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Abstract: This paper considers the problem of constructing confidence intervals

for a single parameter θ in a multiparameter or nonparametric family. Hybrid

resampling methods, which “hybridize” the essential features of bootstrap and ex-

act methods, are proposed and developed for both parametric and nonparametric

situations. In particular, we apply such methods to construct confidence regions,

whose coverage probabilities are nearly equal to the nominal ones, for the treat-

ment effects associated with the primary and secondary endpoints of a clinical trial

whose stopping rule, specified by a group sequential test, makes the approximate

pivots in the nonsequential bootstrap method highly “non-pivotal”. We also apply

hybrid resampling methods to construct second-order correct confidence intervals

in possibly non-ergodic autoregressive models and branching processes.
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sequential tests, hybrid resampling, nonparametric tilting.

1. Introduction

The past two decades have witnessed important developments in group se-

quential methods for interim analysis of clinical trials. Although these methods

allow for early termination while preserving the overall significance level of the

test, they introduce substantial difficulties in constructing confidence intervals for

parameters of interest following the test. Under strong distributional assump-

tions and for relatively simple parametric models, exact confidence intervals in

group sequential settings have been developed in the literature. For samples of

fixed size, an important methodology for constructing confidence intervals with-

out distributional assumptions is the bootstrap method. Although the stopping

rule makes approximate pivots in the nonsequential bootstrap method highly

“non-pivotal”, we have recently shown in Chuang and Lai (1998) that it is possi-

ble to “hybridize” the bootstrap and exact methods for constructing confidence

intervals following a group sequential test.

In Sections 2, 3 and 6, we give a comprehensive development of the hybrid

resampling approach, extending the methodology beyond the group sequential

setting considered in Chuang and Lai (1998) and in Section 4 of the present paper.
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In particular, in Section 5, we show how the methodology can be used to con-

struct second-order correct confidence intervals for the autoregressive parameter

θ of a possibly nonstationary AR(1) model, for which the bootstrap method has

been shown to be inconsistent when |θ| = 1. Since the bootstrap method is a spe-

cial case of hybrid resampling as shown in Section 2, our development of hybrid

resampling also addresses certain basic issues concerning the bootstrap method,

such as choice of root, difficulties with the infinitesimal jackknife and lineariza-

tion, influential observations, calibration and bootstrap iteration. Moreover, in

connection with the choice of a resampling family for the hybrid approach, we

also discuss certain basic issues concerning Owen’s (1988, 1990) empirical likeli-

hood and Efron’s (1981, 1987) nonparametric tilting. Some concluding remarks

are given in Section 7.

2. Exact, Bootstrap and Hybrid Resampling Methods for Confidence

Intervals

We begin with the use of exact, bootstrap and hybrid resampling methods

for constructing confidence intervals. Let X = (X11, . . . ,X1p, . . . ,Xn1, . . . ,Xnp)

be a vector of observations from some family of distributions {F : F ∈ F}. For

nonparametric problems, F is the family of distributions on Rp satisfying certain

prespecified regularity conditions and (Xi1, . . . ,Xip) are i.i.d. rrandom vectors

having common distribution F ∈ F . For parametric models with parameter η ∈
Γ, we can denote F by {Fη : η ∈ Γ}, and (Xi1, . . . ,Xip) may be i.i.d. or may

form a time series. The problem of interest is to find a confidence interval for the

real-valued parameter θ = θ(F ). We let Θ denote the set of all possible values of

θ.

Exact method: If F = {Fθ : θ ∈ Θ} is indexed by a real-valued parameter

θ, an exact equal-tailed confidence region can always be found by using the

well known duality between hypothesis tests and confidence regions (cf. Rosner

and Tsiatis (1988), Schenker (1987)). Suppose one would like to test the null

hypothesis that θ is equal to θ0. Let R(X, θ0) be some real-valued test statistic.

Let uα(θ0) be the α-quantile of the distribution of R(X, θ0) under the distribution

Fθ0
. The null hypothesis is accepted if uα(θ0) < R(X, θ0) < u1−α(θ0). An exact

equal-tailed confidence region with coverage probability 1 − 2α consists of all θ0

not rejected by the test and is therefore given by

{θ : uα(θ) < R(X, θ) < u1−α(θ)}. (2.1)

Bootstrap method: The exact method applies only when there are no nuisance

parameters and this assumption is rarely satisfied in practice. The bootstrap

method replaces the quantiles uα(θ) and u1−α(θ) by the approximate quantiles
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u∗
α and u∗

1−α obtained in the following manner. Based on X, construct an estimate

F̂ of F ∈ F . The quantile u∗
α is defined to be the α-quantile of the distribution

of R(X∗, θ̂) with X∗ generated from F̂ and θ̂ = θ(F̂ ); see Efron (1981, 1987).

Thus, the bootstrap method yields the following confidence region for θ with

approximate coverage probability 1 − 2α:

{θ : u∗
α < R(X, θ) < u∗

1−α}. (2.2)

In particular, when F̂ is the empirical distribution of i.i.d. X1, . . . ,Xn and the

root R(X, θ) is equal to (θ̂ − θ)/σ̂ for some estimate σ̂ of the standard error of

θ̂, the bootstrap confidence interval (2.2) is called the bootstrap-t interval. It

is well known that the bootstrap-t interval has coverage error O(n−1) at both

endpoints when θ is a smooth function of means; see Hall (1988, 1992).

Hybrid resampling method: The hybrid confidence region is based on reduc-

ing the family of distributions F to another family of distributions {F̂θ : θ ∈ Θ},
where θ is the unknown parameter of interest. We call this family the “resam-

pling family”. This reduction depends on X, and ways for carrying it out are

explored in the rest of the paper. Let ûα(θ) be the α-quantile of the sampling

distribution of R(X, θ) under the assumption that X has distribution F̂θ. The

hybrid confidence region results from applying the exact method to {F̂θ : θ ∈ Θ}
and is given by

{θ : ûα(θ) < R(X, θ) < û1−α(θ)}. (2.3)

The construction of (2.3) typically involves simulations to compute the quantiles

as in the bootstrap method and is elaborated below. We call this the “hybrid

resampling” method because it “hybridizes” the exact method (that uses test

inversion) with the bootstrap method (that uses the observed data to determine

the resampling distribution). Note that hybrid resampling is a generalization of

the bootstrap method, which uses the singleton {F̂} as the resampling family

{F̂θ}. The following two examples, which will be discussed in Sections 4 and 5,

illustrate difficulties with the bootstrap method when the sampling distribution

of R(X, θ) may vary substantially with θ.

Example 1. Consider a group sequential trial with Pocock’s (1977) boundary

and a maximum of 5 groups, as in Chuang and Lai (1998). Let X1,X2, . . . be

independent with mean θ and variance 1, Sn = X1 + · · · + Xn, X̄n = Sn/n, and

let J = {15j : j = 1, 2, 3, 4, 5}. The stopping rule is τ = min{n ∈ J : |Sn| ≥
2.413n1/2}, where we define the minimum of ∅ to be 75 = 15 × 5. The choice

2.413 ensures that when θ = 0, P{maxn∈J |Sn/n1/2| ≥ 2.413} .
= 0.05; see Pocock

(1977). Figure 1 in Chuang and Lai (1998) shows that the sampling distribution

of
√

τ(X̄τ − θ) varies markedly with θ even for normal observations, and Table 1

there reports poor performance of the bootstrap method.
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Example 2. Consider the first-order autoregressive AR(1) model given by the

following. Let x0 = 0 and xi = θxi−1 + ǫi, where ǫi are i.i.d. with mean 0 and

variance 1. Let θ̂ be the least squares estimate of θ based on (x1, . . . , xn), given

by θ̂ =
∑n

i=1 xixi−1/
∑n

i=1 x2
i−1. It is well known that the limiting distribution

of (
∑n

i=1 x2
i−1)

1/2(θ̂ − θ) is standard normal if |θ| < 1. However, when |θ| = 1,

the limiting distribution is given by 1
2 (B2

1 − 1)/(
∫ 1
0 B2

t dt)1/2, where Bt denotes

standard Brownian motion. Basawa, Mallik, McCormick, Reeves and Taylor

(1991) showed that bootstrapping the least squares estimate is inconsistent when

|θ| = 1.

In practice, it is often desirable to express a confidence set for θ as an interval.

Although the sets (2.1), (2.2) and (2.3) may not be intervals, it often suffices to

give only the upper and lower limits of the confidence set. We now describe

an algorithm, based on the method of successive secant approximations, to find

the upper limit of (2.3). Let f(θ) = R(X, θ) − ûα(θ) and consider solving the

equation f(θ) = 0. First we find a1 < b1 such that f(a1) > 0 and f(b1) < 0. Let

f1(θ) be linear in θ ∈ [a1, b1] with f1(a1) = f(a1) and f1(b1) = f(b1), and let θ1

be the root of f1(θ) = 0. If f(θ1) > 0, set a2 = θ1 and b2 = b1. If f(θ1) < 0, set

b2 = θ1 and a2 = a1. Proceeding inductively in this manner, we let fk(θ) linearly

interpolate f(ak) and f(bk) for ak ≤ θ ≤ bk, and let θk ∈ (ak, bk) be the root of

fk(θ) = 0. This procedure terminates if θk differs little from θk−1 or if k reaches

some upper bound, and the terminal value θk is taken to be the upper limit of

(2.3). Typically f(θ̂) > 0, so θ̂ can be chosen as a1. To find b1, one can start with

b′1 = θ̂ + 2σ̂, where σ̂ is an estimate of the standard error of θ̂. If f(b′1) < 0, set

b1 = b′1; otherwise let b′2 = b′1 + σ̂/2 and check whether f(b′2) < 0. This procedure

is repeated until one arrives at f(b′h) < 0 and sets b1 = b′h. The total number of

iterations, h + k, is kept no more than some prescribed upper bound m. If there

are already m iterations before one arrives at b1 with f(b1) < 0 (so h = m),

take b′m as the default value of the upper limit of (2.3). For the simulations in

Example 3 and those used to produce Tables 4 and 5, we took m = 8. For the

simulations in Example 7 of Section 6, we took m = 4 to ease the computational

burden. The quantiles ûα(θj) can be computed from independent samples from

F̂θj
, as was done in these examples. It is sometimes possible to try to reuse

the same random sample for all θ values, as in the mean and regression models

considered in Tables 4 and 5, but there is not much computational saving since

we typically do not use a large value of m.

3. Choice of Root and Implementation of Hybrid Resampling Methods

As the framework of Section 2 suggests, there are two issues that must be

addressed for hybrid resampling methods to be used successfully in practice.
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First, one must choose an appropriate root R(X, θ) that is used in resampling.

Second, one needs to find a suitable reduction of the original family F to the

resampling family {F̂θ}. The second issue for nonparametric problems is quite

complicated and is deferred to Section 6; in the examples considered in Section

4 and 5, there is a simple reduction.

3.1. Choice of root and resampling family in parametric models

One natural root R(X, θ) that can be used in parametric models is the signed

root of the log likelihood ratio statistic. Let X represent a vector of observations

from a parametric family Fη with joint density f(x; η), and let θ = g(η) be

a real-valued parameter of interest. Consider testing the null hypothesis that

θ = θ0. Let η̂ be the (unrestricted) maximum likelihood estimate of η based on

X and let η̂(θ0) be the maximum likelihood estimate of η subject to the constraint

g(η) = θ0. The likelihood ratio test rejects the null hypothesis for large values of

l(θ0) = 2{log f(X; η̂) − log f(X; η̂(θ0))}. (3.1)

Equivalently, one rejects the null hypothesis for large absolute values of the signed

root

l±(θ0) = sgn(θ̂ − θ0)l
1/2(θ0). (3.2)

Here, θ̂ represents the maximum likelihood estimate of θ based on X, i.e. θ̂ =

g(η̂). With R(X, θ) = l±(θ), the quantiles u∗
α and u∗

1−α used in the bootstrap

confidence region (2.2) are determined from the distribution of l±(θ) under the

assumption that X is generated from Fη̂. The quantiles ûα(θ) and û1−α(θ) used in

the hybrid confidence region (2.3) are determined from the distribution of l±(θ)

under the assumption that X is generated from Fη̂(θ). Note that the hybrid

region (2.3) is obtained by reducing the family Fη to the family Fη̂(θ), whereas

the bootstrap confidence region (2.2) is based on the single distribution Fη̂.

Example 3. Consider the following Galton-Watson branching process with im-

migration (BPI). Let ξ1, ξ2, . . . be i.i.d. Poisson random variables with mean θ,

and let ψ1, ψ2, . . . be i.i.d. Poisson random variables with mean λ. Here, the mean

θ of the offspring distribution is of interest, whereas λ is regarded as a nuisance

parameter. The Galton-Watson BPI is defined as follows. Assume that X0 = x0

for some positive integer x0. Let X1 = ξ1 + · · · + ξx0
+ ψ1, which represents the

size of the first generation. The size Xn of the nth generation, for n = 2, 3, . . . ,

is given by

Xn = ξx0+X1+···+Xn−2+1 + · · · + ξx0+X1+···+Xn−1
+ ψn.
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Let X = (X0, . . . ,Xn, ψ1, . . . , ψn) be the vector of observations. Let Nn−1 =

x0 + X1 + · · · + Xn−1 and η = (θ, λ). Then as shown by Bhat and Adke (1981),

log f(X; η) =

Nn−1∑

i=1

ξi log θ − Nn−1θ +
n∑

j=1

ψj log λ − nλ + c (3.3)

=
n∑

i=1

(Xi − ψi) log θ − Nn−1θ +
n∑

j=1

ψj log λ − nλ + c,

where c is a constant that depends only on X but not on η. Therefore, the

(unrestricted) maximum likelihood estimate η̂ = (θ̂, λ̂) is given by

θ̂ =

Nn−1∑

i=1

ξi/Nn−1, λ̂ =
n∑

j=1

ψj/n,

while the constrained maximum likelihood estimate η̂(θ) is equal to (θ, λ̂), so the

log likelihood ratio statistic l(θ) can be simplified to

l(θ) = 2Nn−1{(θ − θ̂) + θ̂ log(θ̂/θ)}. (3.4)

The function l±(θ) = sgn(θ̂ − θ)l1/2(θ) is decreasing in θ and therefore the boot-

strap confidence region (2.2) with R(X, θ) = l±(θ) is an interval, the endpoints

of which are obtained by solving the equations l±(θ) = u∗
α and l±(θ) = u∗

1−α.

Table 1 reports a simulation study comparing the bootstrap and hybrid

methods for finding confidence intervals for θ with l±(θ) as the root R(X, θ).

