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We propose two recommendation methods, based on the appropriate normalization of already existing similarity
measures, and on the convex combination of the recommendation scores derived from similarity between users
and between objects. We validate the proposed measures on three data sets, and we compare the performance of
our methods to other recommendation systems recently proposed in the literature. We show that the proposed
similarity measures allow us to attain an improvement of performances of up to 20% with respect to existing
nonparametric methods, and that the accuracy of a recommendation can vary widely from one specific bipartite
network to another, which suggests that a careful choice of the most suitable method is highly relevant for an
effective recommendation on a given system. Finally, we study how an increasing presence of random links in the
network affects the recommendation scores, finding that one of the two recommendation algorithms introduced
here can systematically outperform the others in noisy data sets.
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I. INTRODUCTION

The increasingly important role played by information
technology and by the ubiquity and success of web-based retail
shops is rapidly transforming our lives and buying patterns
and is producing a huge quantity of detailed data sets about
customers’ preferences and habits. The availability of such
data sets has made it possible to study in a quantitative way
how people select items in several different scenarios such as
how they choose movies to watch, books to read, or food to eat.
In most of the cases, the number of different items available
on an online retail shop is so large that it is extremely difficult
to have a clear idea of the specific products that would better
fit the taste of each customer. Hence the necessity to devise
intelligent automatic systems to provide useful recommenda-
tions, based, for instance, on the knowledge about previous
purchases made by users. Given its practical importance, the
study of recommendation systems is nowadays a very active
research topic, with relevant contributions from different fields
including computer science, economics, sociology, complex
networks, and engineering [1,2].

The natural framework to represent selection or purchasing
patterns is by means of a bipartite graph, namely, a graph
consisting of two distinct classes of nodes (respectively asso-
ciated to users and objects) in which two nodes belonging to
different classes are connected by an edge if the corresponding
user has chosen or purchased that particular object. Within this
framework, a recommendation is no more than the suggestion
of (a relatively small) set of objects to which a specific user
might be interested and corresponds to a set of new potential
edges in the bipartite graph. In many cases, an object is
recommended to a user based on her similarity with other
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users, so that the definition of appropriate similarity measures
is crucial for the development of efficient personalized
recommendation systems. Various recommendation systems
and algorithms have been proposed over the years, such as
collaborative filtering (CF) [3–5], methods based on diffusion
across the user-object network [6–10], and hybrid (parametric)
combinations of different algorithms [9–12]. In most of the
cases, the quantification of similarity between two users is
based on the number of objects which have been chosen by
both users in the past. However, it is also possible to define
a similarity between two objects based on the number of
users who have chosen them. Not always in the literature
have recommendations based on user similarity been properly
distinguished from those based on object similarity, and the
predictions provided by these two types of recommendation
systems have been usually compared while discarding the
different nature of the similarity measures involved.

The question of which similarity measure is the most
reliable in providing tailored and accurate recommendations
is still a matter of open debate, and it is not clear yet how
to choose one similarity definition or another for a specific
recommendation task. This paper provides a contribution in
this direction. In particular, we focus here on the duality user
similarity versus object similarity, showing that it is possible to
improve the quality of recommendation by making a combined
use of the two classes of similarity. We start by proposing two
new definitions of similarity based on heuristic arguments, and
then we compare the accuracy of recommendations based on
these definitions with the accuracy of other methods proposed
in the literature. The first measure we propose takes into
account the popularity of objects and the heterogeneity of
user selection patterns, while the second one is based on
the concept of Pearson correlation [13] generalized to the
case of binary vectors. We then show that any definition of
similarity between users induces a definition of similarity
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between objects, and vice versa. This fact actually increases the
number of different possible similarity definitions and allows
us to consider recommendation methods which combine user
similarities with object similarities. We also test the robustness
of different similarity measures against the presence of noise,
by adding an increasing percentage of random edges to the
actual bipartite graph, and we show that the measure based
on the generalized Pearson correlation proposed in the paper
is able to filter out noise more effectively than most of the
other existing similarity measures. In general, a method that
might increase the performance of recommendation systems
is the so-called dimensionality reduction, which consists of
filtering and/or manipulating the data and/or the similarity
matrices in order to select the most relevant factors that
describe the structure of the data set [14,15]. We present here an
example of rank reduction [16] that makes use of the singular
value decomposition of the incidence matrix and confirms the
robustness of the proposed similarities.

