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ABSTRACT. In the Bayesian approach to ill-posed inverse problems, regularization is imposed
by specifying a prior distribution on the parameters of interest and Markov chain Monte Carlo
samplers are used to extract information about its posterior distribution. The aim of this paper
is to investigate the convergence properties of the random-scan random-walk Metropolis (RSM)
algorithm for posterior distributions in ill-posed inverse problems. We provide an accessible set
of sufficient conditions, in terms of the observational model and the prior, to ensure geometric
ergodicity of RSM samplers of the posterior distribution. We illustrate how these conditions can
be checked in an application to the inversion of oceanographic tracer data.
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1. Introduction

Ill-posed inverse problems arise in many scientific fields, and statistical methods to address
such problems have been studied extensively, for example, in O’Sullivan (1986), Mair &
Ruymgaart (1996), Abramovich & Silverman (1998) and Haario et al. (2004). This has
often been done in the context of a generalized nonlinear regression model in which a
multivariate observation y has a density p (· |!) determined by a transform != f (") of some
unknown high-dimensional parameter ". For example, the data could be represented as a
vector y = f (")+ ε, where ε is the zero-mean measurement error and the components of f (")
are the values at various discrete locations of the solution to a partial differential equation
with coefficients determined by ". When f is non-invertible or invertible with a discontinu-
ous inverse, this gives rise to an ill-posed inverse problem in the sense of Hadamard (1923):
estimates of " based on f −1(y) are unstable and some type of regularization is needed
(see Kirsch, 1996). In the Bayesian approach to inverse problems, regularization is imposed
by specifying a prior distribution on " and Markov chain Monte Carlo (MCMC) samplers
are used to extract information about its posterior distribution; see, for example, Andersen
et al. (2001) and McKeague et al. (2005). The aim of the present paper is to investigate the
convergence properties of such samplers.

Convergence is a crucial issue for any MCMC procedure. A widely used hybrid sampler
for high-dimensional multivariate distributions is the random-scan random-walk Metropolis
(RSM) algorithm, which is known to converge geometrically under certain conditions.
Jarner & Hansen (2000) show that exponentially light tails are necessary for geometric
ergodicity. They also provide sufficient conditions in terms of the geometry of the contour
manifold {y ∈ Rd , p(y)=p(x)} as |x| →∞ , where p is the stationary distribution of the
Markov chain. Subsequently, Fort et al. (2003) have shown that geometric ergodicity
can hold essentially without any conditions on the geometry of the contour manifold;
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instead, they provide a sufficient condition in terms of the rate of decay in the tails of
p. In Bayesian inverse problem applications, however, this condition may be difficult to
verify.

Our main contribution is to provide a more accessible set of sufficient conditions, directly
in terms of p (· |!), f and the prior on ", to ensure geometric ergodicity of RSM samplers
of the posterior distribution of ". In addition, we demonstrate that these conditions can
be checked when f (") is a discrete approximation to the solution of an elliptic partial
differential equation (PDE) having coefficients and Dirichlet-type boundary conditions
specified by ". The finite difference method of solving PDE is known to preserve certain
global properties of the continuous solution, and we are able to exploit such a property (a
generalized discrete maximum principle; see Ciarlet, 1970; Al-Mahameed, 2005) to verify the
main conditions. We illustrate how this can be done in the context of an application to the
inversion of oceanographic tracer data, as described in McKeague et al. (2005) and Herbei
et al. (2008).

The paper is organized as follows. Section 2 contains preliminary material, various assump-
tions and our main ergodic result. In section 3, we discuss the applicability of this result to
the problem of estimating the coefficients of the advection-diffusion equation that arises in
the oceanographic application. The relevance of our results to the broader context of ill-posed
inverse problems is discussed in section 4. Various properties of the finite difference schemes
needed for the inverse problem application are collected in section 5.

2. Geometric ergodicity

2.1. Preliminaries

We begin by recalling some background needed to apply the main result of Fort et al. (2003).
This result applies to Markov chain samplers on finite-dimensional state spaces X =Rd . In
our case, d is the dimension of " and the target of the sampler is the posterior density
p (" |y), which in this subsection is denoted by p (") and is assumed to be positive and con-
tinuous over X .

A transition kernel K on X is said to be #-irreducible if there is a non-zero measure #
on the Borel $-field B(X ) such that for all " ∈ X , and all measurable sets B ∈ B(X ) with
#(B) > 0, the chain has a positive probability of hitting B when started from ". The kernel
K is said to be V-uniformly ergodic for some function V : X → [1, ∞] if K is #-irreducible
with invariant probability measure p such that p(V ) <∞, and there exist constants r > 1 and
R <∞ such that for p-almost all "∈X ,

‖K n(", ·)−p(·)‖V ≤Rr−nV ("), n=1, 2, . . .,

where, for any signed measure %, ‖%‖V = sup|g|≤V %(g).
The transition kernel of the RSM algorithm takes the form K = (K1 + · · ·+Kd )/d , where

Ki is the transition kernel of a symmetric random-walk Metropolis algorithm on the ith com-
ponent: starting from ", a component i is selected at random and the proposal is "+yei ,
where y is sampled from a symmetric density qi and ei is the unit vector in the ith direc-
tion in Rd . The proposal is accepted with probability 1∧{p ("+yei)/p (")}. Each increment
density qi is assumed to be bounded away from zero in a neighbourhood of zero, ensuring
that the resulting Markov chain is irreducible and aperiodic (see Tierney, 1994, section 2.3.2).
Denote the Euclidean norm by | · |. We slightly strengthen Fort et al.’s (2003) main assump-
tion on the target density p (") and write it as assumption A.
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Assumption A
There exist 0≤&<!≤∞ such that

'= min
1≤i≤d

∫ !