In the simulation study, x0 = 10, n = 10 and λ = 0.25. We simulated 2000

sets of data for values of θ ranging from 0.8 to 1.5, and used the secant method

described at the end of Section 2 to compute the hybrid and bootstrap confidence

intervals explicitly. Also given for comparison in Table 1 are the coverage errors

of the normal and bootstrap-t confidence limits. The normal limits are based on

normal approximation for l±(θ) so that the lower confidence limit is obtained by

solving the equation l±(θ) = Φ−1(1 − α), where Φ denotes the standard normal

distribution function. The bootstrap-t confidence limits use the Studentized root

R(X, θ) = (θ̂ − θ)/(θ̂/Nn−1)
1/2 (3.5)

since l′′(θ̂)/2 = Nn−1/θ̂. An advantage of using the linear function (3.5) of θ as the

root is that (2.2) reduces simply to θ̂−(θ̂/Nn−1)
1/2u∗

α ≥ θ ≥ θ̂−(θ̂/Nn−1)
1/2u∗

1−α,

which is the usual bootstrap-t interval. The nominal coverage error α for the

upper and lower confidence bounds is 5%. With this choice of α, we used resample

sizes of 999 to compute u∗
α, u∗

1−α, ûα(θ), û1−α(θ) for the bootstrap, bootstrap-t

and hybrid confidence limits, following a suggestion by Davison and Hinkley

(1997).
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Table 1. Coverage errors in % for lower (L) and upper (U) confidence limits

based on 2000 simulations for the offspring mean θ in a Galton-Watson BPI

with x0 = 10, n = 10 and an immigration rate of λ = 0.25. Nominal coverage

errors are 5%.

Normal Bootstrap Bootstrap-t Hybrid

θ L U L U L U L U

0.80 3.10 7.45 4.60 5.00 4.00 7.95 4.75 5.35

0.95 2.50 9.50 3.85 6.45 3.25 8.90 3.90 5.65
1.00 3.30 10.50 4.60 6.95 4.15 9.35 4.95 5.70

1.05 4.45 8.15 5.75 5.75 5.35 7.35 5.95 4.55

1.20 3.80 7.70 4.55 5.15 4.30 5.55 4.90 5.15

1.50 3.65 5.90 4.40 4.20 4.30 4.65 4.35 4.55

Table 1 shows that the hybrid confidence limits have coverage errors close

to the nominal value of 5% for all cases considered. The bootstrap confidence

limits have coverage errors reasonably close to the nominal value of 5% except

for the upper limit when θ = 0.95 or 1. In contrast, the bootstrap-t confidence

limits based on the Studentized root have coverage errors that differ substantially

from the nominal value of 5% in about half the cases considered. The normal

confidence limits have poor coverage except in the case θ = 1.5. An explanation

for some of these results is provided by Lemma 1, whose proof is given in the

Appendix and in which Yt is the highly non-Gaussian “square-root diffusion pro-

cess” in mathematical finance (cf. Cox, Ingersoll and Ross (1985)). In fact, since

the distribution of l±(θ) changes drastically for θ near 1 in view of Lemma 1, the

bootstrap and normal confidence limits are not valid for θ near 1, but the hybrid

resampling method can be used to overcome the difficulty.

Lemma 1. As n → ∞, l±(θ) has a limiting standard normal distribution if

θ �= 1. If θ = 1, then l±(θ) converges weakly to (Y1 − λ)/(
∫ 1
0 Ytdt)1/2, where Yt

satisfies the stochastic differential equation dYt = λdt + Y
1/2
t dBt, Y0 = 0 and Bt

is standard Brownian motion.

The preceding construction of the hybrid confidence region (2.3) uses the

obvious choice F̂η = F̂η̂(θ) for the resampling family. By conditioning on λ̂ to

construct an alternative resampling family and by modifying slightly l±(θ) as the

choice of the root, we obtain below a hybrid confidence region (2.3) with exact

coverage probability 1 − 2α. Because l±(θ) is discrete, its distribution function

may not assume the values α and 1 − α. However, adding an independent uni-

form random variable on (−n−1, n−1) to l±(θ) yields a continuous distribution

function. This randomized version of l±(θ) is used as the root in the following

lemma, whose proof is given in the Appendix.
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Lemma 2. Let R(X, θ) = l±(θ) + n−1U, where U is uniformly distributed on

(−1, 1) and is independent of X.

(i) Let F̂θ be the distribution of the Galton-Watson BPI in which ξ∗1 , ξ
∗
2 , . . . are

i.i.d. Poisson with mean θ and (ψ∗
1 , . . . , ψ

∗
n) has the multinomial distribution

M(nλ̂;n−1, . . . , n−1) corresponding to nλ̂ independent trials, with n equally

likely outcomes in each trial. With R(X, θ) and F̂θ thus defined, the hybrid

confidence region (2.3) has coverage probability 1 − 2α.
(ii) The conclusion of (i) still holds if F̂θ is the distribution function under which

ψ∗
i = ψi for 1 ≤ i ≤ n and the ξ∗i are i.i.d. Poisson with mean θ.

In Example 3, since l(θ̂) = l′(θ̂) = 0, the leading term in the Taylor expansion

of (3.1) is the square of (3.5). More generally, for smooth parametric models,
(3.2) is asymptotically equivalent to the Studentized root

t(θ) = (θ̂ − θ)/σ̂. (3.6)

Here σ̂ is the estimated standard error of θ̂ = g(η̂) given by

σ̂2 = −∇̂T (∇2 log f(X, η))−1
∣∣∣η=η̂ ∇̂, ∇̂ = ∇g(η)|η=η̂ , (3.7)

in which ∇g represents the column vector of partial derivatives (gradient vector)
of g, while ∇2g represents the matrix of second partial derivatives (Hessian ma-

trix). Table 1 shows that replacing l±(θ) by its linear approximation t(θ) even
when θ̂ and θ are many standard errors apart may result in inferior performance.

On the other hand, for nonlinear multiparameter problems, η̂(θ) and therefore
l±(θ) also may be difficult to compute. To reduce the computational task in
simulating the distribution of l±(θ) under η̂(θ), we replace l±(θ) by t(θ) when θ

is reasonably close to θ̂ and arrive at the root

R(X, θ) =

{
t(θ), if |t(θ)| ≤ M,

l±(θ), if |t(θ)| > M.
(3.8)

Likewise, to construct the resampling family, we replace η̂(θ) by its linear ap-

proximation

η̃(θ) = η̂ − σ̂−2(θ − θ̂)(∇2 log f(X, η))−1
∣∣∣η=η̂ ∇̂ (3.9)

when |t(θ)| ≤ M̃, or equivalently, when θl ≤ θ ≤ θu, where θl = θ̂ − σ̂M̃ and
θu = θ̂ + σ̂M̃ . When t(θ) is an approximate pivot, we can choose the resampling

family {F̂θ} to be the singleton {Fη̂}, which is tantamount to the bootstrap
method. When t(θ) is not an approximate pivot, we define

F̂θ =





Fη̃(θ), if θl ≤ θ ≤ θu,

Fη̃(θu), if θ > θu,

Fη̃(θl), if θ < θl.

(3.10)
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This means that the quantiles ûα(θ) and û1−α(θ) in the hybrid confidence region

(2.3) are obtained from the distribution of (3.8) under F̂θ if θl ≤ θ ≤ θu, and are

obtained by extrapolation for θ outside this range. Choosing M and M̃ to be of

the order of log n in the preceding gives asympotically correct confidence limits,

as will be explained in Section 3.2 and Section 6, where the root (3.8) and the

resampling family (3.10) will be extended to nonparametric problems.

Besides equal-tailed confidence regions, the Studentized root (3.6) has been

used via its absolute value to construct symmetric bootstrap confidence intervals

(cf. Section 3.6 of Hall (1992)). A refinement of this approach along the lines of

(3.8) yields the nonnegative root

R(X, θ) =

{
t2(θ) if |t(θ)| ≤ M,

l(θ) if |t(θ)| > M,
(3.11)

and a hybrid confidence region associated with this root is {θ : R(X, θ) ≤
û1−2α(θ)}, with nominal two-sided coverage error 2α.

3.2. Choice of root for nonparametric models and a correlation coef-

ficient example

Let X1, . . . ,Xn be i.i.d. random variables having a common unknown dis-

tribution F. Without assuming that F belongs to some parametric family, the

nonparametric maximum likelihood estimate of F is the empirical distribution

F̂ = n−1 ∑n
i=1 δXi . Letting F̂ (θ0) be the distribution that maximizes the empir-

ical likelihood f(X;F ) =
∏n

i=1 F ({Xi}) among all distributions F ≪ F̂ subject

to the constraint θ(F ) = θ0, Owen (1988, 1990) extended the log likelihood ratio

statistic (3.1) to the nonparametric case and obtained the empirical likelihood

ratio statistic

l(θ0) = 2{log f(X; F̂ ) − log f(X, F̂ (θ0))}. (3.12)

Under certain conditions on the functional θ(F ), Owen (1988, 1990) showed that

for fixed sample sizes, l(θ0) has a limiting chi-square distribution with 1 degree

of freedom.

Let pi = F ({Xi}). To maximize
∏n

i=1 pi subject to the constraint θ(F ) =

θ0, one can introduce a Lagrange multiplier λ associated with the constraint.

Differentiation with respect to pi and λ leads to n + 1 equations which are the

first-order conditions for the constrained optimization problem. When θ(F ) is

the mean of F, Owen (1990) combined these equations into an equation

n∑

i=1

(Xi − θ0)/{1 + λ(Xi − θ0)} = 0 (3.13)
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for λ, with p−1
i = n{1 + λ(Xi − θ0)}. Section 6 of Owen (1988) and Section 10.2

of Davison and Hinkley (1997) give numerical results on the use of (3.12) as the

root R(X, θ) in forming bootstrap confidence regions {θ : R(X, θ) ≤ u∗
1−2α} for

the mean of F. We can clearly extend the idea to construct equal-tailed bootstrap

confidence regions (2.2) and hybrid confidence regions (2.3) for other functionals

θ(F ), with R(X, θ) = sgn(θ̂ − θ)l1/2(θ). When θ(F ) is a smooth function of sev-

eral population means, Owen (1990) developed a nested algorithm to maximize∏n
i=1 pi subject to θ(F ) = θ0. However, this algorithm is computationally inten-

sive and it is impractical to repeat many times such computations in simulating

the distribution of l(θ) or the signed root l±(θ) for the bootstrap and hybrid

resampling methods. For more complicated nonlinear functionals θ(F ), one does

not even have nested algorithms to reduce dimensionality in finding p1, . . . , pn.

A much simpler root than the empirical likelihood ratio statistic is the Stu-

dentized statistic t(θ) defined by (3.6) with

σ̂2 = n−2
n∑

i=1

U2
i (F̂ ), Ui(F ) = lim

ǫ→0
ǫ−1{θ((1 − ǫ)F + ǫδXi) − θ(F )}. (3.14)

Note that Ui(F ) is the influence function associated with θ(F ) and σ̂2 is the

infinitesimal jackknife variance estimate. When θ(F ) is a linear functional of

F, θ(F̂ ) = θ(F ) + n−1 ∑n
i=1 Ui(F ) and Owen (1990, p.102) shows that l(θ0) =

t2(θ0) + op(1) under the hypothesis θ(F ) = θ0. For nonlinear but differentiable

θ(·), although consistency of F̂ and the functional delta method yield the linear

approximation θ(F̂ )
.
= θ(F )+n−1 ∑n

i=1 Ui(F ), this approximation may be highly

inadequate in samples of moderate size, where the infinitesimal jackknife vari-

ance estimate σ̂2 has been found to be unreliable and unstable. This instability

has been linked to unsatisfactory performance of bootstrap-t confidence intervals

based on the Studentized root defined by (3.6) and (3.14) despite the attractive

asymptotic properties of these intervals.

Whereas l±(θ) may be difficult to compute in practice, it is more stable than

t(θ) since it does not require an auxiliary variance estimate because of its “self-

normalizing” property. When θ̂ is close to θ, l±(θ) should be close to t(θ) as

in the parametric case. This suggests that, as in (3.8), we replace l±(θ) by t(θ)

when |t(θ)| ≤ M (so that θ̂ is not too far from θ). When |t(θ)| > M, σ̂ may be

erratic and we should use some better-behaved alternative to t(θ). Because of the

computational complexity, it is not practical to use l±(θ) even though |t(θ)| > M

may not occur frequently in the simulations. We therefore modify (3.8) as

R(X, θ) =

{
t(θ), if |t(θ)| ≤ M,

d(θ), if |t(θ)| > M,
(3.15)
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where the choice of M and d(θ) is discussed below.

Methods in the bootstrap literature that bypass estimation of the standard

error of θ̂ = θ(F̂ ) include Efron’s (1987) BCa method, and bootstrap calibra-

tion of the percentile intervals proposed by Beran (1987) and Loh (1987). As

pointed out by Bickel (1987), the BCa method uses an approximate pivot of the

form Ŝ−1(Φ−1(G
F̂
(θ))), where GF denotes the distribution of θ̂ under F (so the

bootstrap distribution of θ̂ under F̂ is given by G
F̂
) and

Ŝ(z) = ẑ0 + (ẑ0 + z)/{1 − â(ẑ0 + z)}, (3.16)

in which ẑ0 = Φ−1(G
F̂
(θ̂)) and â = 1

6{
∑n

i=1 U3
i (F̂ )}/{∑n

i=1 U2
i (F̂ )}3/2 are the

bias-correction and acceleration constants. The calibrated percentile method

starts with Efron’s (1981) percentile interval based on percentiles of the bootstrap

distribution to define the upper and lower confidence limits for each nominal

coverage error λ, and then uses the bootstrap method to calibrate the actual

coverage error p̂(λ) and chooses the upper/lower confidence limit with p̂(λ) =

α. Therefore the equal-tailed calibrated percentile interval is a special case of

(2.2) with R(X, θ) = G
F̂
(θ). Because this confidence region is invariant under

monotone transformations, we can also take (1−Φ)−1(G
F̂
(θ)) as the root. When

θ̂ is a smooth function of sample means, standard results in Hall (1988, 1992)

show that the bootstrap distribution has an Edgeworth-type expansion

G
F̂
(θ) = P{θ̂∗ ≤ θ|F̂} = Φ(−t(θ)) + n−1/2p(−t(θ))φ(−t(θ)) + Op(n

−1), (3.17)

where p(·) is a polynomial and φ(·) is the standard normal density. Since Φ(−x) =

1 − Φ(x), it follows from (3.17) that (1 − Φ)−1(G
F̂
(θ)) = t(θ) + Op(n

−1/2). In

view of this connection between t(θ) and (1−Φ)−1(G
F̂
(θ)), we propose to choose

d(θ) in (3.15) to be

d(θ) = (1 − Φ)−1(G
F̂
(θ)). (3.18)

To avoid infinite values in (3.18), redefine d(θ) as (1−Φ)−1(1/(2n∗)) if G
F̂
(θ) = 0,

and as (1 − Φ)−1(1 − 1/(2n∗)) if G
F̂
(θ) = 1, for some n∗ ≥ n. With d(θ) thus

defined, choosing M to be some constant times of log n in (3.15) yields

P{|t(θ)| > M} = O(n−a) for any a > 0, (3.19)

when θ̂ is an infinitely differentiable function of means of i.i.d. random vectors

whose common moment generating function is finite in some neighborhood of the

origin.