The paper is organized as follows. In Sec. II we review
different similarity measures proposed in the literature, we
introduce two new definitions of similarity, and we show how
to associate a recommendation score to an object starting
from a given similarity definition. In Sec. III we provide
a brief description of three data sets corresponding to user-
object associations in different contexts, and we validate the
performance of different recommendation strategies on the
corresponding bipartite networks. In Sec. IV we show how
a measure of similarity between users can be transformed
into an analog measure of similarity between objects. We
then investigate recommendation methods which combine the
recommendation scores obtained from similarities between
users and similarity between objects. In Sec. V we study how
the presence of spurious information in the data sets can affect
the performance of recommendation, and we show that some
recommendation strategies actually perform better than others
in noisy data sets. In Sec. VI we analyze the effect of rank
reduction of the incidence matrix on the performance of our
recommendation methods. Finally in Sec. VII we draw our
conclusions.

II. MEASURES OF SIMILARITY

Let us consider a set of N users and M objects, where
each user i is associated to a subset of the M objects she has
expressed a preference for. This is, for instance, the case of
users buying objects from an online retail shop, where each
user is associated to each of the items she has bought from that
web site. Such systems can be naturally represented by means
of bipartite graphs, where users and objects are considered
as two distinct classes of nodes. A bipartite graph can be
described by an N × M incidence matrix A whose entry ai,α

is equal to 1 if and only if user ui is associated to object oα

(for instance, because ui has bought that object) and ai,α = 0
otherwise. Notice that in a bipartite graph each edge always
connects one user with one object. In the following, Latin
subscripts are associated to users, whereas Greek ones are
associated to objects. The total number of objects collected
by a user ui is equal to the number of edges incident on
the corresponding node i of the graph, i.e., to the degree
ki = ∑

α ai,α . Similarly, the degree of object oα , defined as

kα = ∑
i ai,α , is equal to the total number of users that have

collected that object.
Within this framework, making a recommendation for user

ui corresponds to compiling a list of objects which have not
already been chosen (or bought) by user ui but to which ui

might be interested. In other words, a recommendation is just
a proposal of new potential edges of the bipartite graph whose
one endpoint is node i. The main hypothesis on which almost
all recommendation systems rely is that the set of objects
actually collected (or bought) by user ui represents a sample
of her tastes and preferences and can therefore be used to
compile a profile of user ui and to predict which kind of objects
ui might be interested. Consequently, each recommendation
systems relies on some measure of similarity. In general, it
is possible to define a similarity su

i,j for the (ordered) pair of
users ui and uj and also a similarity so

α,β between the pair of
objects oα and oβ , and various different definitions have been
proposed in the literature [17].

Similarity measures. A very simple way of quantifying the
similarity between user ui and user uj is by counting the
number of objects ni,j that they have in common:

ni,j =
M∑

α=1

ai,αaj,α.

One of the limitations of ni,j is that it does not take into account
the differences in the total number of objects collected by each
user. This problem can be somehow alleviated by using the
so-called Jaccard similarity [18], defined as the ratio between
the number of items collected by both users ui and uj , and the
sum of the degrees of the two users:

s
u,J
i,j =

∑M
α=1 ai,αaj,α

(ki + kj )
= ni,j

(ki + kj )
. (1)

Another widely used similarity measure is the Hub
Promoted Index (HPI), often used in the context of the
collaborative filtering (CF) approach:

s
u,HPI
i,j =

∑M
α=1 ai,αaj,α

min{ki,kj } . (2)

In Eq. (2), the similarity measure is proportional to the
number of objects ni,j users ui and uj have in common, and
inversely proportional to the smallest of the two degrees, i.e.,
to min{ki,kj }. In this way, if user ui has collected exactly one
object, which has also been collected by uj who instead has
degree kj � 1, then s

u,CF
i,j = 1, i.e., the similarity between two

users is effectively determined by the user with the smallest
degree.

The Jaccard and the HPI similarities do not take into account
another type of heterogeneity, namely, the fact that not all
objects have the same popularity. Intuitively, objects that have
been collected by a relative large number of users (in a limiting
case, by all users), do not provide useful information for a
personalized recommendation, for the simple reason that they
are common to too many users, and therefore the fact that one
user has collected them does not tell much about her tastes.
Hence, it might be a good idea to discount the contribution of
an object to the similarity between two users by a function of
the degree of the object.
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The so called network-based inference (NBI) recommen-
dation method [8] is based on a measure of similarity which
takes into account the heterogeneity of users and objects (this
recommendation strategy is also called probabilistic spreading
in a subsequent paper) [10]. In this case, the similarity measure
is defined as

s
u,NBI
α,β = 1

kβ

N∑
l=1

al,αal,β

kl

. (3)

This is a similarity between objects, where the contribution of
the user ul which collects the two objects α and β is discounted
by the degree of that user kl , and the whole sum is divided by
the degree of one of the two objects, according to the resource-
allocation procedure defined by the authors in Ref. [8].

