(6%).



o Step B2. Perform the randomly weighted quantile regression,

n
% : 71 Ik
or = argmmE wihy  pr(yr — 00ZF), (3.2)
O =1
TH 2 2 T 7% /
where 2} = (1, zf 1, ..., 27, hi g, hi )

e Step B3. Calculate the conditional quantile estimate, Q* (x| Fr_1) = T_l(g;“;,?f)

The purpose of the bootstrapping procedure is to avoid estimating the density f(b,)
involved in the asymptotic covariance matirx ;. Observe that no density actually
appears in the asymptotic covariance matrix of the Gaussian QMLE gn This motivates

us to replace the optimization in Step B1 with a simple sample averaging. Notice that
n ~ 1 n

V(0 —a,) Z wy—1)& +0px(1) and /n(f, —6y) = \/—ﬁth—i—op(l), (3.3)
o1 t=1

where & = J 7 (Jyu|/hy — 1)h; ' [0hu(6y)/06] and 67 is defined as in (3.1); see also Francq
and Zakoian (2004). The matrix J = E{h; *[0h.(0,)/00][0h:(00)/06']} can be estimated
consistently by J = n! S h T2[0hy(6,,)/06][0hy(6,,)/06']. Therefore, Step Bl can be
replaced by the following:

o Step BI'. Calculate the estimator 5:; by

~

Pt J! < yt’) 1 a%t(gn)
9*:9n—— wy — 1 1—-=— ) =~——=. 3.4
: (123 ) =5 (3.4)

i

Combining Steps B1’, B2 and B3, we have a mixed bootstrapping procedure.

Assumption 3. The random weights {w;} are i.i.d. non-negative random variables with

mean and variance both equal to one, satisfying E|w|*T" < oo for some kg > 0.

Theorem 2. Suppose that E|n|*t?° < o for some vy > 0 and Assumptions 1-3 hold.
Then, conditional on JF,, f( m) —q N(0,%1) in probability as n — o, where 4

is defined as in Theorem 1.
Corollary 3. Under the conditions of Theorem 2, it holds that

Q2 (W1 Fn) = Qr(ymia|Fn) = w1 (0 = 0,) + 21 (6%, — Orn) + 05 (0772,
where u, 1 s defined as in Corollary 2.

By Corollaries 2 and 3, along with the asymptotic results for 5;; and g;“n in the proof

of Theorem 2, the confidence interval for the conditional quantile Q,(x,41|F;,) can be
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easily constructed based on the bootstrap sample {@j‘.(mn+1|]:n)}, where Qi(wn+1|fn) =
TYQ* (yns1|Fn)]; see also Spierdijk (2016).

The first-order validity of the proposed mixed bootstrapping procedure is established
by Theorem 2 and Corollary 3. Unfortunately, the second-order correctness (Lahiri, 2003)
is almost impossible to achieve. In fact, as long as the quantile regression is employed,
due to the non-smoothness of the loss function p, (), it will be very difficult to attain
the second-order correctness for the bootstrapping procedure; see also Horowitz (1998).
Notice also that the o,(1) term in (3.3) plays a non-negligible role in the Edgeworth
expansion of v/n(6, — 8) (Linton, 1997), but is ignored by 8% in Step B1’. Hence, the
second-order correctness has already been lost when we use the much faster sample-
averaging method in Step B1’ to replace the optimization in Step B1. However, the
sacrifice is worthwhile, as the second-order correctness is anyway unachievable due to
the non-smooth objective function in Step B2. Actually, in the literature, bootstrap
methods with the second-order correctness are still limited to the GARCH(1, 1) model
and unavailable for the general GARCH model (Corradi and Iglesias, 2008; Jeong, 2017).

4 Diagnostic checking for conditional quantiles

Based on the proposed procedures in Sections 2 and 3, we next construct a portmanteau
test to check the adequacy of fitted conditional quantiles.