In view of (3.19), t(θ) is asymptotically equivalent to the root R(X, θ) de-

fined by (3.15) and (3.18). The latter, however, is considerably more stable than
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t(θ) for nonlinear functionals of F̂ in samples of small to moderate size, since

we use percentiles of the bootstrap distribution in (3.18) rather than the in-

finitesimal jackknife standard error estimate of θ̂ when θ̂ is not near θ. Although

the root Ŝ−1(Φ−1(G
F̂
(θ))) in Efron’s BCa method is an attractive alternative to

t(θ), the bias-correction and acceleration constants in (3.16) involve linearization

arguments which may not be appropriate when θ̂ is not near θ, so we do not

choose it for d(θ). Using the root (3.15) with d(θ) given by (3.18) in (2.2) yields

a confidence region whose infimum L and supremum U are given by

L = L′1{L′ < θ̂ − σ̂M} + max(θ̂ − σ̂u∗
1−α, θ̂ − σ̂M)1{L′ ≥ θ̂ − σ̂M},

U = U′1{U′ > θ̂ + σ̂M} + min(θ̂ − σ̂u∗
α, θ̂ + σ̂M)1{U′ ≤ θ̂ + σ̂M}, (3.20)

where L′ = G−1

F̂
(1−Φ(u∗

1−α)), U′ = G−1

F̂
(1−Φ(u∗

α)) and 1{·} is the usual indicator

function.

Analogous to (3.11), we can extend the preceding idea to obtain a nonnega-

tive root of the form

R(X, θ) =

{
|t(θ)|, if |t(θ)| ≤ M,

(1 − Φ)−1(max{1/(2n∗),min(G
F̂
(θ), 1 − G

F̂
(θ))}), if |t(θ)| > M,

(3.21)

noting that (1−Φ)−1(min{G
F̂
(θ), 1−G

F̂
(θ)}) = |t(θ)|+ Op(n

−1/2) by (3.17). A

bootstrap confidence region associated with this root is {θ : R(X, θ) ≤ u∗
1−2α},

with nominal (two-sided) coverage error 2α. When θ̂ is a smooth function of

sample means, Hall (1988, 1992) showed that for the equal-tailed bootstrap con-

fidence interval based on t(θ) as the root, both the upper and lower confidence

bounds have coverage error α+O(n−1), and that the symmetric bootstrap confi-

dence interval based on |t(θ)| as the root has coverage error 2α + O(n−2). When

M in (3.15) and (3.21) is chosen to be some constant times log n, the modi-

fied bootstrap-t confidence region with root given by (3.15) and (3.18), or by

(3.21), also has coverage error differing from the nominal value by O(n−1), or by

O(n−2) in the two-sided case, in view of (3.19). However, the modified bootstrap-

t confidence region has much more stable finite-sample behavior, as illustrated

below in the problem of constructing a confidence interval for a correlation coef-

ficient, called by Hall (1992, p.152) a “smoking gun” of bootstrap methods. Note

that choosing M = ∞ in (3.15) and (3.18) (or (3.21)) gives the equal-tailed (or

symmetric) bootstrap-t interval, while choosing M = 0 in (3.15) and (3.18) (or

(3.21)) gives the equal-tailed (or symmetric) calibrated percentile interval. Using

the root (3.15) or (3.21) with suitably chosen M > 0 combines the computational

simplicity of the bootstrap-t method and the stability of the much more compu-

tationally expensive calibrated percentile method. Note that it involves a second
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layer of bootstrapping only for a small fraction of the resamples, namely, those

with |t(θ)| > M . When we have a stable estimate σ̂, as in mean and regression

problems, we can simply take M = ∞.

Example 4. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. bivariate vectors from some un-

known distribution F with correlation coefficient θ. Let X̄n = n−1 ∑n
i=1 Xi, Ȳn =

n−1 ∑n
i=1 Yi, σ̂2

x,n = n−1 ∑n
i=1(Xi − X̄n)2, σ̂2

y,n = n−1 ∑n
i=1(Yi − Ȳn)2, and let

θ̂n = (nσ̂x,nσ̂y,n)−1 ∑n
i=1(Xi − X̄n)(Yi − Ȳn) be the sample correlation coefficient.

The infinitesimal jackknife variance estimate is σ̂2 = n−2 ∑n
i=1 U2

i , where

Ui = X ′
iY

′
i − θ̂(X

′2
i +Y

′2
i )/2, X ′

i = (Xi−X̄n)/σ̂x,n, Y ′
i = (Yi− Ȳn)/σ̂y,n. (3.22)

Since θ is a smooth function of the means EXi, EYi, EX2
i , EY 2

i and EXiYi, the

bootstrap-t upper and lower confidence bounds are second-order accurate. How-

ever many authors, notably Efron (1982, 1987) have observed that they can be

very long, with endpoints larger than 1 in absolute value, and that σ̂ can be er-

ratic and grossly inaccurate. Tables 2 and 3 give the results of a simulation study

comparing the performance of the equal-tailed bootstrap-t interval with its mod-

ification (3.20) with n = 30, M = 1.5 and α = 5%. Also included for comparison

are the interval θ̂ ± 1.645σ̂ based on the normal approximation, the parametric

interval involving Fisher’s transformation (cf. Efron and Tibshirani (1993, pp.54,

163)) which is nearly exact in the bivariate normal case, and Efron’s (1987) BCa

interval (see (3.16) above). The first three rows of the tables consider the bivari-

ate normal population with correlation coefficient 0, 0.5, and 0.9 respectively.

The fourth row of each table considers the regression model Yi = Xi/2+
√

3ǫi/2,

in which X1,X2, . . . , ǫ1, ǫ2, . . . are independent and have a common double ex-

ponential distribution with mean 0 and variance 1 so that Var(Yi) = 1 and the

correlation coefficient between Xi and Yi is 0.5. The fifth row of each table

considers the case where (log Xi, log Yi) has a bivariate normal distribution with

zero means, unit variances and correlation coefficient 0.5, so that (Xi, Yi) has

the bivariate lognormal distribution with correlation coefficient (1 +
√

e)−1, as

considered in the simulation study in Hall, Schucany and Martin (1989). We

used bootstrap resamples of size 999 to compute the quantiles u∗
α and u∗

1−α in

(3.20), the bootstrap-t limits and ẑ0 = Φ−1(G
F̂
(θ̂)) for the BCa limits (3.16). To

compute u∗
α and u∗

1−α in (3.20), whenever t(θ̂) = (θ̂∗ − θ̂)/σ̂∗ exceeded M = 1.5

for a given resample, a second layer of 299 resamples was used to compute d(θ̂),

taking n∗ = 300. The estimates of the coverage errors are summarized in Table

2, whereas the average confidence limits are summarized in Table 3.
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Table 2. Coverage errors in % for lower (L) and upper (U) confidence limits
based on 2000 simulations for the correlation coefficient θ. The first three
distributions considered are bivariate normal distributions. The fourth row
indicated by 0.5 Exp uses a regression model with double exponential re-

gressors and errors so that θ = 0.5. The fifth row indicated by 0.5 Log uses
a bivariate lognormal distribution with θ = (1 +

√
e)−1 (whose underlying

bivariate normal distribution has correlation 0.5). The sample size is 30.
Nominal coverage errors are 5%.

Normal Bootstrap-t Modified t BCa Fisher

θ L U L U L U L U L U

0.0 8.05 7.30 4.05 3.85 4.75 4.20 5.50 5.25 4.20 4.25

0.5 10.80 4.80 5.05 3.60 5.30 4.20 5.95 6.00 5.65 4.40

0.9 13.65 2.45 5.30 4.95 4.85 5.25 5.95 6.10 5.50 4.35
0.5 Exp 13.60 6.80 6.05 5.40 6.10 5.65 7.55 7.00 8.50 6.50

0.5 Log 18.50 13.30 6.40 11.40 6.05 6.50 6.75 9.20 18.40 4.25

Table 3. Average lower (L) and upper (U) confidence limits based on 2000

simulations for the correlation coefficient. The distributions used are the
same as those used for Table 2.

Normal Bootstrap-t Modified t BCa Fisher

θ L U L U L U L U L U

0.0 −0.27 0.28 −0.34 0.34 −0.31 0.31 −0.29 0.29 −0.29 0.30

0.5 0.28 0.71 0.18 0.71 0.20 0.70 0.22 0.68 0.23 0.69

0.9 0.84 0.95 0.80 0.94 0.80 0.94 0.81 0.94 0.81 0.94

0.5 Exp 0.28 0.72 0.13 0.74 0.18 0.71 0.21 0.70 0.24 0.69

0.5 Log 0.18 0.64 −0.05 0.80 0.08 0.69 0.09 0.65 0.14 0.63

As Table 2 shows, both the bootstrap-t interval and its modified version

(3.20) have coverage errors reasonably close to the nominal value of 5% for bi-

variate normal distributions and the regression model considered. In contrast,

the interval based on normal approximation has rather poor coverage. However,

(3.20) is shorter on average than the bootstrap-t interval. Figure 1 shows a box-

plot of the lower and upper confidence limits for the 2000 sets of simulated data

from the regression model with double exponential errors. Here, the occasional

erratic behavior of the bootstrap-t limits becomes apparent, whereas its modi-

fication (3.20) is considerably more stable. The BCa confidence limits are also

stable, and the interval tends to be shorter than (3.20) but undercovers the true

value θ = 0.5 in this regression model. The advantage of the modified version

(3.20) over the bootstrap-t method is also apparent when the population is log-

normal, where the bootstrap-t upper limit has coverage error exceeding twice the

nominal coverage error of 5%.
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Figure 1. Boxplots of lower and upper confidence limits for the correlation

coefficient based on 2000 simulated data sets from a double exponential re-

gression family with correlation 0.5.

As we have pointed out after (3.21), the symmetric bootstrap interval based

on using |t(θ)| as the root and the calibrated symmetric percentile interval both

have coverage errors that differ from the nominal value by O(n−2). Consequently,

we expect the two-sided coverage error to be closer to the nominal value than

the one-sided coverage errors of equal-tailed intervals. Indeed, based on 2000

simulations when the root (3.21) with M = 1.5 was used to obtain the modi-

fied symmetric t interval with samples of size 30 generated from the lognormal

distribution, the simulated coverage error is 9.35% when the nominal coverage

error is 10%. This agrees qualitatively with results in Hall, Martin and Schucany

(1989), who reported excellent coverage properties of the calibrated symmetric

percentile interval for the correlation coefficient in small sample sizes. Lee and

Young (1995) use analytic approximations to reduce the computational task of
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the calibrated symmetric percentile interval, but their intervals appear to sub-

stantially undercover the true correlation for this lognormal distribution. Their

Table 4 reports that the estimated coverage error is about 15% when the nominal

coverage error is 10% and the sample size is 30. Section 6 contains some further

discussion of this lognormal example.

As has been pointed out by Efron and Tibshirani (1993), the bootstrap

variance estimate σ̂2
b is usually more stable and reliable than the infinitesimal

variance estimate σ̂2. However, bootstrapping the root (θ̂ − θ)/σ̂b is computa-

tionally expensive. The computational burden can be substantially reduced by

using the root (3.15) with d(θ) = (θ̂ − θ)/σ̂b. We call this modified root the

t∗–root. In a simulation study for the correlation coefficient with n = 30 and

M = 1.5, we found the t∗–root gave results similar to those in Tables 2 and 3

for the bootstrap-t interval when a second layer of 100 resamples was used to

compute σ̂∗
b whenever d(θ) was used. We have focused so far only on the choice

of root for nonparametric models. In Section 6, the choice of the resampling

family {F̂θ} for implementing the hybrid resampling method in nonparametric

problems will be discussed systematically. For the mean and regression problems

considered in Sections 4 and 5, there is a natural and simple resampling family.

For highly nonlinear functionals θ = θ(F ), such as the correlation coefficient,

Section 6 addresses complications and provides further discussion of Example

4 and also improvements of hybrid over bootstrap confidence intervals for the

correlation coefficient based on sequential samples.

4. Hybrid Confidence Regions Following Group Sequential Tests

We have found hybrid resampling methods particularly useful in statistical

inference after group sequential tests. When the testing procedure is fully se-

quential, in that one decides whether to stop or continue collecting data based

on review after each new observation has been collected, Woodroofe (1986, 1992)

and Coad and Woodroofe (1996) have developed techniques based on “very weak

expansions”. These expansions, however, depend on the structure of exponential

families and are difficult to extend to nonparametric problems. In this section we

show how the hybrid resampling method approach can be used to construct con-

fidence intervals for population means following group sequential tests. Possible

extensions are given at the end of the section.

4.1. Hybrid resampling methods for population mean

In a group sequential test with k interim analyses, the number τ of observa-

tions may be either n1, or n2, . . . , or nk, where nj is the number of observations

available at the jth analysis; see Example 1 for an example of a group sequential

stopping rule. Let X1,X2, . . . be i.i.d. random variables with unknown mean θ
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and known variance 1, and suppose the stopping rule τ depends on the sam-

ple sums Sn =
∑n

i=1 Xi up to the stopping time. In the notation of Section 2,

X = (X1, . . . ,Xτ , τ) and R(X, θ) =
√

τ(X̄τ − θ). If Xi are assumed to be stan-

dard normal, then the exact confidence region (2.1) corresponds to the method

proposed by Rosner and Tsiatis (1988). An obvious way of extending Efron’s

bootstrap method to the present situation is the following. Use the empirical

distribution F̂ = F̂τ of Xi, 1 ≤ i ≤ τ, to generate X∗
1 , . . . ,X∗

τ∗ , where τ∗ is

the stopping rule τ applied to X∗
1 ,X∗

2 , . . . . Let u∗
α and u∗

1−α denote the α- and

(1−α)-quantiles of the distribution of
√

τ∗(X̄∗
τ∗ − X̄τ ). The bootstrap confidence

interval (2.2) is given by X̄τ − u∗
1−α/

√
τ ≤ µ ≤ X̄τ − u∗

α/
√

τ . As pointed out in

Chuang and Lai (1998),
√

τ(X̄τ − θ) fails to be an approximate pivot and the

bootstrap method does not work well.

The hybrid resampling method uses the location family given by θ+Ĝ as the

resampling family, where Ĝ is the empirical distribution of (Xi − X̄τ )/σ̂x,τ , 1 ≤
i ≤ τ , and σ̂2

x,τ = τ−1 ∑τ
i=1(Xi − X̄τ )

2. Let ǫ1, ǫ2, . . . be i.i.d. from Ĝ and let

Xi(θ) = θ + ǫi. Let τ(θ) be the stopping rule τ applied to X1(θ),X2(θ), . . . .

Let ûα(θ) and û1−α(θ) be the α- and (1 − α)-quantiles of the distribution of

(τ(θ))−1/2(ǫ1 + · · · + ǫτ(θ)). The hybrid confidence region (2.3) is then given by

{θ : ûα(θ) ≤ √
τ(X̄τ − θ) ≤ û1−α(θ)}. (4.1)

Chuang and Lai (1998, Tables 1 and 2) report a simulation study comparing the

exact, bootstrap, and hybrid methods for finding equal-tailed 90% confidence

intervals for the stopping rule of Example 1 with normal observations. The

hybrid method was found to yield results very similar to the exact method.

Theorem 1 of Chuang and Lai (1998) also establishes the second-order accuracy

of the hybrid confidence region (2.3), i.e. (4.1) has coverage error 2α + O(n−1
k )

under certain regularity conditions.

