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Abstract

Estimating conditional quantiles of financial time series is essential for risk

management and many other financial applications. For time series models with

conditional heteroscedasticity, although it is the generalized autoregressive con-

ditional heteroscedastic (GARCH) model that has the greatest popularity, the

quantile regression for this model usually gives rise to non-smooth non-convex

optimization which may hinder its practical feasibility. This paper proposes an

easy-to-implement hybrid quantile regression estimation procedure for the GARCH

model, where we overcome the intractability due to the square-root form of the

conditional quantile function by a simple transformation. The proposed method

takes advantage of the efficiency of the GARCH model in modeling the volatility

globally as well as the flexibility of the quantile regression in fitting quantiles at

a specific level. The asymptotic distribution of the proposed estimator is derived

and is approximated by a novel mixed bootstrapping procedure. A portmanteau

test is further constructed to check the adequacy of fitted conditional quantiles.

The finite-sample performance of the proposed method is examined by simulation

studies, and its advantages over existing methods are illustrated by an empirical

application to Value-at-Risk forecasting.

Keywords and phrases: Bootstrap method; Conditional quantile; GARCH; Nonlinear

time series; Quantile regression.
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1 Introduction

Time series models with conditional heteroscedasticity have been known to be greatly

successful at capturing the volatility clustering of financial data since the appearance

of Engle’s (1982) autoregressive conditional heteroscedastic (ARCH) model and Boller-

slev’s (1986) generalized autoregressive conditional heteroscedastic (GARCH) model; see

Francq and Zakoian (2010). One of many popular applications of these models is to es-

timate quantile-based risk measures such as the Value-at-Risk (VaR) and the Expected

Shortfall (ES), and for such problems, quantile regression (Koenker and Bassett, 1978)

naturally makes an appealing tool (Engle and Manganelli, 2004; Francq and Zaköıan,

2015).

In the literature, feasible quantile regression has remained challenging for the ar-

guably most important conditional heteroscedastic time series model, Bollerslev’s (1986)

GARCH model:

xt “ ηt
a

ht, ht “ α0 `

q
ÿ

i“1

αix
2
t´i `

p
ÿ

j“1

βjht´j, (1.1)

where tηtu are independent and identically distributed (i.i.d.) innovations with mean

zero and variance one. Denote the τth quantile of ηt by Qτ,η and the information set

available at time t by Ft. In estimating the conditional quantile of xt in (1.1), i.e.,

Qτ pxt|Ft´1q “ Qτ,η

g

f

f

eα0 `

q
ÿ

i“1

αix2t´i `

p
ÿ

j“1

βjht´j, 0 ă τ ă 1, (1.2)

there are two key challenges that make the quantile regression highly intractable:

(i) The square root in (1.2), along with the check function ρτ pxq “ xrτ ´ Ipx ă 0qs,

leads to a non-smooth objective function which is non-convex even for the ARCH

case.

(ii) The recursive form of the unobservable thtu in (1.1) adds another layer of difficulty

to the already complicated theoretical derivation and numerical optimization.

Before introducing our approach to addressing these challenges, let us consider the

following variant of model (1.1), i.e., Taylor’s (1986) linear GARCH model:

yt “ σtεt, σt “ α0 `

q
ÿ

i“1

αi|yt´i| `

p
ÿ

j“1

βjσt´j, (1.3)
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where tεtu are i.i.d. innovations with mean zero. Denote the τth quantile of εt by Qτ,ε.

Notice that Challenge (i) is never an issue for model (1.3), as

Qτ pyt|Ft´1q “

˜

α0 `

q
ÿ

i“1

αi|yt´i| `

p
ÿ

j“1

βjσt´j

¸

Qτ,ε, 0 ă τ ă 1.

If there were no σt´j in (1.3), the problem would be just a linear quantile regression,

which was considered in Koenker and Zhao (1996). For the general case, Xiao and

Koenker (2009) proposed to replace the σt´j’s with some initial estimates obtained by

the quantile regression for sieved ARCH models and thereby circumvented Challenge (ii).

Unfortunately, due to Challenge (i), easy-to-implement quantile regression procedures for

Bollerslev’s (1986) original GARCH model in (1.1) have been seemingly impossible.

In this paper, we tackle this open problem by applying a simple transformation to

the conditional quantile in (1.2). With the square root in (1.2) in mind, we naturally

look for a transformation T p¨q which is

(a) the inverse of the square-root function in some sense, and

(b) a continuous and nondecreasing function from R to R.

This interestingly leads to T pxq “ x2 sgnpxq, where sgnp¨q is the sign function, and then,

T rQτ pxt|Ft´1qs “ Qτ rT pxtq|Ft´1s “

˜

α0 `

q
ÿ

i“1

αix
2
t´i `

p
ÿ

j“1

βjht´j

¸

T pQτ,ηq. (1.4)

The linearity of (1.4) enables a convenient hybrid three-step estimation procedure as fol-

lows: (1) obtain initial estimates of thtu by fitting the GARCH model in (1.1) with the

Gaussian quasi-maximum likelihood method; (2) estimate Qτ rT pxtq|Ft´1s by a weighted

linear quantile regression; and (3) use the relationshipQτ pxt|Ft´1q “ T´1tQτ rT pxtq|Ft´1su

to estimate Qτ pxt|Ft´1q, where T
´1pxq “

a

|x| sgnpxq is the inverse function of T p¨q.

The proposed hybrid procedure contains two main estimation steps with different

purposes. As a preliminary estimation of the global model structure, Step (1) exploits

the general suitability of the GARCH model in volatility modeling. Subsequently, the

quantile regression in Step (2) targets a particular quantile level of interest and allows a

more flexible characterization of the conditional quantile structure while inheriting the

GARCH modelling strategy. In the literature, there exist conditional quantile estimation

methods that essentially utilize only Step (1) or Step (2), and the leading examples are

the filtered historical simulation (FHS) method (Kuester et al., 2006) and the CAViaR

method (Engle and Manganelli, 2004). Roughly speaking, the FHS method uses the

GARCH structure only for the global estimation of the volatility, but not for the quantile
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estimation. On the contrary, the CAViaR method focuses on the local approximation at

a particular quantile level, and it adopts the GARCH-type structure only for the quantile

estimation. The current paper tries to exploit the GARCH structure in both the global

estimation of the volatility and the local estimation of quantiles, and the proposed hybrid

method can have superior performance in practice, since the actual “truth” usually lies

somewhere in between the global model and the quantile model. More specifically, as

the FHS method is reliant solely on the GARCH modelling, it is less robust than the

proposed method when the quantile structure actually varies in shape across the quantile

levels, which is a feature frequently encountered in practice (Engle and Manganelli, 2004).

Although the CAViaR method imposes the structure at only a particular quantile level

and offers full flexibility, it can lack efficiency at commonly used quantile levels, e.g.,

τ “ 0.05 and 0.01, where the data are very sparse. Moreover, the computation of the

CAViaR method is generally challenging. The proposed hybrid method combines the

advantages of both approaches and is supposed to be more potent in practice.

As the estimation of the asymptotic covariance matrix of the proposed estimator

is complicated by the innovation density function involved, a bootstrapping procedure

is needed. A straightforward approach is to adopt the random-weighting bootstrap

method in Jin et al. (2001) in both Steps (1) and (2), where the minimands of the

corresponding objective functions are perturbed by random weights. By replacing the

first perturbation with sample averaging, we alternatively propose a novel mixed method

to avoid repeating the optimization in Step (1) many times. As a result, the computation

time is reduced significantly. Furthermore, we construct a portmanteau test to check the

adequacy of fitted conditional quantiles based on the residual quantile autocorrelation

function (QACF) in Li et al. (2015).

The rest of the paper is organized as follows. Sections 2 and 3 propose the hybrid

estimation and mixed bootstrapping procedures, and Section 4 proposes the portmanteau

test. Section 5 presents the simulation experiments, and Section 6 provides an empirical

analysis on VaR forecasting. Section 7 concludes with a short discussion. The appendix

gives proof sketches of the theorems, and due to space limitations, the detailed proofs

are given in a separate supplementary file. Throughout the paper, Ñd denotes the

convergence in distribution, opp1q denotes a sequence of random variables converging to

zero in probability, and o˚
pp1q corresponds to the bootstrap probability space.
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2 The hybrid conditional quantile estimation

2.1 The proposed hybrid estimation procedure

Let txtu be a strictly stationary and ergodic process generated by model (1.1) with

parameter vector θ “ pα0, α1, . . . , αq, β1, . . . , βpq1, where α0 ą 0, αi ě 0 for 1 ď i ď q,

and βj ě 0 for 1 ď j ď p; see Bollerslev (1986). The necessary and sufficient condition

for the existence of a unique strictly stationary and ergodic solution to the model is given

in Bougerol and Picard (1992). Let Ft be the σ-field generated by txt, xt´1, . . .u, and let

bτ “ T pQτ,ηq and θτ “ bτθ, where Qτ,η is the τth quantile of ηt and T pxq “ x2 sgnpxq.

