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Abstract—The deluge of date rate in today’s networks imposes
a cost burden on the backhaul network design. Developing cost
efficient backhaul solutions becomes an exciting, yet challenging,
problem. Traditional technologies for backhaul networks include
either radio-frequency backhauls (RF) or optical fibers (OF).
While RF is a cost-effective solution as compared to OF, it sup-
ports lower data rate requirements. Another promising backhaul
solution is the free-space optics (FSO) as it offers both a high data
rate and a relatively low cost. FSO, however, is sensitive tonature
conditions, e.g., rain, fog, line-of-sight. This paper combines both
RF and FSO advantages and proposes a hybrid RF/FSO backhaul
solution. It considers the problem of minimizing the cost ofthe
backhaul network by choosing either OF or hybrid RF/FSO
backhaul links between the base-stations (BS) so as to satisfy data
rate, connectivity, and reliability constraints. It shows that under
a specified realistic assumption about the cost of OF and hybrid
RF/FSO links, the problem is equivalent to a maximum weight
clique problem, which can be solved with moderate complexity.
Simulation results show that the proposed solution shows a close-
to-optimal performance, especially for practical prices of the
hybrid RF/FSO links.

Index Terms—Network planning, optical fiber, free-space optic,
backhaul network design, cost minimization.

I. I NTRODUCTION

CELLULAR networks, flooded by an enormous demand
for mobile data services, are expected to undergo a

fundamental transformation. In order to significantly increase
the data capacity, coverage performance, and energy efficiency,
next generation mobile networks (5G) [1] are expected to
move from the traditional single, high-powered base-station
(BS) to the deployments of multiple overlaying access points
of diverse sizes, i.e., microcell, picocell, femtocell, etc., using
different radio access technologies. To efficiently managethe
resulting high levels of interference, connecting BSs through
efficient backhauling becomes a critical component in the
network planning. The big increase in small cell deployment,
however, necessitates a considerable amount of backhaul com-
munications in order to share the data streams between all
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BSs across the network [2]. Giving that the links are capacity
limited, upgrading the backhaul and increasing its abilityto
support the tremendous amount of data is a necessity [3].
Therefore, choosing the suitable technology(ies) and design
of the backhaul network is of great interest, especially that
its deployment cost is a dominant cost driver for many
operators, e.g., approximately between30% and 50% of the
total operating costs for4G systems [4]. With the deployment
of multiple small cells expected in5G, the implementation
costs are believed to get even higher [3]. This paper proposes
a cost efficient backhaul solution for next generation backhaul
systems using techniques from graph theory.

A. Backhaul Technologies

Traditional technologies for the backhaul network design
include copper, microwave radio links (RF), and optical fibers
(OF). The leased T1/E1 copper lines is the most widely used
backhaul technology with approximately90% of the total
backhaul deployment in the US [5]. With a provided data
rate of 1.544 Mbit/s for T1 and 2.048 Mbit/s for E1 [6],
copper lines provide satisfying data rates for voice trafficfor
2G networks. However, to achieve the data rate demand of3G
traffic and beyond, multiple parallel connections are required
which results in a price growing linearly with the provided
capacity. For high data rates, copper lines become expensive
and hence not a suitable solution for the backhaul upgrade of
next generation systems, i.e.,5G.

Microwave radio is the second most used technology for the
backhaul network design as it represents6% of the total used
transport media [5] in the US. The RF technology represents
a reasonable alternative to copper, especially in locations in
which the deployment of wired connections is challenging.
However, such solution requires an initial investment in the
licensed part of the spectrum [7]. Moreover, low frequency
radio (radio waves below6 GHz) is limited in terms of data
rates due to interference problems and high frequency radio
(microwave & millimetre wave (mmwave) from6 to 300 GHz)
are limited in the transmission coverage area.

Optical fiber (OF) backhaul links provide the highest rates
over long distances, e.g.,155.52 Mbit/s for STM-1, 622 Mbit/s
for STM-4, 2.4 Gbit/s STM-16, and 9.9 Gbit/s for STM-64
[5]. However, as they are expensive to be deployed and require
a considerable initial investment [8], they represent4% of the
total backhaul deployment in the US [5]. They, further, suffer
from the drawbacks of wired connections, i.e., deployment
is not always feasible, which restricts their utilization in
particular applications.

Recently, the free-space optics technology (FSO) emerges
as a substitute [9] for next generation backhauls. An FSO
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link refers to a laser beam between a pair of photo-detector
transceivers using the free-space as medium of transportation.
Giving that its wavelength is in the micrometer range, whichis
an unlicensed band, FSO links are not only free to use but also
immune to electromagnetic interference generated by the RF
links. The high bandwidth and interference immunity features
make an FSO link up to25 fold more efficient than an RF
link in terms of capacity [10]. FSO particularly representsa
cost-efficient solution compared to OF.

In contrast with the omni-reliability of the OF and RF
links, FSO links are sensitive to weather conditions, e.g.,
fog, snow, and rain [11]. Therefore, reliability becomes an
important factor to address for the design of FSO-based
backhaul networks. To cope with such varying reliability,
and combine the advantages of RF (reliability) and FSO
(capacity), the hybrid RF/FSO backhaul becomes an attractive
cost-effective and reliable solution. Hybrid RF/FSO transmits,
when possible, simultaneously on both the RF and FSO links.
In harsh weather conditions that affect the FSO link, the data
is sent solely on the RF link [12]. Moreover, hybrid RF/FSO
transceivers can be quickly deployed over several kilometers
[13] and can also be easily combined with OF links [14]. For
all previously mentioned benefits, hybrid RF/FSO is a graceful
complementary option for upgrading the existing backhaul
network [15], as further shown in our paper.

B. Related Work

In the past few years, hybrid RF/FSO attracted a significant
amount of research. Most of the current work [16], [17] focus
on the determination of the factors affecting the FSO link
performance, e.g, weather conditions, scintillation, ect., and
finding solutions to improve the quality, e.g., use of multi-
ple lasers and multiple apertures, etc. However, fundamental
problems of hybrid RF/FSO architecture optimization for the
backhaul network topology design are only at their beginning.

The authors in [18] design an efficient and scalable algo-
rithm to optimize a given physical layer objective for2 and3
optical transceivers per node with a minimum number of links.
The authors in [19], [20] propose upgrading an RF network by
optimally deploying the minimal number of FSO transceivers
so as to achieve a given throughput. While Kashyapet al
[10] design a routing algorithm for hybrid RF/FSO networks
that backs up the traffic to the FSO routes when the RF
links could not carry it, Raket al [12] introduce a linear
integer programming model to determine routing in hybrid
RF/FSO network in which the FSO link availability is varying
with the weather conditions. In [21], the authors consider a
hybrid RF/FSO system in which the RF and FSO links operate
at different data rates. They derive an upper bound for the
capacity per node that is asymptotically achievable for random
networks.

Numerous mixed integer programming model are proposed
to formulate the problem of backhaul network design using
hybrid RF/FSO technology. In particular, Sonet al [22] present
an algebraic connectivity-based formulation for the design of
the backbone of wireless mesh networks with FSO links and
solve it using a greedy approach that iteratively inserts nodes

to maximize the algebraic connectivity. The authors in [23]
propose to maximize the network throughput by installing
as many FSO links as possible under the constraint that the
number of FSO links in a node is bounded. In [24], Ahdiet
al introduce a mixed integer programming model to find the
optimal placement of FSO links in order to upgrade an existing
RF backhaul network. Similarly, reference [20] propose to
improve an existing RF backhaul network with FSO links
using the minimum number of FSO links to guarantee a target
network throughput when RF links are non-available due to
interference.