4.2. Bivariate confidence regions for two population means

The stopping rule τ in Section 4.1 involves the partial sum Sn of i.i.d. ran-

dom variables Xi whose common mean θ is unknown and is to be estimated

by a confidence interval. Suppose that one is also interested in estimating the

common mean µ of i.i.d. random variables Y1, Y2, . . . which are observed up to

the stopping time τ. For example, consider a group sequential trial with multiple

endpoints. Here Xi represents a linear combination of the components, repre-

senting various endpoints, of a response vector (cf. Tang, Genecco and Geller

(1989)) and Yi represents one of these components, corresponding to a given

endpoint. We shall first assume that Xi and Yi have common known variance

1. Let Ȳn = n−1 ∑n
i=1 Yi. Although

√
n(Ȳn − µ) is an asymptotic pivot having

a limiting standard normal distribution,
√

τ(Ȳτ − µ) is no longer an asymptotic
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pivot since its limiting distribution depends on θ that determines the distribution

of τ. We therefore consider a joint confidence region for both µ and θ in lieu of

a confidence interval for µ alone.

First, suppose that (Xi, Yi) is bivariate normal with known correlation co-

efficient ρ. Let V denote the covariance matrix of (Xi, Yi) having 1 as its di-

agonal entries and ρ as the other entries. In the notation of Section 2, X =

(X1, . . . ,Xτ ;Y1, . . . , Yτ ; τ) and an exact 1 − 2α confidence region for (θ, µ) is

{(θ, µ) : R(X, θ, µ) ≤ u1−2α(θ)}, (4.2)

where R(X, θ, µ) = τ(X̄τ − θ, Ȳτ − µ)V −1(X̄τ − θ, Ȳτ − µ)T , and u1−2α(θ) is the

(1−2α)-quantile of R(X, θ, µ) whose distribution depends on θ (that determines

the distribution of τ) but not on µ (since Yi − µ is standard normal).

Without assuming (Xi, Yi) to be standard normal and ρ to be known, we

can replace ρ in V by the sample correlation coefficient ρ̂τ . Letting V̂ denote the

matrix with 1 as its diagonal entries and ρ̂τ elsewhere, we modify (4.2) as

R̂(X, θ, µ) = τ(X̄τ − θ, Ȳτ − µ)V̂ −1(X̄τ − θ, Ȳτ − µ)T . (4.3)

Define the sample variances σ̂2
x,n and σ̂2

y,n as in Example 4, and let Ĝ be the empir-

ical distribution of ((Xi−X̄τ )/σ̂x,τ , (Yi−Ȳτ )/σ̂y,τ ), 1 ≤ i ≤ τ. Let (ǫ1, η1), (ǫ2, η2),

. . . be i.i.d. with common distribution Ĝ and let Xi(θ) = θ + ǫi. Let τ(θ) be the

stopping rule τ applied to X1(θ),X2(θ), . . . . Using ρ̃τ(θ) to denote the sample

correlation coefficient of the (ǫi, ηi), 1 ≤ i ≤ τ(θ), we let V̂τ(θ) denote the ma-

trix with 1 as the diagonal entries and ρ̃τ(θ) elsewhere. Defining û1−2α(θ) as the

(1 − 2α)-quantile of

(τ(θ))−1
( τ(θ)∑

i=1

ǫi,

τ(θ)∑

i=1

ηi

)
V̂ −1

τ(θ)

( τ(θ)∑

i=1

ǫi,

τ(θ)∑

i=1

ηi

)T
, (4.4)

the hybrid confidence region for (µ, θ) with nominal coverage error 2α is given

by

{(θ, µ) : R̂(X, θ, µ) ≤ û1−2α(θ)}. (4.5)

Without assuming known unit variance of Yi, we can replace V̂ in (4.3) and

V̂τ(θ) in (4.4) by

Ṽ =

(
1 ρ̂τ σ̂y,τ

ρ̂τ σ̂y,τ σ̂2
y,τ

)
, Ṽτ(θ) =

(
1 ρ̃τ(θ)σ̃η,τ(θ)

ρ̃τ(θ)σ̃η,τ(θ) σ̃2
η,τ(θ)

)
, (4.6)

where σ̃2
η,m = m−1 ∑m

i=1(ηi − η̄m)2. Let ũ1−2α(θ) be the (1−2α)-quantile of (4.4)

with V̂τ(θ) replaced by Ṽτ(θ). The hybrid confidence region in this case is

{(θ, µ) : R̃(X, θ, µ) ≤ ũ1−2α(θ)}, (4.7)
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where R̃(X, θ, µ) is defined by (4.3) with V̂ replaced by Ṽ . The confidence region

(4.7) can be inverted to yield a more explicit region as follows. Let â = τ(1 −
ρ̂2

τ )
−1, b̂ = −τ ρ̂τ/{(1 − ρ̂2

τ )σ̂y,τ}, and ĉ = τ/{(1 − ρ̂2
τ )σ̂2

y,τ}. Then R̃(X, θ, µ) =

â(X̄τ − θ)2 + 2b̂(X̄τ − θ)(Ȳτ − µ) + ĉ(Ȳτ − µ)2. For fixed θ with

(b̂2 − âĉ)(X̄τ − θ)2 + ĉũ1−α(θ) ≥ 0, (4.8)

(θ, µ) belongs to the confidence region (4.7) if µ lies in the interval

Ȳτ + b̂ĉ−1(X̄τ − θ) ± ĉ−1{(b̂2 − âĉ)(X̄τ − θ)2 + ĉũ1−α(θ)}1/2. (4.9)

In Example 5 below, we use the following algorithm to compute the hybrid con-

fidence region explicitly. First find the two values of θ < θ for which equality

holds in (4.8). Then partition the interval [θ, θ] by θ = θ1 < · · · < θk = θ. For

each θj , find the endpoints of the interval (4.9). The hybrid confidence region

(4.7) is then computed by linearly interpolating the upper endpoints to form

the upper boundary, and the lower endpoints to form the lower boundary of the

quasi-elliptical confidence region. A similar method can be used to compute the

hybrid confidence region (4.5) and the exact confidence region (4.2).

Example 5. Let (X1, Y1), (X2, Y2), . . . be independent bivariate normal with unit

variances and correlation ρ, and consider the stopping rule τ defined from the par-

tial sums of the Xi given in Example 1. A random sample {(X1, Y1), . . . , (Xτ , Yτ )}
was generated with ρ = 0.8,

√
15θ = 0.5, and µ = 0. For this sample,

√
15(X̄τ , Ȳτ )

= (0.18,−0.37), and ρ̂τ = 0.81. Figure 2 shows the 90% hybrid bivariate confi-

dence region (4.7) for
√

15(θ, µ) computed for this sample, using 21 evenly spaced

points
√

15θi in [θ, θ] to obtain the boundary of the region. Also shown in the

figure are the exact confidence region {(θ, µ) : R(X, θ, µ) ≤ u0.9(θ)} defined by

(4.2), and the naive chi-square region {(θ, µ) : R(X, θ, µ) ≤ 4.61} that assumes

R(X, θ, µ) has an approximate chi-square distribution with 2 degrees of freedom

and 90th percentile 4.61. Table 4 gives the simulated coverage errors of the hy-

brid confidence regions (4.5) and (4.7), and of the naive chi-square region, at

various values of ρ and θ. Each simulation was based on 2000 sets of simulated

data, and we computed û0.9(θ) and ũ0.9(θ) with 999 resamples. Table 4 indicates

that the two hybrid regions have coverage errors close to the nominal coverage

error but that the chi-square approximation is not appropriate even when the

true ρ and Var(Yi) are used in R(X, θ, µ).
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•

−.85 1.20−.81 1.16

−1.37

.67

√
15θ

√
15µ

Figure 2. Comparison of bivariate confidence regions for two population

means after optional stopping for a simulated data set. The true population

mean vector is
√

15(θ, µ) = (0.5, 0.0), which is indicated by •. The observed

stopped mean vector is given by
√

15(X̄τ , Ȳτ ) = (.18,−.37), which is indi-

cated by +. The dotted ellipsoid is based on the naive chi-square approxima-

tion. The confidence region drawn by the solid line is the hybrid confidence

region which does not assume Var(Yi) to be known. The exact confidence

region computed under the assumption of bivariate normality with known

correlation and variances is indicated by the broken line.

Table 4. Coverage errors in % for joint confidence regions based on 2000

simulations for two population means. The hybrid region H1 assumes both

variances to be known, whereas the hybrid region H2 allows for Yi to have

unknown variance. Also included is the region obtained by a naive chi-square

approximation. Nominal coverage errors are 10%.

ρ
√

15θ H1 H2 Chisq

0.0 0.0 10.75 10.35 13.40

0.0 0.5 9.90 10.00 13.40

0.5 0.0 9.85 10.00 12.85

0.8 0.0 9.35 9.50 12.15

0.8 0.5 10.20 10.10 13.05
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The following theorem, whose proof is similar to that of Theorem 1 of Chuang

and Lai (1998), states that the hybrid confidence regions (4.5) and (4.7) are

second-order accurate.

Theorem 1. Suppose that the stopping rule τ is of the form

τ = inf
{
nj :

nj∑

i=1

Xi ≥ γj or

nj∑

i=1

Xi ≤ λj

}
, (4.10)

in which λj < γj are real numbers and n1 < · · · < nk = n are positive integers

such that

lim inf
n→∞ (nj − nj−1)/n > 0 for 1 ≤ j ≤ k (n0 = 0). (4.11)

Suppose there exist r > 18 and C > 0 such that

E|X1 − µ|r ≤ C, E|Y1 − θ|r ≤ C and lim sup
|t|+|s|→∞

|E exp{
√
−1(tX1 + sY1)}| < 1.

(4.12)

Then both (4.5) and (4.7) have coverage probability 1 − 2α + O(n−1).

The hybrid confidence region (4.7) assumes the variance of Xi to be known.

If σ2
x = Var(Xi) is unknown, then the stopping rule would also involve some

estimate of σ2
x instead of being based only on the partial sums of Xi. In this

case the hybrid resampling method can be used to construct a bivariate confi-

dence region for (θ/σx, µ). More generally, we can extend the hybrid resampling

method to construct bivariate confidence regions for (g(µ1, . . . , µk), h(µ1, . . . , µk))

for smooth functions of means µ1, . . . , µk, where we replace
∑nj

i=1 Xi in (4.10) by

njg(X̄nj ), in which Xi are i.i.d. 1 × k vectors with common mean (µ1, . . . , µk),

and g and h are smooth real-valued functions. We can further extend the idea to

nonparametric statistics that are more general than smooth functions of sample

means. The technical details, however, are considerably more complicated and

will be treated elsewhere. Some of the issues that need to be addressed are dis-

cussed in Section 6, where the correlation coefficient is discussed as an example,

and in Chuang and Lai (1998).

5. Confidence Intervals in Possibly Nonstationary First-Order Autore-

gressive Models

We now apply the hybrid resampling method to solve the long-standing

problem of interval estimation of the autoregressive parameter in a possibly non-

stationary AR(1) model xi = θxi−1 + ǫi, where x0 = 0 and ǫi are i.i.d. with mean

0 and variance v. This Markov chain has a stationary distribution when |θ| < 1,

is a random walk when θ = 1 and has similar asymptotic behavior when θ = −1,

and is explosive in the sense that θ−nxn converges a.s. when |θ| > 1. The least
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squares estimate θ̂ of θ based on x1, . . . , xn is given by
∑n

i=1 xixi−1/
∑n

i=1 x2
i−1

and is well known to be consistent. Moreover, v̂ = n−1 ∑n
i=1(xi − θ̂xi−1)

2 is a

consistent estimate of v. In the notation of Section 2, let X = (x1, . . . , xn) and

R(X, θ) = (θ̂ − θ)/σ̂, where σ̂2 = v̂/
∑n

i=1 x2
i−1. The following lemma, which fol-

lows from the results of White (1958) and Anderson (1959), shows that R(X, θ)

has a limiting distribution as n → ∞ in all cases.

Lemma 3.

(i) If |θ| < 1, the limiting distribution of R(X, θ) is standard normal and

n−1 ∑n
i=1 x2

i−1 → v/(1 − θ2) a.s.

(ii) If |θ| = 1, R(X, θ) converges in distribution to 1
2 (B2

1 − 1)/(
∫ 1
0 B2

udu)1/2,

where Bt is standard Brownian motion, and n−2 ∑n
i=1 x2

i−1 converges in

distribution to v
∫ 1
0 B2

t dt.

(iii) Suppose |θ| > 1. Then R(X, θ) converges in distribution to v−1/2(1 −
θ−2)1/2Y Z/|Z|, which is standard normal if the ǫi are normal, where Y and

Z are independent and have the same distribution as
∑∞

i=0 θ−iǫi+1. More-

over, |θ|−2(n−1) ∑n
i=1 x2

i−1 → (
∑∞

i=0 θ−iǫi+1)
2/(θ2 − 1) a.s.

In view of Lemma 3, it is difficult to apply standard large-sample techniques

to construct confidence intervals for θ unless it is known a priori that |θ| < 1.

When |θ| < 1, Bose (1988) proposed to use the bootstrap confidence interval (2.2)

with the preceding choice of the root R(X, θ). Let ǫ̂i = xi − θ̂xi−1, 1 ≤ i ≤ n,

and define the centered residuals to be ǫ̃i = ǫ̂i − n−1 ∑n
i=1 ǫ̂i. Consider x∗

i =

θ̂x∗
i−1 + ǫ∗i , where ǫ∗i are i.i.d. from the empirical distribution Ĝ of ǫ̃i, 1 ≤ i ≤ n.

Let X∗ = (x∗
1, . . . , x

∗
n) and let u∗

α be the α-quantile of R(X∗, θ̂). The bootstrap-t

confidence interval (2.2) for θ is θ̂ − σ̂u∗
1−α ≤ θ ≤ θ̂ − σ̂u∗

α. Bose (1988) showed

that the maximum difference of the bootstrap distribution function and the actual

distribution function of R(X, θ) is of the order op(n
−1/2), and Fuh and Lai (1998)

recently sharpened this result to yield the Op(n
−1) order.

When |θ| = 1, Basawa et al. (1991) showed that the bootstrap method is not

asymptotically valid and that the bootstrap distribution function converges to a

random distribution function when ǫ∗n are generated from a normal distribution

(assuming ǫn are normal). To address the difficulties of the bootstrap method,

Heimann and Kreiss (1996) proposed an m-out-of-n bootstrap, with m → ∞
but m = o(n) as n → ∞. Their idea is to resample ǫ∗1, . . . , ǫ

∗
m from Ĝ and to

form x∗
j = θ̂x∗

j−1 + ǫ∗j , 1 ≤ j ≤ m, for computing the least squares estimate θ̂∗m =∑m
i=1 x∗

i x
∗
i−1/

∑m
i=1 x∗2

i . They showed that the difference between the distribution

function of (
∑m

i=1 x∗
i )

1/2(θ̂∗m− θ̂m) and that of R(X, θ) converges in probability to

0 for any fixed value of θ. However, no rates of convergence have been established

when |θ| ≥ 1, and the problem of constructing confidence intervals for θ without

a priori stability assumptions has been relatively unexplored.
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The hybrid resampling approach provides a unified solution to this problem,

irrespective of the (unknown) value of θ. Consider the resampling family {F̂θ}
given by xi(θ) = θxi−1(θ) + ǫ∗i , 1 ≤ i ≤ n, where x0(θ) = 0 and ǫ∗1, . . . , ǫ

∗
n are

i.i.d. from Ĝ. The approximate equal-tailed 1−2α confidence region (2.3) is then

given by

{θ : ûα(θ) < (θ̂ − θ)/σ̂ < û1−α(θ)}, (5.1)

which is the set of θ0 for which the “bootstrap test” using the test statistic

(θ̂ − θ0)/σ̂ accepts the null hypothesis θ = θ0. When θ0 = 1, Ferreti and Romo

(1996) considered such bootstrap tests and showed that ûα(1) and û1−α(1) indeed

converge in probability to uα(1) and u1−α(1) but provided no convergence rates.