Then, the τth quantile of the transformed variable yt “ T pxtq conditional on Ft´1 is

Qτ pyt|Ft´1q “ bτ

˜

α0 `

q
ÿ

i“1

αix
2
t´i `

p
ÿ

j“1

βjht´j

¸

“ θ1
τzt, 0 ă τ ă 1, (2.1)

where zt “ p1, x2t´1, . . . , x
2
t´q, ht´1, . . . , ht´pq1. Notice that if thtu were observable, then

we would be able to estimate Qτ pyt|Ft´1q by a linear quantile regression.

For 0 ă w ă w and 0 ă ρ0 ă 1 with pw ă ρ0, define Θ “ tθ : β1 ` ¨ ¨ ¨ ` βp ď

ρ0, w ď minpα0, α1, . . . , αq, β1, . . . , βpq ď maxpα0, α1, . . . , αq, β1, . . . , βpq ď wu Ă Rp`q`1
` ,

where R` “ p0,8q; see Berkes and Horváth (2004). Let the true value of θ be θ0 “

pα00, α01, . . . , α0q, β01, . . . , β0pq1, and let θτ0 “ bτθ0. Define htpθq recursively by

htpθq “ α0 `

q
ÿ

i“1

αix
2
t´i `

p
ÿ

j“1

βjht´jpθq. (2.2)

Then htpθ0q “ ht. As htpθq in (2.2) depends on infinite past observations, initial values for

tx20, . . . , x
2
1´q, h0, . . . , h1´pu are needed. We set them to m´1

řm
t“1 x

2
t for a fixed number

m, say m “ 5 in our numerical studies, and denote the resulting htpθq by rhtpθq; fixing

the initial values will not affect our asymptotic results.

We propose the hybrid conditional quantile estimation procedure as follows.

• Step E1 (Estimation of the global model structure). Perform the Gaussian quasi-

maximum likelihood estimation (QMLE) of model (1.1),

rθn “ argmin
θPΘ

n
ÿ

t“1

rℓtpθq, (2.3)

where rℓtpθq “ x2t {
rhtpθq ` logrhtpθq; see Francq and Zakoian (2004). Then compute

the initial estimates of thtu as rht “ rhtprθnq.
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• Step E2 (Quantile regression at a specific level). Perform the weighted linear quan-

tile regression of yt on rzt “ p1, x2t´1, . . . , x
2
t´q,

rht´1, . . . ,rht´pq1 at quantile level τ ,

pθτn “ argmin
θτ

n
ÿ

t“1

rh´1
t ρτ pyt ´ θ1

τrztq. (2.4)

Thus the τth conditional quantile of yt can be estimated by pQτ pyt|Ft´1q “ pθ1
τnrzt.

• Step E3 (Transforming back to xt). Estimate the τth conditional quantile of the

original observation xt by pQτ pxt|Ft´1q “ T´1ppθ1
τnrztq, where T

´1pxq “
a

|x| sgnpxq.

Assumption 1. (i) θ0 is in the interior of Θ; (ii) η2t has a non-degenerate distribution

with Eη2t “ 1; (iii) The polynomials
řq

i“1 αix
i and 1 ´

řp
j“1 βjx

j have no common root;

(iv) Eη4t ă 8.

Assumption 2. The density fp¨q of εt “ T pηtq is positive and differentiable almost

everywhere on R, with its derivative 9f satisfying that supxPR | 9fpxq| ă 8.

Assumption 1 is used by Francq and Zakoian (2004) to ensure the consistency and

asymptotic normality of the Gaussian QMLE rθn, which is known as the sharpest result.

It implies only a finite fractional moment of xt, i.e., E|xt|
2δ0 ă 8 for some δ0 ą 0 (Berkes

et al., 2003; Francq and Zakoian, 2004). For the GARCH model, imposing a higher-order

moment condition on xt would reduce the available parameter space Θ; see Francq and

Zakoian (2010, Chapter 2.4.1). Assumption 2 is made for brevity of the technical proofs,

while it suffices to restrict the positiveness of fp¨q and the boundedness of | 9fp¨q| in a

small and fixed interval rbτ ´ r, bτ ` rs for some r ą 0.

Let κ1 “ Erη2t Ipηt ă Qτ,ηqs ´ τ and κ2 “ Eη4t ´ 1. Define the pp` q` 1q ˆ pp` q` 1q

matrices: J “ Eth´2
t rBhtpθ0q{BθsrBhtpθ0q{Bθ1su, Ω0 “ Epztz

1
tq, Ωi “ Eph´i

t ztz
1
tq, Hi “

Erh´i
t ztBhtpθ0q{Bθ1s and Γi “ Erh´i

t zt
řp

j“1 β0jBht´jpθ0q{Bθ1s for i “ 1 and 2,

Σ1 “ Ω´1
2

„

τ ´ τ 2

f 2pbτ q
Ω2 `

κ1bτ
fpbτ q

pΓ2J
´1H 1

2 ` H2J
´1Γ1

2q ` κ2b
2
τΓ2J

´1Γ1
2

ȷ

Ω´1
2 , (2.5)

and

Σ2 “ Ω´1
1

„

τ ´ τ 2

f 2pbτ q
Ω0 `

κ1bτ
fpbτ q

pΓ1J
´1H 1

1 ` H1J
´1Γ1

1q ` κ2b
2
τΓ1J

´1Γ1
1

ȷ

Ω´1
1 .

Theorem 1. If Assumptions 1 and 2 hold, then
?
nppθτn ´ θτ0q Ñd Np0,Σ1q.

The weights trh´1
t u in (2.4) are used to improve the efficiency, as yt ´ Qτ pyt|Ft´1q “

htpεt ´ bτ q. Removing the weights gives the unweighted estimator

qθτn “ argmin
θτ

n
ÿ

t“1

ρτ pyt ´ θ1
τrztq,
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and as the following corollary shows, the asymptotic normality of qθτn requires a higher-

order moment condition on xt, which will entail a smaller available parameter space.

Corollary 1. If E|xt|
4`ι0 ă 8 for some ι0 ą 0, and Assumptions 1 and 2 hold, then

?
npqθτn ´ θτ0q Ñd Np0,Σ2q.

For the ARCH case, we can show that Σ2 ´ Σ1 is always nonnegative definite; i.e.,

pθτn is asymptotically more efficient than qθτn. A general comparison of Σ1 and Σ2 for the

GARCH model is very difficult due to the complicated forms of the two matrices. How-

ever, given the true parameter vector, the innovation distribution and τ , we can obtain

theoretical values of the constants bτ , fpbτ q, κ1 and κ2 and estimate all matrices involved

in Σ1 and Σ2 by the corresponding sample averages, based on a generated sequence with

a large sample size. Then, we can obtain the asymptotic relative efficiency (ARE) of

pθτn to qθτn, defined as AREppθτn, qθτnq “ p|Σ2|{|Σ1|q
1{pp`q`1q, where | ¨ | is the determinant

of a matrix; see Serfling (1980). As shown in the supplementary material, the weighted

estimator is always asymptotically more efficient than the unweighted estimator, i.e.,

AREppθτn, qθτnq ą 1, for GARCHp1, 1q models with different parameter values, innovation

distributions and quantile levels. Therefore, we will focus on the weighted estimator pθτn

from now on.

Corollary 2. If the conditions in Theorem 1 hold, then

pQτ pyn`1|Fnq ´ Qτ pyn`1|Fnq “ u1
n`1p

rθn ´ θ0q ` z1
n`1ppθτn ´ θτ0q ` oppn´1{2q,

where un`1 “ bτ
řp

j“1 β0jBhn`1´jpθ0q{Bθ.