&
qi(y) dy > 0

and, for any sequence {"n} in Rd with limn |"n|=∞, we may extract a subsequence {"̃n} with
the property that for some l ∈{1,…, d} we have limn |"̃l

n|=∞ and for all y ∈ [&, !],

lim
n

p("̃n)

p("̃n − sign("n
l )yel )

=0 and lim
n

p("̃n + sign("n
l )yel )

p("̃n)
=0. (1)

The slight strengthening here is to require that limn |"̃l
n|=∞. The assumption can be inter-

preted as follows. For d =1 and y > 0, if p (")≈ e−|"| for large |"|, then p ("+ sign(")y)/p (")≈
e−y and p (")/p ("− sign(")y)≈e−y. Condition (1) is therefore tantamount to assuming that the
tails of p decrease faster than e−|"|. The scalar y > 0 plays the role of a generic step size, while the
sequence "n acts as a realization of the resulting Markov chain. Assumption A states that if the
sampler happens to wander into the tails of the target distribution (|"n|→∞ ), the Metropolis
acceptance probability of going farther out in the tails, which appears in the two limits in (1),
decreases to zero.

Verifying this assumption, however, poses additional challenges. When p is continuously
differentiable, Fort et al. (2003) provide an alternative criterion to be checked, which involves
taking partial derivatives of p. In our setting, the target density takes the form of Bayes
formula p (")=p (" |y)∝p (y | f ("))(("), where ((") is the prior density for ". Both criteria
(assumption A and the alternative proposed by Fort et al., 2003) are not explicit enough for a
posterior density, sometimes even unusable. For instance, apart from trivial cases, it is even
hard to check that p (") is differentiable, let alone compute its partial derivatives. In what
follows, we provide a set of assumptions in terms of the two components of the posterior
density that will imply assumption A.

2.2. Observation model assumptions

Suppose the forward map is f : Rd → M, where M is a set equipped with a partial preorder
! (a reflexive and transitive binary relation). For any two vectors ", "′, we say "≤"′ when
|"i |≤|"′

i | for each i.

Assumption B
For each fixed y, (i) the function " +→ p (y | f (")) is positive, continuous and bounded; (ii)
there exists !0 ∈M such that p (y | ·) is decreasing beyond !0 in the sense that p (y |!)≥p (y |!′) if
!0 !!!!′; and (iii) inf!!!1

p (y |!) > 0 for any !1 ∈M.

Part (ii) of this assumption, that p (y | ·) is ‘eventually’ monotone decreasing, will be used in
conjunction with the following ‘partial monotonicity’ of f (") along some subvector "D of ".

Assumption C
!0 ! f (")! f ("′) when "D ≤"′

D and |"D| is sufficiently large.

Our final assumption states that f (") is dominated by a monotone function of "D that
does not depend on the remaining components "−D of ".
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Assumption D
There exists a function g ("D) taking values in M such that g ("D) ! g ("′

D) if "D ≤ "′
D, and

f (")!g("D) for all "∈Rd .

The parameters "D will be called dominant parameters. We note that both !0 and the choice
of dominant parameters "D may depend on the data y. In our setting, y is fixed through-
out and thus we will not alter the notation to reflect this dependence. In the application we
analyse later, !0 will depend on the data; however, the selection of dominant parameters will
not. This completes the structure of the observation model.

2.3. Prior model assumptions

In the prior model, we specify "D to be independent of the remaining parameters "−D. In
addition, we also require that assumption A holds for the priors on "D and "−D. That is,
now we have assumption E.

Assumption E
The prior density factors as ((")=(D("D)(−D("−D), where (D(·) and (−D(·) are positive
densities that are continuous functions of their respective arguments and assumption A holds
with p=(D and p=(−D and a common & and !.

In the trivial case of no data, the posterior density is the prior density, hence, under assumption
E, by the result of Fort et al. (2003), the RSM algorithm for the posterior density is immediately
seen to be V-uniformly ergodic. Our aim is to extend this result to the posterior density

p (" |y)∝p (y | f ("))(D("D)(−D("−D). (2)

2.4. Ergodic result

We now state the main result of the paper.

Theorem 1
Under assumptions B–E, with each increment density qi assumed to be symmetric and bounded
away from zero in a neighbourhood of zero, the RSM sampler for the posterior density p (" |y)
is V-uniformly ergodic.

Proof. It suffices to show that p (" |y) satisfies assumptions 1–3 of theorem 3 in Fort
et al. (2003). By assumptions B and E and (2), the function " +→ p (" |y) is continuous and
supported on Rd , so assumption 1 holds. The increment densities qi satisfy assumption 2 by
hypothesis. It remains to check that p (" |y) has exponentially decreasing tails in the sense of
(1) (assumption 3).