The following theorem gives the convergence rates and thereby establishes the

second-order correctness of the hybrid confidence region (5.1).

Theorem 2. Let θ0 denote the true value of the autoregressive parameter.

(i) Suppose |θ0| < 1, E|ǫ1|6 < ∞ and lim sup|t|+|s|→∞ |E exp{
√
−1(tǫ1 +sǫ21)}| <

1. Then for any K > 0,

max
|θ−θ̂|≤Kn−1/2

|ûα(θ) − uα(θ)| = Op(n
−1).

(ii) For any K > 0,

max
|θ−θ̂|≤Kn−1

|ûα(θ) − uα(θ)| = Op(n
−1), if |θ0| = 1,

max
|θ−θ̂|≤K|θ0|−n

|ûα(θ) − uα(θ)| = Op(n
−1/2|θ0|−n), if |θ0| > 1.

Similar results hold for û1−α(θ) − u1−α(θ).

Suppose the true quantiles uα(θ) and u1−α(θ) are known for every θ. Then

an exact equal-tailed 1 − 2α confidence region for θ is

{θ : uα(θ) < (θ̂ − θ)/σ̂ < u1−α(θ)}. (5.2)

In the stable case |θ0| < 1, it follows from Lemma 3(i) that for all sufficiently

large K,

lim
n→∞

P{(5.2) is contained in the interval (θ̂ −Kn−1/2, θ̂ + Kn−1/2)} = 1. (5.3)

Combining this result with Theorem 2(i) (which follows from the Edgeworth

expansions for the distributions of (θ̂ − θ)/σ̂ under the models xi = θxi−1 + ǫi

and xi(θ) = θxi−1(θ) + ǫ∗i given in Fuh and Lai (1998)) establishes the second-

order correctness of (5.1) in the stable case. When |θ0| = 1, it follows from

Theorem 1 of Chan and Wei (1987) that (5.3) still holds with ±Kn−1/2 replaced
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by ±Kn−1 for sufficiently large K. Moreover when |θ0| > 1, (5.3) still holds

with ±Kn−1/2 replaced by ±K|θ0|−n, in view of Lemma 3(iii). The proof of

Theorem 2(ii) uses of a Skorohod-type embedding that puts ǫi and ǫ∗i on the same

probability space to analyze the difference between (
∑n

i=1 xi−1ǫi,
∑n

i=1 x2
i−1) and

(
∑n

i=1 xi−1(θ)ǫ∗i ,
∑n

i=1 x2
i−1(θ)). The details are quite lengthy and technical and

will be presented elsewhere.

Table 5 summarizes a simulation study comparing the performance of the

bootstrap-t and hybrid confidence intervals for θ and also the normal interval

given by θ̂ ± z1−ασ̂. The nominal coverage error is α = 5% for both upper and

lower confidence limits. The length of the time series is n = 30 for each case, and

the simulated coverage errors are based on 2000 time series. For the bootstrap

and hybrid methods, 999 resamples were used, and the secant method described

at the end of Section 2 was used to obtain the hybrid interval. Standard normal

ǫi were used in the simulations. As Table 5 indicates, the hybrid confidence

interval has excellent coverage properties for all values of θ, whereas the actual

coverage errors of the normal and bootstrap intervals may be quite far from the

nominal coverage errors.

Table 5. Coverage errors and mean values for lower (L) and upper (U) con-
fidence limits based on 2000 simulations for autoregressive parameter. The
errors are standard normal, and the length of the time series is 30. Nominal
coverage errors are 5%.

Coverage Errors (in %) Average Values
Normal Bootstrap Hybrid Normal Bootstrap Hybrid

θ L U L U L U L U L U L U
0.00 5.60 5.40 5.70 5.85 5.40 5.45 -0.30 0.30 -0.30 0.31 -0.31 0.32

0.50 4.15 6.40 5.75 5.40 5.20 5.10 0.21 0.74 0.22 0.76 0.21 0.77

0.80 3.80 6.70 7.20 5.45 6.10 4.65 0.56 0.95 0.58 0.98 0.57 1.00

0.95 3.60 9.30 5.15 6.65 5.45 5.50 0.76 1.03 0.78 1.06 0.77 1.08

1.00 3.75 11.05 5.40 7.50 5.90 5.25 0.84 1.06 0.85 1.08 0.85 1.10
1.05 3.75 15.60 5.35 8.25 5.85 5.20 0.93 1.08 0.94 1.10 0.94 1.11

1.20 4.30 8.00 4.10 4.40 4.30 4.75 1.18 1.21 1.18 1.21 1.19 1.21

1.50 5.90 6.15 4.95 5.05 5.20 5.15 1.50 1.50 1.50 1.50 1.50 1.50

6. Choice of Resampling Family in Nonparametric Models

We have discussed in Section 3.2 the choice of the root in nonparametric

models and applied this choice to construct bootstrap confidence regions (2.2)

in cases where (θ̂ − θ)/σ̂ is an asymptotic pivot. For situations where (θ̂ − θ)/σ̂

is not an asymptotic pivot, we use the hybrid resampling method to overcome

the difficulties with the bootstrap method. For the population mean problem

in Section 4 and the regression problem in Section 5, the resampling family
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{F̂θ} in the hybrid resampling method is defined by using the distribution of

the residuals and the location/regression parameter θ, from which the simulated

data are generated. For more complicated nonparametric problems, under the

assumption that (Xi1, . . . ,Xip) in Section 2 are i.i.d. random vectors, a natural

choice of F̂θ0
is the nonparametric maximum likelihood estimate of F subject to

the constraint θ(F ) = θ0.

A simpler alternative that is asymptotically equivalent to the computation-

ally intensive constrained nonparametric maximum likelihood estimate of F has

been developed by Efron (1981, 1987) when p = 1. He proposed a one-parameter

“tilting family” of distributions Ĥδ such that

Ĥδ({Xi}) = exp(δUi(F̂ ))/
n∑

j=1

exp(δUj(F̂ )), i = 1, . . . , n, (6.1)

where Ui(F̂ ) is defined in (3.14). Efron (1981) proposed to use (6.1) in his

“nonparametric tilting method” to construct confidence intervals for the mean θ

of F, for which Ui(F̂ ) = Xi − X̄n. Let θ̂δ be the mean of the distribution Ĥδ in

(6.1) with Ui(F̂ ) = Xi − X̄n. Then the tilted upper 1 − α confidence bound for

the mean θ is given by θδ′ , with δ′ being the value of δ for which

P (X̄∗
n ≤ X̄n|Ĥδ′ , X̄n) = α, (6.2)

and the lower endpoint of the tilted interval can be expressed similarly. Let GF

denote the distribution of θ̂ (= X̄n in the present case) under F , as in Section

3.2. Then

G
Ĥδ

(X̄n) = P (X̄∗
n ≤ X̄n|Ĥδ, X̄n) = E

{
enδX̄∗

n

(
n−1

n∑

j=1

eδX∗

j

)−n
I{X̄∗

n<X̄n}|F̂
}
.

(6.3)

An attractive feature of the tilting family (6.1) is that we need only generate

X∗
1 , . . . ,X∗

n from F̂ and then apply (6.3) to evaluate the probability under Ĥδ,

without the need to resample again under Ĥδ for each trial value of δ to solve

(6.2). Since the left-hand side of (6.2) is decreasing and continuous in δ and

converges to 0 as δ → ∞, as can be seen from (6.3), (6.2) has a unique solution

δ′. For more general functionals θ(F ), the analogue of the left-hand side of (6.2) is

G
Ĥδ

(θ̂), which need not be monotone in δ. DiCiccio and Romano (1990) therefore

defined the tilted upper confidence bound for θ(F ) to be sup{θ(Ĥδ) : G
Ĥδ

(θ) ≥
α} and the corresponding lower confidence bound for θ(F ) to be inf{θ(Ĥδ) :

G
Ĥδ

(θ) ≤ 1 − α}.
The tilting family (6.1) provides a choice of the resampling family for the

hybrid resampling method. Specifically, let F̂
θ(Ĥδ)

= Ĥδ. With this choice of
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the resampling family, if we restrict the values of θ in the hybrid confidence set

(2.3) to {θ(Ĥδ) : −∞ < δ < ∞} and choose the root to be R(X, θ) = θ̂, then

the supremum and infimum of the set (2.3) are the same as the Efron-DiCiccio-

Romano tilted upper and lower confidence bounds. Under certain regularity

conditions, DiCiccio and Romano (1990) showed that these confidence bounds

are second-order accurate for smooth functions of mean vectors, and that second-

order accuracy also holds if instead of (6.1) we choose F̂θ0
to be the nonparametric

maximum likelihood estimate of F subject to the constraint θ(F ) = θ0.

In Section 3.1 dealing with parametric models, quadratic approximation to

the log likelihood ratio statistic l(θ) when θ is near θ̂ has led us to the root

(3.8) and to the resampling family (3.10). The bootstrap corresponds to taking

θl = θu = θ̂ in (3.10). For nonparametric problems, an analogue of (3.9) and

(3.10) is (6.1) with δ = n−1(θ − θ̂)/σ̂2, which leads to the resampling family

F̂θ =





Ĥ
n−1(θ−θ̂)/σ̂2

, if θl ≤ θ ≤ θu,

Ĥ
n−1(θu−θ̂)/σ̂2

, if θ > θu,

Ĥ
n−1(θl−θ̂)/σ̂2

, if θ < θl,

(6.4)

where θl = θ̂ − σ̂M̃ , θu = θ̂ + σ̂M̃ and σ̂ is defined in (3.14). Since θ(Ĥδ) =

θ(F̂ ) + n−1δ
∑n

i=1 U2
i (F̂ ) + O(δ2) = θ̂ + nδσ̂2 + O(δ2), for θ0 near θ̂ the equa-

tion θ(Ĥδ) = θ0 has solution δ
.
= n−1(θ0 − θ̂)/σ̂2; see Davison and Hinkley

(1997, p.452) and DiCiccio and Romano (1990, p.72, in which σ̂2
n = nσ̂2). The

resampling family (6.4) is based on this linear approximation to the equation

θ(Ĥδ) = θ0. Alternatively we can solve this equation numerically for δl ≤ δ ≤ δu,

where δl = −(nσ̂)−1M̃ and δu = (nσ̂)−1M̃ by using, for example, Brent’s method

(cf. Press, Teukolsky, Vetterling and Flannery (1992, Section 9.3)). Letting

θ̃l = θ(δl) and θ̃u = θ(δu), this yields the alternative resampling family

F̂θ =





Ĥδ if θ̃l ≤ θ ≤ θ̃u, where θ(Ĥδ) = θ,

Ĥδu if θ > θ̃u,

Ĥδl if θ < θ̃l.

(6.5)

The n appearing in (6.4) (and in (6.5) via the θ̃l and θ̃u) refers to the sample

size, which can be a random variable, as in the case of group sequential trials.

In general, for a resampling family {F̂θ} to yield second-order accuracy of the

associated hybrid confidence region (2.3), we need F̂θ(F ) to differ from the true

distribution F by Op(n
−1/2). As noted by Efron and Tibshirani (1993, p.322),

it is desirable to have in addition to accuracy the “correctness” of a confidence

limit, which refers to how closely the confidence limit matches an ideal or exact

confidence limit. To achieve second-order correctness for the hybrid confidence
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region (2.3) for samples of fixed size n, we require F̂θ to differ from F by Op(n
−1/2)

not only at θ = θ̂ by also at the other values of θ that are included in (2.3). This

explains why we use extrapolation beyond the interval [θl, θu] in (6.4) to ensure

that the F̂θ thus defined will not give spurious estimates of the quantiles ûα(θ)

and û1−α(θ).

A disadvantage of the tilting family (6.1) is that it is very sensitive to in-

fluential observations. Whereas F̂ puts mass 1/n at each Xi, Ĥδ can put most

of its mass at a few influential observations. Consequently, such Ĥδ would differ

substantially from F̂ and not yield reasonably accurate and correct confidence

limits, in view of the discussion of the preceding paragraph.

Example 6. Consider interval estimation of the correlation coefficient for the

bivariate lognormal distribution with the correlation (1 +
√

e)−1 = 0.3775 used

in the simulation study in Example 4. Because Xi and Yi are exponentials of

normal variables, they tend to have a few outlying values, showing a pattern as

in Figure 3 for a typical data set of 30 pairs (Xi, Yi). With Ui defined by (3.22),

the standardized Ũi = Ui/(n
−1 ∑n

i=1 U2
i )1/2 of six outlying points in Figure 3 are

indicated. These six points include three with the largest |Ũi| values, whose sum

of U2
i values makes up about 88% of

∑n
i=1 U2

i . In particular the most influential

point, labeled A, contributes 59% to
∑n

i=1 U2
i . The sample correlation coefficient

is 0.42 with all 30 points, but increases to 0.62 when point A is omitted. The

infinitesimal jackknife standard error estimate σ̂ for the data set is 0.18. The

lower and upper 5th percentiles of (θ̂∗ − θ̂)/σ̂∗ are −2.02 and 6.29 based on

999 resamples, so the bootstrap-t interval is [−0.71, 0.78]. The lower and upper

5th percentiles of the sampling distribution of t(θ) obtained using 999 samples

from the true lognormal distribution are −2.88 and 3.83. Thus the bootstrap

distribution of the Studentized root has a much heavier right tail than the actual

sampling distribution, which translates into a bootstrap-t interval that extends

too far to the left. For the modified-t root with M = 2, u∗
0.05 and u∗

0.95 are given

by −1.70 and 2.17, which are quite close to the lower and upper 5th percentiles

of the modified-t root under the true lognormal distribution, given by −1.86

and 1.96 respectively. The bootstrap confidence region based on the modified-t

root is [0.03, 0.73] ∪ (0.78, 0.83], where 0.73 = θ̂ − u∗
0.05σ̂, 0.78 = θ̂ + 2σ̂, 0.83 =

U′ and 0.03 = L′; see (3.20). When the bootstrap confidence region based on

the modified-t root is further refined by using the resampling family (6.4) with

M̃ = 2, we obtain the hybrid interval [0.15, 0.71]. The lower limit of the hybrid

interval is the correlation coefficient of Ĥ−0.3, which puts about 11% of its mass

at point A, in comparison with 3.3% that F̂ puts at each of the 30 points. The

upper limit of the hybrid interval is the correlation coefficient of Ĥ0.38, which

puts about 8% of its mass at point B. However, without extrapolation beyond



28 CHIN-SHAN CHUANG AND TZE LEUNG LAI

[θl, θu] as in (6.4), we have not been able to apply hybrid resampling to refine

the bootstrap-t interval that uses the Studentized root instead of the modified-t

root. In particular, it is basically impossible to reweight the data so that the

correlation coefficient of Ĥδ, for some δ, is equal to −0.71, which is the lower

limit of the bootstrap-t interval.
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Figure 3. Scatterplot of a simulated data set of size 30 from a lognormal

distribution with correlation equal to (1 +
√

e)−1. Six outlying points with

their standardized influences are marked in the plot.