When bτ ‰ 0, it further holds for the τth conditional quantile estimator of xn`1 that

pQτ pxn`1|Fnq ´ Qτ pxn`1|Fnq “
u1
n`1p

rθn ´ θ0q ` z1
n`1p

pθτn ´ θτ0q

2
a

|bτhn`1|
` oppn´1{2q. (2.6)

In practice, multiple quantile levels are often considered simultaneously, say τ1 ă

τ2 ă ¨ ¨ ¨ ă τK . Although t pQτkpyn`1|FnquKk“1 from the proposed procedure may not be

monotonically increasing in k, it is convenient to employ the rearrangement method in

Chernozhukov et al. (2010) to fix the quantile crossing problem after the estimation.

2.2 Relationship with existing methods

In this subsection, we discuss the relationship between the proposed hybrid method

and two important approaches in the literature: the filtered historical simulation (FHS)

method (Kuester et al., 2006) and the CAViaR method (Engle and Manganelli, 2004).
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We first consider the FHS method. Notice that Qτ pyt|Ft´1q “ θ1
τzt “ bτht. If we

ignore the GARCH structure and consider a simple weighted linear quantile regression

only for the parameter bτ in the second stage, we have

rbτn “ argmin
b

n
ÿ

t“1

rh´1
t ρτ pyt ´ brhtq. (2.7)

It is not difficult to see that rbτn is just the τth empirical quantile of tyt{rhtu. Thus,

the corresponding procedure, with a simplified second stage estimation, reduces to the

FHS method, with the estimates pQτ pyt|Ft´1q “ rbτnrht “ rθ1
τnrzt, where

rθτn “ rbτnrθn is

the corresponding FHS estimator of θτ . The FHS method relies heavily on the global

GARCH structure to fit the conditional quantiles. Specifically, as it allows only bτ to

change across the quantiles, it will suffer from inflexibility in practice, since the real data

rarely behave exactly like a GARCH model. The additional simulation results in the

supplementary material also demonstrate that the FHS method always has much larger

biases than the proposed method.

On the other hand, applying the CAViaR method of Engle and Manganelli (2004) to

the transformed observations yt by assuming the linear form in (2.1), we have

pϑτn “ argmin
ϑ

n
ÿ

t“1

ρτ ryt ´ ϑ1vtpϑqs, (2.8)

where vtpϑq “ p1, x2t´1, . . . , x
2
t´q, qt´1pϑq, . . . , qt´ppϑqq1 with qspϑq “ ϑ1vspϑq. Unlike the

proposed pθτn and the FHS estimator rθτn which both converge to θτ0 “ bτθ0, the CAViaR

estimator pϑτn converges to ϑτ0 :“ pbτα00, bτα01, . . . , bτα0q, β01, . . . , β0pq1. Notice that this

approach will lead to the unweighted estimator qθτn in the previous subsection if we first

obtain initial estimates of tqtpϑqu, and hence those of vtpϑq in (2.8), by replacing ϑ with

the more efficient Gaussian QMLE rθn, and then perform the quantile regression in (2.8).

As a result, the CAViaR method is even less efficient than the unweighted method in

the previous subsection, although it enjoys greater flexibility than the FHS method since

it imposes a structure at only the quantile level τ . Moreover, the computation of the

CAViaR method is generally challenging, which actually requires grid search.

We may interpret the proposed method as a hybrid version of the FHS and CAViaR

methods. It combines the efficiency of the former and the flexibility of the latter, and

hence may perform better in practice. However, when the data are exactly generated

by a GARCH model, the proposed estimator pθτn may be less efficient than the FHS
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estimator rθτn. Let

Σ3 “
τ ´ τ 2

f 2pbτ q
θ0θ

1
0 `

κ1bτ
fpbτ q

Σ0 ` κ2b
2
τ pΣ0 ` J´1 ´ θ0θ

1
0q,

where β̄0 “ p0, . . . , 0, β01, . . . , β0pq1 P Rp`q`1 and Σ0 “ θ0β̄
1
0 ` β̄0θ

1
0. If the conditions in

Theorem 1 hold, we can show that
?
nprθτn ´ θτ0q Ñd Np0,Σ3q; see also Gao and Song

(2008) and Francq and Zaköıan (2015). In particular, for ARCH models, Σ1 and Σ3

reduce to pτ ´ τ 2qJ´1{f 2pbτ q and pτ ´ τ 2qθ0θ
1
0{f

2pbτ q ` κ2b
2
τ pJ´1 ´ θ0θ

1
0q, respectively.

Then, we can further show that Σ3 ´ Σ1 is nonnegative definite if and only if pτ ´

τ 2q{f 2pbτ q´κ2b
2
τ ď 0, which depends on the specific innovation distribution and quantile

level τ . For the GARCH model, similar to our discussion on the unweighted estimator in

the previous subsection, we have computed the ARE of the proposed estimator pθτn to the

FHS estimator rθτn for GARCHp1, 1q models for different parameter settings, innovation

distributions and quantile levels. As expected, the FHS estimator rθτn is asymptotically

more efficient in general, while the proposed estimator pθτn can be asymptotically more

efficient when tηtu become more heavy-tailed; see the supplementary material for details.

3 A mixed bootstrapping procedure

To circumvent difficulties due to the density function in the asymptotic covariance matrix

in Theorem 1, we propose a bootstrapping procedure to approximate the asymptotic

distribution of pθτn, which benefits from both the convenience of the random-weighting

bootstrap method in Jin et al. (2001) and the time-efficiency of sample averaging.

From the proof of Theorem 1, the Gaussian QMLE rθn affects the asymptotic distribu-

tion of the proposed estimator pθτn through the relationship
?
nppθτn´θτ0q “ Ω´1

2 T1n{fpbτ q´

bτΩ
´1
2 Γ2

?
nprθn ´ θ0q ` opp1q, where T1n “ n´1{2

řn
t“1 ψτ pεt ´ bτ qzt{ht, with ψτ pxq “

τ ´ Ipx ă 0q. Apparently, the random-weighting bootstrap should be incorporated in

both Steps E1 and E2, leading to the following bootstrapping procedure:

• Step B1. Perform the randomly weighted Gaussian QMLE,

rθ˚
n “ argmin

θPΘ

n
ÿ

t“1

ωt
rℓtpθq, (3.1)

where tωtu are i.i.d. non-negative random weights with mean and variance both

equal to one, and then compute the initial estimates of thtu as rh˚
t “ rhtprθ

˚
nq.
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• Step B2. Perform the randomly weighted quantile regression,

pθ˚
τn “ argmin

θτ

n
ÿ

t“1

ωt
rh´1
t ρτ pyt ´ θ1

τrz
˚
t q, (3.2)

where rz˚
t “ p1, x2t´1, . . . , x

2
t´q,

rh˚
t´1, . . . ,

rh˚
t´pq1.

• Step B3. Calculate the conditional quantile estimate, pQ˚
τ pxt|Ft´1q “ T´1ppθ˚1

τnrz
˚
t q.

The purpose of the bootstrapping procedure is to avoid estimating the density fpbτ q

involved in the asymptotic covariance matirx Σ1. Observe that no density actually

appears in the asymptotic covariance matrix of the Gaussian QMLE rθn. This motivates

us to replace the optimization in Step B1 with a simple sample averaging. Notice that

?
nprθ˚

n ´ rθnq “
1

?
n

n
ÿ

t“1

pωt ´1qξt ` op˚p1q and
?
nprθn ´ θ0q “

1
?
n

n
ÿ

t“1

ξt ` opp1q, (3.3)

where ξt “ J´1p|yt|{ht ´ 1qh´1
t rBhtpθ0q{Bθs and rθ˚

n is defined as in (3.1); see also Francq

and Zakoian (2004). The matrix J “ Eth´2
t rBhtpθ0q{BθsrBhtpθ0q{Bθ1su can be estimated

consistently by rJ “ n´1
řn

t“1
rh´2
t rBrhtprθnq{BθsrBrhtprθnq{Bθ1s. Therefore, Step B1 can be

replaced by the following:

• Step B11. Calculate the estimator rθ˚
n by

rθ˚
n “ rθn ´

rJ´1

n

n
ÿ

t“1

pωt ´ 1q

ˆ

1 ´
|yt|

rht

˙

1

rht

Brhtprθnq

Bθ
. (3.4)

Combining Steps B11, B2 and B3, we have a mixed bootstrapping procedure.

Assumption 3. The random weights tωtu are i.i.d. non-negative random variables with

mean and variance both equal to one, satisfying E|ωt|
2`κ0 ă 8 for some κ0 ą 0.

Theorem 2. Suppose that E|ηt|
4`2ν0 ă 8 for some ν0 ą 0 and Assumptions 1-3 hold.

