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Abstract

In this paper, we consider the problem of designing a dynamic scheduling
strategy that takes into account both workload and memory information
in the context of the parallel multifrontal factorization. The originality
of our approach is that we base our estimations (work and memory)
on a static optimistic scenario during the analysis phase. This scenario
is then used during the factorization phase to constrain the dynamic
decisions. The task scheduler has been redesigned to take into account
these new features. Moreover performance have been improved because
the new constraints allow the new scheduler to make optimal decisions
that were forbidden or too dangerous in unconstrained formulations.
Performance analysis show that the memory estimation becomes much
closer to the memory effectively used and that even in a constrained
memory environment we decrease the factorization time with respect to
the initial approach.
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Résumé

Nous proposons des stratégies d’ordonnancement bi-critères, qui s’inté-
ressent à la fois à la performance et à la consommation mémoire d’un
algorithme parallèle de factorisation de matrices creuses, basé sur la
méthode multifrontale. L’originalité de notre approche est que nous ba-
sons nos estimations mémoire sur un scénario optimiste (simulation lors
de la phase d’analyse), qui est ensuite utilisé lors de la factorisation
pour contraindre les décisions dynamiques d’ordonnancement. Un nou-
vel ordonnanceur a été implanté, qui prend en compte ces nouvelles
contraintes. De plus, la performance a été améliorée parce que notre
nouvelle approche permet à l’ordonnanceur de prendre des décisions
meilleures, qui étaient interdites ou trop dangereuses auparavant. Une
analyse de performance montre que les estimations mémoire sont beau-
coup plus proches de la mémoire effectivement utilisée, et que le temps de
factorisation est amélioré de façon significative par rapport à l’approche
initiale.

Mots-clés: matrices creuses, méthode multifrontale, ordonnancement dynamique,
mémoire
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1 Introduction

We consider the direct solution of large sparse systems of linear equations Ax = b on dis-
tributed memory parallel computers using multifrontal Gaussian elimination. For an un-
symmetric matrix, we compute its LU factorization; if the matrix is symmetric, its LDLT

factorization is computed. Because of numerical stability, pivoting may be required.

The multifrontal method was initially developed for indefinite sparse symmetric linear sys-
tems [8] and was then extended to unsymmetric matrices [9]. It belongs to the class of
approaches which separates the factorization into two phases. The symbolic factorization
looks for a permutation of the matrix that will reduce the number of operations in the sub-
sequent phase, and then computes an estimation of the dependency graph associated with
the factorization. Finally, in an implementation for parallel computers, this phase partially
maps the graph onto the target multiprocessor computer. The numerical factorization phase
computes the matrix factors. It exploits the partial mapping of the dependency graph and
performs dynamic task creation and scheduling to balance the work performed on each pro-
cessor [1, 2, 4]. The work in this paper is based on the solver MUMPS, a MUltifrontal Massively
Parallel Solver [1]. For an overview of the multifrontal method we refer to [7, 8, 16].

The work presented in [12] has shown how to use memory-based dynamic scheduling to
improve the memory management of a parallel multifrontal approach. However, the authors
also noticed that they can significantly improve the memory behaviour but at the cost of an
increase in the factorization time. Another important issue concerns the overestimation of the
memory needed for parallel factorization. Indeed, even if in [4] the authors have shown that
with the concept of candidate processors the memory estimates can be significantly reduced,
there is still an important and unpredictable gap between real and estimated memory. Hence
another target will be to decrease the memory estimates of the analysis and to respect them
during the factorization.

In this paper, we propose a scheduling approach that uses both memory and workload infor-
mation in order to obtain a better behaviour in terms of estimated memory, memory used
and factorization time in the context of the parallel symmetric and unsymmetric factorization
algorithms. The main principle of our approach is to use an optimistic scenario during the
analysis that is then relaxed to offer flexibility for the factorization phase.

This paper is organized as follows. In Section 2, we briefly describe the parallelism involved
in MUMPS. In Section 3, we then describe the constraints and objectives of our work. Section 4
introduces the quantities that will influence the dynamic decisions. Section 5 describes our
dynamic scheduling algorithm in the context of unsymmetric matrices. Section 6 explains
why the symmetric case is more complicated and shows how we extended our algorithms to
this case. In Section 7 we present experimental results on large symmetric and unsymmetric
matrices on 64 and 128 Power 4 processors of an IBM machine.

2 Scheduling and parallelism in the sparse solver

In this section, we describe the tasks arising in the factorization phase of a multifrontal algo-
rithm and how parallelism can be exploited. The so called elimination tree [8, 15] represents
the order in which the matrix can be factored, that is, in which the unknowns from the un-
derlying linear system of equations can be eliminated. This graph is in the most general case
a forest, but we will assume in our discussions, for the sake of clarity, that it is a tree. One
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central concept of the multifrontal approach [8] is to group (or amalgamate) columns with
the same sparsity structure to create bigger supervariables or supernodes [8, 17] in order to
make use of efficient dense matrix kernels. The amalgamated elimination tree is called the
assembly tree (see Figure 2). The work associated with an individual node of the assembly
tree corresponds to the factorization of a so called frontal matrix, or front. Frontal matrices
can be partitioned as shown in Figure 1.

fully summed rows -

partially summed rows -

fully summed columns

?

partially summed columns

?
[

F11 F12

F21 F22

]

Figure 1: A frontal matrix.