This paper suggests upgrading a pre-deployed OF backhaul
network using hybrid RF/FSO links, and, hence, is related
to the concept developed in [6], [25], [26]. The authors in
[6] consider the upgrade of a pre-deployed OF backhaul
network using FSO links and mirrors for nodes not in line-of-
sight of each other. For two link-disjoint paths networks, they
formulate the problem as a mixed integer programming and
extend the study in [25] toK link-disjoint paths. In [26], the
same group of authors analyze the impact of the parameterK
on the design. This paper extends the concept by suggesting
using hybrid RF/FSO links, considering a minimum reliability
constraint, and proposing a close-to-optimal explicit solution
using graph theory techniques.

C. Contributions

This paper examines the problem of upgrading a pre-
deployed OF backhaul network. It considers the problem of
minimizing the cost of the backhaul network by choosing
either OF or hybrid RF/FSO backhaul links between the
base-stations (BS) so as to satisfy data rate, connectivity,
and reliability constraints. Unlike our recent works which
focus on connecting BSs throughK link-disjoint paths in
order to cope with possible link failures (see [27] for the
business case of the RF backhaul, and [28] for the technical
details of the proposed resilient solution), a primary concern
of the current paper is to guarantee network connectivity
achieved by connecting each pair of nodes in the network,
possibly via multiple hops. While the deployment cost of
hybrid RF/FSO links depends mainly on the expense of the
hybrid RF/FSO transceivers, the implementation cost of OF
links depends mostly on the distance between the two end
nodes. On the other hand, OF links always satisfy the data
rate and reliability constraint. The performance of hybrid
RF/FSO, however, degrades with the distance and the number
of installed links. The paper solves the problem using graph
theory techniques by introducing the corresponding planning
graph. The paper’s main contribution is to provide a close-to-
optimal explicit solution to the problem. The paper shows that
under a specified realistic assumption about the cost of OF and
hybrid RF/FSO links, the problem can be reformulated as a
maximum weight clique problem, that can be globally solved
using efficient algorithms [29]–[32].

The rest of this paper is organized as follows: Section II
presents the considered system model and the problem formu-
lation. In Section III, the planning problem is approximated
by a more tractable one. Section IV illustrates the proposed

2



BS 1

BS 4

BS 5

BS 2

BS 3

Base Station
OF Link
RF/FSO Link

Fig. 1. Network containing5 base-stations connected with OF and hybrid
RF/FSO links.

solution. Before concluding in Section VI, simulation results
are presented in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model and Parameters

This paper considers a backhaul network connecting a set
B = {b1, · · · , bM} of M base-stations with pre-deployed
OF connections. All nodes (interchangeably denoting base-
stations) are assumed to have a line-of-sight connections.
Therefore, each node can be connected to any other node with
either an OF or a hybrid RF/FSO connection, as in Figure 1
which shows a network containing5 base-stations.

Let Pij , 1 ≤ i, j ≤ M be a binary variable indicating the
existence, i.e.,Pij = 1, of a pre-deployed OF link between
base-stationsbi andbj andPij = 0 otherwise. For simplicity
of notations,Pij may be also written asP (bi, bj).

Let π(O)
ij andπ(h)

ij the cost an OF and a hybrid RF/FSO link
between nodesbi andbj , respectively. Obviously, the functions
π
(O)
ij andπ(h)

ij are positive and symmetric, e.g.,π(O)
ij = π

(O)
ji .

Finally, as hybrid RF/FSO is a cost effective solution, the paper
assumes thatπ(h)

ij ≤ π
(O)
ij , ∀ i, j ∈ B.

Let D(O)
ij andD(h)

ij be the provided data rates of an OF and
a hybrid RF/FSO links between nodesbi andbj, respectively.
Let Dt be the targeted data rate. Since the OF provides high
data rates, without loss of generality, this work assumes that
D

(O)
ij ≥ Dt, ∀ i 6= j ∈ B.

Similarly, letR(O)
ij andR(h)

ij be the reliability of an OF and
a hybrid RF/FSO links between nodesbi andbj, respectively.
Let α be the targeted reliability. As OF links are always
reliable, this paper assumes thatR

(O)
ij ≥ α, ∀ i 6= j ∈ B.

B. Problem Formulation

Let Xij , 1 ≤ i, j ≤ M be a binary variable indicating if
base-stationsbi andbj are connected with an OF connection.
Similarly, let Yij , 1 ≤ i, j ≤ M indicate if they are connected
with a hybrid RF/FSO link. To simplify the problem formu-
lation and constraints, this paper takes as a convention that
Xii = Yii = 0, ∀ i ∈ B in all the rest of the equations.

This paper considers the problems of minimizing the net-
work deployment cost under the following constraints:

1) C1: Some nodes have pre-deployed OF links.
2) C2: Connections between nodes can be either OF or

hybrid RF/FSO.
3) C3: Each node has a data rate that exceeds the targeted

data rate.
4) C4: The reliability of each node exceeds the targeted

reliability.
5) C5: Each node can communicate with any other node

through single or multiple hop links.

Let the Laplacian matrixL be defined asL = D − C,
whereD = diag(d1, · · · , dM ) is a diagonal matrix with
di =

∑M

j=1 Xij+Yij andcij = Xij+Yij . The diagonalization
of the Laplacian matrix is given byL = QΛQ−1, where
Λ = diag(λ1, · · · , λM ) with λ1 ≤ λ2 ≤ · · · ≤ λM . The
connectivity condition C5 of the matrix can be written using
the algebraic formulation proposed in [33] asλ2 > 0.

The following lemma introduces the cost-efficient backhaul
design problem formulation:

Lemma 1. The problem of minimizing the cost of the backhaul
network planning can be formulated as:

min
1

2

M
∑

i=1

M
∑

j=1

Xijπ
(O)
ij + Yijπ

(h)
ij (1a)

s.t. Xij = Xji (1b)

Yij = Yji (1c)

XijPij = Pij (1d)

XijYij = 0 (1e)
M
∑

j=1

XijDt + YijD
(h)
ij ≥ Dt (1f)

1−
M
∏

j=1

(1 −Xijα)(1 − YijR
(h)
ij ) ≥ α (1g)

λ2 > 0 (1h)

Xij , Yij ∈ {0, 1}, 1 ≤ i, j ≤ M, (1i)
where the optimization is over both binary variablesXij and
Yij .

Proof: To formulate the problem, the objective function
and the system constraints C1 to C5 are expressed in terms
of the variablesXij and Yij . Combining all the expressions
yields the optimization problem (1). The complete proof can
be found in Appendix A.

The optimization problem (1) is equivalent to a weighted
Steiner tree problem which is NP-hard with a complexity of
order2M

2

. The optimal solution to such problem is referred
to as the optimal planning. The rest of this paper proposes
an efficient method to solve the problem (1), under the
assumption that the hybrid RF/FSO connection between two
nodes that are not neighbors is always more expensive than the
cost of the OF connections between each node and its closest
neighbour. The rationale for such assumption is that, for short
distances, OF links are much cheaper than hybrid RF/FSO
ones. Under this assumption, the next section shows that the
solution for backhaul network design becomes mathematically
tractable with a complexity of order2M .
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III. PROBLEM APPROXIMATION

As highlighted above, the original optimization problem (1)
is an NP-hard problem. The difficulty in solving the problem
lies particularly in the structure of constraint (1h) and in
simultaneously optimizing (1) over both binary variablesXij

and Yij . This section presents an efficient heuristic to solve
the problem under the assumption that the hybrid RF/FSO
connection between two nodes that are not neighbors is always
more expensive than the OF connections between each node
and its closest neighbour. The assumption is motivated by the
fact that, for short distances, OF links are much cheaper than
hybrid RF/FSO ones. The heuristic is based on first finding
the solution to the problem when only OF links can be used.
Afterwards, it solves an approximate of the backhaul network
planning problem via relating problem (1) to solution reached
by the planning problem when only OF links are allowed.