Then, conditional on Fn,
?
nppθ˚

τn ´ pθτnq Ñd Np0,Σ1q in probability as n Ñ 8, where Σ1

is defined as in Theorem 1.

Corollary 3. Under the conditions of Theorem 2, it holds that

pQ˚
τ pyn`1|Fnq ´ pQτ pyn`1|Fnq “ u1

n`1prθ˚
n ´ rθnq ` z1

n`1ppθ˚
τn ´ pθτnq ` o˚

ppn´1{2q,

where un`1 is defined as in Corollary 2.

By Corollaries 2 and 3, along with the asymptotic results for rθ˚
n and pθ˚

τn in the proof

of Theorem 2, the confidence interval for the conditional quantile Qτ pxn`1|Fnq can be

10



easily constructed based on the bootstrap sample t pQ˚
τ pxn`1|Fnqu, where pQ˚

τ pxn`1|Fnq “

T´1r pQ˚
τ pyn`1|Fnqs; see also Spierdijk (2016).

The first-order validity of the proposed mixed bootstrapping procedure is established

by Theorem 2 and Corollary 3. Unfortunately, the second-order correctness (Lahiri, 2003)

is almost impossible to achieve. In fact, as long as the quantile regression is employed,

due to the non-smoothness of the loss function ρτ p¨q, it will be very difficult to attain

the second-order correctness for the bootstrapping procedure; see also Horowitz (1998).

Notice also that the opp1q term in (3.3) plays a non-negligible role in the Edgeworth

expansion of
?
nprθn ´ θ0q (Linton, 1997), but is ignored by rθ˚

n in Step B11. Hence, the

second-order correctness has already been lost when we use the much faster sample-

averaging method in Step B11 to replace the optimization in Step B1. However, the

sacrifice is worthwhile, as the second-order correctness is anyway unachievable due to

the non-smooth objective function in Step B2. Actually, in the literature, bootstrap

methods with the second-order correctness are still limited to the GARCHp1, 1q model

and unavailable for the general GARCH model (Corradi and Iglesias, 2008; Jeong, 2017).

4 Diagnostic checking for conditional quantiles

Based on the proposed procedures in Sections 2 and 3, we next construct a portmanteau

test to check the adequacy of fitted conditional quantiles.

Let εt,τ “ ht
´1ryt ´ Qτ pyt|Ft´1qs “ εt ´ bτ . We define the quantile autocorrelation

function (QACF) of tεt,τu at lag k as

ρk,τ “ qcorτ
␣

εt,τ , |εt´k,τ |
(

“
E
␣

ψτ pεt,τ q|εt´k,τ |
(

b

pτ ´ τ 2qσ2
a,τ

, k “ 1, 2, . . . ,

where σ2
a,τ “ varp|εt,τ |q “ Ep|εt,τ | ´ µa,τ q2, with µa,τ “ E|εt,τ |; see also the QACF in

Li et al. (2015) and the absolute residual ACF in Li and Li (2005). If Qτ pxt|Ft´1q is

correctly specified by (1.2), then Erψτ pεt,τ q|Ft´1s is zero, and so is ρk,τ for any k ě 1.

Accordingly, let pεt,τ “ rh´1
t pyt ´ pθ1

τnrztq, and then the corresponding residual QACF

at lag k can be calculated as rk,τ “ pτ ´ τ 2q´1{2
pσ´1
a,τn

´1
řn

t“k`1 ψτ ppεt,τ q|pεt´k,τ |, where

pσ2
a,τ “ n´1

řn
t“1p|pεt,τ | ´ pµa,τ q2, with pµa,τ “ n´1

řn
t“1 |pεt,τ |. For a predetermined positive

integer K, we first derive the asymptotic distribution of R “ pr1,τ , . . . , rK,τ q1.

Let ϵt “ p|εt,τ |, |εt´1,τ |, . . . , |εt´K`1,τ |q1 and Ξ “ Epϵtϵ
1
tq, and define the K ˆ pp `

q ` 1q matrices D1 “ Eph´1
t ϵt´1z

1
tq, D2 “ Erh´1

t ϵt´1

řp
j“1 β0jBht´jpθ0q{Bθ1s, and D3 “

11



Erh´1
t ϵt´1Bhtpθ0q{Bθ1s. In addition, let P “ D2 ´ D1Ω

´1
2 Γ2, Q “ D3 ´ D1Ω

´1
2 H2, Ω3 “

D1Ω
´1
2 D1

1, and

Σ4 “ σ´2
a,τ

„

Ξ ´ Ω3 `
κ1bτfpbτ q

τ ´ τ 2
pQJ´1P 1 ` PJ´1Q1q `

κ2b
2
τf

2pbτ q

τ ´ τ 2
PJ´1P 1

ȷ

. (4.1)

Theorem 3. If E|ηt|
4`2ν0 ă 8 for some ν0 ą 0 and Assumptions 1 and 2 hold, then

?
nR Ñd Np0,Σ4q, where Σ4 is a positive definite matrix.

Theorem 3 implies that the portmanteau test statistic QpKq “ nR1
pΣ´1
4 R converges

to the χ2 distribution with K degrees of freedom as n Ñ 8, where pΣ4 is a consistent

estimator of Σ4. Notice that, even for the ARCH case, the asymptotic covariance matrix

Σ4 “ σ´2
a,τ pΞ ´ D1J

´1D1
1q still depends on the parameter vector θ0, the density fp¨q and

the quantile level τ in a complicated way.

We next employ the bootstrap method to approximate Σ4. Let pε
˚
t,τ “ rh´1

t pyt´pθ˚1
τnrz

˚
t q,

r˚
k,τ “ pτ ´ τ 2q´1{2

pσ´1
a,τn

´1
řn

t“k`1 ωtψτ ppε˚
t,τ q|pε˚

t´k,τ |, and R˚ “ pr˚
1,τ , . . . , r

˚
K,τ q1.

Theorem 4. Suppose that the conditions in Theorem 2 hold. Then, conditional on Fn,
?
npR˚ ´Rq Ñd Np0,Σ4q in probability as n Ñ 8, where Σ4 is defined as in Theorem 3.

In Step B3 in the previous section, we can calculate R˚ and T p1q “
?
npR˚ ´ Rq.

Then, repeating Steps B11 and B2 for B ´ 1 times yields tT p1q, . . . , T pBqu, and Σ4 can

be approximated by the sample covariance matrix Σ˚
4 of tT piquBi“1. Therefore, we reject

the null hypothesis that rk,τ with 1 ď k ď K are jointly insignificant if QpKq exceeds

the 0.95th theoretical quantile of χ2
K . In addition, we reject the null hypothesis that

rk,τ is individually insignificant if
?
nrk,τ falls outside the range between the 0.025th and

0.975th empirical quantiles of tT
piq
k uBi“1, where T

piq
k is the kth element of T piq.

5 Simulation studies

This section contains three simulation experiments for evaluating the finite-sample per-

formance of the proposed estimation, bootstrapping and diagnostic checking procedures.

In the first experiment, we focus on the proposed estimator pθτn and the bootstrap-

ping approximation of its asymptotic distribution. The data are generated from the

GARCH(1, 1) model with pα0, α1, β1q “ p0.1, 0.15, 0.8q, where the innovations tηtu are

standard normal or follow the standardized Student’s t5 distribution with unit variance.

We consider three sample sizes, n “ 500, 1000 and 2000, with 1000 replications generated

12



for each sample size, and two quantile levels, τ “ 0.05 and 0.1. Four distributions for

the random weights tωtu in the bootstrapping procedure are considered: the standard

exponential distribution (W1); the Rademacher distribution (W2), which takes the value

0 or 2, each with probability 0.5 (Li et al., 2014); Mammen’s two-point distribution

(W3), which takes the value p´
?
5 ` 3q{2 with probability p

?
5 ` 1q{2

?
5 or the value

p
?
5 ` 3q{2 with probability 1 ´ p

?
5 ` 1q{2

?
5 (Mammen, 1993); and a mixture of the

standard exponential distribution and the Rademacher distribution (W4) with mixing

probability 0.5.