It is worth noting that this definition of similarity, like
the analogous one s

o,HeatS
α,β = 1

kα

∑N
l=1

al,αal,β

kl
investigated in

Refs. [6,10], is asymmetric, meaning that s
o,NBI
α,β �= s

o,NBI
β,α , and

s
o,HeatS
α,β �= s

o,HeatS
β,α . Though asymmetry is not in general an issue

for the recommendation task, it has been shown that better
performance can be achieved by using symmetrized versions
of these measures [10,12]. Nevertheless, NBI has proved to be
a quite reliable recommendation method, and in the following
we will consider it as a reference to quantify the effectiveness
of the recommendation strategies we propose.

The two new recommendation methods we propose in
this paper are based on symmetric similarity measures.
Specifically, the first measure we propose is

s
u,MDW
i,j = 1

max{ki,kj }
M∑

α=1,kα>1

ai,αaj,α

kα − 1
. (4)

We call it maximum degree weighted (MDW) similarity
because the total number of objects collected by both ui and
uj is weighted by the maximum of the degrees of the two
users. Moreover, the contribution of object oα is weighted
by its degree kα . We note here that some recent studies have
investigated the effect of a tunable power-law function of the
degree, i.e., of similarity measures in which the contribution
due to object oα is divided by (kα)a [6,19,20].

In the following, we will briefly explain the rationale behind
Eq. (4). First, the contribution to the similarity measure of each
object collected by both users is weighted with the degree of
the object. In this way, popular objects will provide smaller
contributions to the similarity between users. In particular,
the value kα − 1 in the denominator allows us to obtain a
maximum contribution to similarity (exactly equal to 1) if and
only if ai,αaj,α = 1 and kα = 2. This takes into account the
very special case in which ui and uj are the only two users
who have collected a certain object. Second, the similarity
measure is divided by the maximum of the degrees of the
two users. As we explained above, this choice allows us to
properly take into account the existing heterogeneity in the
number of selection made by each user. For instance, if we
consider the similarity defined in Eq. (2) and we assume that
users ui and uj have degree ki = 1 and kj = 100 and have
exactly one object in common, then the contribution of that
object to the similarity between the two users would be equal
to 1. However, the contribution of the only object in common
between ui and uj is equal to 1 also when ki = 1 and kj = 2,

despite that one would argue that in the latter case the two
users are more similar than in the former.

By dividing for the maximum of the degrees of the two
users, the similarity measure given in Eq. (4) assigns a higher
value of similarity to the two users in the latter case (when
ki = 1 and kj = 2 we get su

i,j = 1/2) than in the former case
(i.e., when ki = 1 and kj = 100, for which we obtain su

i,j =
1/100).

A second similarity measure we propose here is based on
the Pearson correlation coefficient between binary vectors and
is defined as follows [21]:

s
u,BP
i,j = ni,j − kikj /M√

ki(1 − ki/M)kj (1 − kj/M)
. (5)

This measure, which is denoted in the following as binary
Pearson (BP) similarity, is based on the fact that the ith row
ai of the incidence matrix A represents the profile vector of
user ui , i.e., the set of objects selected by the user. If we have
two users, ui and uj , who have collected kα and kβ objects in
total, respectively, and we consider the corresponding profile
vectors ai and aj , then we have

〈ai〉 = 1

M

M∑
α=1

ai,α = ki

M
, (6)

〈
ai

2
〉 = 1

M

M∑
α=1

a2
i,α = 1

M

M∑
α=1

ai,α = ki

M
, (7)

〈aiaj 〉 = 1

M

M∑
α=1

ai,α aj,α = ni,j

M
, (8)

where ni,j is the number of objects collected by both ui and
uj . Therefore the Pearson’s correlation coefficient between the
two vectors is

s
u,BP
i,j = 〈aiaj 〉 − 〈ai〉 〈aj 〉√(〈

ai
2
〉 − 〈ai〉2

) (〈
aj

2
〉 − 〈aj 〉2

)

=
ni,j

M
− ki kj

M2√(
ki

M
− k2

i

M2

) ( kj

M
− k2

j

M2

)

= ni,j − kikj /M√
ki(1 − ki/M)kj (1 − kj/M)

, (9)

which is identical to Eq. (5).
The Pearson’s correlation coefficient has been used in the

literature of recommendation methods in order to quantify
similarities based on item ratings [22,23]. Quite differently, the
Pearson correlation coefficient is applied here to binary data,
obtained by assigning 1 to objects that have been selected by
the users and 0 otherwise. The so-called BP similarity presents
some remarkable properties. First, it is invariant with respect to
the scaling of the system, i.e., with respect to a transformation
ki → q ki , kj → q kj , ni,j → q ni,j , and M → q M , where
q is a positive integer. Furthermore, s

u,BP
i,j can be interpreted

in terms of the hypergeometric distribution H (X,ki,kj ,M).
Indeed, the mean value of H (X,ki,kj ,M) is mi,j = ki kj /M ,
and the variance is σ 2

i,j = 1
M−1ki(1 − ki/M)kj (1 − kj/M).