Let &, = he Ny — Qr(ye| Fio1)] = &, — by. We define the quantile autocorrelation
function (QACF) of {e;,} at lag k as

E{¢T (&5,7) |5t—k,7' |}

(r =),

Pk = qCOTT{gt,T, ‘gt—k,7|} = k= 17 27 )

where 02 = var(|le;;|) = E(lerr| — par)?, with p,, = FEle;.|; see also the QACF in

a,T

Li et al. (2015) and the absolute residual ACF in Li and Li (2005). If Q. (x| Fi—1) is
correctly specified by (1.2), then E[¢,(e¢,)|Fi—1] is zero, and so is py . for any k > 1.
Accordingly, let &, = by — @m,?t), and then the corresponding residual QACF

at lag k can be calculated as r,, = (7 — 7'2)*1/23;;71*1 Deporr Yr(Err)|Ee—k,r|, Where

0r . =020 (6] = Flayr)?, With flg, = n7' 3" | |& | For a predetermined positive
integer K, we first derive the asymptotic distribution of R = (ry,...,7kx.)".
Let ¢ = (levsrl, let—1sly- -y |et—k11-]) and 2 = E(ee)), and define the K x (p +

q + 1) matrices D; = E(h; e;_12}), Dy = E[h; ‘e, Z?:l BojOhi—j(0p)/00'], and D3 =

11



E[h;1€t_1aht(90)/ael]. In addition, let P = D2 - Dnglrg, Q = D3 - DnglHQ, Qg =
D5 D), and

Hlef(bT>

T—172

ka2 f*(br)

T—172

Yy=0,; lE — Q3+ (QJ7'P + PIT'Q) + PJ'P . (4.1)

Theorem 3. If Eln|*™?° < oo for some vy > 0 and Assumptions 1 and 2 hold, then

VR —4 N(0,%,), where ¥4 is a positive definite matriz.

Theorem 3 implies that the portmanteau test statistic Q(K) = nR'S; 'R converges
to the x? distribution with K degrees of freedom as n — oo, where 24 is a consistent
estimator of ;. Notice that, even for the ARCH case, the asymptotic covariance matrix
¥y = 0,2(2 — D1J7'Dj) still depends on the parameter vector 6, the density f(-) and
the quantile level 7 in a complicated way.

We next employ the bootstrap method to approximate ¥,. Let &, = 7Lt_ Yy — 5’;’13;"),

TZ = (T - 72)_1/2&(1_,71-n_1 Z?:k+1 wth (a‘,f)‘é?—k,rL and R* = (Tf,ﬂ ce 7T}k(,r)/'

\T

Theorem 4. Suppose that the conditions in Theorem 2 hold. Then, conditional on F,,
Vn(R* — R) —4 N(0,%y) in probability as n — oo, where ¥4 is defined as in Theorem 3.

In Step B3 in the previous section, we can calculate R* and T = \/n(R* — R).
Then, repeating Steps B1’ and B2 for B — 1 times yields {T®, ..., T®)} and ¥, can
be approximated by the sample covariance matrix 33 of {T(}2 . Therefore, we reject
the null hypothesis that rj, with 1 < k < K are jointly insignificant if Q(K) exceeds
the 0.95th theoretical quantile of x%. In addition, we reject the null hypothesis that
k.- is individually insignificant if y/nry , falls outside the range between the 0.025th and
0.975th empirical quantiles of {7, ,Ei)}f;l, where Téi) is the kth element of T®),

5 Simulation studies

This section contains three simulation experiments for evaluating the finite-sample per-
formance of the proposed estimation, bootstrapping and diagnostic checking procedures.

In the first experiment, we focus on the proposed estimator ém and the bootstrap-
ping approximation of its asymptotic distribution. The data are generated from the
GARCH(1, 1) model with (ag, ay, 1) = (0.1,0.15,0.8), where the innovations {n;} are
standard normal or follow the standardized Student’s ¢5 distribution with unit variance.

We consider three sample sizes, n = 500, 1000 and 2000, with 1000 replications generated

12



for each sample size, and two quantile levels, 7 = 0.05 and 0.1. Four distributions for
the random weights {w;} in the bootstrapping procedure are considered: the standard
exponential distribution (1#}); the Rademacher distribution (W), which takes the value
0 or 2, each with probability 0.5 (Li et al., 2014); Mammen’s two-point distribution
(W3), which takes the value (—+/5 + 3)/2 with probability (/5 4+ 1)/24/5 or the value
(v/5 + 3)/2 with probability 1 — (/5 4+ 1)/2y/5 (Mammen, 1993); and a mixture of the
standard exponential distribution and the Rademacher distribution (W) with mixing
probability 0.5.