The bias, empirical standard deviation (ESD) and asymptotic standard deviation

(ASD) for pθτn are reported in Table 1, where the ASDs are estimated by the proposed

bootstrapping procedure using different distributions for the random weights. We have

the following findings: (1) the biases are all small; (2) as n or τ increases, the bias

and standard deviations decrease, and the ASDs become closer to the corresponding

ESDs; (3) the performance of the bootstrapping approximation is insensitive to the

choice of random weights; (4) the ASDs appear to be closer to the corresponding ESDs

when tηtu are normal than when they follow the Student’s t5 distribution; and (5) when

τ “ 0.05, the standard deviations for the normal distribution are smaller than those

for the Student’s t5 distribution, while the opposite holds for most cases when τ “ 0.1.

Generally speaking, for GARCH models, heavier tails of tηtu will lead to lower efficiency

of the Gaussian QMLE and higher efficiency of the quantile regression, which results in

mixed performance of the proposed method under different innovation distributions, and

the performance is further affected by the specific parameter values and quantile level.

The second experiment considers the proposed residual QACF rk,τ and the boot-

strapping approximation of its asymptotic distribution. The data and all other settings

are the same as in the previous experiment. Due to space limitations, we only present

results for W1 from now on, and the results for W2,W3 and W4 are provided in the sup-

plementary material, where it is found that the performance is insensitive to the choice

of random weights. Table 2 provides the bias, ESD and ASD for rk,τ at lags k “ 2, 4

and 6. Findings (1) and (2) in the previous experiment are also observed in this table.

Furthermore, we have repeated the first two experiments using τ “ 0.01 and have found

that the sample size may have to be as large as 5000 to achieve a good approximation.

The third experiment examines the empirical size and power of the test statistic

13



T
ab

le
1:

B
ia
s
(ˆ

10
),
E
S
D

(ˆ
10
)
an

d
A
S
D

(ˆ
10
)
fo
r
p θ τ

n
at
τ

“
0.
05

or
0.
1,

fo
r
n
or
m
al

or
S
tu
d
en
t’
s
t 5
-d
is
tr
ib
u
te
d
in
n
ov
at
io
n
s,
w
h
er
e
A
S
D

i

co
rr
es
p
on

d
s
to

ra
n
d
om

w
ei
gh

t
W

i
fo
r
i

“
1,
2,
3
an

d
4,

an
d
α
0
,
α
1
an

d
β
1
re
p
re
se
n
t
co
rr
es
p
on

d
in
g
el
em

en
ts

of
p θ τ

n
.

N
or
m
al

d
is
tr
ib
u
ti
on

S
tu
d
en
t’
s
t 5

d
is
tr
ib
u
ti
on

n
B
ia
s

E
S
D

A
S
D

1
A
S
D

2
A
S
D

3
A
S
D

4
B
ia
s

E
S
D

A
S
D

1
A
S
D

2
A
S
D

3
A
S
D

4

τ
“

0.
05

50
0

α
0

-0
.2
4

10
.2
0

11
.4
8

11
.7
7

11
.2
8

11
.5
7

-0
.6
1

10
.4
2

13
.8
8

14
.8
5

13
.7
1

15
.1
3

α
1

-0
.0
7

3.
05

3.
26

3.
25

3.
26

3.
26

-0
.7
5

3.
89

4.
53

4.
08

4.
27

4.
34

β
1

0.
03

7.
52

8.
15

8.
65

8.
12

8.
34

0.
32

8.
33

11
.3
8

13
.6
3

11
.2
1

12
.6
1

10
00

α
0

0.
20

6.
06

7.
00

7.
09

7.
03

7.
06

-0
.3
0

6.
84

8.
46

8.
12

7.
81

8.
18

α
1

0.
08

2.
24

2.
31

2.
29

2.
30

2.
30

-0
.2
5

2.
60

2.
89

2.
73

2.
79

2.
81

β
1

-0
.2
5

4.
76

5.
25

5.
34

5.
28

5.
30

-0
.0
4

5.
81

7.
06

7.
30

6.
72

7.
18

20
00

α
0

0.
24

4.
38

4.
68

4.
71

4.
69

4.
70

-0
.0
5

4.
72

5.
18

5.
11

5.
00

5.
20

α
1

0.
07

1.
59

1.
62

1.
61

1.
61

1.
61

-0
.1
6

1.
84

1.
98

1.
91

1.
94

1.
95

β
1

-0
.2
4

3.
48

3.
60

3.
63

3.
61

3.
61

-0
.0
9

4.
20

4.
50

4.
59

4.
41

4.
62

τ
“

0.
1

50
0

α
0

-0
.0
9

6.
47

7.
22

7.
28

7.
12

7.
31

-0
.3
4

5.
28

7.
40

7.
98

7.
19

7.
65

α
1

0.
00

1.
90

2.
07

2.
04

2.
06

2.
06

-0
.3
2

1.
86

2.
10

1.
99

2.
04

2.
05

β
1

-0
.1
4

4.
75

5.
16

5.
33

5.
14

5.
26

0.
21

4.
23

6.
11

7.
28

5.
88

6.
45

10
00

α
0

0.
00

4.
11

4.
39

4.
43

4.
41

4.
42

-0
.1
4

3.
55

4.
33

4.
30

4.
17

4.
37

α
1

0.
06

1.
38

1.
44

1.
43

1.
44

1.
44

-0
.1
0

1.
26

1.
38

1.
34

1.
36

1.
36

β
1

-0
.1
3

3.
17

3.
30

3.
33

3.
31

3.
32

0.
00

2.
92

3.
66

3.
86

3.
59

3.
83

20
00

α
0

0.
07

2.
74

2.
98

2.
99

2.
98

2.
98

0.
08

2.
54

2.
75

2.
71

2.
67

2.
79

α
1

0.
04

0.
96

1.
01

1.
01

1.
01

1.
01

-0
.0
7

0.
89

0.
95

0.
94

0.
94

0.
95

β
1

-0
.1
4

2.
14

2.
29

2.
30

2.
29

2.
29

-0
.1
4

2.
24

2.
39

2.
43

2.
34

2.
46

14



Table 2: Bias (ˆ100), ESD (ˆ100) and ASD (ˆ100) for the residual QACF rk,τ at

τ “ 0.05 or 0.1 and k “ 2, 4 or 6, for normal or Student’s t5-distributed innovations.

Normal distribution Student’s t5 distribution

τ “ 0.05 τ “ 0.1 τ “ 0.05 τ “ 0.1

n k Bias ESD ASD Bias ESD ASD Bias ESD ASD Bias ESD ASD

500 2 1.27 4.88 6.72 0.67 4.35 5.34 0.78 4.36 5.91 0.69 4.32 4.82

4 0.90 4.88 6.83 0.47 4.59 5.43 0.69 4.67 5.94 0.42 4.31 4.84

6 1.04 4.91 6.81 0.61 4.64 5.44 0.37 4.75 6.03 0.08 4.52 4.90

1000 2 0.48 3.24 4.05 0.36 3.13 3.44 0.30 3.13 3.57 0.25 3.14 3.26

4 0.50 3.34 4.09 0.15 3.19 3.51 0.35 3.13 3.54 0.30 3.01 3.17

6 0.43 3.29 4.13 0.30 3.16 3.54 0.18 3.35 3.66 -0.01 3.20 3.29

2000 2 0.29 2.23 2.59 0.20 2.23 2.33 0.28 2.15 2.30 0.09 2.21 2.23

4 0.15 2.26 2.62 0.02 2.14 2.36 0.10 2.26 2.31 0.10 2.19 2.21

6 0.16 2.25 2.63 0.14 2.19 2.38 0.15 2.20 2.32 0.04 2.18 2.23

Table 3: Rejection rate (%) of the test statistic QpKq for K “ 6 at the 5% significance

level, for normal or Student’s t5-distributed innovations and d “ 0, 0.3 or 0.6.

Normal distribution Student’s t5 distribution

τ “ 0.05 τ “ 0.1 τ “ 0.05 τ “ 0.1

n 0.0 0.3 0.6 0.0 0.3 0.6 0.0 0.3 0.6 0.0 0.3 0.6

500 2.8 4.8 7.4 3.4 6.9 27.0 1.9 3.8 7.8 3.4 6.5 21.0

1000 3.3 7.2 21.6 4.0 15.7 60.9 3.0 10.6 29.4 4.3 16.3 46.8

2000 4.5 16.1 55.2 4.9 36.5 92.5 5.3 27.9 69.8 4.3 34.3 83.2

QpKq. The data are generated from

xt “
a

htηt, ht “ 0.4 ` 0.2x2t´1 ` dx2t´4 ` 0.2ht´1,

where the departure d “ 0, 0.3 or 0.6. We conduct the conditional quantile estimation

based on the GARCH(1, 1) model assumption; thus, d “ 0 corresponds to the size of

the test, and d ‰ 0 corresponds to the power. All other settings are preserved from the

previous experiment. Table 3 reports the rejection rate at the maximum lag K “ 6. It

can be seen that the rejection rate increases as either n or the departure d increases. To

make the size close to the nominal rate 5%, the sample size n needs to be as large as

2000 at τ “ 0.05, whereas n “ 1000 is sufficient for τ “ 0.1. Moreover, as τ increases

from 0.05 to 0.1, the increase in the power is larger for the normal distribution than for
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the Student’s t5 distribution. Note that when τ gets closer to zero, the actual departure

in the quantile regression, namely |bτd|, increases, whereas the density fpbτ q decreases

as the data around bτ become more sparse. Consequently, the overall effect of τ on the

power is mixed and depends on the specific innovation distribution.