A. Optimal Planning Using Optical Fiber Only

The following lemma introduces the reduced problem when
only OF links are allowed.

Lemma 2. The problem of backhaul design with minimum
cost, when only OF links are allowed, is the following:

min
1

2

M
∑

i=1

M
∑

j=1

Xijπ
(O)
ij (2a)

s.t. Xij = Xji (2b)

XijPij = Pij (2c)

λ2 > 0 (2d)

Xij ∈ {0, 1}, 1 ≤ i, j ≤ M. (2e)

Proof: To show this lemma, it is sufficient to show that,
for backhaul network using only OF links, i.e.,Yij = 0, ∀ i, j,
constraints (1c), (1e), (1f), and (1g) become redundant. This
can easily be done by noting that for a connected graph, each
node is connected to, at least, another node. Since only a single
OF connection is sufficient to ensure throughput and reliability,
the constraints become redundant.

To solve the problem mentioned above, the paper proposes
to cluster BSs, according to the minimal price. First, a cluster
Z containing all BSs is formed. For each connected nodes
with pre-deployed OF links, the base-stations are merged
into a single group (belonging to the big clusterZ) and the
correspondingXij set to1. Afterwards, find the two minimum-
price clusters and merge them into a single group. The cost
between two clusters is defined as the minimum cost between
all BS in each cluster. When two clusters are merged, the two
minimum-price BSs in each cluster are connected through an
OF link. The process is repeated until only one group remains
in the system. In other words, the process terminates when
all nodes are merged into a single cluster, i.e.,|Z| = 1.
The steps of the algorithm are summarized in Algorithm 1.
The following theorem characterizes the solution producedby
Algorithm 1 with respect to the problem defined in Lemma 2:

Theorem 1. The solution reached by Algorithm 1 is the
optimal solution to the problem proposed in Lemma 2. Such

Algorithm 1 Optimal planning using only OF links

Require: B, Pij , andπ(O).
Initialize Xij = Pij , 1 ≤ i, j ≤ M .
Initialize Z = ∅.
for all b ∈ B do

Initialize t = 0.
for all Z ∈ Z do

for all b′ ∈ Z do
if P (b, b′) = 1 then
Z = Z \ {Z}.
Z = {Z, b}.
Z = {Z, {Z}}.
t = 1.

end if
end for

end for
if t = 0 then
Z = {Z, {b}}.

end if
end for
while |Z| > 1 do

(Zi, Zj) = arg min
Z,Z′∈Z
Z 6=Z′



min
b∈Z
b′∈Z′

π(O)(b, b′)



.

(bi, bj) = arg min
b∈Zi

b′∈Zj

π(O)(b, b′).

Xij = Xji = 1.
Z = Z \ {Zi}.
Z = Z \ {Zj}.
Z = {Z, {Zi, Zj}}.

end while

solution is referred to, in this paper, as the optimal OF only
planning.

Proof: To prove this theorem, we employ a two-stage
proof. The first part of the proof shows that the solution
reached by Algorithm 1 is the optimal solution to the problem
proposed in Lemma 2 for a network without pre-deployed
OF links. The second part of the proof extends the result for
networks with pre-deployed OF connections. Therefore, we
first show that Algorithm 1 produces a feasible solution to
the problem. Afterwards, we show that any graph that can be
reduced, using an algorithm similar toAlgorithm 1, to a single
cluster includes the graph designed by Algorithm 1. Finally,
we show that any solution that cannot be reduced to a single
group is not optimal. The complete proof can be found in
Appendix B.

B. Problem Approximation

This subsection approximates the backhaul network plan-
ning problem (1) under the assumption that a hybrid RF/FSO
connection between two nodes that are not neighbours is more
expensive than the OF links between each node and its closest
neighbour. We first definebi∗ as the closest node to base-
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stationbi as follows:
bi∗ = argmin

b∈B
b6=bi

π(O)(bi, b). (3)

The set of neighboursNi of base-stationbi is defined as
the set of base-stations that are closest to base-stationbi,
and that satisfy the connectivity condition. Mathematically, the
condition can be written as:

Ni =

{

b ∈ B \ bi such thatπ(h)(bi, b) ≤ max
bj∈B

Xijπ
(h)
ij

}

,

(4)
whereXij , 1 ≤ i 6= j ≤ M is the optimal solution found in
solving the OF only planning problem (2).

Remark 1. The results presented in this paper do not depend
on the definition of the set of neighboursN i of nodebi as long
asNi ⊂ N i. Intuitively, as the setN i gets bigger and bigger,
the approximation of the solution is more tight. ForN i =
B \ {bi}, the proposed algorithm reduces to an exhaustive
search.

The assumption that two nodes that are far away from each
others (i.e., not neighbours) connected with hybrid RF/FSO
link generate a cost greater that the expense of the same nodes
connected with OF links with their closest neighbours can be
written ∀ (bi, bj) /∈ Nj ×Ni as follows:

π
(O)
ii∗ + π

(O)
jj∗ ≤ π

(h)
ij . (5)

Let Ri = {bj ∈ B \ {bi} | R
(h)
ij ≥ α} be the set of nodes

that satisfy, by their own, the reliability condition for nodebi.
Based on the above assumption and definitions, the following
lemma approximates the optimization problem (1) under the
assumption (5).

Lemma 3. The problem of backhaul network cost minimiza-
tion design using OF and hybrid RF/FSO connections can be
approximated by the following problem:

min
1

2

M
∑

i=1

M
∑

j=1

Xijπ
(O)
ij + Yijπ

(h)
ij (6a)

s.t. Xij = Xji (6b)

Yij = Yji (6c)

XijPij = Pij (6d)

XijYij = 0 (6e)
M
∑

j=1

XijDt + YijD
(h)
ij ≥ Dt (6f)

M
∑

j=1

Xijα̃+
∑

j∈Ri

Yij α̃+
∑

j∈Ri

YijR
(h)
ij ≥ α̃ (6g)

(Xij + Yij)Xij = X ij (6h)

Xij , Yij ∈ {0, 1}, 1 ≤ i, j ≤ M, (6i)
whereRi = B \ Ri is the complementary set ofRi and α̃ =
− log(1− α).

Proof: To show that the original problem, it is sufficient
to show that any solution to (6) is a feasible solution to
(1). Therefore, we show that constraint (6g) is equivalent to
constraint (1g) and that constraint (6h) is included in constraint
(1h). The complete proof can be found in Appendix C.

IV. PROPOSEDSOLUTION

This section proposes the solution for the approximate
problem (6). The solution is based first on constructing the
network planning graph, and then on formulating the problem
(6) as a graph theory problem that can be optimally solved
with moderate complexity.