The bias, empirical standard deviation (ESD) and asymptotic standard deviation
(ASD) for 0., are reported in Table 1, where the ASDs are estimated by the proposed
bootstrapping procedure using different distributions for the random weights. We have
the following findings: (1) the biases are all small; (2) as n or 7 increases, the bias
and standard deviations decrease, and the ASDs become closer to the corresponding
ESDs; (3) the performance of the bootstrapping approximation is insensitive to the
choice of random weights; (4) the ASDs appear to be closer to the corresponding ESDs
when {n;} are normal than when they follow the Student’s ¢; distribution; and (5) when
7 = 0.05, the standard deviations for the normal distribution are smaller than those
for the Student’s 5 distribution, while the opposite holds for most cases when 7 = 0.1.
Generally speaking, for GARCH models, heavier tails of {n;} will lead to lower efficiency
of the Gaussian QMLE and higher efficiency of the quantile regression, which results in
mixed performance of the proposed method under different innovation distributions, and
the performance is further affected by the specific parameter values and quantile level.

The second experiment considers the proposed residual QACF 7, and the boot-
strapping approximation of its asymptotic distribution. The data and all other settings
are the same as in the previous experiment. Due to space limitations, we only present
results for W, from now on, and the results for Wy, W3 and W, are provided in the sup-
plementary material, where it is found that the performance is insensitive to the choice
of random weights. Table 2 provides the bias, ESD and ASD for r;, at lags & = 2,4
and 6. Findings (1) and (2) in the previous experiment are also observed in this table.
Furthermore, we have repeated the first two experiments using 7 = 0.01 and have found
that the sample size may have to be as large as 5000 to achieve a good approximation.

The third experiment examines the empirical size and power of the test statistic

13
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Table 2: Bias (x100), ESD (x100) and ASD (x100) for the residual QACF 1y, at

7=0.05 or 0.1 and k = 2,4 or 6, for normal or Student’s ¢5-distributed innovations.

Normal distribution Student’s t5 distribution

T =0.05 7=0.1 7 =0.05 7=0.1
n k  Bias ESD ASD Bias ESD ASD Bias ESD ASD Bias ESD ASD
500 2 1.27 488 6.72 0.67 4.35 534 0.78 4.36 591 0.69 4.32 4.82
4 090 4.88 6.83 047 4.59 543 0.69 4.67 594 042 431 4.84
6 1.04 491 681 0.61 4.64 544 037 4.75 6.03 0.08 4.52 4.90
1000 2 048 3.24 4.05 0.36 3.13 344 030 3.13 3.57 0.25 3.14 3.26
4 050 3.34 4.09 0.15 3.19 3.51 0.35 3.13 3.54 0.30 3.01 3.17
6 043 329 413 030 3.16 3.54 0.18 3.35 3.66 -0.01 3.20 3.29
2000 2 0.29 223 259 0.20 223 233 0.28 2.15 2.30 0.09 2.21 2.23
4 0.15 226 262 0.02 214 236 0.10 2.26 231 0.10 2.19 2.21
6 016 225 263 0.14 219 238 0.15 2.20 232 0.04 2.18 2.23

Table 3: Rejection rate (%) of the test statistic Q(K) for K = 6 at the 5% significance

level, for normal or Student’s ¢s-distributed innovations and d = 0, 0.3 or 0.6.

Normal distribution Student’s ¢5 distribution
7=0.05 7=0.1 7=10.05 7=0.1
n 0.0 03 0.6 0.0 0.3 0.6 0.0 0.3 0.6 0.0 0.3 0.6

500 28 48 74 34 69 270 1.9 38 78 34 6.5 21.0
1000 3.3 7.2 216 4.0 157 609 3.0 106 294 43 16.3 46.8
2000 4.5 16.1 552 49 36.5 925 5.3 279 69.8 4.3 343 83.2