Here, pivots can be chosen only from within the block of fully summed variables F11. Once all
eliminations have been performed, the Schur complement matrix F22−F21F

−1
11 F12 is computed

and used to update later rows and columns of the overall matrix which are associated with
the parent nodes. We call this Schur complement matrix the contribution block of the node.
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Figure 2: Different types of parallelism in the assembly tree.

The notion of child nodes which send their contribution blocks to their parents leads to the
following interpretation of the factorization process. When a node of the assembly tree is
being processed, it assembles the contribution blocks from all its child nodes into its frontal
matrix. Afterward, the pivotal variables from the fully summed block are eliminated and the
contribution block computed. The contribution block is then sent to the parent node to be
assembled once all children of the parent (which are the siblings of the current node) have
been processed. If some variables are not eliminated because of numerical issues, they are
delayed and sent to the parent node.
A pair of nodes of the assembly tree where neither is an ancestor of the other can be fac-
tored independently from each other, in any order or in parallel. Consequently, independent
branches of the assembly tree can be processed in parallel, and we refer to this as tree paral-
lelism or type 1 parallelism. It is obvious that, in general, tree parallelism can be exploited
more efficiently in the lower part of the assembly tree than near the root node.
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Figure 3: Distribution of slave tasks in symmetric and unsymmetric case.

Additional parallelism is then created using distributed memory versions of blocked algo-
rithms to factor the frontal matrices (see, for example, [2, 6]). The contribution block is
partitioned and each part of it is assigned to a different processor. The so called master pro-
cessor is responsible for the factorization of the block of fully summed variables and will also
decide (only during the numerical phase) how many and which processors (the so called slave
processors) will be involved in the parallel activity associated with this node (see Figure 3). A
slave receives the computation of a part of the factors (entries that intersect the fully summed
column) that it will store and of a part of the contribution block (entries that intersect the
partially summed column) that it will send for the computation of the parent node. We refer
to this approach as type 2 parallelism and call the nodes concerned type 2 nodes (see Figure 2).
The work distribution depends on the asymmetry of the matrix. This point explains why our
algorithms are simpler in the unsymmetric case than in the symmetric case (see Section 6).
Note also that in the unsymmetric case, all communications are performed from the master
to the slaves whereas in the symmetric case slaves have to communicate between each other
(see [1]).

Of course, if the node is not large enough, it will not be split and will be a type 1 node. Finally,
the factorization of the dense root node can be treated in parallel with ScaLAPACK [5]. The
root node is partitioned and distributed to the processors using a 2D block cyclic distribution.
This is referred to as type 3 parallelism (see Figure 2).

2.1 Partial task mapping during the symbolic factorization phase

The selection of slaves for type 2 nodes during the factorization phase is an attempt to detect
and adjust a possible imbalance of the workload between the processors at runtime. However,
it is necessary to carefully control the freedom given to dynamic scheduling (see [4] for a
detailed analysis). Our sparse solver, MUMPS, addresses these issues by using the concept of
candidate processors. This concept originates in an algorithm presented in [18, 19] and has
also been used in the context of static task scheduling for sparse Cholesky factorization [13].
Each type 2 node is associated, during the symbolic factorization phase, with a limited set
of candidate processors from which the slaves can be selected during numerical factorization.
The candidate concept can be thought of as an intermediate step between fully static and
fully dynamic scheduling. While we leave some freedom for dynamic decisions at runtime,
this is directed by static decisions on the candidate assignment.

The assignment and the choice of the candidate processors is guided by a relaxed proportional
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mapping (see Pothen and Sun [18]). It consists of a recursive assignment of processors to
subtrees according to their associated computational work. The assembly tree is processed
top-down, starting with the root node. Each node gets its set of so called preferential proces-
sors which guides the selection of the candidate processors. A second bottom-up step maps
not only the master tasks of type 2 nodes but also chooses the candidates for slave tasks of
type 2 nodes using the previously computed preferential processors.

2.2 Dynamic task scheduling during the factorization phase

During the factorization, each processor maintains a local pool of ready tasks that corresponds
to nodes of the tree statically assigned to it (type 1 and type 2 master tasks). Each time all
children of a given parent node have been factored, the parent is inserted in the pool of the
processor on which it was statically mapped. Tasks are then extracted from the pool and
activated.

We associate to each processor, say pi, its workload, referred to as loadi, that corresponds to
the computational work (number of floating-point operations) associated with:

• each task in the pool of ready tasks, and

• each ongoing task (active tasks not yet finished).

For a better balance of the actual computational work during factorization, both the number
and the choice of the slaves of type 2 nodes are determined dynamically. In an approach
that is purely based on the workload (see [1, 2]), the master decides of a regular (balanced)
distribution of the slave tasks (ie, each slave is assigned approximatively the same amount of
work). The slaves involved in the factorization are selected based on their current workload,
the least loaded processors being chosen from among the candidate processors of the node.