Therefore s
u,BP
i,j is proportional to the standard score zH

i,j
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associated with observation ni,j according to the hypergeo-
metric distribution [24]:

s
u,BP
i,j = 1√

M − 1

ni,j − mi,j

σi,j

= 1√
M − 1

zH
i,j .

This equation reveals that s
u,BP
i,j is conceptually different

from all the other similarity measures introduced above.
Indeed, according to s

u,BP
i,j , the similarity between two users

does not depend only on the number of objects selected by both
users, ni,j , but it depends on the difference between ni,j and the
number of shared objects that is expected under the hypothesis
that the two users have picked the objects at random. Therefore
s

u,BP
i,j can also take negative values, and this fact influences

the way in which a personalized recommendation value is
obtained, as discussed in the reminder of this section.

Constructing recommendation lists. Once we have assigned
a similarity value to each possible pair of users in the system,
using a certain similarity measure, we need an algorithm
to construct a recommendation list, i.e., a list of suggested
objects which have not been yet collected by a certain user
ui . The simplest way of constructing a recommendation list
is the global ranking method (GRM). It consists in creating
a user recommendation list by considering all the objects
not collected by user ui in decreasing order of their degree.
This method is not personalized, except for the fact that
objects already collected by that user are excluded from the
corresponding list.

A more effective and widely used basic procedure is
collaborative filtering (CF), which is based on the similarity
measure HPI given in Eq. (2). The similarity scores between
user ui and all the other users in the system are used to
construct a personalized recommendation value vu

i,α , that is,
an estimation of how much user ui might be interested in
object oα:

vu
i,α =

∑N
l=1,l �=i su

i,lal,α∑N
l=1,l �=i

∣∣su
i,l

∣∣ . (10)

The presence of the absolute value at the denominator is not
necessary for many of the similarities presented above, being
their values always positive. The only exception is the BP sim-
ilarity, which may take both positive and negative values, thus
requiring a proper normalization to avoid possible divergences.
In the NBI recommendation method, the recommendation
value f o

i,α is defined in a quite different way:

f o
i,α =

M∑
β=1

s
o,NBI
α,β ai,β . (11)

In fact the computation of the recommendation value includes
self-similar terms (so

α,α) which are not taken into account in
Eq. (10) and do not include any additional normalization factor.

III. DATA SETS AND VALIDATION

We considered three classical data sets of user-object
associations, namely, the MovieLens database, where N users
have rated M movies, the Jester Jokes database, where we
find records of users who have rated jokes, and the Fine Foods
database, containing Amazon reviews of fine foods. In all these

TABLE I. Summary statistics of the three databases used.

N × M Rating Thre- Nlinks

Nlinks (used) range shold Filtered

MovieLens 100 K 943 × 1,681 [1, 5] 3 90 K
Jester Jokes 141 K 2000 × 100 [−10, 10] 0 57 K
Fine Foods 95 K 2000 × 3317 [1, 5] 3 83 K

databases users have rated items with an ordinal attribute [25].
In our study we will perform recommendation procedures on
the incidence matrix of the corresponding bipartite network.
For this reason, similarly to what is adopted in other studies
(see Ref. [8]), we assume that a user has collected an object
if and only if she has rated the object with a score higher or
equal to a certain threshold. As a consequence, the databases
are filtered with the most appreciated objects, without any
further distinction among the highest ratings. In Table I we
report information about the size of each data set, the rating
range, and the values of the threshold used to filter the ratings
and construct an unweighted bipartite network.

Distributions of similarity values. As a preliminary investi-
gation, we evaluated the heterogeneity of the degree of users
and objects in the three databases. In Fig. 1 we show the
degree distributions for the three databases used. With the
only exception of the degree distribution of jokes (objects)
in the Jester Jokes database, all the distributions exhibit
relatively broad tails. This suggests that similarity measures
which properly take into account degree heterogeneities should
indeed provide better recommendations.