A. Planning Graph

In this section, we introduce the undirectedplanninggraph
G(V , E), where V is the set of vertices andE the set of
edges. Before stating the vertices construction and the edge
connection, we first define the clusterCi for each node
bi, 1 ≤ i ≤ M as follows:

Ci = {((Xij1 , Yij1 ), · · · , (Xij|Ni|
, Yij|Ni |

)), such that
⋃

j∈Ni

bj = Ni

XijPij = Pij , ∀ j ∈ Ni

XijYij = 0, ∀ j ∈ Ni
∑

j∈Ni

XijDt + YijD
(h)
ij ≥ Dt (7)

∑

j∈Ni

Xijα̃+
∑

j∈Ni∩Ri

Yij α̃+
∑

j∈Ni∩Ri

YijR
(h)
ij ≥ α̃

(Xij + Yij)Xij = Xij , ∀ j ∈ Ni}.

Define the weight of each elementγi ∈ Ci, (γi =
{(Xij1 , Yij1), · · · , (Xij|Ni|

, Yij|Ni|
)}), as follows:

w(γi) = −
1

2

∑

j∈Ni

Xijπ
(O)
ij + Yijπ

(h)
ij . (8)

For each clusterγi ∈ Ci, a vertexvij , 1 ≤ j ≤ |Ci| is
generated. Two distinct verticesvij andvkl are connected with
an edge inE if the two following conditions are satisfied:

1) C1: i 6= k: The vertices represents different nodes in the
network.

2) C2: (Xik, Yik) = (Xki, Yki) if (bi, bk) ∈ (Nk,Ni): The
vertices are non conflicting.

B. Proposed Algorithm

The following theorem characterizes the solution of the
approximated backhaul network planning problem (6).

Theorem 2. Let (X∗
ij , Y

∗
ij), 1 ≤ i, j ≤ M be the optimal

solution to the planning problem (6) then we haveX∗
i,j+Y ∗

i,j =
1 only if (i, j) ∈ Nj ×Ni.

Proof: To show this theorem, the scenarios that can result
in a violation of the desired property are identified. Using the
cost optimality, connectivity constraint, and the assumption
about the relative value, all such scenarios are shown to be
sub-optimal to (6). Therefore, the optimal solution satisfies the
property. The complete proof can be found in Appendix D.

The following theorem links the solution of problem (6) to
the planning graph.

Theorem 3. The solution of the approximation of the backhaul
network problem (6) using hybrid RF/FSO can be formulated
as a maximum weight clique, among the cliques of sizeM in
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the planning graph, in which the weight of each vertexvij is
the weight of the corresponding clusterγi defined in (8).

Proof: To prove this theorem, we first show that there is
a one to one mapping between the set of feasible solutions
of the problem (6) and the set of cliques of degreeM in the
planning graphG(V , E). To conclude the proof, we show that
the weight of the clique is equivalent to the merit function
of the optimization problem (6). The complete proof can be
found in Appendix E.

C. Complexity Analysis

This subsection characterizes the complexity of solving the
original 0− 1 integer program proposed in (1) and its relaxed
version proposed in (6).

In order to characterize the complexity of (1), we first
compute and reduce the number of variables. Initially, the
number ofXij andYij is M2 each. However, asXii andYii

can take arbitrary values, the number reduces toM2 − M
variables each. Furthermore, from constraint (1b) and (1c)
which translate the symmetry of the problem, only half of
the variables are independent. Hence, the number of free
variables isM2−M

2 . Finally, the pre-deployed OF links, i.e.,
constraint (1d), limits the number of variables. In fact, the
constraintPij = 1 translates toXij = 1 and Yij = 0. Let
P =

∑M

i=1

∑M

j=1 Pij be the number of pre-deployed links.
It can clearly be seen that the number of variables ofXij

and Yij is M2−M−P
2 . Let P = {(i, j) | i < j, Pij = 0} be

the set of nodes that do not have a pre-deployed links. From
constraint (1e), the variablesXij andYij are not independent.
As only 3 combinations are possible, they can be represented
by M2−M−P

2 ternary variableZij , (i, j) ∈ P defined as
follows:

Zij =











0 if Xij = 0 andYij = 0

1 if Xij = 1 andYij = 0

2 if Xij = 0 andYij = 1.

(9)

Therefore, the optimization problem (1) can be written as
follows:

min
∑

(i,j)∈P

δ(Zij − 1)π
(O)
ij + δ(Zij − 2)π

(h)
ij

s.t.
∑

j∈P

δ(Zij − 1)Dt + δ(Zij − 2)D
(h)
ij ≥ Dt

1−
∏

j∈P

(1− δ(Zij − 1)α)(1 − δ(Zij − 2)R
(h)
ij ) ≥ α

λ2 > 0

Zij ∈ {0, 1, 2}, (i, j) ∈ P , (10)
whereδ(x) is the discrete Delta function equal to1 if and only
if its argument is equal to0. The formulation in (10) allows to
derive the complexity of the optimal solution as proportional

to η
M2−M−P

2 , where1 < η ≤ 3 is the complexity constant that
depends on the algorithm used to solving the weighted Steiner
tree problem and where the extreme caseη = 3 reduces to the
exhaustive search.

In order to characterize the complexity of the relaxed
optimization problem (6), we first identify the number of

vertices in the planning graph. As the number of vertices
depends on the relative position of the nodes, the data rates,
and the reliability functions, this subsection characterizes the
worst case complexity. Letn be the maximum number of
neighbours of the nodes. From constraint (1e), in each cluster,
the number of vertices is bounded by3n. Therefore, the
number of vertices of the whole planning graph is bounded
by 3nM . The formulation of the problem as a graph theory
problem allows to derive the complexity of the approximate
solution as proportional toξ3

nM , where1 < ξ ≤ 2 is the
complexity constant that depends on the algorithm used to
solving the maximum weight clique problem and where the
extreme caseξ = 2 reduces to the exhaustive search.

For the minimal number of neighbours as defined in (4),
the number of neighbours does not depend on the number
of nodesM in the network. Therefore, for a large enough
number of base-station, the realistic assumption about thecost
of the OF and hybrid RF/FSO links the backhaul network
design problem become more mathematically tractable with a
reduction in complexity from an order of2M

2

to a complexity
of order2M .

V. SIMULATION RESULTS

This section shows the performance of the proposed solu-
tion to the backhaul network planning problem using hybrid
RF/FSO technology. The base-stations are randomly placed on
a 5 Km long square. The pre-deployed OF links are randomly
placed between the base-stations. The ratio of pre-deployed
links by the total number of possible connections is of1/5.
These simulation assume that the price, the provided data rate,
and the reliability are sole function of the distance separating
the two end nodes. The cost of a multi-mode OM3 (50/125)
OF link is, according to various constructors (Asahi Kasei,
Chromis, Eska, OFS HCS) between3 $ and30 $ per meter
depending on the number of cores. In these simulations, the
cost of the optical transceivers, being negligible, is ignored,
and a medium priceπ(O) = 13.5 $ per meter is adopted. The
cost of a hybrid RF/FSO link is taken to be independent of the
distance. Given the prices offered by the different constructors
(fSONA, LightPointe, and RedLine), two types of costs are
considered:π(h) = 10 k$ and20 k$. The priceπ(h) = 40 k$
is proposed as a cut-off price for which hybrid RF/FSO do
not represent any advantage.

The data rate of a hybrid RF/FSO links is taken to be
Dt over a distancedD after which it decays exponentially.
In other words,D(h)(x) = Dt if x < dD and D(h)(x) =
Dt exp

−(x−dD) otherwise. The reliability follows a similar
model. The maximal distance satisfying the reliability con-
dition is dR. For illustration purposes, the lengthdD anddR
are assumed to be3 and2 Km unless indicated otherwise.