Q(K). The data are generated from

2= /ey, by = 0440222 | +da? , + 0.2k,

where the departure d = 0, 0.3 or 0.6. We conduct the conditional quantile estimation
based on the GARCH(1,1) model assumption; thus, d = 0 corresponds to the size of
the test, and d # 0 corresponds to the power. All other settings are preserved from the
previous experiment. Table 3 reports the rejection rate at the maximum lag K = 6. It
can be seen that the rejection rate increases as either n or the departure d increases. To
make the size close to the nominal rate 5%, the sample size n needs to be as large as
2000 at 7 = 0.05, whereas n = 1000 is sufficient for 7 = 0.1. Moreover, as 7 increases

from 0.05 to 0.1, the increase in the power is larger for the normal distribution than for
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the Student’s t5 distribution. Note that when 7 gets closer to zero, the actual departure
in the quantile regression, namely |b,d|, increases, whereas the density f(b,) decreases
as the data around b, become more sparse. Consequently, the overall effect of 7 on the

power is mixed and depends on the specific innovation distribution.

6 Empirical analysis

In this section, we analyze the daily log returns of three stock market indexes from
January 2, 2008 to June 30, 2016: the S&P 500 index, the Dow 30 index, and the Hang
Seng Index (HSI). The sample sizes are n = 2139, 2139 and 2130, respectively.

We begin by illustrating the proposed method with the S&P 500 data for 7 = 0.05,
i.e., the one-day 5% VaR; see Figure 1 for the time plot of the log returns {z;}. By
the proposed estimation procedure, the initial estimates of {h;} are calculated by 7Lt =

2.646 x 107° + 0.126z7_, + 0.858h,_1, and the fitted conditional quantile function is
Qo.os(ye| Fior) = —=4.713 x 1077 — 0.124>_, — 3.007h,_1.

Figure 1 shows that the residual QACF only falls slightly outside the corresponding 95%
confidence interval at lags 3, 21 and 24, and is well within it at all the other lags. By
the proposed diagnostic checking procedure, the p-values of the portmanteau test Q(K)

n o
1 4
o o
| L 8 SNPNEPN - ~ N AN
c 8 1 O o, et VO [ N A
£e O N R e L
5] B < S | Al 1 | L
o o =
= @
| o - / PN - N N
0 o
| |
? T T T T T ? T T T T T T
0 500 1000 1500 2000 0 5 10 15 20 25 30
Time Lag

Figure 1: Left: Time plot of daily log returns (black line) of S&P 500 from January
2, 2008 to June 30, 2016 and rolling forecasts of the conditional quantiles (blue line)
at 7 = 0.05 from January 4, 2010 to June 30, 2016 with corresponding 95% confidence
bounds (red lines). Right: Residual QACF of the fitted GARCH model at 7 = 0.05,

with corresponding 95% confidence bounds.
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are all larger than 0.257 for K = 6, 12, 18, 24 and 30, which suggests the adequacy of
the fitted conditional quantiles.

Next we examine the forecasting performance of the proposed method for all stock
market indexes using the following rolling procedure: first, conduct the estimation using
the first two years’ data and compute the conditional quantile forecast for the next
trading day, i.e., the forecast of Q. (x,11|F,); then, advance the forecasting origin by one
to include one more observation in the estimation subsample, and repeat the foregoing
procedure until the end of the sample is reached. See Figure 1 for an illustration of
the rolling forecasts at 7 = 0.05 for the S&P 500 data, where the corresponding 95%
confidence intervals are constructed by the proposed bootstrapping procedure.

To compare the forecasting performance of the proposed method with existing con-
ditional quantile estimation methods, we also conduct the rolling forecasting for the
FHS method discussed in Section 2.2 and four other methods which we call XK;, XK,
CAViaR and RiskM, respectively, in what follows. In particular, XK; and XK, are
adapted versions of “QGARCH1” and “QGARCH2” methods in Xiao and Koenker
(2009) for the GARCH model, where we first apply the transformation 7°(-) to the ob-
served sequence {z;} as in Step El of the proposed procedure. For XK, the initial
estimates of {h;} are obtained by a linear quantile regression at the quantile level 7 using