As a matter of fact, different similarity measures produce
different distribution of similarity scores. In Fig. 2 and Fig. 3
we show the probability density functions of the MDW and
BP similarities measures on the three investigated databases.
The top panels (a), (b), and (c) of each figure report the
distribution of user similarities, whereas the bottom panels
(d), (e), and (f) correspond to object similarity. It is worth
noting that the profile of the probability density functions is
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FIG. 1. (Color online) Degree distributions of users [top panels
(a), (b), (c)] and objects [bottom panels (d), (e), (f)] of the three data
sets, respectively: MovieLens [left panels (a) and (e)], Jester Jokes
[middle panels (b) and (f)], and Fine Food [right panels (c) and (f)].
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FIG. 2. (Color online) Distribution of the MDW similarity values
for the three databases. The top panels show the probability density
functions of users’ similarity, whereas the bottom panels show the
probability density functions of object similarity. Left, middle, and
right columns refer to MovieLens [(a), (d)], Jester Jokes [(b), (e)],
and Fine Foods [(c), (f)] databases, respectively.

strongly dependent on the similarity measure adopted and is
qualitatively different in the three data sets.

Validation. In order to compare the performance of the
proposed similarity measures with those of other existing
similarity definitions, we split each data set into two sections.
Starting from the incidence matrix A = {ai,α} representing
all the user-object associations in a data set, we considered
a subgraph T = {ti,α} to be used to compute the similarity
scores and recommendation lists for all the users (the so-called
training set), while the remaining subgraph W = {ai,α} \
{ti,α} = {wi,α} was used for validation. The recommendation
lists obtained from the training sets are compared with the
object selections included in the validation set, in order to
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FIG. 3. (Color online) Distribution of the BP similarity values
for the three databases. The top panels show the probability density
functions of users’ similarity, whereas the bottom panels show the
probability density functions of object similarity. Left, middle, and
right columns refer to MovieLens [(a), (d)], Jester Jokes [(b), (e)],
and Fine Foods [(c), (f)] databases, respectively.

check whether users have actually collected objects which are
ranked high in their recommendation lists. In the following
we report the results corresponding to training sets containing
90% of all the edges of each data set, chosen at random,
while the validation sets consist of the remaining 10% of
edges. Qualitatively similar results were obtained for different
compositions of the training and validation sets.

A basic measure to quantify the performance of a rec-
ommendation method is the rank quality index r , which is
computed as the average quality of recommendation over all
the users of the data set. For each user ui we define the quality
of the recommendation ri provided to ui as the average of the
ratio

ri,α = wi,α

Li,α

M − ki

(12)

computed over all the objects in the recommendation list
of user ui which have actually been selected by ui in
the validation set. Here Li,α is the position of oα in the
recommendation list of ui , where Li,α = 1,2, . . . , if the object
oα is ranked first, second, . . . etc. in the recommendation list
of ui . Consequently, better recommendations are associated to
smaller values of ri = ∑

α ri,α . As we anticipated above, the
rank quality index r is the average of ri,α over all the users in
the data set:

r = 〈ri,α〉 =
∑N

i=1

∑M
α=1 ri,α∑N

i=1

∑M
α=1 wi,α

. (13)

Another validation measure testing the accuracy of the
predictions is the hitting rate, hit(L), i.e., for all the users,
the ratio between the number of collected objects included
in the recommendation list of length L, and the number of
objects effectively collected up to the possible maximum value
N · L. While hit(L) represents a percentage of the objects
a user has collected among recommended ones, the r value
takes into account the position of collected objects in the
recommendation list. According to these definitions, a good
recommendation method should minimize the value of r and
maximize the value of hit(L).

In the following analysis we set L = 20. This value repre-
sents a reasonable choice of the length of a recommendation
list that can be proposed to a user. Moreover, it has been already
used in other works and can be considered a valid reference
to compare the performances of different recommendation
methods.

For each data set, we considered Ne = 20 independent real-
izations of the training set T , obtained by selecting uniformly
at random 90% of the edges in the data set, we constructed
the recommendation list induced by each similarity measure,
and we computed the value of the rank quality index r and of
the hitting rate hit(20). In the following we report the average
values of r and hit(20) and their associated statistical errors
(the standard deviations of the means), respectively, denoted
by 〈r〉, 〈hit(20)〉, σ〈r〉, and σ〈hit(20)〉. The mean values 〈r〉 and
〈hit(20)〉 obtained over the Ne = 20 different realizations are
shown in Table II.

By analyzing the outcomes summarized in Table II we
see that the best results are obtained by different methods
in different databases. Moreover the two indicators 〈r〉 and
〈hit(20)〉 always single out a different method as the best one.
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TABLE II. Average rank quality index 〈r〉 and hitting rate
〈hit(20)〉 for the different recommendation methods on each of
the three data sets. The mean is computed on Ne = 20 different
realizations. The standard deviation of the mean values is given in
parenthesis. For each database we highlight in boldface the best result.
The column � reports the difference of the measure with respect to
NBI in percentage.