In [12], the authors developed an approach with irregular partitions to decrease the memory
usage. We will also use this capability (actually we need it) to offer more flexibility to our
new scheduling strategy. Remark that this flexibility can be exploited only if the memory
constraints guide us to control the size of the overall memory (communication buffers, factors,
working memory) per processor. If we wanted to use irregular partition without any memory
constraint, the overall memory per processor would have to be severely overestimated.

2.3 The four zones

The mapping algorithm by Geist and Ng [10] allows us to find a layer, so called layer 0 or
L0, in the assembly tree so that the subtrees rooted at the nodes of this layer can be mapped
onto the processors with a good balance of the floating-point operations associated. Initially,
the assembly tree was separated into two zones, the upper part of the tree (above layer 0)
and the bottom part of the tree (below layer 0) where each subtree is mapped onto a unique
processor (type 1 parallelism).

We decided to separate the tree into 4 zones instead of 2 (see Figure 4). Zone 4 corresponds
to the bottom of the tree. It was suggested in the conclusion of [4] that the mapping of the
upper part of the assembly tree could be separated into two zones. The first zone (zone 1)
would correspond to a relaxed proportional mapping whereas the second zone (zone 2) would
correspond to a stricter proportional mapping. Hence the flexibility offered at the top of
the tree would enable the master processors to correct the mistakes or the unbalance due to
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the variations of the load of the machine. Guided by this remark, zones 1 and 2 have been
implemented.

Zone 2

Zone 1

Zone 3 Sx

Sx Sy

Sy

Sy

Sy Sy

Sx

L

Zone 4

0

Relaxed proportional mapping

Strict proportional mapping

Fully dynamic on clusters of processes

Figure 4: The four zones of the assembly tree. Sx and Sy are sets of preferential processors.

Moreover we decided to add another zone (zone 3) in which each child inherits all the pref-
erential processors from its parent. This choice was motivated by the following experimental
observations:

• on a small number of processors the fully dynamic code is very competitive,

• increasing the number of candidate processors near layer 0 makes the memory man-
agement easier (if a node with few candidates and a large contribution block appears,
memory problems can occur),

• with more candidates above zone 4 we have more freedom to balance the work between
processors while respecting the proportional mapping on layer 0,

• on clusters of SMPs, this will naturally take into account the memory locality.

The limit of zone 3 depends on a parameter procmax which corresponds to a number of
processors. During the top-down approach of the proportional mapping, if the number of
preferential processors of a node x is smaller than or equal to procmax then x and all its
descendants (above zone 4) belong to zone 3 and have the same set of preferential processors
(see sets Sx and Sy in Figure 4).

The extra freedom given in zone 1 does not perturb too much the memory estimation of the
standard version of MUMPS (version 4.3), although it is based on a worst case scenario. It is
not the case for zone 3. In this zone, the memory estimates behave like the fully dynamic
code which has shown to severely overestimates the required space. That is why the four
zones approach cannot be considered for the standard version of the experimental section
(Section 7). We will give more details about memory estimates in Section 4.1.
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3 Our constraints and objectives

When the target is time reduction, the master processor of each node determines a partition
of the frontal matrix in order to “balance as much as possible the workload” between the
processors. In our context, we have the same objective, but also have to respect additional
constraints. In this section, we first present the memory constraints taken into account during
scheduling. Then, we give a generic formulation of this new constrained problem.
The different criteria used to estimate the memory constraints are presented below:

• Amount of available memory. It corresponds to the remaining memory that can be
used to store the contribution blocks and the factors. It varies during the factorization.
For each processor pi, memi will refer to this quantity (see Section 4.1 for more details).

• Maximum factor size. It corresponds to the maximum size of the factors that a
master can assign to a slave processor pi. It will be denoted by facti. This quantity is
related both to the static scenario used to estimate the memory during analysis and to
the dynamic information obtained during factorization (see Section 4.2).

• Maximum buffer size. Let us consider a type 2 node. In the worst case, each slave
will receive/send a block corresponding to the size of its share of the front. Assuming
that the send and receive buffers are of the same size, it is therefore sufficient to ensure
that the size of the slave task (front size multiplied by number of rows) is smaller than
the size of the buffer. For each processor pi, bufi will denote the size of its buffer.

We now define some of the notations used to describe our algorithms. Let us consider a node
of the assembly tree of order nfront with npiv variables to eliminate (see Figure 3, left). The
expressions below correspond to the unsymmetric case where the memory size of a slave task
is given by the number of rows times nfront (see Section 6 for the symmetric case). For each
slave processor pi and for each corresponding constraint bufi, memi, facti, we define a function
nb row by

nb row(bufi) =
bufi
nfront

, nb row(memi) =
memi

nfront
, and nb row(facti) =

facti
npiv

,

respectively. Furthermore for a maximum number of floating-point operations flopi that we
want to assign, we define

nb row(flopi) =
flopi

npiv(2× nfront− npiv)
.