1/4 a5 in Xiao and

the sieve approximation, hy = v + 2'_, v;27_;, where we set m = 3n
Koenker (2009). For XKs, the initial estimates of {h;} are obtained by combining the
sieve approximation based estimation in XK; over multiple quantile levels, 7; = /20 for
1 =1,2,...,19, via the minimum distance estimation. CAViaR refers to the indirect
GARCH(1, 1) based CAViaR method in Engle and Manganelli (2004), and we use the
Matlab code from these authors for the grid-search optimization and the same settings
of initial values for the optimization as in their paper. Finally, RiskM refers to the
conventional RiskMetrics method, which assumes that the data follow the Integrated
GARCH(1, 1) model, z; = \/hyny, by = 0.0627 | +0.94h, 1, where {n;} are i.i.d. standard
normal; see Morgan and Reuters (1996) and Tsay (2010).
We use the VaR backtesting as the primary criterion, and the empirical coverage per-
formance as the secondary criterion. Specifically, we adopt the following two measures:
(i) the minimum of the p-values of the two VaR backtests, the likelihood ratio test

for correct conditional coverage (CC) in Christoffersen (1998) and the dynamic

quantile (DQ) test in Engle and Manganelli (2004);
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(ii) the empirical coverage error, namely the empirical coverage rate (i.e., the pro-
portion of observations that exceed the corresponding VaR forecast) minus the
corresponding nominal rate 7.

For the DQ test, following Kuester et al. (2006), the regressor matrix contains four
lagged hits, Hit,_q, ..., Hit;_4, and the contemporaneous VaR estimate, where Hit, is
the indicator of exceedance for the observation at time . We consider the smaller of the
two p-values, because the CC and DQ tests have different null hypotheses and hence are
complementary to each other.

Table 4 presents the results of the two measures for the six estimation methods at the
lower (L) and upper (U) 0.01th, 0.025th, and 0.05th conditional quantiles, i.e., the 1%,
2.5% and 5% VaRs for long and short positions. For the S&P 500 and Dow 30 data, it
can be seen that none of the methods performs satisfactorily at the lower quantiles. For
the upper quantiles of these two data sets, both XK; and XKy perform poorly, whereas
the other methods are generally adequate: all p-values for the proposed hybrid method
and RiskM are larger than 0.2, and despite the small p-value at U5.0 for the Dow 30 data,
the FHS method performs fairly well. For the HSI data, the FHS method is adequate at
all quantiles, and the proposed hybrid method performs well except the case of U1.0. In
contrast, RiskM performs poorly at the lower quantiles, and CAViaR is unsatisfactory
at U2.5 and U1.0. Therefore, it is clear that, in terms of the backtesting performance,
the proposed method and the FHS method dominate the other competitors. Indeed, for
the three data sets at the six quantile levels, among all methods, the proposed method
has the largest number of cases where the minimum p-value exceeds 0.2, while the FHS
method has smallest number of cases where the minimum p-value is less than 0.05.

To determine whether the proposed method or the FHS method is superior, we next
take into account the secondary criterion, the empirical coverage error. To do so, for
each method we count the numbers of cases (among the totally 18 cases) where the
absolute value of its corresponding empirical coverage error is the smallest and second
smallest among all methods. From the right panel of Table 4, the results are 9 and 6
for the proposed method, and 4 and 5 for the FHS method, respectively. For the other
competitors, the numbers are all much smaller. In the supplementary material, we also
conduct a case-by-case comparison of these two methods based on a more comprehensive
analysis of the backtesting and empirical coverage results, and it is shown that the

proposed method does have clearly better performance than the FHS method.
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Moreover, we have also performed the foregoing analysis again using the rearrange-
ment method of Chernozhukov et al. (2010) to avoid any quantile crossing for the pro-
posed method. We find that both the corresponding backtesting and empirical coverage

results are almost unchanged; see the supplementary material for details.

7 Conclusion and discussion

In this paper, our idea of transforming the quantiles allows us to first turn a highly
intractable quantile regression problem into a much simpler linear quantile regression,
making the conditional quantile estimation for the GARCH model an easy job. The
major novelty of this paper also lies in the hybrid nature of the proposed estimation
method, which enables the conditional quantile estimator to provide a good balance
between the efficiency of the Gaussian QMLE and the flexibility of the quantile regres-
sion. The proposed hybrid method remedies the different drawbacks of two important
approaches in the literature, i.e., the FHS and CAViaR methods. Consequently, better
forecasting performance can be achieved, as confirmed by our empirical evidence.