The numbers of base-stations, the price of the hybrid
RF/FSO transceivers, and the distancesdD and dR vary in
the simulations so as to study the methods performance for
various scenarios. The planning simulated in this section are
the optimal planning (solution of (1)), the OF only planning
(solution of (2)), and our proposed heuristic hybrid RF/FSO-
OF planning (solution of (6)).
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Figure 2 plots the cost of the network versus the number
of BSs, for various costs of the hybrid RF/FSO transceivers.
We clearly see that the degradation of our proposed solution
against the optimal solution becomes less severe when first
the number of base-stations increases, and secondly when
the hybrid RF/FSO transceivers become more expensive. The
increase in performance in the first case can be explained by
the fact that the connectivity opportunities of nodes increase
as the number of base-stations increases, due to the rise in the
neighbours setsNi. The gain in performance when the price
of the hybrid RF/FSO transceivers increases can be explained
by the fact that our assumption (5) becomes more valid as the
price of the hybrid RF/FSO transceivers increases.

Figure 3 and Figure 4 illustrate the cost of the network and
the ratio of the OF link, respectively, against the expense of
the hybrid RF/FSO transceivers. As shown in Figure 2, the
performance of our proposed algorithm is more close to the
one of the optimal planning as the cost of the hybrid RF/FSO
transceivers increases. From Figure 4, we clearly see that if
the hybrid RF/FSO transceivers are expensive enough, both the
optimal and our proposed solution contain only OF links. In
fact, for expensive hybrid RF/FSO transceivers, the OF links
offers a noticeable rate advantage that explain their use. It is
worth mentioning that for a costπ(h) ≥ 30 k$ in Figure 4,
even though the link’s nature utilized in the optimal solution
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Fig. 4. Average percentage of OF connections versus the costof hybrid
RF/FSO linksπ(h) for a network containing7 nodes.
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Fig. 5. Average percentage of OF connections versus the distance dD

satisfying the data rate. The solid lines are obtained for a perfect reliability
distancedR = 2Km and the dashed one fordR = 4Km.

and our proposed solution are different, the total cost of the
network is almost the same (Figure 3 forM = 7).

To quantify the performance of the proposed algorithms
with respect to the distancedD, Figure 5 plots the percentage
of the OF link used against the distancedD for different
reliability dR and a priceπ(h) = 20 k$. Figure 5 depicts
that for a smalldD, our proposed solution uses more OF links
than the optimal solution. Whereas for adD ≥ 2 the ratio
is almost the same. This can be explained by our choice of
neighboursNi. The connectivity opportunities of our proposed
solution are less than the one of the optimal solution. Hence,
for small dD, to satisfy the rate constraint our proposed
solution connects to the neighbours using OF links since the
hybrid RF/FSO links do not satisfy the constraint. The optimal
solution connects to more nodes (outside the neighbours sets)
to meet the rate constraint. We further note that fordR = 2
Km, the improvement in the provided data rate of the hybrid
RF/FSO link does not decrease the total cost of the network as
the used connections are the same. This can be explained by
the fact that the solution is limited by the reliability constraint.
Therefore, there is no gain in improving the provided data
rate of the hybrid RF/FSO link unless the reliability of the
connection is improved simultaneously.

Figure 6 and Figure 7 show the total cost of the network
and the percentage of used OF links, respectively, against the
maximum distance satisfying the reliability constraintdR for
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Fig. 7. Average percentage of OF connections versus the maximum distance
dR satisfying the target reliabilityα for a network containing7 nodes.

a system composed ofM = 7 base-stations and for different
prices of hybrid RF/FSO ofπ(h) = 20 k$. From Figure 6,
as the reliability of the hybrid RF/FSO link increases, the
proposed solution provides a cost similar to the optimal one.
This can be explained by the fact that the reliability condition
can be satisfied by connecting to base-stations inside the set
of neighbours using exclusively hybrid RF/FSO links. The
analysis is more corroborated by Figure 7 that shows that the
proposed solution uses more and more hybrid RF/FSO links
as the reliability of such links increases. Hence, even if the
optimal and heuristic hybrid FR/FSO plans are different for
high reliability, the total deployment cost of the network is
very similar.

Finally, to quantify the performance of the proposed solution
against the target reliability,Figure 8 and Figure 9 plot the
total cost of the network and the percentage of used OF links,
respectively, against the reliability thresholdα for a system
composed ofM = 7 base-stations and for different prices
of hybrid RF/FSO links. Again, from Figure 9 we clearly
see that for expensive hybrid RF/FSO transceivers both the
optimal solution and our proposed solution use exclusively
OF links. Figure 8 shows that, even for cheap hybrid RF/FSO
transceivers, our proposed solution performs as good as the
optimal solution for a reliabilityα ≥ 0.8 even if the nature of
the used links is not the same for that price as displayed in
Figure 9.
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VI. CONCLUSION

In this paper, we consider the problem of backhaul network
design using the OF and hybrid RF/FSO technologies. We first
formulate the planning problem under connectivity, rate con-
straints, and reliability. We, then, solve the problem optimally
when only OF links are allowed. Using the solution of the OF
deployment, we formulate an approximation of the general
planning problem and show that under a realistic assumption
about the relative cost of the OF links and the hybrid RF/FSO
transceivers, the solution can be expressed as a maximum
weight clique in the planning graph. Simulation results show
that our approach shows a close-to-optimal performance, es-
pecially for practical prices of the hybrid RF/FSO. As a future
research direction, network design can be investigated while
taking into account the varying reliability the hybrid RF/FSO
links.

APPENDIX A
PROOF OFLEMMA 1

To show this lemma, this section express the objective
function and the system constraints C1 to C5. The objective
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function can be written as:
1

2

M
∑

i=1

M
∑

j=1

Xijπ
(O)
ij + Yijπ

(h)
ij . (A.1)

Remark 2. Naturally, the objective function should not in-
clude the price of the pre-deployed OF links. In other words,
it should be written as:

1

2

M
∑

i=1

M
∑

j=1

(Xij − Pij)π
(O)
ij + Yijπ

(h)
ij . (A.2)

However, as the term−1/2
∑M

i=1

∑M

j=1 Pijπ
(O)
ij is constant

with respect to the optimization variablesXij andYij , then it
is removed throughout this paper (including the simulations).

The pre-deployed OF connections condition, i.e., constraint
C1, states that the planning solution should include the pre-
deployed OF links. In other words, if nodesbi andbj have a
pre-deployed OF linkPij = 1, then the solution should have
the same connectionXij = 1. However, the non-existence of
a pre-deployed OF link does not add extra constraints to the
system. Therefore, constraint C1 can be written, for arbitrary
nodesbi andbj , as follows:

XijPij = Pij . (A.3)
The system constraint C2 implies that, at maximum, only one
type of connection may exist between any arbitrary nodesbi
and bj . Hence, constraint C2 can be mathematically written
as follows:

XijYij = 0. (A.4)
For an arbitrary BSbi, the data rate constraint C3 is satisfied
if the sum of the data rate provided by all adjacent nodes
exceeds the targeted data rate. Therefore, the constraint can
be formulated for all BSbi as follows:

M
∑

j=1

XijD
(O)
ij + YijD

(h)
ij ≥ Dt. (A.5)

As OF links always satisfy the targeted data rate, i.e.,D
(O)
ij ≥

Dt, ∀ i 6= j, then the data rate constraint C3 for nodebi can
be reformulated as follows:

M
∑

j=1

XijDt + YijD
(h)
ij ≥ Dt. (A.6)