Let {"n} be a sequence in Rd with |"n|→∞ . Clearly, there exists an index j ∈{1,…, d} such
that |"n

j |→∞ . The proof is now split into two cases, depending on whether the parameter
indexed by j is dominant (case 1) or not (case 2).

Case 1. Suppose j corresponds to a dominant parameter. Then |"n
D|→∞ and by assump-

tion E for (D(·), there exist 0≤&<!≤∞ and a subsequence {"̃D
n} of {"n

D} with the property
that for some index l, corresponding to a dominant parameter, we have |"̃l

n| →∞ and (1)
holds with p=(D. For this particular l, in what follows, we analyse both limits in (1), now
with p=p (" |y).
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First consider the second limit in (1), where p is now the posterior density. Using the Bayes
formula (2), for y ∈ [&, !]

Rn ≡ p("̃n + sign("̃l
n)yel |y)

p ("̃n |y)

=
p
(

y | f ("̃n + sign("̃l
n)yel )

)

p
(

y | f ("̃n)
)

(D

(
("̃n + sign("̃l

n)yel )D

)

(D("̃D
n)

,

where the term in (2) involving (−D cancels by the assumption of prior independence between
the dominant and non-dominant parameters. Note that the prior ratio in the last line of the
previous display converges to zero (by assumption E), so it suffices to show that the likelihood
ratio

Ln ≡
p
(

y | f ("̃n + sign("̃l
n)yel )

)

p
(

y | f ("̃n)
)

is bounded above in order to have Rn →0. To see that Ln is bounded above, note that |"̃D
n|→∞ ,

so when n is sufficiently large (n≥n0), the following hold:

"̃D
n ≤ ("̃n + sign("̃l

n)yel )D as y > 0.

Thus

!0 ! f ("̃n)! f ("̃n + sign("̃l
n)yel ) by assumption C.

Use assumption B(ii) to obtain that

p (y | f ("̃n))≥p (y | f ("̃n + sign("̃l
n)yel )) for n≥n0,

which shows that Ln is bounded above.
The first part of (1) with p as the posterior density is analysed in a similar way. The

posterior ratio

R′
n ≡ p ("̃n |y)

p ("̃n − sign("̃l
n)yel |y)

(3)

is again split into a product of likelihood and prior ratios. The prior ratio will converge to
zero (by assumption E), so it suffices to show that the likelihood ratio

L′
n ≡

p
(

y | f ("̃n)
)

p
(

y | f ("̃n − sign("̃l
n)yel )

) (4)

is bounded above. When n is sufficiently large, |"̃l
n|> y implying that ("̃l

n− sign("̃l
n)yel )D ≤ "̃D

n,
hence

!0 ! f ("̃n − sign("̃l
n)yel )! f ("̃n) by assumption C.

Use assumption B(ii) to conclude again that the likelihood ratio is bounded above, hence the
first limit in (1) with p as the posterior density is equal to zero.

Case 2. Now suppose j corresponds to a non-dominant parameter. We can assume that
|"n

D| is bounded, for if |"n
D| is unbounded we are back in case 1. Hence, |"n

−D| →∞ and,
again using assumption E for (−D, there exists a subsequence "̃−D

n such that (1) holds for
(−D, for some index l (possibly different than j) corresponding to a non-dominant parameter
and y ∈ [&, !]. Let "̃n be the subsequence corresponding to "̃−D

n.
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Again we start by analysing the second limit in (1) with p as the posterior density. For
y ∈ [&, !],

Rn = p ("̃n + sign("̃l
n)yel |y)

p ("̃n |y)

=
p
(

y | f ("̃n + sign("̃l
n)yel )

)

p
(

y | f ("̃n)
)

(−D

(
("̃n + sign("̃l

n)yel )−D

)

(−D("̃−D
n)

=Ln

(−D

(
("̃n + sign("̃l

n)yel )−D

)

(−D("̃−D
n)

.

Similarly, it suffices to show that Ln is bounded above, as the prior ratio converges to zero
by assumption E. As |"̃D

n| is bounded in this case, there exists "0 ∈Rd such that "̃D
n ≤"0

D for
all n. Use assumption D to conclude that f ("̃n)!g("̃D

n)!g("0
D) for each n. Furthermore, by

assumption B(iii) and transitivity of the preorder,

inf
n≥1

p (y | f ("̃n))≥ inf
!!g("0

D)
p (y |!) > 0,

so the denominator of Ln is bounded away from zero. As the numerator of Ln is bounded
above (by assumption B(i)), we conclude that Ln is bounded above and thus Rn →0.

For the first part of (1) with p as the posterior density, again split (3) into a product of
likelihood and prior ratios, L′

n and R′
n, respectively. It suffices to show that L′

n is bounded
above. When l corresponds to a non-dominant parameter, assumption D and transitivity give

f ("̃n − sign("̃l
n)yel )!g("̃D

n)!g("0
D),

for each n. Using assumption B(iii) again, we get

inf
n≥1

p (y | f ("̃n − sign("̃l
n)yel ))≥ inf

!!g("0
D)

p (y |!) > 0.