(The number of operations to factor a strip of nbrow rows is nbrow×npiv×(2×nfront−npiv).)
If the master of a node is aware of the above constraints, it can determine the maximum num-
ber of rows that it can assign to each candidate. During the factorization, each master has
to“balance as much as possible the workload”between its“slave”candidates. For each slave pi,
the master processor gives ni rows such that ni ≤ min{nb row(bufi),nb row(memi),nb row(facti)}.
Even if the problem of finding the best workload balance which respects the memory con-
straints is easy to solve theoretically using linear programming, in practice, communication
schemes, granularity and the topology of the assembly tree need to be considered to answer
this question. That is why we do not give, in this section, more details about the meaning of
“balance as much as possible the workload”. Note also that the above problem may not have
a solution because the memory constraints are too restrictive. These points will be examined
in Section 5.
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4 Static and dynamic estimates

This section describes the metrics used by our scheduler. Some of these quantities are com-
puted during the analysis (the memory estimations, the size of the buffers, the size of the area
reserved for factors), some are also adjusted during the factorization (the memory available
to store contribution blocks, the memory available to store factors). We have already de-
scribed in Section 3 how the buffers are estimated; as for the memory estimation, a relaxation
parameter is then used to increase freedom and allow for numerical pivoting.

4.1 Memory estimates and available memory

We first explain how we decrease the total memory allocated compared to the standard ver-
sion of MUMPS. After choosing the candidates, the memory estimates are computed thanks to
a bottom-up, depth-first traversal of the assembly tree, that simulates the actual factoriza-
tion. (Note that the depth-first traversal may differ from the traversal occurring during the
actual factorization.) For each processor, master or candidate, involved in the computation
associated to a node, the memory estimate for the processor is decreased when a contribution
block is assembled and discarded, and it is increased when assemblies, activation of tasks, or
storage of factors occur. For type 2 nodes our new estimates, computed during the analysis
phase, are based on an average optimistic scenario instead of the worst case as in [4]. In both
cases, the estimation assumes regular partitions of the contribution block, that is, each slave
is assigned the same amount of work.

In the worst case scenario corresponding to the standard version of MUMPS, we first compute
the minimum number of slaves, min needed, to perform all the work for the slaves (this number
depends on internal parameters and algorithmic aspects that fix the maximum granularity and
it is smaller than the number of candidates). Then, for our simulation, each candidate receives
a block of size nfront(nfront − npiv)/min needed, where nfront and npiv are respectively the
size of the front and the number of variables to eliminate, as defined earlier.

In the optimistic case, we now assume that work can be assigned to all available slaves
and so each candidate receives a block of size nfront(nfront − npiv)/ncand where ncand is
the number of candidates of the type 2 node. Since nfront(nfront − npiv)/min needed ≥
nfront(nfront− npiv)/ncand, the estimates will be smaller in this optimistic scenario.

For example, let us consider a type 2 node that has 5 candidates and that has a block of
200 MBytes to be distributed over the slaves. We suppose that at least 2 slaves are needed.
Then the worst case will give 100 MBytes to each candidate processor whereas the optimistic
scenario will give 40 MBytes to each slave. So we save 60 MBytes per processor.

These estimates are then relaxed by a percentage (by default equal to 20%) to offer more flex-
ibility to the scheduler. The resulting supplementary memory enables us to take into account
extra fill-in due to numerical pivoting and to offer more freedom to the dynamic decisions. It
will also reduce the amount of data compressions involved in a parallel environment because
of the irregular access to the contribution blocks (garbage collection). The memory available
on each processor is then dynamically updated as proposed in [11].

4.2 Maximum size of factors

The maximum size of factors is used by the scheduler to determine the largest portion of the
factors that can be given to a candidate processor. It is composed of two terms. For each
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node J of the assembly tree, the first term fact anali(J) is estimated during the analysis.
It corresponds to the size of the factors given to processor pi with the optimistic scenario
(with the convention that if a processor pi is neither the master nor a candidate of node J ,
fact anali(J) = 0). Thus, according to the analysis scenario, a processor pi will store the
quantity fact anali =

∑

J fact anali(J) of factors.

Algorithm 1 Update of the supplementary memory for the factors.

Initialization on processor pi:
Let ∆i be the initial supplementary memory for the factors.
Include (pi,∆i) in a message msg sup mem.
Asynchronous send of msg sup mem to the other processors.

After the selection of a set S of slaves by processor pi for the node J:
for all candidate processor pk do

if pk ∈ S then /*pk has been selected*/
δk = fact analk(J) − Actual size of the factor assigned to pk

else

δk = fact analk(J)
end if

Include (pk, δk) in a message msg sup mem.
end for

Asynchronous send of msg sup mem to the other processors.