Our method can be extended in several directions. First, it is well known that fi-
nancial time series can be so heavy-tailed that E(n}) = oo (Mikosch and Starica, 2000;
Mittnik and Paolella, 2003; Hall and Yao, 2003). For such cases, we may alternatively
consider methods more robust than the Gaussian QMLE for initial estimation of the con-
ditional variances, e.g., the least absolute deviations estimator of Peng and Yao (2003).
Second, our procedure can be applied to the conditional quantile estimation for other con-
ditional heteroscedastic models, including the asymmetric GJR-GARCH model (Glosten
et al., 1993). Third, although the multivariate GARCH model has been widely used for
volatility modeling of multiple asset returns (Engle and Kroner, 1995), the conditional
quantile estimation for the corresponding portfolio return is still an open problem. This

paper offers some preliminary ideas on this, which we leave for future research.
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Appendix: Proof sketches of Theorems 14

The following Lemma A.1 establishes some important moment conditions which are used

repeatedly in our proofs. All detailed proofs are provided in the supplementary material.

Lemma A.1. Under Assumption 1, for any k > 0, there is a constant ¢ > 0 such that

(1) Esup {[he(62)/he(61)]" : |61 — 02 < ¢, 61,62 € O} < 0,

(17) Esup{Hh (01)0h(6s) /5«9“ 101 — 03] < ¢, 61,05 € @} < o0,

) Esup{Hh (01)0%hy(62)/ (90(39’” 161 — 6] < c, 61,05 € @} < 0,
(iv) Esup{‘h (01)0°hy(65)/00; 69;{8@} |01 — 02| < ¢, 61,05 € @} < o,

for all1 <i k.0 < p+q+1, where ||| is the norm of a matriz or column vector, defined

as |Al| = A/tr(AA") = 4/ ¢7j|aij )

Proof sketch of Theorem 1. Let z(0) = (1,27_y,....27_o, he—1(6),... . hep(0))', Z:(0) =
(1,22 ,... ,x?_q,%t_l(Q), . ,?Lt_p(ﬁ))'. Write 2z, = z(60), % = Z(6,), and %, = Z,(6,).
Let Lo(0) = 35y b pr(ye = 0%), Lu(0) = X0y b o (ye — 0'%), and &, =y, — 0105,
Applying the identity (Knight, 1998),

v

m@—w—m@=—wwﬂ+ff@$%7$¢Q (A1)

0
where . (z) = 7 — I(x < 0) and I(z,s) = I(z < s) — I(x < 0), we have that, for any
fixed u € RPTIL L (60 + nY2u) — Ly (00) = — Ly (4) + Loy (u), where

n n fnt(en)
L) = Yl i GuBr) and L) = 3 f I(Zy, 5)ds,

with &,:(0) = (0,0 + n~2u)'Z(0) — 0/,%. It is worth noting that we define 2, = ()
deliberately to cancel the effect of the initial values in Z; = Zt(gn), which is a crucial
step of our proof; see also Zheng et al. (2016). If we use z; = z/(6y) instead of Z;, then
the effect of the initial values, in the order of Cp’¢ by Lemma S.1 in the supplementary
material, will remain inside the summations of Lj,(u) and Ly, (u), making the effect

asymptotically non-negligible.
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To handle Ly, (u) and Lg,(u), we consider the decomposition, fnt(gn) = §1nt(§n) +
Eant(0n) + Eana(Br), with £1,(6) = n/u L+ S0 B (0 = 60) O (60)/26, Eaom(6) =
VS a5 (8) = he ] + X0, B9 The 5(8) — huy — (0 — 60)Ohe;(60)/26), and
Eane(0) = n7 20w [hy(60) — ht_j< )+ 32 B e (0) = hej (0)] = [ha—;(60) —
hi_;]}, where u¥) is the (j + ¢ + 1)-th element of u and 5%) = b;foj, for j =1,....p.
By carefully decomposing Ly, (u) and Lg,(u) and handling the remaining initial value

effects in %t_ ! as well as repeatedly applying Lemmas A.1 and S.1, we can show that

v

Lulbz0 + ™) = Ly(00) =~ [Ty, — be f(b)Tan/n(F, — 00)] + % Fbo ) Qg

- T2n + T3n + 0p<1)7

where Ty, = n=Y2 35 ¢r (e —br) 21/l Tzn = (6 —00) i uz»( br) Xb_ i, Ty =
0.5F(b:) (B — 00)' Xy 3y 30,y ) (B — o), with ) = B B Oy (66)/26.