We conclude that the denominator in the likelihood ratio (4) is bounded away from zero,
hence the ratio itself is bounded above (by assumption B(i)).

Thus, p (" |y) satisfies assumption 3 of Fort et al. (2003) and the proof is complete.

3. Application

In this section, we illustrate how our main result applies to the inverse problem of estimating
the coefficients and boundary conditions of an elliptic PDE from noisy and sparse measure-
ments of its solution. Specifically, we show that the RSM algorithm used by McKeague
et al. (2005) and Herbei et al. (2008) in an ocean circulation inverse problem is geometrically
ergodic.

Deep ocean circulation is difficult to measure directly, but it is possible to infer steady-
state flow indirectly from tracer measurements. Data on various tracers (e.g. oxygen, salinity,
silica) can be used in the inversion, but here, for simplicity, we only consider oxygen, which
is a transient tracer (unlike salinity and silica). Let C =C(x, y) denote the concentration of
dissolved oxygen at a location (x, y) in a rectangular domain "⊂R2 representing the layer of
the ocean being studied. The statistical problem is to estimate the (horizontal) water velocities
and diffusion coefficients based on noisy measurements of C at a sparse set of locations
in ".

The left panel in Fig. 1 shows the posterior mean of the oxygen concentration and steady-
state water velocity at a depth of 2 km in a region of the South Atlantic. These results
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Fig. 1. Posterior mean of the oxygen concentration (in #mol/kg) and steady-state water velocity (left
panel); a draw from the sampler after burn-in (right panel). The inversion domain " is a neutral density
layer in the South Atlantic ocean, roughly corresponding to depths within 100 or 200 m of 2000 m, with
lateral boundaries determined by 34◦W, 11◦E, 32◦S and 3◦S.

are based on a run of the RSM sampler used by McKeague et al. (2005). The alternating
‘jets’ of water flow are thought to cause the ‘tongues’ of high oxygen concentration in the
northwest part of the inversion region, and are of particular interest to oceanographers. The
right panel of Fig. 1 shows a single draw from the sampler after burn-in, indicating similar
features. Trace plots given in McKeague et al. (2005) suggest that the sampler converges
rapidly, but by establishing geometric ergodicity, we can now place their results on firmer
ground.

The connection between the oxygen concentration C and the velocities and diffusion
coefficients is given by the steady-state advection-diffusion equation as:

{[
k1

∂2

∂x2 +k2
∂2

∂y2 −)
]

C(x, y)=
[
v1(x, y) ∂

∂x − v2(x, y) ∂
∂y

]
C(x, y) for (x, y)∈",

C(x, y)=b(x, y) for (x, y)∈∂",
(5)

where k1, k2 ≥ 0 are diffusion coefficients not depending on location, and v1, v2 are the
zonal and meridional water velocities (which depend on location), respectively. The oxygen
consumption rate )> 0 is assumed to be fixed and known; the values of C on the boundary
∂" of " are constrained by a Dirichlet boundary condition; and b=b(x, y)≥0. The forward
problem (5) does not have a closed-form solution in terms of the coefficients and boundary
values, but an approximation to the solution can be obtained using a finite difference scheme
over a regular grid "G ⊂"; this scheme is described in section 5. A sufficient condition for
the finite difference approximation of (5) to have a unique solution (see proposition 1) is:

2k1 >!1|v1| and 2k2 >!2|v2| on "G , (6)

where !1 and !2 are the grid mesh sizes in the x- and y-directions, respectively. This con-
dition means that the tracer transport is dominated by diffusion, or that the Péclet numbers
are strictly less than 2.

From now on, we treat v1, v2 and C as restricted to the grid "G , and b as restricted to
the grid boundary ∂"G . We exclude the four corners from ∂"G (without changing notation)
because the finite difference scheme does not involve them. To apply our ergodic result we
need the support of the posterior density to be an entire Euclidean space, but k1, k2 and the
components of b are restricted to be non-negative. Thus, we need to re-express the target
parameters of interest (b, v1, v2, k1, k2) in terms of a vector of unrestricted parameters "∈Rd
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over which the prior density will be defined. For b, this can be done by setting b(x, y;")= |"l |,
where l indexes the particular location (x, y) on the grid boundary ∂"G .

The subvector of " specifying the boundary conditions b will be used in the role of the
dominant parameters "D. The other target parameters are expressed as continuous functions
of the remaining components of ", the non-dominant parameters "−D, in such a way that
the following ‘uniform Péclet’ condition holds:






sup
"∈Rd

!j |vj(x, y;")|/kj(") < 2,

inf
"∈Rd

kj(") > 0, k1(")0k2("),
(7)

for all (x, y) ∈ "G , j =1, 2, and the last part indicates that k1 and k2 are of the same order
(in the ‘big-O’ sense). We refer the interested reader to the remark at the end of this section
for discussion of how (7) can be arranged.

The unique solution of the finite difference approximation to the forward problem (5)
at fixed " is now viewed as a |"G |-dimensional vector (C(x, y;")), where each component
corresponds to a location (x, y) ∈"G , and |A| denotes the cardinality of a set A. We some-
times suppress the dependence on " or (x, y) to simplify the notation.