At the reception of a message msg_sup_mem:

for all (pi, δi) included in the message do

∆i = ∆i + δi
end for

The second term, the flexibility ∆i, is initialized to the supplementary memory given to store
the factors. It enables the dynamic decisions to deviate from the optimistic analysis scenario.
Using Algorithm 1, ∆i is adjusted dynamically during the factorization phase. Hence, after
having updated information about workload and memory during the selection of the slaves of
a node J , the master knows that it should not give more than facti(J) = fact anali(J) + ∆i

factors to the candidate pi. Obviously, if there are no numerical problems and if ∆i = 0 for
each processor pi, then the factorization will respect the same partition of the factors that
was predicted during the analysis phase.

4.3 Workload and anticipation

The dynamic scheduling decision taken by the master processor of a type 2 task is guided
by its view of the workload of its candidate processors. The workload for a processor pi is
referred to as loadi and it represents the sum of the computational cost of all its ready and
active tasks (see Section 2.2). For each processor pi, loadi and its variations are made available
to master processors thanks to the asynchronous communication mechanism described in [11].
Experiments in [12] have shown the positive effects of anticipating the memory variations.
Algorithm 2 describes this mechanism for the workload. The basic idea is to anticipate the
arrival of a costly task and take its workload into account slightly before the task is effectively
inserted in the pool of ready tasks. Note that a task becomes ready once all its children have
been processed. Thus, if every processor treating a child sends (when it starts the task) a
message to the one in charge of the parent node, the processor in charge of the parent knows
that this task will become ready in a relatively small amount of time. It can then send the
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cost of the corresponding task to all the processors to make them aware of this new load just
arriving. Note that when a predicted task effectively becomes ready (i.e. is inserted in the
pool of ready tasks), the workload of the processor is not updated since this has already been
done.

Algorithm 2 Anticipation of the tasks.

Initialization on processor pi
for all nodes J for which pi is the master do

Set nb children(J) to the number of children of J .
end for

Emission of a message child_OK when task J starts on the master pi:
Let K be the parent of node J .
Let pk be the master in charge of task K.
Include K in a message child OK.
Asynchronous send of child OK to the processor pk.

At the reception of a message child_OK on processor pi:
Extract task K from the message child OK.
nb children(K) = nb children(K)− 1.
if nb children(K) = 0 then

Let WK be the work associated with the task of the master of node K.
Include (pi,WK) in a message msg load update.
Asynchronous send of msg load update to the other processors.

end if

At the reception of a message msg_load_update containing (pi,W ):
loadi = loadi +W

5 Hybrid dynamic scheduling

In this section, we describe the algorithms used to balance the workload while taking into
account the memory constraints. Let us first define the notations used in our algorithms. For
a node J just extracted from the local pool of ready tasks (by the master processor of J), we
define:

• ncand: the number of candidates,

• {p1, . . . , pncand}: the set of candidate processors initially sorted by increasing workload,

• Wmaster: the computational cost (number of floating-point operations) of the master
task,

• Wslaves: the computational cost associated with the sum of all the slave tasks.

For each candidate processor pi, we know/compute:

• the quantities memi, bufi and facti (see Section 3),

• its workload loadi (see Sections 2.2 and 4.3).

Algorithm 3 presents the main steps of our hybrid dynamic scheduling approach. Note that
since violating a constraint related to bufi or memi would lead to a failure we never relax
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them during the algorithm. At Step 1, we compute an advised maximum number of slaves
nlim used during a first attempt to balance the work over a subset of the nlim least loaded
processors. nlim is designed to limit the number of slaves by considering that the work given
to each slave should be related to the master’s work (see Algorithm 4). Step 2 of our algorithm
is performed only when Step 1 did not succeed in distributing all work because of memory
constraints. Processors are then added one by one during Step 2 with the objective of mapping
the remaining work on up to ncand processors, while saturating the memory constraints. At
Step 3, we then suppress the memory constraint relative to facti and redistribute the remaining
work.

Algorithm 3 Main steps of our hybrid scheduling strategy.
Receive information related to workload and memory.

1 Try to balance the workload on a maximum of nlim processors (see Algorithm 4).
2 If Step 1 did not succeed (the nlim processors are saturated in memory and work remains to be mapped)

then add new slaves one by one.
3 If Steps 1 and 2 did not complete the mapping then suppress the memory constraint on the size of the

factors, facti, and try to balance the remaining work onto the candidates.