The reliability constraint C4 implies that each node should
be connected to the network, at all time, with probabilityα.
As the reliability of each link is independent of the other
links, such constraint can be formulated for nodebi using the
complementary event as follows:

1−
M
∏

j=1

(1−XijR
(O)
ij )(1 − YijR

(h)
ij ) ≥ α. (A.7)

As OF links are always reliable, i.e.,R(O)(dij) ≥ α ∀i 6= j,
the reliability constraint can be simplified as follows:

1−
M
∏

j=1

(1−Xijα)(1 − YijR
(h)
ij ) ≥ α. (A.8)

Define C = [cij ] as the adjacency matrix bycij = Xij +
Yij . Since only one type of connections exists between the
same BSs thencij is a binary variable (i.e.,cij ∈ {0, 1}). The
connectivity constraint C5 implies that the graph representing
the base-stations is connected. From a graph theory perspective

[33], such graph connectivity constraint can be expressed as
a function of the Laplacian matrixL defined asL = D−C,
whereD = diag(d1, · · · , dM ) is a diagonal matrix with
di =

∑M

j=1 cij . The diagonalization of the Laplacian matrix
is given byL = QΛQ−1, whereΛ = diag(λ1, · · · , λM )
with λ1 ≤ λ2 ≤ · · · ≤ λM . The connectivity condition C5
of the matrix can be written using the algebraic formulation
proposed in [33] as:

λ2 > 0. (A.9)
Combining the objective function (A.1) and the constraints

(A.3), (A.4), (A.6), (A.8), and (A.9), gives the optimization
problem proposed in (1).

APPENDIX B
PROOF OFTHEOREM 1

To show the theorem, this section proposes first to demon-
strate that Algorithm 1 outputs the optimal solution to the
optimization problem stated in Lemma 2 for a network without
pre-deployed links. The second part of the section extends the
result to network with pre-deployed OF connections.

A. Network Without Pre-deployed OF Links

To proof this theorem for a network without pre-deployed
links, we first prove that Algorithm 1 produces a feasible
solution to the problem. Afterward, we show that any graph
that can be reduced, using Algorithm 2, to a single cluster
includes the graph outputted by Algorithm 1. Finally, we show
that any solution that cannot be reduced to a single cluster is
not optimal.

Algorithm 2 can be seen as a complement of Algorithm 1.
As for Algorithm 1, in Algorithm 2 begins by generating a
cluster of each BS in the system. Afterward, two groups at the
minimum price of each other and whose BSs at the minimum
price are connected are merged into a single cluster. The
process is repeated until no further connection can be found.
The steps of the algorithm are summarized in Algorithm 2.

Let Z = {Z1, · · · , Z|Z|} be the clustering at any step of
Algorithm 1. First note thatZ is a partition ofB. We proof
by induction that nodes inside any clusterZi, 1 ≤ i ≤ |Z|
are connected. Clearly, for a clusterZi with |Zi| = 1 (the
cluster contains a single node), all nodes inside the cluster
are connected. Assume that all clustersZi of size |Zi| ≤ n
are connected. From the last step of Algorithm 1 clusters of
size n + 1 can be generated only by merging two clusters
Zj and Zk with |Zj |, |Zk| < n and |Zj | + |Zk| = n + 1.
Since by construction such clusters are connected (Xjk =
Xkj = 1 with bj ∈ Zj andbk ∈ Zk), then the resulting cluster
Zi from mergingZj and Zk is also connected. Therefore,
all nodes within any arbitrary clusterZi, 1 ≤ i ≤ |Z| are
connected. Finally, sinceZ contains a single cluster at the
end of Algorithm 1 (i.e.,|Z| = 1) and it is a partition ofB
(contains all the nodes in the network), then all the nodes are
connected. Hence the outputted solution satisfy constraint (2d).
By construction, we can easily see that the connections are
binary and symmetric. In other words, the outputted solution
satisfy constraints (2b) and (2e) which conclude that it is a
feasible solution.
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Algorithm 2 Clustering Algorithm

Require: B, π(O), andXij , 1 ≤ i, j ≤ M .
Initialize Z = ∅.
for all b ∈ B do
Z = {Z, {b}}.

end for
Initialize t =TRUE.
while t =TRUE do
t =FALSE.
for all Z 6= Z ′ ∈ Z do

if
∑

bi∈Z
bj∈Z′

Xij = 1 then

Z∗ = arg min
X∈Z
X 6=Z′



min
b∈X
b′∈Z′

π(O)(b, b′)





Z ′∗ = arg min
X∈Z
X 6=Z



min
b∈X
b′∈Z

π(O)(b′, b)



.

if Z = Z∗ andZ ′ = Z ′∗ then
(bi, bj) = arg min

b∈Z
b′∈Z′

π(O)(b, b′).

if Xij = 1 then
Z = Z \ {Z}
Z = Z \ {Z ′}
Z = {Z, {Zi, Zj}}.
t =TRUE

end if
end if

end if
end for

end while

Let Xij , 1 ≤ i, j ≤ M be a feasible solution and letZ be
the outputted clustering by Algorithm 2 when inputtedXij .
We can clearly see thatZ is a partition ofB. Therefore, if
|Z| = 1, thenZ = Z since there exist only a unique partition
containing a single element (the setB itself). This concludes
that any graph that can be reduced, using Algorithm 2, to
a single cluster includes all the connections that are created
in the graph outputted by Algorithm 1. Sinceπ(O) is a
strictly positive function and that the graph outputted by
Algorithm 1 have the minimum number of connections among
all the graphs that can be reduced to a single cluster using
Algorithm 2, then the solution of Algorithm 1 is the best
solution among the solutions that can be reduced to a single
cluster using Algorithm 2.

Now assume that|Z| 6= 1. We can clearly see that|Z| ≥ 3.
Otherwise, if there exist only two clusters (i.e.,|Z| = 2) and
since the solution is feasible, then they are connected. Dueto
the fact they are only two, then two cases can be distinguished:

• The BSs at the minimum price of each others are con-
nected and hence they can be reduced to a single cluster.
Therefore, clustering|Z| = 2 cannot be outputted by
Algorithm 2.

• The BSs at the minimum price of each others are not
connected. Then the solution having the same connections
except for the link between the two cluster being replaced

with the connection of BSs at the minimum price of
each others produces a feasible solution at a lower cost.
Therefore, the initial solution is not optimal.

Let Z = {Z1, · · · , Z|Z|}, |Z| ≥ 3 be the outputted
clustering by Algorithm 2. Define the reduced clustering as
Z̃ = {Z1, Z2, {Z3∪· · ·∪ Z|Z|} } = {Z̃1, Z̃2, Z̃3}. We can
clearly see that|Z̃| = 3 with none of the clusters connected
and at minimum price of each other.

Lemma 4. For any three points in the plane, there must exist
two points at the minimum distance from each others.

Proof: Let a, b, c be the three points in the plane and
assume that there do not exist two points at minimum dis-
tance of each other. The only possible configuration (up to
a permutation of the points) is thata at minimum distance
from b and b is not. Henceb is at minimum distance from
c which is at its turn at minimum distance froma. These
conditions yield d(a, b) < d(a, c), d(b, c) < d(b, a) and
d(c, a) < d(c, b). Since the distance operator is symmetric
then,d(c, a) < d(c, b) = d(b, c) < d(b, a) = d(a, b) < d(a, c).
In other words,d(a, c) < d(a, c), which is impossible. There-
fore for any three points in the plane, there must exist two
points at minimum distance of each others.