The data consist of sparse measurements of C at various locations on the grid, and are
represented in vector form as y = f (")+ ε, where f (") is the subvector of C(") corresponding
to m grid sites where data are available, and ε is a vector of m independent N(0, $2) random
variables with fixed and known variance $2 > 0.

The prior distribution on the dominant parameters "D (which determine b) is specified by
a Gaussian Markov random field (GMRF) with an unnormalized density of the form

(D("D)∝ exp




−&1

∑

l∼l ′

("l −"l ′ )
2 −&2

|∂"G |∑

l =1

"2
l




, (8)

where &1 > 0, &2 > 0 are tuning parameters that control the prior smoothness and variance of "D.
Here l ∼ l ′ indicates that the grid sites indexed by l and l ′ are nearest neighbours on ∂"G

and the first sum runs over all such pairs. The non-dominant parameters representing the
velocities and diffusion coefficients are given a prior density of the same form, independent of
the dominant parameters. For background on the use of GMRF in complex hierarchical models,
see Rue & Held (2005).

Bayes formula gives the unnormalized posterior density

p (" |y)∝
[

m∏

i =1

exp
{

− (yi − fi("))2

2$2

}]
(D("D)(−D("−D), (9)

where i indexes the grid sites where data are available; the expression in square brackets
is the likelihood p (y | f (")). Although both the observation and prior models are Gaussian,
the posterior distribution is not Gaussian owing to the nonlinearity of C("). The RSM
increment densities ql , l =1, . . ., d are taken to be uniform over a prespecified symmetric
interval centred at zero.

Theorem 2
Under the uniform Péclet condition (7) and the continuity of b, v1, v2, k1, k2 in ", we have that
the RSM algorithm for exploring the posterior density p (" |y) in (9) is V-uniformly ergodic.
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Proof. The proof consists in checking assumptions B–E and then applying theorem 1.
In section 5 we show, under the non-negativity constraint on the boundary values b, that
C(x, y;")≥0 at every grid site (x, y) (see the proof of proposition 1, part (a)); thus, the range
of the forward map f is the positive orthant M=Rm

+. For !, !′ ∈ M, we define the preorder
!!!′ by !i ≤!′

i , for each i =1, . . ., m, which is the standard partial order in Rm.
The likelihood p (y | f (")) is clearly a positive and bounded function of ". Continuity is a

consequence of proposition 1(b) in section 5. This establishes part (i) of assumption B. For
part (ii), we need to find !0 ∈M such that ! +→p (y |!) is decreasing beyond !0. Take !0 ∈M

to be the data vector !0 =y. When !0 ! ! ! !′, because ! +→ p (y |!) is a Gaussian density
with mean y, it is easy to see that p (y |!) ≥ p (y |!′). Furthermore, for any !1 ∈ M, the set
{!∈ M : !!!1} is compact in Rd and as p (y |!) is positive and continuous in !, it follows
that inf!!!1

p (y |!) > 0, so part (iii) holds as well.
To check assumptions C and D, we use a discrete version of the maximum principle (DMP)

for elliptic PDE. In proposition 1(c), we establish that the numerical solution C(") to
(5) attains its maximum at a boundary site. By symmetry, the minimum is also attained at a
boundary site. For " and "′ such that "D ≤"′

D, by the linearity of the PDE, the difference
C("′)−C(") is the solution of a discretized Dirichlet problem (5) having all boundary values
non-negative. This solution attains its minimum on the boundary, thus, C(")≤C("′), which
implies, f (") ! f ("′). This establishes that the forward map f is monotone along the
subvector "D. To finish checking assumption C, we need to show that !0 ! f (") when |"D| is
sufficiently large. In proposition 2, we show that the tracer concentration C(x, y;") at every
interior grid site (x, y)∈"G \∂"G can be made arbitrarily large by making |"D| large enough.
Condition (7) is essential in establishing this. Thus, y =!0 ! f (") for sufficiently large |"D|.
This proves assumption C.

For assumption D, let g("D)= |"D|∞ ·1, where 1 ∈M is a vector of ones and | · |∞ denotes
the sup norm. Then, using the DMP again, f (")! g("D) for all "∈Rd . It is also clear that
"D ≤"′

D implies g("D)!g("′
D).

The final step is to verify that assumption E holds for GMRF priors, as in (8); this is done
in proposition 5 in the Appendix.