All steps, although based on different algorithms, use similar techniques. In this section,
we focus on Step 1, described in Algorithm 4, since it is the most complex and critical one
for performance. Algorithm 4 is iterative. Starting from an initial value of ntry, we try to
find a partition of the frontal matrix (inner loop in Algorithm 4) on a maximum of ntry
slaves. If this attempt fails, we increase ntry and repeat the previous process to map the
remaining work Wr until nlim is reached (outer loop in Algorithm 4). Furthermore note that
in the algorithm we use the convention that loadnlim+1 = +∞, so that if ntry = nlim, only
memory constraints may prevent us from finding a mapping of the slave tasks on the nlim
slave processors. Obviously, during Step 2, the real value of loadnlim+1 will be used.
The ri term represents the number of rows assigned to processor pi at each iteration of the
algorithm. It corresponds to the minimal value between the number of rows necessary to
reach the workload of the current reference processor (pntry+1), the memory constraints of pi,
and another term (Wb = nb row(Wr/(ntry−nsat))). This last term corresponds to a balanced
distribution of the remaining work among unsaturated processors. Moreover, since at each
point of the algorithm the workloads of the already selected slaves (pi)1≤i≤ntry have been
well-balanced (in the previous iterations of the algorithm), the order in which the ntry slaves
are processed is not important. The ntry slaves are then sorted from the most constrained
processor with respect to memory bounds to the least constrained one. Doing so we ensure
that a single pass is sufficient to produce a balanced partition of the matrix that respects all the
memory constraints. Indeed each time the memory constraints of a processor are saturated,
the remaining load Wr is updated together with the number of saturated processors nsat.
These two quantities are then used to reevaluate the term Wb = Wr/(ntry − nsat) and the
corresponding constraint.
One can also notice that, in Algorithm 4, the initial values of ntry and nlim depend on the
location in the assembly tree. Since in zone 3 the tree parallelism is sufficient, we expect to
improve the performance and limit the volume of communications by allowing the algorithm
to select less slaves. This is done by setting both nlim = ncand and ntry = ncand − 1. The
workload of each processor will then be adjusted to the most loaded candidate processor
during the first attempt of the “while” loop. Since the reference load loadntry+1 is equal to
loadncand and since α = +∞ inhibits the limitation relative to the nb row(Wb) term, more
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Algorithm 4 Step 1: Slave task mapping for a node Inode
OUTPUT:

Wr: workload not yet mapped;
assigned rows: number of rows assigned per processor;

nsat = 0 (number of saturated processors);
(assigned rowsi)i=1,...,ncand = 0;
(buf loci = bufi)i=1,...,ncand;
if Inode in zone 3 then

α = +∞ (to inhibit the constraint on nb row(Wb), see below);
ntry = ncand− 1; nlim = ncand;

else

α = 1; ntry = 1; nlim = min(ncand,max( Wslave

ρ Wmaster
, 1));

end if

Wr = Wslaves; loadnlim+1 = +∞
while ntry ≤ nlim do

Wb = Wr/(ntry− nsat) (balanced distribution of the remaining work among first ntry− nsat unsaturated
processors)
if Inode not in zone 3 then

sort the sublist of the ntry least loaded processors in increasing order of
min{nb row(memi),nb row(buf loci),nb row(facti)};

end if

for i = 1 to ntry do

if processor pi not already saturated then

ri = min{nb row(loadntry+1 − loadi), α× nb row(Wb),nb row(memi),
nb row(buf loci),nb row(facti)};

Let w,m, f be the workload, the memory, the size of the factors (respectively) corresponding to ri
rows;
Assign ri rows to processor pi and update its configuration:

loadi = loadi + w, memi = memi −m, facti = facti − f , assigned rowsi = assigned rowsi + ri,
and buf loci = buf loci −m;

Wr = Wr − w;
if processor pi saturated then nsat = nsat + 1 and Wb = Wr/(ntry− nsat)
if Wr = 0 then return;

end if

end for

ntry = ntry + 1;
end while

work will be assigned to the first slaves and less slaves will normally be chosen. Furthermore,
when the node belongs to zone 3 we do not sort the list of ntry processors in the inner loop
because we do not expect, in that case, the workload between the slaves to be balanced.

To illustrate our discussion let us assume that the workload is very well balanced on entry of
Algorithm 4 among the processors and consider a relatively small type 2 node not in zone 3.
For the sake of simplicity, we assume that Wb will be large enough and is not the constraining
factor. In that case, the role of nlim is to maintain a minimum granularity relatively to
the work of the master. Indeed, the first loops with ntry < nlim − 1 do nearly nothing
since loadnlim ≈ loadi for all candidate processors pi. When ntry becomes equal to nlim, the
reference load loadntry+1 becomes infinity so that we will try to saturate the memory before to
consider adding new slaves at Step 2 of Algorithm 3. We now consider the example of Figure 5
to illustrate the behaviour of the first steps of Algorithm 3. Let us assume that at Step 1 the
advised maximum number of processors nlim is set to 3. Work is assigned at Step 1 to these
three processors. At the end of the while loop for ntry = 2, we show in Figure 5(b) that all
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the work has not been fully distributed. At the end of the next iteration (ntry = nlim = 3)
we see in Figure 5(c) that the memory constraints of the three first processors are saturated.
This is due to the fact that loadnlim+1 = +∞. (Note that in our example, the constraint on
Wb is never attained.) Finally, in Figure 5(d), the remaining work can be assigned at Step 2
when p4 is added to our set of slaves.

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	


�


�


�


�


�


�


�


P1 P2 P3 P4 P5 Slave task

workload

maximum workload imposed by memory constraints

not yet distributed

(a) Initial state

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

P1 P2 P3 P4 P5 Slave task

workload

maximum workload imposed by memory constraints

not yet distributed

(b) Step 1 (ntry = 2)

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����
�����

���
���
���
���
���
���� � �

� � �
� � �
� � �

! ! !
! ! !
! ! !
! ! !