From Lemma 4, there must exist two clusters at the mini-
mum price of each other. Since they have not been reduced to
a single cluster, then they are not connected. For simplicity,
assumeZ̃1 and Z̃2 are at minimum price of each other and
since the graph is connected thenZ̃1 andZ̃3 are connected and
similarly for Z̃2 andZ̃3. Moreover, it can be easily concluded
that all nodes inside the clusters are connected. Otherwise,
assumeZ̃3 can be split into two non-connected clustersZ̃
and Z̃ ′ with Z̃1 connected only tõZ and Z̃2 connected only
to Z̃ ′. Then, sinceZ̃1 and Z̃2 are not connected, the whole
graph is not connected and the solution is not feasible.

The clustering connecting̃Z1 with Z̃2 and Z̃1 with Z̃3 (or
Z̃2 with Z̃3) produces also a feasible solution at a lower cost
since the sum of the prices is minimized (π(O)(Z̃1, Z̃2) <
min(π(O)(Z̃1, Z̃3), π

(O)(Z̃2, Z̃3))). Therefore,Z̃ is not opti-
mal and by extensionZ is also not optimal. Finally, we can
conclude that the optimal solution is the solution containing a
single cluster. Therefore, the solution outputted by Algorithm 1
is the optimal solution to the problem proposed in Lemma 2.

B. Network With Pre-deployed OF Links

It can explicitly be noted that for a network with pre-
deployed OF links, Algorithm 1 produces a feasible solution.
In fact, as for the previous subsection, the solution outputted
by the algorithm satisfy the constraints (2d), (2b), and (2e).
Furthermore, from the initialization of the variablesXij , 1 ≤
i, j ≤ M , the solution satisfies constraint (2c).

From the initialization of the clusters, all the base-stations
that are connected with pre-deployed OF links are merged in
the same cluster. Such initialization implies the following two
properties:

1) Only the pre-deployed OF links connect such BSs.
2) Any node connected to the cluster is connected to the BS

with minimal cost inside that cluster.
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Therefore, to show that the solution of Algorithm 1 is the
optimal planning for the problem proposed in Lemma 2, it is
sufficient to show that any solution that violates the properties
above is not optimal. Finally, as clusters can be seen as new
nodes in a network without pre-deployed OF links, the result
of the first part of the section guarantee the optimality of the
solution.

Assume that in the optimal solution, a connection exists
between two nodes in the same cluster. As these nodes are
connected via pre-deployed OF link through single or multi-
hop connection, then removing the extra connection produces a
feasible solution at a lower cost. Hence, the optimal solution
contains only the pre-deployed OF links connecting BSs in
each cluster.

Similarly, assume there exists a node connected to a cluster
in the optimal solution that is not linked to the BS with
minimal cost in that cluster. It can be readily seen that as
the nodes in the cluster are all connected, then removing the
connection and replacing it with the minimal cost one produces
a feasible solution at a lower cost. Therefore, such connection
does not exist in the optimal solution. Finally, the solution
generated by Algorithm 1 is the optimal planning for the
problem proposed in Lemma 2.

APPENDIX C
PROOF OFLEMMA 3

To prove this lemma, we prove that any solution to (6)
is a feasible solution to (1). We first show that constraint
(6g) is equivalent to constraint (1g). In the original problem
formulation (1), the reliability constraint is:

1−
M
∏

j=1

(1−Xijα)(1 − YijR
(h)
ij ) ≥ α. (C.1)

It can easily be seen that (C.1) is satisfied, for nodebi if
and only if at least one of the following options is correct:

1)
∑M

j=1 Xij > 0 ⇒ Nodebi is connected to another node
with an OF link which provides full reliability.

2)
∑M

j∈Ri
Yij > 0 ⇒ Nodebi is connected to another node

with a hybrid RF/FSO link to a nearby node that provides
full reliability.

3) 1−
∏

j∈Ri
(1−YijR

(h)
ij ) ≥ α ⇒ Nodebi is connected to a

sufficiently large number of nodes to satisfy the reliability
constraint.

In the rest part of the proof, we show that constraint (6g)
regroups the three scenarios mentioned above. Applying a
logarithmic transformation to the third option and rearranging
the terms yields the following expression:

∑

j∈Ri

log(1− YijR
(h)
ij ) ≤ log(1 − α). (C.2)

Given that the reliability of nodesj /∈ Ri is small, i.e.,
R

(h)
ij ≪ 1, thenYijR

(h)
ij ≪ 1, ∀ j /∈ Ri. Applying a first

order Taylor expansion of the logarithm yield the condition:
∑

j∈Ri

−YijR
(h)
ij ≤ log(1 − α). (C.3)

Let α̃ =
1

log(1 − α)
. Rearranging the terms of (C.3) and

including the first and second option discussed in the previous

paragraph gives the following constraint:
M
∑

j=1

Xij α̃+
∑

j∈Ri

Yij α̃+
∑

j∈Ri

YijR
(h)
ij ≥ α̃. (C.4)

It can clearly be seen that setting
∑M

j=1 Xij > 0, and/or
∑M

j∈Ri
Yij > 0, and/or 1 −

∏

j∈Ri
(1 − YijR

(h)
ij ) ≥ α

automatically satisfy (C.4) which proves that constraint (6g)
is equivalent to constraint (1g).

We, now, show that constraint (6h) is included in constraint
(1h) as it is the second and last constraint changing from
one formulation to the other. Constraint (6h) ensures that,for
all connectionsXij = 1 that are generated by Algorithm 1,
a similar connections (OF or hybrid RF/FSO link) between
nodesbi and bj must exist. For connectionsXij = 0, the
constraint is always satisfied and connection may or may not
exist. From Theorem 1, Algorithm 1 produces a connected
graph. In other words,λ2 > 0. Therefore, constraint (6h)
is included in constraint (1h). A feasible solution to (6) is,
therefore, a feasible solution to (1). In Theorem 2, we show
that the optimal solution to (6) is the optimal solution to (1)
in many scenarios (but not all). Therefore, the approximation
of problem (1) by the problem (6) is tight.

APPENDIX D
PROOF OFTHEOREM 2

In this theorem, we show that the optimal solution
X∗

ij , Y
∗
ij , 1 ≤ i, j ≤ M to (6) should satisfyX∗

ij + Y ∗
ij = 1

only if (i, j) ∈ Nj ×Ni.

Remark 3. Note that if any feasible solutionXij , Yij to the
general problem (1) that verify Theorem 2, then the solutionis
feasible to (6). In other words, ifXij , Yij feasible to (1) and
Xij+Yij = 1 only if (i, j) ∈ Nj×Ni, then(Xij+Yij)X ij =
Xij . This can be easily concluded given the construction of
Ni,≤ i ≤ M as the minimum set of nodes that can generate a
connected graph. Since all(x, y) such thatXxy = 1 are at the
edge of at least one of theNi, then the only connected solution
that satisfies Theorem 2 is feasible to (6). In that scenario,the
optimal solution of (1) and (6) are the same.

Assume∃(x, y) such thatX∗
xy + Y ∗

xy = 1 and (x, y) /∈
Ny ×Nx. Two scenarios can be distinguished:

• B \ {bx, by} represents a connected subgraph.
• B \ {bx, by} is not a connected subgraph.