MovieLens 〈r〉 σ〈r〉 �(%) 〈hit(20)〉 σ〈hit(20)〉 �(%)

GRM 0.13821 (0.00038) 31.4 0.1928 (0.0041) −29.4
CF 0.11882 (0.00037) 13.0 0.2364 (0.0010) −13.4
NBI 0.10514 (0.00028) 0.0 0.2732 (0.0010) 0.0
MDW 0.10563 (0.00022) 0.47 0.2766 (0.0010) 1.2
BP 0.10728 (0.00032) 2.0 0.2708 (0.0009) −0.9
J 0.11442 (0.00035) 8.8 0.2568 (0.0010) −6.0
Jester Jokes
GRM 0.30332 (0.00049) 6.7 0.6160 (0.0006) −9.1
CF 0.28718 (0.00051) 1.0 0.6712 (0.0008) −0.9
NBI 0.28422 (0.00045) 0.0 0.6775 (0.0012) 0.0
MDW 0.28087 (0.00037) −1.2 0.6806 (0.0010) 0.5
BP 0.23795 (0.00052) −16.3 0.6653 (0.0012) −1.8
J 0.28549 (0.00049) 0.45 0.6716 (0.0014) −0.9
Fine Foods
GRM 0.22263 (0.00073) 1700 0.0891 (0.0004) −87.9
CF 0.01458 (0.00021) 18.5 0.7000 (0.0014) −5.4
NBI 0.01230 (0.00012) 0.0 0.7402 (0.0013) 0.0
MDW 0.01304 (0.00017) 6.0 0.7293 (0.0005) −1.4
BP 0.01173 (0.00010) −4.6 0.5777 (0.0009) −21.9
J 0.01534 (0.00013) 24.7 0.6990 (0.0009) −5.6

However, an overall analysis shows that the best recommen-
dation methods are NBI [the best method according to 〈r〉
in the MovieLens database and the best method according to
〈hit(20)〉 in the Fine Foods database], MDW [the best method
according to to 〈hit(20)〉 in the MovieLens and Fine Foods
databases], and BP (the best method according to 〈r〉 in the
Jester Jokes and in the Fine Foods databases). They clearly
overcome the results obtained by GRM, CF, and Jaccard (J).

IV. HYBRID OBJECT-USER METHODS

The most important difference between the recommenda-
tion methods compared in Table II is that while NBI is based on
a definition of similarity among objects, all the other methods
make use of similarity measures defined between users.

In general, it is possible to define a transformation rule
to obtain a similarity score between users starting from
a similarity between objects, and vice versa. In fact, the
similarity between objects so

i,j can be obtained from the
similarity between users by appropriately swapping Latin
indexes with Greek ones, and quantities defined for users with
the analogous ones defined for objects:

su
i,j ↔ so

α,β, i,j ↔ α,β, N ↔ M. (14)

The transformation rule is valid in both directions from user
to objects and from objects to users.

We propose to define new recommendation scores by
using the dual similarity measures obtained with the above
defined transformation. For example, the recommendation

value, which is the dual of Eq. (10) and is valid for objects
instead of users, is obtained as

vo
i,α =

∑M
β=1,β �=α so

α,β · ai,β∑M
β=1,β �=α

∣∣so
α,β

∣∣ , (15)

whereas the dual recommendation score of the NBI algorithm
is

f u
i,α =

N∑
l=1

s
u,NBI
i,l · al,α. (16)

It is interesting to note that according to the definition of the
NBI we have

f o
i,α = f u

i,α = fi,α. (17)

This relation can be verified by replacing s
o,NBI
α,β [Eq. (3)] with

s
u,NBI
i,l = 1

kl

∑M
β=1

ai,βal,β

kβ
into Eqs. (11) and (16), respectively.

Hence, NBI is invariant under the transformation rules of
Eq. (14). It is interesting to investigate how the duality
user-object similarity affects the quality of recommendation.
To this aim, we propose to define a recommendation value
vi,α(λ) which is the result of the convex combination of the
two recommendation values vu

i,α and vo
i,α obtained from the

similarity between users and between objects, respectively. In
formula:

vi,α(λ) = (1 − λ)vu
i,α + λvo

i,α, (18)

where the relative weight of the user and object recommen-
dation values is controlled by the parameter λ ∈ [0,1], so that
when λ = 0 we recover the recommendation score induced
by the similarity between users, while for λ = 1 we have
the recommendation score corresponding to the similarity
between objects. Our hypothesis, which is validated in the
following, is that better recommendations can be obtained by
appropriately tuning the value of λ.