6 Empirical analysis

In this section, we analyze the daily log returns of three stock market indexes from

January 2, 2008 to June 30, 2016: the S&P 500 index, the Dow 30 index, and the Hang

Seng Index (HSI). The sample sizes are n “ 2139, 2139 and 2130, respectively.

We begin by illustrating the proposed method with the S&P 500 data for τ “ 0.05,

i.e., the one-day 5% VaR; see Figure 1 for the time plot of the log returns txtu. By

the proposed estimation procedure, the initial estimates of thtu are calculated by rht “

2.646 ˆ 10´6 ` 0.126x2t´1 ` 0.858rht´1, and the fitted conditional quantile function is

pQ0.05pyt|Ft´1q “ ´4.713 ˆ 10´7 ´ 0.124x2t´1 ´ 3.007rht´1.

Figure 1 shows that the residual QACF only falls slightly outside the corresponding 95%

confidence interval at lags 3, 21 and 24, and is well within it at all the other lags. By

the proposed diagnostic checking procedure, the p-values of the portmanteau test QpKq
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Figure 1: Left: Time plot of daily log returns (black line) of S&P 500 from January

2, 2008 to June 30, 2016 and rolling forecasts of the conditional quantiles (blue line)

at τ “ 0.05 from January 4, 2010 to June 30, 2016 with corresponding 95% confidence

bounds (red lines). Right: Residual QACF of the fitted GARCH model at τ “ 0.05,

with corresponding 95% confidence bounds.
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are all larger than 0.257 for K “ 6, 12, 18, 24 and 30, which suggests the adequacy of

the fitted conditional quantiles.

Next we examine the forecasting performance of the proposed method for all stock

market indexes using the following rolling procedure: first, conduct the estimation using

the first two years’ data and compute the conditional quantile forecast for the next

trading day, i.e., the forecast of Qτ pxn`1|Fnq; then, advance the forecasting origin by one

to include one more observation in the estimation subsample, and repeat the foregoing

procedure until the end of the sample is reached. See Figure 1 for an illustration of

the rolling forecasts at τ “ 0.05 for the S&P 500 data, where the corresponding 95%

confidence intervals are constructed by the proposed bootstrapping procedure.

To compare the forecasting performance of the proposed method with existing con-

ditional quantile estimation methods, we also conduct the rolling forecasting for the

FHS method discussed in Section 2.2 and four other methods which we call XK1, XK2,

CAViaR and RiskM, respectively, in what follows. In particular, XK1 and XK2 are

adapted versions of “QGARCH1” and “QGARCH2” methods in Xiao and Koenker

(2009) for the GARCH model, where we first apply the transformation T p¨q to the ob-

served sequence txtu as in Step E1 of the proposed procedure. For XK1, the initial

estimates of thtu are obtained by a linear quantile regression at the quantile level τ using

the sieve approximation, ht “ γ0 `
řm

j“1 γjx
2
t´j, where we set m “ 3n1{4 as in Xiao and

Koenker (2009). For XK2, the initial estimates of thtu are obtained by combining the

sieve approximation based estimation in XK1 over multiple quantile levels, τi “ i{20 for

i “ 1, 2, . . . , 19, via the minimum distance estimation. CAViaR refers to the indirect

GARCHp1, 1q based CAViaR method in Engle and Manganelli (2004), and we use the

Matlab code from these authors for the grid-search optimization and the same settings

of initial values for the optimization as in their paper. Finally, RiskM refers to the

conventional RiskMetrics method, which assumes that the data follow the Integrated

GARCHp1, 1q model, xt “
?
htηt, ht “ 0.06x2t´1 `0.94ht´1, where tηtu are i.i.d. standard

normal; see Morgan and Reuters (1996) and Tsay (2010).

We use the VaR backtesting as the primary criterion, and the empirical coverage per-

formance as the secondary criterion. Specifically, we adopt the following two measures:

(i) the minimum of the p-values of the two VaR backtests, the likelihood ratio test

for correct conditional coverage (CC) in Christoffersen (1998) and the dynamic

quantile (DQ) test in Engle and Manganelli (2004);

17



T
ab

le
4:

M
in
im

u
m
p-
va
lu
e
of

tw
o
V
aR

b
ac
k
te
st
s
an

d
em

p
ir
ic
al

co
ve
ra
ge

er
ro
r
(%

)
fo
r
si
x
es
ti
m
at
io
n
m
et
h
o
d
s
fo
r
th
re
e
st
o
ck

m
ar
ke
t
in
d
ex
es

at
th
e
lo
w
er

(L
)
an

d
u
p
p
er

(U
)
0.
01
th
,
0.
02
5t
h
,
an

d
0.
05
th

co
n
d
it
io
n
al

q
u
an

ti
le
s.