We next illustrate how the resampling family (6.4) or (6.5) can be used

to construct hybrid confidence regions following sequential tests by considering

interval estimation of the correlation coefficient θ of a bivariate vector (X,Y )

after a group sequential test of independence.

Example 7. Using the same notation as in Example 4, let σ2
x = Var(Xi) and

σ2
y = Var(Yi). Under independence between Xi and Yi, the sample correlation

coefficient has the representation θ̂n = n−1 ∑n
i=1(Xi − µx)(Yi − µy)/(σxσy) +

op(n
−1/2), which behaves like an average of i.i.d. random variables with mean 0

and variance 1. Therefore we can use a group sequential test for a normal mean

with known variance to test the null hypothesis of independence between X and

Y based on the sequential sample correlation coefficients, provided the group

size is large enough to justify the normal approximation. In particular, Pocock’s

stopping rule in Example 1 leads to τ = min{n ∈ J :
√

n|θ̂n| ≥ 2.413}, and under

the null hypothesis of independence, P{maxn∈J
√

n|θ̂n| ≥ 2.413} .
= 0.05. In the

notation of Section 2, X = (X1, Y1, . . . ,Xτ , Yτ , τ) and we let F̂ be the empirical

distribution of {(X1, Y1), . . . , (Xτ , Yτ )}. Defining Ui by (3.22) (with n replaced
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by τ), σ̂2(τ) = τ−2 ∑τ
i=1 U2

i , and letting σ̂2
b (τ) be the variance of θ̂∗τ generated

from the distribution F̂τ with the sample size fixed at τ , we consider the t∗-root,

introduced in the last paragraph of Section 3.2, of the form

R(X, θ) =

{
(θ̂τ − θ)/σ̂(τ) if |θ̂τ − θ| ≤ Mσ̂(τ),

(θ̂τ − θ)/σ̂b(τ) if |θ̂τ − θ| > Mσ̂(τ).
(6.6)

Define Ĥδ by (6.1) with n replaced by τ , and replace (n, σ̂, θ̂) by (τ, σ̂(τ), θ̂τ )

in the resampling family (6.4) or (6.5). With this choice for X, R(X, θ) and

F̂θ, the hybrid resampling method is used to construct an equal-tailed 1 − 2α

confidence region for the correlation coefficient following a group sequential test

of independence.

In particular, suppose (X,Y ) is bivariate normal with correlation coefficient

θ = (15)−1/2(0.5). If one ignores the effects of optional stopping, one can use

Fisher’s transformation to construct a naive parametric confidence interval for θ

in the present bivariate normal case. We performed a simulation study based on

1000 replications, for a nominal coverage error of 5%, to compare this interval

with the nonparametric hybrid confidence interval based on the root (6.6). The

hybrid interval was computed by using the secant method at the end of Section

2. We set M = 2 and M̃ = 1.5 and used bootstrap resample sizes of 999,

and 100 for an additional layer of bootstrapping to compute σ̂b(τ). The naive

parametric interval for the 1000 replications averages to be [−.06, .33], compared

to [−.07, .32] for the hybrid method using the resampling family (6.4). The

simulated coverage errors for the lower and upper endpoints of the hybrid interval

are 5.5% and 5.7%, while those of the other interval are 9% and 5.5%. In the

same simulations, we also computed the hybrid confidence limits using (6.5) as

the resampling family. The average hybrid confidence limits are the same (to two

decimal places) as those using (6.4) instead, and the simulated coverage errors

for the lower and upper limits are 5.9% and 5.8%.

7. Conclusion

As pointed out in Section 2, the hybrid resampling method generalizes the

bootstrap method by incorporating a resampling family {F̂θ}, instead of using a

single estimate of F as in the bootstrap method. Young (1994, p.385) has com-

mented that choosing a bootstrap procedure involves not only choice of the root

to be bootstrapped but also choice of the estimate of F to resample from, which

can be a difficult issue for the general user. Sections 3.1, 4, 5 and 6 above have

discussed in detail the choice of the resampling family, while Sections 3.1 and 3.2

address the issue of choosing the root in parametric and nonparametric models.

The root (3.8) or (3.15) is closely related to (parametric or empirical) likelihood
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ratio statistics which are, however, often difficult to compute repeatedly in simu-

lating the distribution of the root. Analogously, the resampling family (3.10) or
(6.4) is used to circumvent the computational difficulties of constrained maximum

likelihood estimates of F. Instead of relying on normal/chi-square approximations

or higher-order asymptotics in (parametric or empirical) likelihood confidence re-

gions, the hybrid resampling approach simulates the sampling distribution of the
root under the resampling family. It can therefore handle complex situations

where such approximations fail, as in estimation following group sequential tests

or in possibly non-ergodic autoregressive models and branching processes, where

the bootstrap also fails. If the likelihood ratio statistic is readily computable,
and if accurate and not too complicated analytic approximations to its sampling

distribution are available for the problem at hand, then perhaps the most natu-

ral and attractive way to mimic (2.1) is a likelihood confidence region, which is

in fact a special case of the hybrid confidence region {θ : R(X, θ) ≤ û1−2α(θ)}
with R(X, θ) chosen as the log likelihood ratio statistic and û1−2α(θ) given by

an analytic approximation instead of by simulations.

Influential observations are troublesome for the bootstrap and other resam-
pling methods. Note the deterioration in the coverage accuracy in Table 2 for the

lognormal case compared to the other cases. When highly influential observations

are present, there are inherent difficulties in estimating the sampling distribution

of θ(F̂ ), on which the bootstrap and the more general hybrid resampling meth-
ods are based. The need to think critically about the answers provided by the

bootstrap method in these situations has been pointed out by Efron (1992). On

the other hand, for data of the type plotted in Figure 3, which shows a highly

unstable correlation pattern between X and Y , it is questionable whether the
correlation coefficient has any value in describing the underlying bivariate dis-

tribution, and therefore interval or point estimates of the correlation coefficient

would be of little practical relevance for such data. In this connection, the family

F in Section 2 for nonparametric problems should satisfy certain regularity con-
ditions related to θ(F ) for the bootstrap and hybrid resampling methods to work.

For the case where θ(F ) is the mean of a univariate distribution F, Bahadur and

Savage (1956) have shown that if F is a convex family of distributions having

finite means such that {θ(F ) : F ∈ F} is the whole real line, and if I is a confi-
dence set such that PF {θ(F ) ∈ I} ≥ 1−α for all F ∈ F , then PF {x ∈ I} ≥ 1−α

for all x ∈ R and F ∈ F . This difficulty arises because θ(F ) is sensitive to the

tails of F ∈ F , and can be circumvented by putting further restrictions on F (for

example, that the support of every F ∈ F lies in a given compact set). Indeed,
for a heavy-tailed distribution F, the mean is not a useful summary of F and one

should use other measures of location that are more outlier-resistant. When θ(F )

is robust for F ∈ F , we have shown good performance of the hybrid resampling

approach for constructing confidence intervals.
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Appendix

Proof of Lemma 1. Theorem 2.1 of Bhat and Adke (1981) shows that θ̂

and λ̂ are strongly consistent estimates of θ and λ. Since l′(θ̂) = 0 and l′′(θ̂)/2 =

Nn−1/θ̂, it then follows that l±(θ) = t(θ)+op(1), where t(θ)=(θ̂−θ)/(θ̂/Nn−1)
1/2.

The proof of Lemma 2.3 in Bhat and Adke (1981) shows that if θ �= 1, then t(θ)

has a limiting standard normal distribution. Suppose that θ = 1. Then

t(1) = {
n∑

i=1

(Xi − ψi) − Nn−1}/(θ̂Nn−1)
1/2 = (Xn − x0 −

n∑

i=1

ψi)/(θ̂Nn−1)
1/2.

Since (n−1Xn, n−2Nn−1, n
−1 ∑n

i=1 ψi) converges in distribution to (Y1,
∫ 1
0 Ytdt, λ)

(cf. Wei and Winnicki (1989, Remark 2.4)) and since θ̂ → θ =1 and λ̂ → λ a.s.,

it follows from the continuous mapping theorem that t(1) converges to (Y1 −
λ)/(

∫ 1
0 Ytdt)1/2 in distribution.

Proof of Lemma 2. To prove (i), note that the conditional distribution of

ξ1, ξ2, . . . , ψ1, . . . , ψn given nλ̂ is the same as the distribution of i.i.d. Poisson ξ∗i
having mean θ and independent of (ψ∗

1 , . . . , ψ
∗
n) that has the M(nλ̂;n−1, . . . , n−1)

distribution. Let l±∗ (θ) denote the signed root of the log likelihood ratio statistic

based on ξ∗1 , . . . , ξ∗N∗

n−1

, ψ∗
1 , . . . , ψ∗

n. Since P{l±∗ (θ)+n−1U ≤ ûα(θ)|λ̂} = α, it then

follows that

P{R(X, θ) ≤ ûα(θ)} = E[P{l±∗ (θ) + n−1U ≤ ûα(θ)|λ̂}] = α.

Similarly, P{l±∗ (θ)+n−1U ≥ û1−α(θ)|λ̂} = α. To prove (ii), condition on (ψ1, . . .,

ψn) instead of on λ̂ alone.
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COMMENT

Michael Woodroofe and Ruby C. Weng

University of Michigan

Professors Chuang and Lai are to be congratulated for their interesting sug-

gestions. The hybrid approach is a very general one, applicable to both para-

metric and non-parametric problems, to non-ergodic models, and to irregular

problems (though the authors do not emphasize the latter). It is also computa-

tionally intensive and can be difficult to implement. To paraphrase Efron (1979)

and Tukey, it seems powerful enough to blow the head off a problem, but it may
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leave a bit of a mess. Here we will compare the hybrid method with an approach

based on asymptotic expansions, with special reference to the group sequential

example. By way of contrast, expansions often require highly structured models,

with some independence and/or arcane technical conditions; but they are much

simpler, where applicable. In many cases expansions may by used to produce an

approximate pivot from which confidence intervals are easily identified.

To date there has been relatively little work on using asymptotic expansions

to set confidence intervals after group sequential tests. In principle expansions

should work provided that there are enough groups and a believable parametric

model. In practice, expansions may work better when the stopping boundaries

consist of straight lines. These points are illustrated by Weng (1999) and Weng

and Woodroofe (2000) in the context of a group sequential test for comparing

two Poisson means. A triangular test is considered below. As will be seen the

number of potential groups is an important design parameter, and we may ask:

how many groups are needed for expansions to produce reliable approximations?

As in the paper, suppose that X1,X2, . . . are i.i.d. with unknown mean θ

and variance one, and that there are K potential groups of size m each. Let

N = Km, J = {km : k = 1, . . . ,K}, and Sn = X1 + · · ·+ Xn. Consider stopping

times of the form

τ = min{n ∈ J : ng(
Sn

n
) ≥ c}, (1)

where g is a real valued function for which g ≥ δ := c/N and c is chosen to

control error probabilities. Example 1 in the paper is of the form with K = 5,

m = 15, c = (2.413)2 , and g(x) = max(δ, x2). For m = 1 and a stopping time of

the form (1), Woodroofe (1992) found the following:

R =
√

τ(X̄τ − θ)

is approximately normal with mean

µ =
1√
c
(
√

g)′(θ),

where ′ denotes derivative, and

Z =
R − µ̂√
1 + µ̂2

is approximately standard normal to order o(1/c) in the very weak sense. See

also Woodroofe and Coad (1997). Thus, Z serves as an approximate pivot. It is

important here that only one derivative is needed for g, since many of the more

popular choices only have one derivative.
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Of course, the group sequenctial problem may be reduced to the case m = 1

by letting X̃k = [Xm(k−1)+1 + · · ·+ Xmk]/
√

m for k = 1, 2, . . .. Then θ, g, and c,

are replaced by θ̃ =
√

mθ, g̃(x) =
√

mg(x/
√

m), and c̃ = c/
√

m. This reduction

has some simple consequences. First, normality may be less of an issue, since

the X̃k are sums, and especially so if the original Xk were differences between

reponses to treatments and controls. Key features of the reduced problem are the

horizon K (the number of groups) and the size of θ̃. However if |θ̃| is very big, the

procedure is likely to stop after the first group and the sequential nature of the

problm is lost. So, we are led to a reduced problem with (at least, approximately)

normal data, moderate values of θ̃, and a small horizon.

Do the expansions work in this context? They do not work very well for

the repeated significance tests in Example 1 of the paper, even for m = 1 or,

equivalently, a large horizon. With large horizons, however, expansion work very

well for triangular tests in which g(x) = δ + |x| and Nδ = c. In a simulation

experiment with m = 1, K = 100, θ = 0(.25)1.5 and 10,000 replications, the

simulated distributions of Z were not significantly different from the standard

normal, as judged by the Kolmogorov Smirnov Test with α = .05. If the number

of groups is decreased to five, then the normal approximation to the distribution

of Z degenerates, especially in the central part of the distribution. In effect, µ̂

overestimates the mean of R, leaving Z with a negative mean. A plausible reason

for this is that the derivations in Woodroofe (1992) neglect the excess over the

boundary. To some extent, this can be recovered by replacing c with c + .583, as

in Siegmund (1985, Section 3.5). This change improves the approximations, but

still leaves Z with a negative mean. This may be seen in Table 1 below which

reports simulated values of Pθ{Z ≤ −1.645} and Pθ{Z ≥ 1.645} for K = 5,

K = 10, and selected values of θ. Also reported are Monte Carlo estimates

of Eθ(Z),
√

Eθ(Z2), the power Pθ{Sτ > 0}, and the expected number of groups

Eθ(τ/m). For five groups, the approximations appear to be slightly conservative,

with one exception (remember that we are doing multiple comparisons here). For

ten groups, the approximations are less conservative, and the overall agreement

seems better.

Robustness with respect to the normality assumption may also be investi-

gated by simulation. We compared our approximations, derived assuming nor-

mality, to simulations from two non-normal distributions, the centered exponen-

tial distribution considered in the paper and a bilateral exponential distribution.

The exponential is very different from the normal, and the agreement between the

theoretical and simulated values was generally worse than in the normal case and

much worse for five groups. However, agreement with the bilateral exponential

simulations was very comparable to that reported in Table 1.
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Table 1. Group Sequential.