For the first scenario, consider the reduced network
{bx, by, b̃k}. Clearly, we havebx∗ , by∗ ∈ b̃k. Define the
following planning:

X̃ij =



















1 if i = x andj = x∗

1 if j = y andj = y∗

0 if i = x andj = y

X∗
ij otherwise

Ỹij =



















0 if i = x andj = x∗

0 if j = y andj = y∗

0 if i = x andj = y

Y ∗
ij otherwise,

(D.1)

11



in which the connection betweenbx and by is replaced by
two connections betweenbx andbx∗ and betweenby andby∗ .
We can clearly see that the network is connected. Moreover,
since bx and by are connected with an OF link, then the
data rate constraint is satisfied for both nodes. Therefore,
X̃ij , Ỹij , 1 ≤ i, j ≤ M represents a feasible solution.
Moreover, The difference in cost between the optimal planning
X∗

ij , Y
∗
ij and the planningX̃ij , Ỹij is lower bounded by:

π(bx, by)− (π(O)(bx, bx∗) + π(O)(by, by∗)) (D.2)

≥ π(h)(bx, by)− (π(O)(bx, bx∗) + π(O)(by, by∗)) ≥ 0.

From assumption (5), the difference is positive. This concludes
thatX∗

i,j , Y
∗
i,j , 1 ≤ i, j ≤ M is not the optimal solution.

Remark 4. For scenario 1,X∗
i,j , Y

∗
i,j , 1 ≤ i, j ≤ M can be

the optimal solution to the original problem (1). Hence, for
this configuration, the optimal solution of (1) and (6) are the
same.

For scenario 2, let the network be reduced to{bx, by, b̃k, b̃l}
with bx connected tõbk, which is a connected subgraph,by
connected̃bl, which is a connected subgraph, andb̃k and b̃l
are not connected. SinceX∗

i,j , Y
∗
i,j , 1 ≤ i, j ≤ M is a feasible

solution to (6), then it satisfies constraint (6h). In other words,
X∗

k,l+Y ∗
k,l = 1, ∀ k, l such thatXkl = 1. Note thatXxy = 0.

Otherwise, by construction of the neighbours sets, we have
(x, y) ∈ Ny ×Nx. Define the planningX̃ij , Ỹij such that

X̃ij =

{

0 if i = x andj = y

X∗
ij otherwise

Ỹij =

{

0 if i = x andj = y

Y ∗
ij otherwise.

(D.3)

The planningX̃ij , Ỹij satisfy (6h). However, we can clearly
see that the graph is not connected. Therefore,X∗

i,j, Y
∗
i,j , 1 ≤

i, j ≤ M is not a feasible solution. This concludes that
scenario 2 is not feasible. Finally, we conclude that the optimal
solution X∗

i,j , Y
∗
i,j , 1 ≤ i, j ≤ M to (6) should satisfy

X∗
xy + Y ∗

xy = 1 only if (x, y) ∈ Ny ×Nx.

Remark 5. Scenario 2 can be a feasible scenario if
X∗

i,j , Y
∗
i,j , 1 ≤ i, j ≤ M is the optimal solution to the original

problem (1). In that case, two scenarios can be distinguished:

• bx∗ ∈ Ny and by∗ ∈ Nx. In that caseX̃ij , Ỹij presented
for scenario 1 produces a feasible solution with lower
cost. Therefore, the optimal solution of (1) and (6) are
the same.

• bx∗ /∈ Ny or by∗ /∈ Nx. In this configuration, no
conclusion can be reached about the optimal solution of
(1) and (6) is an upper bound of the minimum of (1).

Therefore, the approximation of the problem (1) by the problem
(6) is a tight approximation.

APPENDIX E
PROOF OFTHEOREM 3

To proof this theorem, we first prove that there is a one to
one mapping between the set of feasible solution of a modified
version of problem (6) and the set of cliques of degreeM in
the planninggraphG(V , E). To conclude the proof, we show

that the weight of the clique is equivalent to the merit function
of the optimization problem (6).

From Theorem 2, we haveXij = 0 and Yij =
0, ∀ (bi, bj) /∈ Nj × Ni. Hence the objective function (6a)
and constraint (6f) can be replaced by:

max−
1

2

M
∑

i=1

∑

j∈Ni

Xijπ
(O)
ij + Yijπ

h
ij . (E.1)

Similarly, sinceXij = 0 andYij = 0, ∀ (bi, bj) /∈ Nj×Ni,
then (Xij , Yij) = (Xji, Yji) is always verified for(bi, bj) /∈
Nj × Ni. Hence the constraints (6b), (6c), and (6e) can be
replaced by:

(Xij , Yij) = (Xji, Yji), ∀ (bi, bj) ∈ Nj ×Ni

XijYij = 0, ∀ (bi, bj) ∈ Nj ×Ni
∑

j∈Ni

XijDt + YijD
(h)
ij ≥ 1, Dt ≤ i ≤ M. (E.2)

By definition of the setNi, we haveXij = 0, ∀ j /∈ Ni.
Therefore, constraint (6h) may be written as:

(Xij + Yij)X ij = Xij , ∀ j ∈ Ni, 1 ≤ i ≤ M. (E.3)
The problem (6) can be reformulated as:

max−
1

2

M
∑

i=1

∑

j∈Ni

Xijπ
(O)
ij + Yijπ

h
ij

subject to(Xij , Yij) = (Xji, Yji), ∀ (bi, bj) ∈ Nj ×Ni

XijPij = Pij , ∀ (bi, bj) ∈ Nj ×Ni

XijYij = 0, ∀ (bi, bj) ∈ Nj ×Ni
∑

j∈Ni

XijDt + YijD
(h)
ij ≥ Dt, 1 ≤ i ≤ M

∑

j∈Ni∩Ri

(Xij + Yij)α̃+
∑

j∈∈Ni∩Ri

YijR
(h)
ij ≥ α̃

(Xij + Yij)Xij = Xij , ∀ j ∈ Ni, 1 ≤ i ≤ M

Xij , Yij ∈ {0, 1}, 1 ≤ i, j ≤ M. (E.4)
Let γi = {(Xij1 , Yij1), · · · , (Xij|Ni|

, Yij|Ni|
)} be the new

variable. Using the variablesγi and the definition of the sets
Ci, the problem can be written as:

max

M
∑

i=1

w(γi)

subject toγi ∈ Ci, 1 ≤ i ≤ M (E.5a)

(Xij , Yij) = (Xji, Yji), ∀ 1 ≤ i 6= j ≤ M.
(E.5b)

Let C be the set of cliques of degreeM in the planning
graph and letF be the set of feasible solutions to the
optimization problem (E.5). We first proof that any clique
C = {v1, · · · , vM} ∈ C satisfy constraints (E.5a), and
(E.5b). Then, we prove the converse. In other words, for
element inF, there exists a clique inC.

Let C = {v1, · · · , vM} ∈ C. Assume∃ k, i, j such that
vi, vj ∈ Ck. Since all the vertices in a clique are connected,
then from the connectivity condition C1, verticesvi and vj
are not connected. Hence∄ k, i, j such thatvi, vj ∈ Ck.
Given that the clique containM elements, then constraint
(E.5a) is satisfied. The connectivity condition C2 ensures that
(Xij , Yij) = (Xji, Yji) for all vertices. Therefore,C is a
feasible solution to (E.5). Similarly, let{c1, · · · , cM} be a

12



feasible solution to (E.5), then clearly the vertices correspond-
ing to each cluster are connected. Finally, there a one to one
mapping betweenC andF. Moreover, the weight of the clique
is w(C) =

∑M

i=1 w(γi) which conclude that the solution of
(E.5) is the maximum weight clique, among the clique of size
M , in the planninggraph.
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