Applying (3.3), the central limit theorem and Corollary 2 in Knight (1998), together
with the convexity of L,(-), we have

~

V(0 — 020) = —2—T1,, — b, Q5 ' Ton/n(B, — o) + 0,(1) =4 N(0,%1), (A.2)

Q 1
f(or)
and the proof is complete. ]

Proof sketch of Theorem 2. Similarly to the proof of Theorem 1, we first let L*(6) =
Dy wihy  pr(yr — 0'Z%) and L*(0) = Dy wihy  pr(yr — 0'%,). Applying identity (A.1),
for any fixed u € RPY9+1 we have L* (0, +n~"2u) — L*(0,0) = —L* (u) + L3, (u), where

*

u) = > wa (é.)h 1€, and L, (u) = Zwt%t—lf (¢, 5)ds,
t=1 t=1 0

with &%, = (0.0 + n~Y?u)'Z* — 0%, Then, by carefully dealing with decompositions of

L3, (u) and L3 (u) in a way similar to that for the proof of Theorem 1, we can show that

v

~ 1
LE (00 + 0 Y20) — L(0,0) = — o [Tl*n by (b Tan/n(0F — 90)] + 5 F b u

- T2*n + T?;kn + 0;<1>?

where T}, = n~1/? Diimy Withr(er = br)z/hy, Ts, = (5;’{ — 00)' 2y wetbr (¢ — br) ?:1 Wt(j)
and T, = 0.5f(b.)(0% — 60) S, S8 _ S w?m? (6% — 6y). Then, by verifying
Liapounov’s condition, we can show that conditional on F,,, T}, =11, —q N(0,7(1—7)Q3)

in probability as n — . By the convexity of L*(-) and Corollary 2 of Knight (1998),
. 0! N
Vn(0F, —0.) = f(z )Tl*n — b5 ' Ton/n (0 — o) + 0%(1),
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which, in conjunction with (3.3) and (A.2), yields

P 0t ler2J1" —|st|6ht(90) ]
ﬁ(QT“_QT")_f(bT) (T — Tin) + Z e oy (1).

Applying Lindeberg’s central limit theorem and the Cramér-Wold device, the proof is

complete. O

Proof sketch of Theorems 3 and 4. Observe that

\/7 Z 77Z)T gtT |€t k’r’_ Z 1/}7' Etr |5t kT|+ Z glnt+ Z 52nt+ Z g3nt7

t=k+1 el t=k+1 t=k+1 t=k+1
where Einp = n Y2, (Err) — Ur(ee)|et—rrl, Eone = V20, (e07) (|E—kr| — |tk 7]), and
Esme = 0P, (81r) — r(e0r)](|E1—r| — |€1—kr|). By Taylor expansions, the fact that
(0 — 0.0) = O,(1) and V6, — 6y) = O,(1), Lemma A.1, and the finite covering
theorem, we can show that Y}, | Eon = 0,(1), D31 Eane = 0p(1), and

Z Eunt = = (b [dsy/1(Brn — O70) + bodlyye/n(Br = 00)] + 0,(1),

t=k+1

where dyy = E(h; '|eixr]2) and dop = E(h[1|5t,k77\2§.’:1 BojOhi—;(00)/00). Then, by
the law of large numbers we can verify that fla,; = fiar + 0p(1) and 77 . = o2+ 0,(1),
which, together with (3.3), (A.2) and the decomposition of n="2 > , | . (E.,)|E—r]
above, yields R = (1 — 72) 720 tn7 Y3, | @i + 0,(n~Y/?), where

11— let] Oy (00)
hy o0

with D; = (d;1,...,dik)" for i = 1 and 2. Applying the central limit theorem and the

wp = Vr(err) (Gt 1— Dnglh—t> + b, f(b,) ( Dlﬂglfz) J

Cramér-Wold device, we have y/nR —4 N(0,%,). Furthermore, by a method similar to
that for the proof of Theorem 8.2 in Francq and Zakoian (2010), we can show that ¥,
is positive definite, and hence Theorem 3 follows. Finally, by methods similar to those
for the proofs of Theorems 2 and 3, we have R* — R = (7 — 72)" Y20 tn" 37" (w; —

1)@, + 0%(n~"/?), and then the proof is complete similarly to Theorem 2. O
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