" " " "
" " " "
" " " "

# # #
# # #
# # #

P1 P2 P3 P4 P5 Slave task

workload

maximum workload imposed by memory constraints

not yet distributed

(c) Step 1 (ntry = 3)

$�$�$
$�$�$
$�$�$
$�$�$
$�$�$
$�$�$

%�%�%
%�%�%
%�%�%
%�%�%
%�%�%
%�%�%

&�&�&
&�&�&
&�&�&
&�&�&
&�&�&
&�&�&
&�&�&
&�&�&
&�&�&

'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'

(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(

)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)

*�*
*�*
*�*
*�*
*�*

+�+
+�+
+�+
+�+
+�+

,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,

-�-�-
-�-�-
-�-�-
-�-�-
-�-�-
-�-�-. . .

. . .
. . .
. . .

/ / /
/ / /
/ / /
/ / /

0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1
1 1 1 1

P1 P2 P3 P4 P5 Slave task

workload

maximum workload imposed by memory constraints

not yet distributed

(d) Step 2

Figure 5: Example of hybrid scheduling on 5 processors of a node not belonging to zone 3.

6 Extension to symmetric matrices

The hybrid scheduling strategies have also been adapted to the symmetric case. The additional
difficulties come from the fact that in the symmetric case, the relations between the memory,
the computational cost (number of operations) and the number of rows inside a front is not
straightforward; these relations actually depend on the choices done for the previous slaves of
the node (see the partition of a type 2 node in Figure 3). In our dynamic approach to hybrid
scheduling, the slave tasks are mapped in increasing order of the workload of the candidates.
Hence, the evaluation of the function nb row of the ith candidate depends on the rows assigned
to the i − 1 previous candidates. In particular, let us consider the ith and the jth candidate
with i < j. An equal memory size corresponds to more rows given for pi than to pj . In this
context, linear programming no more provides a theoretical answer to our problem.
Algorithm 4 needs to be revisited. In particular each time we increase ntry, the partition of



Hybrid Scheduling for the Parallel Solution of Linear Systems 13

the matrix needs to be fully recomputed. Also, if we want to add rows to the ith candidate
processor, then the assignment needs to be revised for all the candidates with position j > i.
The nb row functions are then difficult to evaluate and are not explicitly known since the
relation between memory and floating-point operations depends on the position in the frontal
matrix of the first row assigned to processor pi.

7 Experimental results

In this section we analyse the effects of our hybrid approach. We first describe our test
environment. In Section 7.2, we analyse the behaviour of our algorithms in terms of estimated
memory and memory effectively used during factorization. The influence on the factorization
time is discussed in Section 7.3.

7.1 Experimental environment

In this section, we focus on four large symmetric and unsymmetric matrices, described in
Table 1:

• AUDIKW 1 comes from Automotive crankshaft model with over 900,000 TETRA ele-
ments and is available at http://www.parallab.uib.no/parasol/data.html,

• CONESHL comes from a 3D finite element problem (cone with shell and solid element
connected by linear constraints with Lagrange multiplier technique). It was created by
SAMCEF and provided by the SAMTECH company. It is available on request.

• CONV3D64 has been provided by CEA-CESTA and was generated using AQUILON
(http ://www.enscpb.fr/master/aquilon),

• ULTRASOUND80 comes from propagation of 3D ultrasound waves and has been pro-
vided by Masha Sosonkina.

We use METIS [14] during the reordering phase for all our experiments. Note that for the ma-
trix CONESHL, the numerical behaviour of the current release of MUMPS is sensitive, because
of numerical pivoting, to the number of processors. This results in a number of floating-point
operations and a size for the factors that varies (although only slightly) when the number of
processors changes. Since we do not want to be perturbed by such effects in the experiments
of this paper, the matrix was made diagonal dominant to have the factorization cost indepen-
dent of the number of processors. All results have been obtained with this modified matrix,
referred to as CONESHL mod.

Our target machine is the IBM SP from IDRIS1. It is composed of clusters of SMP nodes. In
our experiments, we use a maximum of 2 clusters of 16 SMP nodes of 4 processors each (Power
4/1.7Ghz P655). Each node shares 8 GBytes of memory. A Federation switch interconnects
the SMP nodes. We will compare the following versions of MUMPS on 64 and 128 processors:

• The standard version with proportional mapping and candidates will be referred to
as MUMPS cand. It corresponds to the version used in [4] except that the mechanism
described in Algorithm 2 to anticipate the workload has also been included. A master

1Institut du Développement et des Ressources en Informatique Scientifique
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Order nnz nnz(L|U)× 106 Ops×109

Symmetric matrices
AUDIKW 1 943695 39297771 1368.6 5682

CONESHL mod 1262212 43007782 790.8 1640

Unsymmetric matrices
CONV3D64 836550 12548250 2693.9 23880

ULTRASOUND80 531441 33076161 981.4 3915

Table 1: Test set. nnz: number of nonzeros in the matrix. nnz(L|U): number of nonzeros in
the factors. Ops: total number of operations during factorization.

selects its slaves among the candidate processors and balances the workload using regular
partitions.