Normal Data

K = 5, c̃ = 3.8702

θ̃ Mean RMSQ Lower Upper Total Power ASN

0.00 0.0005 0.9761 0.0507 0.0472 0.0979 0.5043 3.7729

0.25 −0.0107 0.9861 0.0485 0.0435 0.0920 0.7014 3.6718

0.50 −0.0143 0.9953 0.0475 0.0433 0.0908 0.8569 3.4340

1.00 −0.0284 0.9967 0.0550 0.0467 0.1017 0.9830 2.8007

1.50 −0.0373 1.0102 0.0561 0.0579 0.1140 0.9991 2.3098

2.00 −0.0363 1.0264 0.0498 0.0484 0.0982 1.0000 1.9864

2.50 −0.0219 1.0328 0.0594 0.0430 0.1024 1.0000 1.7574

3.00 −0.0069 1.0112 0.0658 0.0415 0.1073 1.0000 1.5427

4.00 −0.0296 0.9456 0.0482 0.0420 0.0902 1.0000 1.1868

5.00 −0.0846 0.9874 0.0536 0.0427 0.0963 1.0000 1.0297

± 0.0200 0.0141 0.0044 0.0044 0.0060

K = 10, c̃ = 5.4733

θ̃ Mean RMSQ Lower Upper Total Power ASN

0.00 0.0149 0.9955 0.0463 0.0502 0.0965 0.5037 6.9434

0.25 0.0061 1.0012 0.0506 0.0546 0.1052 0.7743 6.5839

0.50 −0.0124 1.0066 0.0515 0.0443 0.0958 0.9321 5.7646

1.00 −0.0108 1.0032 0.0534 0.0535 0.1069 0.9973 4.2104

1.50 −0.0149 1.0113 0.0495 0.0453 0.0948 1.0000 3.2887

2.00 −0.0215 1.0024 0.0507 0.0404 0.0911 1.0000 2.7207

2.50 −0.0297 0.9943 0.0614 0.0451 0.1065 1.0000 2.3416

3.00 −0.0472 1.0016 0.0480 0.0559 0.1039 1.0000 2.1021

4.00 −0.0168 1.0624 0.0637 0.0507 0.1144 1.0000 1.8274

5.00 −0.0265 0.9977 0.0597 0.0444 0.1041 1.0000 1.4728

± 0.0200 0.0141 0.0044 0.0044 0.0060

Notes: Monte Carlo estimates based on 10,000 replications; ± is two standard deviations; θ̃ =
√

mθ; Mean= Eθ(Z); RMSQ=
√

Eθ(Z2); Lower= Pθ{Z ≤ −1.645}; Upper= Pθ{Z ≥ 1.645};
Total= Pθ{|Z| ≥ 1.645}; Power= Pθ{Sτ > 0}; ASN= Eθ(τ/m).

Department of Statistics, University of Michigan, Ann Arbor MI 48109, U.S.A.

E-mail: michaelw@umich.edu
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COMMENT

Peter J. Bickel

University of California, Berkeley

Chuang and Lai explore an interesting principle for constructing confidence

intervals for a real parameter θ in situations where bootstrapping a “pivot”

R(X, θ) may not work well. The method which can be viewed as an extension of

the “standard” pivot method is,

(i) To estimate the parameters other than θ on which the distribution of the

data X depends.

(ii) From these obtain estimates F̂θ of the distribution of the pivot R(X, θ) as

a function of θ.

(iii) Apply univariate inversion methods using R(X, θ) and the quantiles of F̂θ.

They give examples in three principal situations:

I. Observations from parametric models such as

(a) Branching processes with immigration and AR(1) schemes where for at least

one value of θ the MLE θ̂ does not have regular Gaussian behavior.

(b) Data obtained by sequential sampling from a parametric model.

and

II. Data X1, . . . ,Xn i.i.d. from P completely unknown where θ(P ) is “differen-

tiable”, i.e.

θ(Pn) = θ(P ) +
1

n

n∑

i=1

ψ(Xi, P ) + op(n
−1/2),

where Pn is the empirical df. and Epψ(X1, P ) = 0, Epψ
2(X1, P ) < ∞.

In the examples of I and II the difficulties arising are rather different. In

I (a) for the special values of θ (or near them) the authors claim that even the

parametric bootstrap distribution is an inconsistent estimate of the true distri-

bution of R(X, θ). In II (given unstated regularity conditions) the nonparametric

bootstrap is consistent as n → ∞ and poor behavior comes from second order

effects. Finally in I (b) there are no clear asymptotics which suggest that any

particular method is preferable.

In situation I there is an alternative which may give satisfactory behav-

ior generally. A special case is proposed by Heimann and Kreiss (1996). In

both examples considered, the pivots have the form R(X, θ) = hn(U1, . . . , Un, θ).

Here the Ui are i.i.d. with common distribution Fθ,η and hn(U1, . . . , Un, θ) =

λn(X1, . . . ,Xn)(θ̂ − θ)(1 + op(1)), where if m
n → 0, m → ∞, λm(X1,...,Xm)

λn(X1,...,Xn)
P→ 0.
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In Example 3 the Ui are (ǫi, ψi), and in Example 2 the ǫi. It follows then from

Theorem 3 of Bickel, Götze and van Zwet (1997) that the bootstrap distribu-

tion of λm(X∗
1 , . . . ,X∗

m)(θ̂∗m − θ̂n), where the θ̂∗m are based on X∗
1 , . . . ,X∗

m and

X∗
1 , . . . ,X∗

m are generated from F
θ̂,η̂

, converges to the same limit as the popula-

tion distribution of R(X, θ) if θ is true. This follows since the variational distance

between the joint distribution of (U1, . . . , Um) under (θ̂, η̂) and under (θ, η) tends

to 0 if |(θ̂, η̂)−(θ, η)| = o( 1√
m

), which is true in both the critical and supercritical

cases in Example 2 in view of Lemma 3. The choice of m is of course an issue.

A generally useful rule is studied in Bickel and Sakov (1999).

In situation I (b) it is difficult to suggest alternatives without some asymp-

totics in the sequential sampling. If the sequential sample size N is governed by

a parameter such as the cardinality of J in Example 1 and/or the magnitude of

the step (15 in Example 3), call it n, and if Nn
nα

P→ V (θ), one would expect that

the theory of the m out of n bootstrap could be extended to such situations.

In situation II alternatives to the hybrid methods are, of course, the prepivot-

ing approaches of Beran (1987) and Edgeworth-related techniques such as those

in Putter and van Zwet (1998).

Which of these is appropriate in particular situations has to be explored by

simulation coupled with theory.
Finally, a discussion of the effect of influential observations or failure of the

model for studentized estimates may be found in Bickel (1992).

Department of Statistics, University of California, Berkeley, 367 Evans Hall #3860, Berkeley

CA 94720-3860, U.S.A.

E-mail: bickel@stat.berkeley.edu

COMMENT

Peter Hall

Australian National University

This very interesting paper raises a range of important issues which, despite

the great deal of effort devoted to exploring bootstrap methods over the last two

decades, have not really been satisfactorily resolved. Some are as deceptively

simple as construction of confidence limits for a simple parameter θ, using a given
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random sample; others are substantially more complex, and include bootstrap

methods for both confidence intervals and hypothesis tests in sequential analysis.

We address only the former problem, and then only one aspect of it. As

Chuang and Lai point out, a natural approach to implementing their ingenious

hybrid method in nonparametric settings amounts to using the concept of “non-

parametric likelihood”, or NPL, employed to such good effect by Owen in his

development of empirical likelihood. In the context of the correlation coeffi-

cient, Chuang and Lai express a degree of reluctance to use NPL because of

the magnitude of the computational task. It should perhaps be noted that the

computational cost usually relates more to potential difficulties in choice of a

starting point for Newton-Raphson iteration, used to calculate the vector p of

NPL weights, than it does to sheer computing time. Algorithms such as those

developed by Qin and Lawless (1994, 1995) have removed a significant part of

the computational burden.

Nevertheless, it is our experience that the empirical likelihood approach to

constructing confidence intervals for the correlation coefficient does not perform

particularly well. While the “internal studentisation” feature of empirical like-

lihood is attractive, and avoids calculation of an explicit variance estimator, it

does not seem to substantially overcome difficulties associated with the naively

studentised statistic, i.e., with the quantity defined as t(θ) by Chuang and Lai.

In particular, empirical likelihood methods generally perform less well than the

calibrated percentile bootstrap in this problem. It seems likely that Chuang

and Lai’s hybrid method, if implemented using NPL, would perform similarly to

empirical likelihood.

Possibly these problems are due at least in part to choice of the loss function,

or divergence measure, in traditional NPL. Note that NPL aims to minimise

L0(p) ≡ −∑
i log pi, where p = (p1, . . . , pn) is a vector of multinomial weights,

subject to constraints. If we try to let pi tend to 0, for some i, then L0(p) becomes

unboundedly large. Therefore, the method strenuously resists downweighting

of specific data values. In small to moderate samples, where the “stability”

problems associated with NPL are often caused by a small number of outlying

data vectors, NPL with loss function L0(p) attempts to share the pain around

by downweighting a relatively large number of data by a relatively small amount

each, rather than by heavily downweighting the small number of outliers that

really matter.

This difficulty can be alleviated by changing the loss function to one that

permits more uneven downweighting. A range of alternatives has been discussed

recently by Baggerly (1998), Corcoran (1998) and Hall and Presnell (1999a), and

their use in connection with outliers has been addressed by Hall and Presnell

(1999b). When employed with empirical likelihood they preserve many of the
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properties of that method, in particular the fact that it satisfies Wilks’ theo-

rem (i.e., the empirical likelihood-ratio statistic has an asymptotic chi-squared

distribution).

For example, we might minimise L1(p) ≡ ∑
i pi log pi, instead of L0(p); the

former loss function permits pi to be reduced to 0 without incurring more than

a finite penalty. Using L1 rather than L0 should make NPL a little more robust

against the effects of outlying data values. These advantages may be expected

to carry through to methods that are based on NPL, for example to empirical

likelihood and to the empirical likelihood version of Chuang and Lai’s hybrid

bootstrap technique.

Centre for Mathematics and Its Applications, Australian National University, Canberra ACT

0200, Australia.
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COMMENT

Jiahua Chen and Hanfeng Chen

University of Waterloo and Bowling Green State University

The interesting idea of hybrid resampling method for the construction of

confidence intervals was first introduced by Professors Chuang and Lai in their

Biometrika paper (Chuang and Lai (1998)). The method is very effective in the

analysis of treatment effects associated with the primary and secondary endpoints

of a clinical trial whose stopping rule is specified by a group sequential test. In

this paper, Chuang and Lai explore the idea further and develop it into a general

resampling method for constructing confidence regions in nonparametric models

or multiparameter models in the presence of nuisance parameters. Professors

Chuang and Lai are to be congratulated on presenting a solution to a difficult

problem and for adding another excellent method to the statistical toolbox for

real applications.

The hybrid resampling method hybridizes the exact method of confidence

interval estimation and the bootstrap method. Chuang and Lai discuss and

illustrate the three methods, i.e., exact, bootstrap and hybrid. Following them,

we first would like to comment on the connections between the three methods.
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We start with models where a useful pivotal quantity is available. Let X be

an observation vector from the population F and θ = θ(F ) be the parameter

of interest. Suppose that R(X, θ0) is the test statistic for testing θ = θ0. Let

uα(θ0) be the α-quantile of the distribution of R(X, θ0) under θ = θ0. If R(X, θ)

is a pivotal quantity and its α-quantile is denoted by uα, then a (1 − 2α)100%

confidence region for θ is given by

{θ : uα < R(X, θ) < u1−α}.

When the distribution of R(X, θ0) under the assumption θ = θ0 depends on θ0,

the quantile uα has to be calculated for each θ0, which leads to the exact methods.

In most applications uα cannot be obtained explicitly. In these situations a

contemporary treatment is to use u∗
α to replace uα, where u∗

α is the α-quantile of

R(X∗, θ̂) under the assumption X∗ ∼ F̂ , with θ̂ = θ(F̂ ). An ordinary choice of

F̂ in a nonparametric set-up is the empirical distribution. This is the so-called

bootstrap method. Note that the replacement of uα with u∗
α is universal, disre-

garding θ0. Therefore, the bootstrap method implicitly assumes that R(X, θ) is

pivotal. If θ is a smooth function of means, R(X, θ) is often an asymptotic pivotal

quantity within a small neightborhood of the true value of θ. However, Chuang

and Lai (1998) warn us that the asymptotic pivotal property of R(X, θ) should

not be exaggerated without limit. They show that even such a benign looking

quantity as R(X, θ) =
√

τ(X̂τ − θ) fails to be pivotal asymptotically in a group

sequential setting. Blind use of the bootstrap method can lead to poor coverage

rates. It is an important contribution to reveal that u∗
α has to be determined

case by case for each θ0. Consequently the hybrid method is urgently called for.

We are impressed by the delicate choice of resampling distribution F̂θ to

determine the hybrid α-quantile ûα(θ) of R(X, θ), and the studies of various

applications. Here we would like to remark on the close connection between the

hybrid method and the empirical likelihood method.

Suppose that X = (x1, . . . , xn) is a random sample of fixed size n from a

nonparametric family. The profile maximum likelihood estimate can be a natural

choice of the hybrid resampling distribution F̂θ. Let pi = F ({Xi}) and F̃ (x) =∑
piI(xi ≤ x). For fixed θ, the profile MLE of F is to maximize

n∏

i=1

pi,

subject to
n∑

i=1

pi = 1, and θ(F̃ ) = θ.
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When the equation θ(F ) = θ can be expressed as an integral
∫

w(x, θ)dF (x) for
a specific function w, the profile MLE for pi is

p̂i =
1

n{1 + λw(xi, θ)]} , i = 1, . . . , n,

where λ is the Lagrange multiplier and solves the equation
n∑

i=1

w(xi, θ)

1 + λw(xi, θ)
= 0.

If in addition the test statistic R(X, θ) is chosen to be the log-likelihood ratio,
as given by

R(X, θ) = 2
n∑

i=1

log{1 + λw(xi, θ)},

the hybrid resampling method is exactly the empirical likelihood method (Owen
(1990)).

One striking similarity between the hybrid method and the empirical like-
lihood method is that both estimate F for each θ case by case. The empirical
likelihood method restricts itself by only considering F̂θ which satisfy the con-
ditions θ(F ) = θ for fixed θ, and maximize the empirical likelihood, while the
hybrid method offers much more flexibility than the empirical likelihood method.
One of the appealing features of the hybrid method is that it does not require
an explicit expression of the likelihood function, at least formally. Indeed, this
is the most important feature of the hybrid method and distinguishes it from
the empirical likelihood method. The example of group sequential trial discussed
in the paper demonstrates this clearly, a setting where the empirical likelihood
method does not work.

As a nonparametric method, the empirical likelihood method is best known
for its advantage of conveniently accommodating auxiliary information. See,
for example, Qin and Lawless (1994, 1995), Chen and Qin (1993), Chen and
Sitter (1999) and Chen and Chen (1999). The hybrid ressampling method enjoys
a similar advantage. One may use auxiliary information to further narrow the
range of the “resampling family”. The inference utilizing auxiliary information is
usually found to be more efficient than not using the information. We conjecture
that this is also true in the context of the hybrid resampling method, as the
choice of the resampling family may have notable impact on the average size of
the confidence intervals and coverage probabilities.
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COMMENT

Stephen M. S. Lee and G. Alastair Young

The University of Hong Kong and University of Cambridge

1. Introduction

This article by Chuang and Lai provides a very nice summary of hybrid

resampling methods and their properties. We believe that it contributes signifi-

cantly to the establishment of an effective and reliable resampling methodology

for the construction of accurate confidence intervals. While congratulating the

authors on the clarity of their discussion, which in particular provides a useful

presentation of conventional bootstrap methods as a special case of hybrid re-

sampling, we should like to remark on some specific aspects of the methodology.