The mean values 〈r〉 for different recommendation methods
are reported in Fig. 4, where the three panels show the results
obtained in the three data sets. It is worth noting that the NBI
algorithm is independent of λ. In fact, by using Eq. (17) one
verifies that

fi,α(λ) = (1 − λ)f u
i,α + λf o

i,α = fi,α. (19)

In Fig. 4 we notice that the CF recommendation method
performs poorly for almost all the values of λ, in all the three
data sets. In the case of MovieLens, three recommendation
methods (MDW, NBI, and BP) perform in a similar way when
only the user similarity measure is taken into account (λ = 0)
as we already noticed in the results summarized in Table II. On
the other hand, for λ = 1, i.e., when only the object similarity
measure is taken into account, the MDW method performs
better than the others. In the case of the Fine Foods data set, the
BP similarity performs slightly better than the others for λ = 0
and for a relatively large range of λ values. When λ = 1, the
recommendation with the MDW measure performs slightly
better. Finally, in the Jester Jokes data set the BP similarity
clearly outperforms all the others when λ = 0, while for λ = 1
all the methods provide similar results, with the only exception
of the CF recommendation, whose performance is much
worse.
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FIG. 4. (Color online) Average rank quality index 〈r〉 for the
different recommendation methods as a function of the user-object
parameter λ. The insets report the corresponding standard errors of
the mean.

The variety of the profiles observed in Fig. 4 suggests that
the performance of a recommendation method depends both on
the specific database and on the specific linear combination of
user and object recommendation values adopted. Quite often,
the best recommendation is not the one corresponding to λ =
0 or λ = 1. Some methods perform better at the user limit
(λ = 0), others at the object limit (λ = 1), some of them for an
intermediate value of λ. Moreover, the specific shape of 〈r〉 as a
function of λ actually depends on the database. We would like
to stress two interesting aspects of these results. First, some
methods exhibit a convex profile of 〈r〉 as a function of λ, where
the minimum indicates the best linear combination of user and

object recommendation values. Second, the variability of the
values of 〈r〉 obtained by different recommendation systems
is much higher for λ = 1 than for λ = 0.

We have also compared BP and MDW similarities to
two additional similarity measures, the Hub Depressed Index

(HDI), s
u,HDI
i,j =

∑M
α=1 ai,αaj,α

max{ki ,kj } [17], and the SQ measure s
u,SQ
i,j =

1√
kikj

∑M
α=1,kα>0

ai,αaj,α

kα
[19].

These results are also reported in Fig. 4 for the three data
sets and can be summarized as follows. The performances
obtained by using the HDI show similar behavior as the
Jaccard measure, just a little worse, but much better than
HPI, and so validating the use of the maximum value of
the user degree in the factor of the similarity with respect
to the HPI. As in HPI, HDI similarity does not take into
account any object weight inside the sum. In the case of the
SQ similarity weighted in the objects [19], the performance
depends on λ in a way which is comparable with Jaccard
measure in both Fine Foods and Jester Jokes databases, while
a pronounced nonmonotonic behavior appears in MovieLens
database, with a low performance at the object limit (λ = 1).
By comparing the shape of these two similarities with MDW,
we conclude that the measure we propose appears somehow as
a combination of the two discussed approaches: weight with
the object degree inside the sum, and weight according to the
maximum user degree outside the sum.

V. IMPACT OF RANDOMNESS

In this section we analyze the robustness of recommenda-
tion systems against the presence of different sources of noise
in the data sets. Randomness in the data can be originated
by different factors, such as errors in object selection, wrong
transcription of the data, and fluctuations in the data of a
specific kind of objects, for example, due to high heterogeneity
of users. We consider here three different ways to include
noise in the bipartite networks under study. In the first case we
add a certain amount of random edges to the bipartite graph,
mimicking erroneously reported user selections. In the second
case we rewire a given percentage of the edges of the bipartite
network by maintaining the degree of users unaltered (while
the degree distribution of object is in general modified).
Finally, in the third case we rewire a fraction of the edges
of the graph by maintaining unaltered both the user and object
degree distribution.

For the sake of simplicity, we show the results obtained
for the three randomizing methods only for the MovieLens
database. In Fig. 5 we show the average rank quality
index for the different methods with λ = 0 as a function
of the percentage of edges randomly added or rewired. As
expected, 〈r〉 is an increasing function of the percentage
of noise, signaling a degradation of the recommendation
performance. However, the actual profile of 〈r〉 depends on
the specific recommendation method used. In fact, several
curves crosses at different values of the induced randomness.
This is clearly observed for the first and second kinds of
randomization.

We performed the same analysis also on the Jester Jokes
and Fine Foods databases, and we report in Fig. 6 the results
corresponding to the first type of randomization (addition of a
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FIG. 5. (Color online) Mean validation values as a function of
noise in the MovieLens database. The three panels correspond,
respectively, to the addition of edges at random (a), to edge rewiring
[(b) and (c)] maintaining unaltered the only user degree sequence (b),
or maintaining both the user and object degree sequences (c).

fraction of random edges). The results show a prominent role
of the BP similarity measure, which seems the most robust in
dealing with noisy data sets.