M
in
im

u
m
p-
va
lu
e
of

V
aR

b
ac
k
te
st
s

E
m
p
ir
ic
al

co
ve
ra
ge

er
ro
r

τ
H
y
b
ri
d

F
H
S

X
K

1
X
K

2
C
A
V
ia
R

R
is
k
M

H
y
b
ri
d

F
H
S

X
K

1
X
K

2
C
A
V
ia
R

R
is
k
M

S
&
P
50
0

L
1.
0

0.
00
0

0.
08
2

0.
00
0

0.
00
0

0.
03
0

0.
00
0

-0
.0
2

0.
04

-0
.5
7

-0
.4
5

-0
.4
5

1.
57

L
2.
5

0.
00
1

0.
00
5

0.
00
0

0.
00
0

0.
00
5

0.
00
0

-0
.4
8

-0
.3
6

-1
.7
7

-1
.5
2

-0
.7
9

1.
84

L
5.
0

0.
01
7

0.
01
6

0.
00
0

0.
00
0

0.
00
6

0.
00
0

-0
.9
0

-1
.1
5

-2
.3
1

-1
.8
2

-1
.3
9

1.
12

U
5.
0

0.
24
5

0.
24
4

0.
01
2

0.
01
8

0.
25
3

0.
85
5

0.
54

0.
84

1.
51

1.
45

0.
66

0.
05

U
2.
5

0.
35
6

0.
22
2

0.
01
0

0.
22
0

0.
50
2

0.
55
7

0.
30

0.
42

1.
03

0.
48

0.
18

-0
.1
9

U
1.
0

0.
27
5

0.
34
2

0.
13
0

0.
65
3

0.
62
6

0.
38
2

0.
08

0.
33

0.
45

0.
14

0.
20

-0
.0
4

D
ow

30
L
1.
0

0.
06
3

0.
11
5

0.
00
0

0.
00
0

0.
00
1

0.
00
0

-0
.1
4

0.
16

-0
.5
7

-0
.4
5

-0
.4
5

1.
63

L
2.
5

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
1

0.
00
0

-0
.5
4

-0
.2
4

-1
.4
0

-0
.9
7

-0
.6
0

1.
90

L
5.
0

0.
00
0

0.
02
7

0.
00
0

0.
00
0

0.
00
2

0.
00
6

-0
.7
2

-0
.7
8

-2
.3
7

-2
.0
6

-1
.0
2

0.
87

U
5.
0

0.
27
3

0.
06
4

0.
00
0

0.
00
2

0.
13
5

0.
55
5

0.
84

1.
21

2.
00

1.
51

1.
02

0.
23

U
2.
5

0.
56
8

0.
80
6

0.
01
1

0.
04
4

0.
67
1

0.
76
2

0.
11

0.
24

1.
03

0.
36

0.
11

0.
05

U
1.
0

0.
41
8

0.
22
1

0.
03
1

0.
74
1

0.
21
7

0.
75
4

-0
.2
8

0.
39

0.
57

0.
14

-0
.4
1

-0
.1
0

H
S
I

L
1.
0

0.
39
3

0.
42
5

0.
00
4

0.
63
2

0.
82
7

0.
00
0

0.
11

-0
.0
2

-0
.5
7

-0
.2
0

-0
.0
8

1.
34

L
2.
5

0.
36
2

0.
29
0

0.
00
0

0.
07
2

0.
35
5

0.
00
6

-0
.0
4

0.
14

-1
.1
5

-0
.6
5

-0
.2
2

1.
01

L
5.
0

0.
42
1

0.
15
9

0.
00
0

0.
02
6

0.
09
5

0.
00
3

-0
.6
9

-0
.6
9

-1
.9
9

-1
.3
1

-0
.9
4

1.
46

U
5.
0

0.
76
6

0.
63
5

0.
00
3

0.
01
4

0.
16
9

0.
81
8

0.
14

-0
.2
3

1.
68

1.
43

0.
51

-0
.2
9

U
2.
5

0.
47
7

0.
63
1

0.
01
2

0.
08
3

0.
03
8

0.
49
2

0.
04

0.
35

1.
02

0.
78

-0
.0
8

-0
.0
8

U
1.
0

0.
04
8

0.
49
2

0.
03
3

0.
01
0

0.
03
6

0.
01
9

-0
.1
7

0.
26

0.
57

0.
32

-0
.2
3

-0
.3
5

18



(ii) the empirical coverage error, namely the empirical coverage rate (i.e., the pro-

portion of observations that exceed the corresponding VaR forecast) minus the

corresponding nominal rate τ .

For the DQ test, following Kuester et al. (2006), the regressor matrix contains four

lagged hits, Hitt´1, . . . , Hitt´4, and the contemporaneous VaR estimate, where Hitt is

the indicator of exceedance for the observation at time t. We consider the smaller of the

two p-values, because the CC and DQ tests have different null hypotheses and hence are

complementary to each other.

Table 4 presents the results of the two measures for the six estimation methods at the

lower (L) and upper (U) 0.01th, 0.025th, and 0.05th conditional quantiles, i.e., the 1%,

2.5% and 5% VaRs for long and short positions. For the S&P 500 and Dow 30 data, it

can be seen that none of the methods performs satisfactorily at the lower quantiles. For

the upper quantiles of these two data sets, both XK1 and XK2 perform poorly, whereas

the other methods are generally adequate: all p-values for the proposed hybrid method

and RiskM are larger than 0.2, and despite the small p-value at U5.0 for the Dow 30 data,

the FHS method performs fairly well. For the HSI data, the FHS method is adequate at

all quantiles, and the proposed hybrid method performs well except the case of U1.0. In

contrast, RiskM performs poorly at the lower quantiles, and CAViaR is unsatisfactory

at U2.5 and U1.0. Therefore, it is clear that, in terms of the backtesting performance,

the proposed method and the FHS method dominate the other competitors. Indeed, for

the three data sets at the six quantile levels, among all methods, the proposed method

has the largest number of cases where the minimum p-value exceeds 0.2, while the FHS

method has smallest number of cases where the minimum p-value is less than 0.05.

To determine whether the proposed method or the FHS method is superior, we next

take into account the secondary criterion, the empirical coverage error. To do so, for

each method we count the numbers of cases (among the totally 18 cases) where the

absolute value of its corresponding empirical coverage error is the smallest and second

smallest among all methods. From the right panel of Table 4, the results are 9 and 6

for the proposed method, and 4 and 5 for the FHS method, respectively. For the other

competitors, the numbers are all much smaller. In the supplementary material, we also

conduct a case-by-case comparison of these two methods based on a more comprehensive

analysis of the backtesting and empirical coverage results, and it is shown that the

proposed method does have clearly better performance than the FHS method.
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Moreover, we have also performed the foregoing analysis again using the rearrange-

ment method of Chernozhukov et al. (2010) to avoid any quantile crossing for the pro-

posed method. We find that both the corresponding backtesting and empirical coverage

results are almost unchanged; see the supplementary material for details.

7 Conclusion and discussion

In this paper, our idea of transforming the quantiles allows us to first turn a highly

intractable quantile regression problem into a much simpler linear quantile regression,

making the conditional quantile estimation for the GARCH model an easy job. The

major novelty of this paper also lies in the hybrid nature of the proposed estimation

method, which enables the conditional quantile estimator to provide a good balance

between the efficiency of the Gaussian QMLE and the flexibility of the quantile regres-

sion. The proposed hybrid method remedies the different drawbacks of two important

approaches in the literature, i.e., the FHS and CAViaR methods. Consequently, better

forecasting performance can be achieved, as confirmed by our empirical evidence.

Our method can be extended in several directions. First, it is well known that fi-

nancial time series can be so heavy-tailed that Epη4t q “ 8 (Mikosch and Stărică, 2000;

Mittnik and Paolella, 2003; Hall and Yao, 2003). For such cases, we may alternatively

consider methods more robust than the Gaussian QMLE for initial estimation of the con-

ditional variances, e.g., the least absolute deviations estimator of Peng and Yao (2003).

Second, our procedure can be applied to the conditional quantile estimation for other con-

ditional heteroscedastic models, including the asymmetric GJR-GARCH model (Glosten

et al., 1993). Third, although the multivariate GARCH model has been widely used for

volatility modeling of multiple asset returns (Engle and Kroner, 1995), the conditional

quantile estimation for the corresponding portfolio return is still an open problem. This

paper offers some preliminary ideas on this, which we leave for future research.
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Appendix: Proof sketches of Theorems 1–4

The following Lemma A.1 establishes some important moment conditions which are used

repeatedly in our proofs. All detailed proofs are provided in the supplementary material.

Lemma A.1. Under Assumption 1, for any κ ą 0, there is a constant c ą 0 such that

piq E sup trhtpθ2q{htpθ1qsκ : }θ1 ´ θ2} ď c, θ1, θ2 P Θu ă 8,

piiq E sup
␣›

›h´1
t pθ1qBhtpθ2q{Bθ

›

›

κ
: }θ1 ´ θ2} ď c, θ1, θ2 P Θ

(

ă 8,

piiiq E sup
␣›

›h´1
t pθ1qB2htpθ2q{BθBθ1

›

›

κ
: }θ1 ´ θ2} ď c, θ1, θ2 P Θ

(

ă 8,

pivq E sup
␣ˇ

ˇh´1
t pθ1qB3htpθ2q{BθiBθkBθℓ

ˇ

ˇ

κ
: }θ1 ´ θ2} ď c, θ1, θ2 P Θ

(

ă 8,

for all 1 ď i, k, ℓ ď p` q`1, where } ¨ } is the norm of a matrix or column vector, defined

as }A} “
a

trpAA1q “
b

ř

i,j |aij|2.

Proof sketch of Theorem 1. Let ztpθq “ p1, x2t´1, . . . , x
2
t´q, ht´1pθq, . . . , ht´ppθqq1, rztpθq “

p1, x2t´1, . . . , x
2
t´q,

rht´1pθq, . . . ,rht´ppθqq1. Write zt “ ztpθ0q, z̆t “ rztpθ0q, and rzt “ rztprθnq.

Let Lnpθq “
řn

t“1
rh´1
t ρτ pyt ´ θ1

rztq, L̆npθq “
řn

t“1
rh´1
t ρτ pyt ´ θ1z̆tq, and ĕt,τ “ yt ´ θ1

τ0z̆t.