2. Bootstrap Inconsistency

Of major focus in recent times has been the establishment of resampling

methods of inference which are valid, in the sense of consistency, even when

the conventional bootstrap fails, and especially for circumstances where it fails

for particular values of the model parameter, as in the first-order autoregressive

example of Section 5 of the paper. A key tool for this purpose has been the

“m out of n” bootstrap, as examined by Bickel, Götze and van Zwet (1997). Of

interest would be a detailed comparison of the properties of hybrid resampling

methods with those of the m out of n bootstrap. A potential disadvantage of

the m out of n bootstrap is that, while it may provide a consistent estimate,

the accompanying efficiency losses noted by Bickel, Götze and van Zwet (1997)

might, in examples such as those considered by Chuang and Lai, produce an

order of coverage error inferior to that given by hybrid resampling. Whether

hybrid resampling is to be generally preferred, in terms of efficiency loss or its

remedy, to the m out of n bootstrap remains an open question.

3. Choice of Root

Historically, much focus within the bootstrap literature has involved the is-

sues and benefits of studentization and/or prepivoting, the latter taken to include

ideas of bootstrap calibration and “double bootstrapping”. The paper of Chuang

and Lai presents an interesting idea on the choice of the root R(X, θ) used in

construction of the confidence interval, which we believe is practically important,

and worthy of further development. They suggest that stability of the hybrid re-

sampling approach in small to moderate sample sizes can be enhanced by use of
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a hybrid pivot R(X, θ), which depends on the value of θ, as exemplified by (3.8)

and (3.15) of the paper. As the discussion following (3.15) of the paper makes

clear, use of a modified form of pivot can be made to automatically incorporate

both studentization and prepivoting ideas. Implementation depends, however,

on interpretation, for the problem at hand, of what constitutes ‘θ̂ is not too far

from θ’. In the examples given in the paper the authors give no specific guid-

ance on how this question should be met. Some adaptive procedure, based on

empirical assessment of the stability of the hybrid root R(X, θ) seems natural.

4. Non-parametric Inference

We were particularly interested to read the authors’ recommendations, in

Section 6 of the paper, on the choice of resampling family recommended for the

hybrid resampling methodology in nonparametric problems. Their discussion

advocates a particular one-parameter tilting family of distributions, as given by

(6.1) of the paper. We have argued in Lee and Young (1999a) the advantages

of such a tilting family in the construction of nonparametric likelihood ratio

confidence intervals. The simplicity of the tilting family allows us to propose and

analyze various asymptotic and bootstrap correction techniques as a means of

producing, via the nonparametric likelihood, confidence intervals of low coverage

error, comparable to those obtained by more computationally-intensive methods

such as the iterated bootstrap. Direct comparison of these methods with hybrid

resampling methods would also be of practical interest.

5. Iterated Hybrid Resampling

Chuang and Lai discuss the possibility of applying the hybrid resampling

method to both non-pivotal and approximately pivotal R(X, θ), to achieve both

second order accuracy and correctness of the hybrid confidence region; the corre-

lation coefficient example is used to illustrate the latter. In fact, it is possible to

prove rather stronger results about the effect of using hybrid resampling, rather

than conventional bootstrap resampling. We provide here a brief description of

these results; full details will be given elsewhere.

Suppose we assume the smooth function model, where θ̂ is a smooth func-

tion of sample means, and consider construction of a (one-sided) nonparametric

confidence set for θ from the non-pivotal root R(X, θ) =
√

n(θ̂ − θ). Then the

conventional bootstrap, which resamples from the empirical distribution func-

tion of the observed sample, yields a coverage error of order O(n−1/2). Hybrid

resampling improves this error to one of order O(n−1). On the other hand, if

we proceed from the approximately pivotal root R(X, θ) = (θ̂ − θ)/σ̂, the con-

ventional bootstrap yields coverage error of order O(n−1). Hybrid resampling
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improves this to O(n−3/2), which is what is achieved by a conventional boot-

strap calibration or double bootstrap method; see Martin (1990). The latter

method provides, in our view, a satisfactory pragmatic solution to the problem

of producing nonparametric confidence intervals of low coverage error, but with

appropriate stability, which may not be enjoyed by other more sophisticated boot-

strap procedures. It will be interesting to undertake a more extensive empirical

analysis of how hybrid resampling intervals and the double bootstrap compare

in practice. Evidence presented by Chuang and Lai for the correlation coefficient

example suggests that hybrid resampling ought to be capable of challenging the

double bootstrap gold standard.

In terms of computational expense, hybrid resampling is clearly preferable

to the double bootstrap, as it only requires one level of resampling. But if we are

willing to undertake a second level of resampling, might it not be advantageous to

iterate the hybrid resampling, rather than use the conventional double bootstrap?

We sketch here the theoretical effects of iterated hybrid resampling. For sim-

plicity of presentation, consider a nonpivotal root R(X, θ), and denote by G(·, θ)

its sampling distribution, as estimated by the hybrid resampling scheme using the

tilting family (6.1) of Chuang and Lai’s paper. As we have noted, the confidence

limit based on the appropriate quantile of G(· , θ) typically has coverage error of

order O(n−1). The concept of iteration is that an improved confidence limit can

be obtained from the sampling distribution of the root R1(X, θ) = G(R(X, θ), θ).

There are two natural ways of estimating this sampling distribution: (a) by con-

ventional bootstrapping, or (b) by hybrid resampling again.

It turns out that (a) yields a confidence limit with coverage error of or-

der O(n−3/2), an improvement in order terms over the O(n−1) coverage error

obtained by the conventional double bootstrap, and of the same order as the

coverage error obtained if the sampling distribution G(· , θ) is estimated by the

conventional bootstrap, but hybrid sampling used to estimate the sampling distri-

bution of R1(X, θ). However, the benefits of hybrid resampling over conventional

bootstrapping ensure that possibility (b) yields a confidence limit with coverage

error of order O(n−2). This means that a two-level resampling analysis which

uses hybrid resampling at both levels, rather than conventional uniform resam-

pling, produces an interval whose error is reduced by two orders of magnitude.

Stated simply, single level hybrid resampling has the theoretically beneficial ef-

fect of conventional double bootstrapping, while a double level hybrid resampling

has an effect similar to a conventional “quadruple” bootstrap.

Of course, as Chuang and Lai discuss, hybrid resampling requires rather

more sophisticated computation than ordinary bootstrapping. In their notation,

the sampling distribution of the root R(X, θ) must be simulated under F̂θ, for a

set of different θ values, which amounts to weighted bootstrapping if the tilting
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family (6.1) is employed. Ordinary boostrapping just requires simulation of the

sampling distribution of R(X∗, θ̂) under the empirical distribution F̂ . Iterated

hybrid resampling would presumably involve weighted bootstrapping at a number

of selected values of θ at each resampling level, but will still be substantially less

expensive computationally than the quadruple bootstrap.

6. Monte Carlo Implementation

We should finally like to make some brief remarks on the conventional ap-

proach, as adopted in this paper, to the need for Monte Carlo simulation in the

implementation of resampling methods of inference. Traditionally, the prevailing

attitude has automatically been to seek an implementation which uses the max-

imum number of Monte Carlo samples possible, within the limitations imposed

by the need to control the overall computational burden. We have recently chal-

lenged this attitude in showing that there may sometimes be advantage, in terms

of coverage accuracy, in more careful control of the Monte Carlo simulation. In

Lee and Young (1999b) we provide an analysis of the coverage accuracy of the

calibrated percentile method confidence set, which takes into account both the

inherent bootstrap and Monte Carlo errors. We demonstrate that by suitable

control of the size of the Monte Carlo simulation we may actually reduce the

order of coverage error below that of the ‘infinite simulation’ interval. In times of

readily available computational power, it seems appropriate to think more deeply

about implementation, not just in terms of overall computational expense.
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REJOINDER

Chin-Shan Chuang and Tze Leung Lai

Although it has been two decades since Efron’s seminal paper on bootstrap

methods, there are still many unresolved problems in resampling methodology.

As noted by Bickel, Götze and van Zwet (1997), “Practical anecdotal experience

seems to support theory in the sense that the bootstrap generally gives reasonable

answers but can bomb”. Indeed, our motivation for developing hybrid resampling
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methods comes from problems in inference following group sequential tests, where

the natural analogues of bootstrap methods do not work well. We wish to thank

the discussants for their insightful and informative contributions. Bickel classifies

the examples discussed in the present paper into three cases, which we shall use in

our rejoinder to compare hybrid resampling methods with other existing methods.

Standard Case

The standard case, which corresponds to Bickel’s Case II, has been well stud-

ied in the bootstrap literature. As we have pointed out in Section 3.2, although

bootstrapping the root t(θ) leads to second-order correct and accurate confidence

limits, t(θ) may not behave well in small to moderate samples, especially when

the functional of interest is highly nonlinear, as is the case for the correlation coef-

ficient, for which bootstrap calibration of the percentile limits has been observed

to give good results in practice. One contribution of the paper is the proposal of

a new root (see (3.15) and (3.18)) which depends on a tuning parameter M and

gives results similar to bootstrap calibration of the percentile limits, but with less

computational burden. The computational burden directly relates to M , with

M = 0 corresponding to calibration and M = ∞ to using t(θ) as the root. Thus

we view bootstrap calibration as a complementary rather than as an alternative

method. As pointed out by Lee and Young, and also in Section 3.3 of our paper,

the new root is a hybrid of studentization and calibration (prepivoting) ideas,

and attempts to achieve the accuracy and correctness of the resultant confidence

limits of the latter and the computational simplicity of the former.

To obtain second-order correctness and accuracy for these problems, it is

not necessary to incorporate test inversion with a resampling family {F̂θ}. On

the other hand, there may be certain advantages in considering a hybrid confi-

dence region of the type (2.3). As Section 6 points out, DiCiccio and Romano

(1990) show that test inversion based on the tilting family (6.1) gives second-

order correct and accurate confidence limits even when the root is not studen-

tized. Lee and Young have indicated in their discussion that “it is possible to

prove stronger results about the effect of using hybrid resampling, rather than

conventional bootstrap resampling”. We look forward to reading their work in

this direction, particularly concerning iterated hybrid resampling.

For small to moderate samples, the discussion by Hall and Section 6 of

our paper both suggest that test inversion based on (6.1) for t(θ) is unlikely

to work well. On the other hand, test inversion yields good results when both

t(θ) and the tilting family are modified, as in (3.15) and (6.4). The resultant

confidence limits retain the same order of coverage error as those obtained by

calibration of the bootstrap-t limits but require substantially less computation.
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Hall and the references cited in his discussion suggest other alternatives to the t-

root and empirical likelihood, while Chen and Chen suggest further modifications

of the resampling family to incorporate auxiliary information (constraints) on the

unknown parameters.

Non-standard Cases

Case I(a) in Bickel’s discussion includes the branching process and autore-

gressive examples, where the root considered is not an asymptotic pivot and its

limiting distribution may change drastically even when the unknown parameter

changes little. Bickel, Götze and van Zwet (1997) propose the m out of n boot-

strap for problems similar to these. Although Bickel has pointed out that the m

out of n bootstrap works for these examples, hybrid resampling is considerably

more efficient and is also easier to implement since it does not require the user

to come up with a suitable choice of m, particularly when n is not large, as in

Tables 1 and 5.

Bickel’s case I(b) consists of inference problems following group sequential

tests. Whereas the studentized roots from fixed sample problems are usually

asymptotically standard normal, their analogues for group sequential problems

are not asymptotic pivots because of the effect of the stopping rule. Although

Bickel suggests looking into the possibility of extending the m out of n boot-

strap to this situation, such subsampling ideas would not work in sequential

settings, particularly in view of the “overshoot” for the last observation (group).

Somehow the form of the stopping rule has to be incorporated into the resam-

pling scheme. Woodroofe and Weng, building on previous work cited in their

references, discuss the use of asymptotic expansions for these problems. These

asymptotic expansions, however, are in the “very weak” sense of Woodroofe

(1986). Specifically, they provide confidence intervals I whose integrated cover-

age errors
∫

Pθ(θ /∈ I)ξ(θ)dθ differ from the nominal value 2α by o(a−1) for a large

class of smooth probability densities ξ, where a(→ ∞) denotes the boundary (or

some component thereof) of the stopping rule. This average coverage accuracy

differs from the usual sense of second-order accuracy in the bootstrap literature,

such as in Theorem 1 of our paper, or in Theorems 1 and 2 of Chuang and Lai

(1998) on confidence intervals obtained by hybrid resampling methods following

group sequential tests, or in Hall (1992) and Efron and Tibshirani (1993).

The derivation of the second-order accuracy theory in Chuang and Lai (1998)

uses an Edgeworth expansion involving a k-variate normal distribution, where k

is the number of interim analyses (“groups”) and is assumed to be fixed. When

k → ∞ as n → ∞, as in the case of fully sequential tests, this argument breaks

down. However, it is still possible to prove second-order accuracy by using the

Edgeworth expansions for smooth functions of randomly stopped sums in Lai
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and Wang (1994), who generalized and refined the seminal work of Woodroofe

and Keener (1987) in this direction. Unlike the usual (fixed sample size) Edge-

worth expansion which only involves moments of the population, the Edgeworth

expansions for smooth functions of randomly stopped sums also involve quanti-

ties which are related to the fluctuation theory of random walks and which can

be expressed in terms of the population characteristic function. The details are

given in Chuang and Lai (1999), where it is also shown that test inversion with a

resampling family is usually not needed (so direct bootstrapping can be used) for

fully sequential (instead of group sequential) tests. In contrast, Woodroofe and

his collaborators use Stein’s identity to carry out Bayesian calculations, generat-

ing expansions for the posterior expectations (for which the stopping rule does

not cause difficulties) and then integrating them. Their approach is applicable to

both fully sequential and group sequential settings, but only yields asymptotic

expansions in the very weak sense instead of the Edgeworth-type expansions

needed in the second-order accuracy theory.

The very weak expansions are computationally much more attractive than

the Edgeworth-type expansions (which involve difficult fluctuation-theoretic

quantities) in Woodroofe and Keener (1987) and Lai and Wang (1994). How-

ever, as pointed out by Lai and Wang (1994) and Chuang and Lai (1999), these

Edgeworth-type expansions can be implemented indirectly by simulation via the

bootstrap which has the additional advantage of not requiring parametric as-

sumptions on the underlying distribution. We are currently working towards

extending hybrid resampling methods to construct confidence intervals following

clinical trials with failure-time endpoints and interim analyses, as discussed in Gu

and Lai (1991, 1999). In these problems, analytic corrections are prohibitively

difficult and Monte Carlo simulations are needed for power and coverage prob-

ability calculations, in view of the complexity due to staggered patient entry,

time-dependent rates of loss to follow-up and noncompliance, and complicated

baseline and treatment survival patterns in practice.
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