3.1. Remark

The parameterization needed for the uniform Péclet condition (7) can be arranged in various
ways. The most natural way is to allow vj and kj to be unbounded functions of " while
controlling their relative magnitude via a common-scale parameter. More specifically, let h
be a positive and continuous real function, bounded away from zero and bounded above,
and let

kj(")=
(
*0 + |"scale|

)
h("diff

j ),

where *0 > 0 is fixed and j =1, 2. Here the scale parameter "scale is shared between the diffu-
sion coefficients, whereas "diff

j is specific to kj , and both are regarded as components of
"∈Rd . Clearly inf" kj(") > 0 and k1(")0k2("). Similarly, let g be a bounded and continuous
real function, and express the velocities vj (using more components of ") as:

vj(x, y;")= |"scale|g("vel
j,x,y),

where (x, y) ranges over locations on the grid "G . Plausible values of *0 and bounds on the
functions h,g are readily obtained by consulting the oceanography literature (as discussed in
McKeague et al., 2005 and Herbei et al., 2008). To check the first part of (7), note that
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|vj(x, y;")|
kj(")

= |"scale|
*0 + |"scale|

|g("vel
j,x,y)|

h("diff
j )

,

which is uniformly bounded above by some constant M. By refining the mesh grid sizes,
we can then arrange for sup" !j |vj |/kj ≤!jM < 2, as required. GMRF priors can be used for
{"vel

j,x,y : (x, y)∈"G}, along with independent Gaussian priors for "shared and "diff
j , j =1, 2.

4. Discussion

In recent years, Bayesian/MCMC techniques have become feasible approaches in numerous
scientific applications involving ill-posed inverse problems. However, assessing whether a
particular chain has converged is still a challenge, so it is useful to develop sufficient
conditions for fast (geometric) rates of convergence that apply to wide classes of MCMC
samplers arising in such applications. On the other hand, it can be difficult to know the
number of iterations required because a large unknown constant may offset the geometric
rate; MCMC methods still need to be used with caution, particularly when the state space is
high-dimensional.

In many problems, some functional B(") (such as the coefficients of (5)) may be of greater
interest than " itself. Under mild assumptions on B(") (e.g. a finite 2+ ε moment for some
ε> 0, as in Tierney, 1994), a central limit theorem is available for geometrically ergodic chains:
given successive iterations "1, "2, . . ., "n, the sample mean n−1 ∑n

i =1 B("i) converges weakly
at

√
n-rate to a Gaussian distribution, a result that can be used in selecting the posterior

mean as a representative value for B(") and to find Monte Carlo standard errors.
Our ergodic result is applicable to other interesting ill-posed inverse problems beyond the

oceanography example. Calvetti et al. (2006) studied the estimation of mitochondrial
oxygen consumption during muscle activities based on discrete noisy observation of the
oxygen concentration on the muscle surface. They used an optimization approach, finding the
maximum a posteriori (MAP) estimate of parameters in a system of diffusion-consumption
partial and ordinary differential equations with known initial and boundary values. The
parameters in " represent fluxes of oxygen consumption at resting state and during muscle
stimulation. The forward map f (") is the time-varying oxygen concentration in the chamber
used in the experiment, and the data y are noisy measurements of f (") at regularly spaced
time points. The forward map in this case is bounded: 0 ≤ f (") ≤ Cch,0, where Cch,0 is the
(known) initial oxygen concentration in the chamber, so all the parameters can be treated as
non-dominant and assumptions C and D hold automatically. If Cch,0 is not known
exactly, but measured with observation error, then it plays the role of a dominant parameter
(suitably parameterized along the lines of section 3.1) and assumptions C and D come into
play. Under the usual Gaussian observation model, assumption B holds with the preorder
induced by the Euclidean norm. A suitable prior on the parameters, satisfying assumption E,
then guarantees that the RSM sampler is V-uniformly ergodic. This result is useful in finding
a ‘representative’ value of ", the most popular choice being the posterior mean, which can
be significantly different from the MAP estimate.

5. Checking assumptions

Various properties of the finite difference scheme needed for the proof of theorem 2 are
collected in this section.

For each interior grid site (x, y), the gradients in (5) are approximated using the centred
finite differences
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∂2C(x, y)
∂x2 ≈ 1

!2
1

[C(x +!1, y)−2C(x, y)+C(x −!1, y)],

∂2C(x, y)
∂y2 ≈ 1

!2
2

[C(x, y +!2)−2C(x, y)+C(x, y −!2)],

∂C(x, y)
∂x

≈ 1
2!1

[C(x +!1, y)−C(x −!1, y)],

∂C(x, y)
∂y

≈ 1
2!2

[C(x, y +!2)−C(x, y −!2)].

Based on these approximations, the discrete version of the Dirichlet problem (5) is given by
the following system of linear equations:






(
)+ 2k1

!2
1

+ 2k2

!2
2

)
C(x, y)+

(
− k1

!2
1

+ v1(x, y)
2!1

)
C(x +!1, y)

+
(

− k1

!2
1

− v1(x, y)
2!1

)
C(x −!1, y)+

(
− k2

!2
2

+ v2(x, y)
2!2

)
C(x, y +!2)

+
(

− k2

!2
2

− v2(x, y)
2!2

)
C(x, y −!2)=0 for (x, y)∈"G \∂"G ,

C(x, y)=b(x, y) for (x, y)∈∂"G ,

which we write in matrix form as:

A(")C(")=b∗("). (10)

Here A(") is a |"G |×|"G |-matrix, C(") is the |"G |-dimensional column vector representing
the tracer concentrations over the grid and b∗(") is a column vector with zero entries at
interior grid points and b(x, y) on the boundary. The system of equations (10) has a unique
solution C(")=A(")−1b∗(") provided that A(") is invertible, and we now show that this is
the case under our assumptions for theorem 2.