Applying the identity (Knight, 1998),

ρτ px ´ yq ´ ρτ pxq “ ´yψτ pxq `

ż y

0

Ipx, sqds, x ‰ 0, (A.1)

where ψτ pxq “ τ ´ Ipx ă 0q and Ipx, sq “ Ipx ď sq ´ Ipx ď 0q, we have that, for any

fixed u P Rp`q`1, Lnpθτ0 ` n´1{2uq ´ L̆npθτ0q “ ´L1npuq ` L2npuq, where

L1npuq “

n
ÿ

t“1

ψτ pĕt,τ qrh´1
t ξntprθnq and L2npuq “

n
ÿ

t“1

rh´1
t

ż ξntprθnq

0

Ipĕt,τ , sqds,

with ξntpθq “ pθτ0 ` n´1{2uq1
rztpθq ´ θ1

τ0z̆t. It is worth noting that we define z̆t “ rztpθ0q

deliberately to cancel the effect of the initial values in rzt “ rztprθnq, which is a crucial

step of our proof; see also Zheng et al. (2016). If we use zt “ ztpθ0q instead of z̆t, then

the effect of the initial values, in the order of Cρtζ by Lemma S.1 in the supplementary

material, will remain inside the summations of L1npuq and L2npuq, making the effect

asymptotically non-negligible.
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To handle L1npuq and L2npuq, we consider the decomposition, ξntprθnq “ ξ1ntprθnq `

ξ2ntprθnq ` ξ3ntprθnq, with ξ1ntpθq “ n´1{2u1zt `
řp

j“1 β
pjq

τ0 pθ ´ θ0q
1Bht´jpθ0q{Bθ, ξ2ntpθq “

n´1{2
řp

j“1 u
pjqrht´jpθq ´ ht´js `

řp
j“1 β

pjq

τ0 rht´jpθq ´ ht´j ´ pθ ´ θ0q
1Bht´jpθ0q{Bθs, and

ξ3ntpθq “ n´1{2
řp

j“1 u
pjqrrht´jpθq ´ ht´jpθqs `

řp
j“1 β

pjq

τ0 trrht´jpθq ´ ht´jpθqs ´ rrht´jpθ0q ´

ht´jsu, where u
pjq is the pj ` q ` 1q-th element of u and β

pjq

τ0 “ bτβ0j, for j “ 1, . . . , p.

By carefully decomposing L1npuq and L2npuq and handling the remaining initial value

effects in rh´1
t , as well as repeatedly applying Lemmas A.1 and S.1, we can show that

Lnpθτ0 ` n´1{2uq ´ L̆npθτ0q “ ´u1
”

T1n ´ bτfpbτ qΓ2

?
nprθn ´ θ0q

ı

`
1

2
fpbτ qu1Ω2u

´ T2n ` T3n ` opp1q,

where T1n “ n´1{2
řn

t“1 ψτ pεt ´bτ qzt{ht, T2n “ prθn ´θ0q
1
řn

t“1 ψτ pεt ´bτ q
řp

j“1 π
pjq
t , T3n “

0.5fpbτ qprθn ´ θ0q1
řn

t“1

řp
j1“1

řp
j2“1 π

pj1q
t π

pj2q1
t prθn ´ θ0q, with π

pjq
t “ β

pjq

τ0 ht
´1Bht´jpθ0q{Bθ.

Applying (3.3), the central limit theorem and Corollary 2 in Knight (1998), together

with the convexity of Lnp¨q, we have

?
nppθτn ´ θτ0q “

Ω´1
2

fpbτ q
T1n ´ bτΩ

´1
2 Γ2

?
nprθn ´ θ0q ` opp1q Ñd Np0,Σ1q, (A.2)

and the proof is complete.

Proof sketch of Theorem 2. Similarly to the proof of Theorem 1, we first let L˚
npθq “

řn
t“1 ωt

rh´1
t ρτ pyt ´ θ1

rz˚
t q and L̆˚

npθq “
řn

t“1 ωt
rh´1
t ρτ pyt ´ θ1z̆tq. Applying identity (A.1),

for any fixed u P Rp`q`1, we have L˚
npθτ0 `n´1{2uq ´ L̆˚

npθτ0q “ ´L˚
1npuq `L˚

2npuq, where

L˚
1npuq “

n
ÿ

t“1

ωtψτ pĕt,τ qrh´1
t ξ˚

nt and L˚
2npuq “

n
ÿ

t“1

ωt
rh´1
t

ż ξ˚
nt

0

Ipĕt,τ , sqds,

with ξ˚
nt “ pθτ0 ` n´1{2uq1

rz˚
t ´ θ1

τ0z̆t. Then, by carefully dealing with decompositions of

L˚
1npuq and L˚

2npuq in a way similar to that for the proof of Theorem 1, we can show that

L˚
npθτ0 ` n´1{2uq ´ L̆˚

npθτ0q “ ´ u1
”

T ˚
1n ´ bτfpbτ qΓ2

?
nprθ˚

n ´ θ0q

ı

`
1

2
fpbτ qu1Ω2u

´ T ˚
2n ` T ˚

3n ` o˚
pp1q,

where T ˚
1n “ n´1{2

řn
t“1 ωtψτ pεt ´ bτ qzt{ht, T

˚
2n “ prθ˚

n ´ θ0q
1
řn

t“1 ωtψτ pεt ´ bτ q
řp

j“1 π
pjq
t

and T ˚
3n “ 0.5fpbτ qprθ˚

n ´ θ0q1
řn

t“1

řp
j1“1

řp
j2“1 π

pj1q
t π

pj2q1
t prθ˚

n ´ θ0q. Then, by verifying

Liapounov’s condition, we can show that conditional on Fn, T
˚
1n´T1n Ñd Np0, τp1´τqΩ2q

in probability as n Ñ 8. By the convexity of L˚
np¨q and Corollary 2 of Knight (1998),

?
nppθ˚

τn ´ θτ0q “
Ω´1

2

fpbτ q
T ˚
1n ´ bτΩ

´1
2 Γ2

?
nprθ˚

n ´ θ0q ` o˚
pp1q,
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which, in conjunction with (3.3) and (A.2), yields

?
nppθ˚

τn ´ pθτnq “
Ω´1

2

fpbτ q
pT ˚

1n ´ T1nq `
bτΩ

´1
2 Γ2J

´1

?
n

n
ÿ

t“1

pωt ´ 1q
1 ´ |εt|

ht

Bhtpθ0q

Bθ
` o˚

pp1q.

Applying Lindeberg’s central limit theorem and the Cramér-Wold device, the proof is

complete.

Proof sketch of Theorems 3 and 4. Observe that

1
?
n

n
ÿ

t“k`1

ψτ ppεt,τ q|pεt´k,τ | “
1

?
n

n
ÿ

t“k`1

ψτ pεt,τ q|εt´k,τ |`

n
ÿ

t“k`1

E1nt `

n
ÿ

t“k`1

E2nt `

n
ÿ

t“k`1

E3nt,

where E1nt “ n´1{2rψτ ppεt,τ q ´ ψτ pεt,τ qs|εt´k,τ |, E2nt “ n´1{2ψτ pεt,τ qp|pεt´k,τ | ´ |εt´k,τ |q, and

E3nt “ n´1{2rψτ ppεt,τ q ´ ψτ pεt,τ qsp|pεt´k,τ | ´ |εt´k,τ |q. By Taylor expansions, the fact that
?
nppθτn ´ θτ0q “ Opp1q and

?
nprθn ´ θ0q “ Opp1q, Lemma A.1, and the finite covering

theorem, we can show that
řn

t“k`1 E2nt “ opp1q,
řn

t“k`1 E3nt “ opp1q, and

n
ÿ

t“k`1

E1nt “ ´fpbτ qrd1
1k

?
nppθτn ´ θτ0q ` bτd

1
2k

?
nprθn ´ θ0qs ` opp1q,

where d1k “ Eph´1
t |εt´k,τ |ztq and d2k “ Eph´1

t |εt´k,τ |
řp

j“1 β0jBht´jpθ0q{Bθq. Then, by

the law of large numbers we can verify that pµa,τ “ µa,τ ` opp1q and pσ2
a,τ “ σ2

a,τ ` opp1q,

which, together with (3.3), (A.2) and the decomposition of n´1{2
řn

t“k`1 ψτ ppεt,τ q|pεt´k,τ |

above, yields R “ pτ ´ τ 2q´1{2σ´1
a,τn

´1
řn

t“k`1ϖt ` oppn´1{2q, where

ϖt “ ψτ pεt,τ q

ˆ

ϵt´1 ´ D1Ω
´1
2

zt
ht

˙

` bτfpbτ q
`

D2 ´ D1Ω
´1
2 Γ2

˘

J´11 ´ |εt|

ht

Bhtpθ0q

Bθ
,

with Di “ pdi1, . . . , diKq1 for i “ 1 and 2. Applying the central limit theorem and the

Cramér-Wold device, we have
?
nR Ñd Np0,Σ4q. Furthermore, by a method similar to

that for the proof of Theorem 8.2 in Francq and Zakoian (2010), we can show that Σ4

is positive definite, and hence Theorem 3 follows. Finally, by methods similar to those

for the proofs of Theorems 2 and 3, we have R˚ ´ R “ pτ ´ τ 2q´1{2σ´1
a,τn

´1
řn

t“k`1pωt ´

1qϖt ` o˚
ppn´1{2q, and then the proof is complete similarly to Theorem 2.
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