Our findings suggest that the BP similarity measure is a
good candidate to provide good and robust recommendations
in databases where there is a high degree of uncertainty about
the validity of records. In fact, while the use of the BP similarity
does not give substantially better recommendation prediction
in databases like MovieLens and Fine Foods, its performance
is consistently higher in the case of Jester Jokes.
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FIG. 6. (Color online) Mean validation values for some different
methods as a function of the randomness with the Jester Jokes (a) and
Fine Foods (b) databases.

VI. DIMENSIONALITY REDUCTION

The techniques of recommendation often make use of filters
with the goal to reduce the role of databases’ inaccuracies.
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FIG. 7. (Color online) Average rank quality index 〈r〉 for the
different recommendation methods as a function of the reduced matrix
rank k. The mean is computed on Ne = 10 different realizations at
λ = 0. The reduction is here done on the incidence matrix of the
data set MovieLens. The Dimensionality Reduction method slightly
improves the predictions at low k values.
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FIG. 8. (Color online) Average rank quality index 〈r〉 for the
different recommendation methods as a function of λ parameter with
reduced matrix rank k = 15. The mean is computed on Ne = 10
different realizations using the Movie Lens data set.

In some cases, the filter is done by setting a threshold,
as in the correlation-thresholding and best-n-neighbors, in
order to keep the most relevant similarities and disregard
the others [14,15]. In other cases, it might be convenient
to manipulate the data matrices with more sophisticated
techniques, such as the singular value decomposition (SVD),
where the rank of the matrix (incidence or rating) is reduced
by keeping the largest k eigenvalues and putting to zero the
others. Following the approach of Sarwar et al. [16], we applied
the SVD method to the MovieLens database and studied the
performances of the different similarity measures. Figure 7
shows the average rank quality index 〈r〉 as a function of the
rank k of the resulting reduced matrix. The index 〈r〉 is a slow
monotonic increasing function of k. For low values of k, the
performance is slightly improved for almost all the similarity
measures with respect to the complete matrix, whose values
are indicated with the arrows on the right edge of the plots. The
measures confirm that dimensionality reduction can improve
recommendation predictions.

We have also investigated, as in Sec. IV, the tradeoff be-
tween user similarities and object similarities. Specifically, we
kept constant the rank of the matrix at a value of 15, and varied
the parameter λ as before. Figure 8 shows the obtained results.
It is apparent that the relative order relationship between the
predictions of the different similarity measures is maintained.
In other words, the method of dimensionality reduction of
the adjacent matrix may improve the performances of the
recommendations, for a set of suitably low k values with the
different similarities, but its effect appears to be homogenous
across the different similarity measures.

VII. CONCLUSIONS

We have considered three real-world users-items bipartite
networks, we have investigated the performance of several
traditional recommendation methods recently presented in the
literature, and we have proposed two new similarity measures
which take into account the heterogeneity of users and objects
degrees. We showed that these two new similarity indexes can
outperform traditional recommendation systems in most of the
cases, even if there is a clear dependence of the results on the
structural characteristics of the data set under study.

Then we focused on hybrid recommendation systems
based on the convex combination of the recommendation
scores induced by the similarity between users and objects,
parametrized by a coefficient λ. We showed that different
outcomes can be obtained in personalized recommendation
methods by using similarity between users, or between objects,
or a combination of the two. In some cases, the quality of
recommendation as measured by the average rank quality
index r is a convex function of the parameter λ. This means
that the combination of different recommendation scores
might actually provide better performance with respect than
the employment of user or object similarities alone and,
more importantly, that depending on the data set at hand,
the quality of recommendation can be actually optimized
through an appropriate tuning of λ. Conversely, for some
similarity measures we observed a monotonically decreasing
dependence of 〈r〉 on λ, so that the best recommendation
is obtained by using an object-based similarity. We also
investigated the robustness of recommendation systems to the
addition and rewiring of edges, and the results suggested that
the BP correlation similarity can consistently outperform other
similarity measures in noisy data sets. Finally, we performed
dimensionality reduction on the incidence matrix by making
use of the singular value decomposition method. Also this
last test confirmed the good performances of the proposed
similarity measures.

In conclusion, although we do not observe a specific
recommendation method outperforming all the others in all
conditions and for all the data sets considered, it seems that
recommendations based on MDW and BP are in general able
to produce better results than those using other similarity
measures. However, our results show that the performance
of the recommendation methods depends on both the specific
investigated database and on the way similarities between users
and objects are used to derive recommendation scores.
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