Proposition 1
Suppose the Péclet condition (6) holds and b, v1, v2, k1, k2, ) are continuous in "∈Rd and satisfy
)> 0, b≥0. Then

(a) A(") is an M-matrix;
(b) C(") is continuous in "∈Rd ;
(c) C(") satisfies the (weak) DMP:

max
(x,y)∈"G

C(x, y;")= max
(x,y)∈∂"G

b(x, y;"). (11)

Part (c) of this proposition is a DMP that is well known for elliptical PDE. This result
holds under greater generality than we need (see, e.g. Ciarlet, 1970; Al-Mahameed, 2005),
but the proof is easy in our case and is included for completeness.

Proof. For (a), the conditions 2k1 > |v1|!1 and 2k2 > |v2|!2 imply that *1, *2 ≥ 0. Poole &
Boullion (1974), in their theorem 2.1, give several equivalent definitions of M-matrices. We
will check condition (2f), that is, there exists a vector x∈R

|"G |
+ such that A(")x∈R

|"G |
+ . Indeed,

the diagonal entries of A(")= (all ′ ), namely
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all =
{

)+ 2k1
!2

1
+ 2k2

!2
2

if l indexes an interior site,

1 if l indexes a boundary site,

are positive. Also, for the off-diagonal entries, all ′ ≤0 for l /= l ′, and

all = |all |>
∑

l ′ 5= l

|all ′ |.

Let x = (1, 1,…, 1)T ∈R
|"G |
+ , and note that

(A(")x)l =
|"G |∑

l ′ =1

all ′ =
{

) if l indexes an interior site,
1 if l indexes a boundary site,

so A(")x∈R
|"G |
+ . Thus, condition (2f ) of theorem 2.1 in Poole & Boullion (1974) is satisfied,

which implies that A(") is an M-matrix. As a consequence, condition (2e) of the same
theorem ensures that A(")−1 exists and that A(")−1 ≥0 (element-wise). This also implies that
the solution of (10) satisfies C(")=A(")−1b∗(")≥0 as we assume that the boundary values
are non-negative. This was a claim made at the start of the proof of theorem 2.

For (b), as b∗(") is continuous in ", it suffices to show that A(")−1 is continuous in " with
respect to the matrix norm ‖ ·‖ . This follows from the continuity of A(") with respect to the
matrix norm and the inequality

‖A("1)−1 −A("0)−1‖≤ ‖A("0)−1‖2‖A("1)−A("0)‖
1−‖A("0)−1‖‖A("1)−A("0)‖

for all "0, "1 ∈Rd such that ‖A("0)−1‖‖A("1)−A("0)‖< 1 (Gandy & Jensen, 2005, lemma 7).
For (c), we argue by contradiction. Suppose there is an interior grid site (x0, y0), where

C(") attains its maximum over "G . Also suppose that we are in the non-trivial case in which
at least one boundary value is positive; otherwise C(")=0 and (11) holds. Using the finite
difference scheme,

C(x0, y0)
(

)+ 2k1

!2
1

+ 2k2

!2
2

)
=

(
k1

!2
1

− v1(x0, y0)
2!1

)
C(x0 +!1, y0)

+
(

k1

!2
1

+ v1(x0, y0)
2!1

)
C(x0 −!1, y0)

+
(

k2

!2
2

− v2(x0, y0)
2!2

)
C(x0, y0 +!2)

+
(

k2

!2
2

+ v2(x0, y0)
2!2

)
C(x0,y0 −!2)

≤
(

2k1

!2
1

+ 2k2

!2
2

)
C(x0, y0).

It follows that )C(x0, y0)≤0 and thus C(x, y)≤C(x0, y0)≤0 at all sites (x, y). When (x, y) is
a boundary site, this contradicts the assumption that at least one boundary value is positive.

Proposition 2
Suppose the uniform Péclet condition (7) holds and )> 0, b(") ≥ 0. If |b("n)| →∞ then
C(x, y;"n)→∞ for any interior site (x, y).
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Proof. Given |b("n)| →∞ , there exists a boundary site (x0, y0) such that C(x0, y0;"n)=
b(x0, y0;"n)→∞. Let (x1, y1) be an interior site neighbouring (x0, y0), and consider the case
x1 =x0 +!1 and y1 =y0 (the same argument applies to all such interior sites). From the finite
difference scheme, using C ≥0 (see the proof of proposition 1(a)), it follows that

C(x1, y1)
(

)+ 2k1

!2
1

+ 2k2

!2
2

)
≥

(
k1

!2
1

+ v1(x1, y1)
2!1

)
C(x0, y0),

where we have suppressed the dependence on "n. Dividing through by k1/!2
1, we then have

C(x1, y1)

(
)!2

1

k1
+2+ k2

k1

2!2
1

!2
2

)
≥

(
1+ !1v1(x1, y1)

2k1

)
C(x0, y0)

≥
(

1− !1|v1(x1, y1)|
2k1

)
C(x0, y0).

From the uniform Péclet condition (7) we deduce that the expression (1−!1|v1(x1, y1)|/(2k1)),

as a function of ", is bounded away from zero, and each summand in ( )!2
1

k1
+2+ k2

k1

2!2
1

!2
2

) is

bounded, as a function of ". Thus, the right-hand side above tends to infinity as n →∞. It
follows that C(x1, y1) →∞. This argument can be repeated for all the interior neighbours of
(x1, y1) and after a finite number of steps we obtain that C(x, y)→∞ for any interior site (x, y).
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Appendix

In this section, we show that condition (1) of assumption A is satisfied by the types of GMRF
used in section 3 to define prior distributions for the parameters in " that determine the
boundary condition b and the velocities vj . For simplicity, we just consider GMRF on a
one-dimensional grid {1, . . ., d}, but the same proof applies to multi-dimensional grids.

Proposition 3
Condition (1) of assumption A holds for the unnormalized density p=( given by

((")∝ exp

{
−&1

∑

i∼j

("i −"j)
2 −&2

d∑

i =1

"2
i

}
, "∈Rd , (12)

where i ∼ j iff |i − j|=1, and &1, &2 > 0.

Proof. Suppose |"n|→∞ . Use lemma 1 to select a subsequence "̃n and l ∈{1, . . ., d} such
that |"̃l

n|→∞ and

sign("̃l
n)("̃l

n − "̃k
n)→Lk ∈ [0, ∞] for all k /= l. (13)

Let y > 0. Without loss of generality, assume "̃l
n
> 0 for each n. First, we consider the second

limit in (1). Note that

(("̃n +yel )

(("̃n)
=

exp
{

−&1

[
("̃l

n +y − "̃
n
l−1)2 + ("̃l +yn − "̃

n
l +1)2

]
−&2("̃l

n +y)2
}

exp
{

−&1

[
("̃l

n − "̃
n
l−1)2 + ("̃l

n − "̃
n
l +1)2

]
−&2("̃l

n)2
}

= exp
{

−&1

[
2y2 +2y("̃l

n − "̃
n
l−1)+2y("̃l

n − "̃
n
l +1)

]}
exp

{
−2&2"̃l

n −&2y2
}

,

where the first equality follows after canceling all the terms in (12) not involving "̃l
n. The

second exponential term above converges to zero as "̃l
n →∞. The first exponential term is

bounded because of (13). Thus,

lim
n→∞

(("̃n +yel )

(("̃n)
=0.

The first limit in (1) is analysed similarly:

(("̃n)

(("̃n −yel ))
=

exp
{

−&1

[
("̃l

n − "̃
n
l−1)2 + ("̃l

n − "̃
n
l +1)2

]
−&2("̃l

n)2
}

exp
{

−&1

[
("̃l

n −y − "̃
n
l−1)2 + ("̃l

n −y − "̃l +1
n )2

]
−&2("̃l

n −y)2
}

= exp
{

−&1

[
−2y2 +2y("̃l

n − "̃l−1
n )+2y("̃l

n − "̃l +1
n )

]}
exp

{
−2&2"̃l

n −&2y2
}

.
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Again the second exponential term converges to zero while the first one is bounded because
of (13). Thus,

lim
n→∞

(("̃n)

(("̃n −yel )
=0.

We have shown that condition (1) holds with p=( and any y ≥0.
The choice of & and ! in assumption A only relate to the choice of increment densities qi .

The condition '=min1≤i≤d
∫ !

& qi(y) dy > 0 is clearly satisfied when each qi is a uniform density
over a symmetric interval centred at zero.

Lemma 1
Let {xn} be a sequence in Rd such that |xn| →∞ . Then there exists l ∈ {1, 2, . . ., d} and a
subsequence {x̃n} of {xn} such that for each k =1, . . ., d , k /= l,

sign(x̃n
l )(x̃n

l − x̃n
k)→Lk ∈ [0, ∞]. (14)

Proof. Because |xn|→∞ , there exists l such that |xn
l |→∞ . Without loss of generality we can

assume that |xn
k |→∞ for all k, because (14) holds trivially when xn

k is bounded. Moreover,
we only need to consider the case that xn

k →∞ for all k. The claim is proved by induction
over d.

First set d =2. Suppose |(xn
1, xn

2)|→∞ , xn
1 →∞ and xn

2 →∞. Consider yn =xn
1 − xn

2. There
exists a subsequence ỹn of yn such that ỹn → L1 ∈ [−∞, ∞]. If L1 < 0, select l =2, then
x̃n

l − x̃n
k → Lk ∈ [0, ∞] for all k /= l. If L1 ≥ 0 select l =1, then x̃n

l − x̃n
k → Lk ∈ [0, ∞] for all

k /= l. Thus, the claim is true for d =2.
Now assume the claim is true for d =m. Let d =m+1 and consider a sequence {xn}⊂Rd

such that xn
k → ∞ for each k =1, . . ., m+1. Apply the claim to the first m components

(xn
1, . . ., xn

m) to select j ∈{1, . . ., m} and a subsequence x̂n such that

x̂n
j − x̂n

k →Lm
k ∈ [0, ∞], for k =1,…, m, k /= j. (15)

Consider (x̂n
j , x̂n

m+1). Use the claim in the case d =2 to select l ∈ {j, m+1} such that (14)
holds.
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