• The hybrid version will be referred to as MUMPS hyb. It corresponds to a candidate ver-
sion implementing all the algorithms described in the previous sections. In particular,
the separation of the tree in four zones (see Section 2.3), the estimation of the supple-
mentary available memory for the factors (see Algorithm 1) and the hybrid scheduling
(see Section 5) are included. To compute the advised number of processors nlim in
Algorithm 3 we set ρ = 50% for unsymmetric matrices and ρ = 70% for symmetric
matrices. The fact that the relative cost of a master with respect to a slave is larger on
unsymmetric matrices justifies this difference in the setting.

7.2 Estimated and effective memory

In this section, we analyse the memory behaviour of both versions of our solver. We look at
both the predicted memory peak and the memory actually used. We are interested in both
the average memory per processor and the peak between processors.

MUMPS cand MUMPS hyb

Matrix Estim Real Estim Real

AUDIKW 1 Max 118.96 50.08 74.80 62.53
Avg 76.24 31.19 49.32 33.54

CONESHL mod Max 64.05 37.04 31.81 24.22
Avg 25.20 16.79 22.05 16.82

CONV3D64 Max 102.94 93.04 88.73 87.46
Avg 68.66 60.95 61.24 62.41

ULTRASOUND80 Max 42.98 38.02 34.17 32.11
Avg 26.19 22.82 24.01 22.65

Table 2: Estimated and effective memory (millions of reals) for the factorization on 64 pro-
cessors. Max: maximum amount of memory. Avg: average memory per processor. Memory
in millions of entries. Memory allocated is 20% more than estimated.

We recall that with the MUMPS cand version memory estimates are based on a worst case sce-
nario whereas the MUMPS hyb version uses a more optimistic scenario. Note that for all cases
we relax the memory estimated by 20% to run the factorization (except for the MUMPS cand

version on CONV3D64 and AUDIKW 1 with 64 processors for which this percentage is re-
duced because of memory limitations on the machine). This leads anyway in all cases to a
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much larger memory allocated for MUMPS cand than with MUMPS hyb strategy.

MUMPS cand MUMPS hyb

Matrix Estim Real Estim Real

AUDIKW 1 Max 107.09 33.49 59.54 29.22
Avg 48.37 15.60 27.74 16.92

CONESHL mod Max 40.23 16.44 17.32 14.52
Avg 14.90 8.44 12.16 8.69

CONV3D64 Max 74.30 56.17 49.86 47.35
Avg 39.14 31.93 35.02 33.20

ULTRASOUND80 Max 45.95 23.90 21.26 17.47
Avg 17.47 12.55 13.44 11.84

Table 3: Estimated and effective memory for the factorization (millions of reals) on 128 pro-
cessors. Max: maximum amount of memory. Avg: average memory per processor. Memory
in millions of entries. Memory allocated is 20% more than estimated.

Tables 2 and 3 show the memory estimated and the memory used on 64 and 128 processors
respectively. We notice that the hybrid version significantly reduces the estimated memory
(both average and peak). We can also see that the gap between the hybrid strategy and the
standard one grows with the number of processors. This is due to the fact that on a larger
number of processors we have less memory limitations so that we can offer more freedom to
dynamic decisions. The worst case memory estimates of the standard strategy then converts
this freedom into memory overestimations which is not the case with the new strategy. The
same observation explains why on the large CONV3D64 matrix, the gap between the hybrid
strategy and the standard one is relatively small on 64 processors. Indeed there is no over-
estimation, even with worst-case memory estimates, for the large type 2 nodes because both
strategies have to consider all the candidate processors as slaves to avoid too large slave tasks.

Concerning the effective memory occupation, we can observe that the hybrid strategy gives
a maximum memory peak that is generally smaller than the one of the standard strategy
(except for the AUDIKW 1 problem on 64 processors). In addition, we can see that the
average effective memory size over the processors is close between the two strategies and that
the hybrid one tends to give slightly higher average memory occupation over the processors.
Finally, notice that the gap between the estimated memory size and the effective one is smaller
with the hybrid strategy and tends to be very small for most problems. The difference is
generally due to the fact that the estimate is computing with the tree processed in a special
order (depth-first traversal) which is not the one occurring during factorization.

7.3 Factorization time

In this section, we analyse the factorization time. We expect two different effects. First,
irregular partitions offer the flexibility to balance the workload better, and this should improve
the factorization time. Second, memory constraints may prevent the master from making a
perfect decision in terms of balancing the workload, and this should moderate the benefits
from irregular partitions.

Table 4 shows the impact of our new strategy on the factorization time. For all cases, the
hybrid approach improves the factorization time on both 64 and 128 processors. In other
words the memory constraints do not prevent the scheduling from balancing the workload
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64 processors 128 processors
Matrix MUMPS cand MUMPS hyb MUMPS cand MUMPS hyb

AUDIKW 1 99.95 78.50 59.51 43.51

CONESHL mod 49.31 24.80 20.98 14.98

CONV3D64 304.90 239.62 240.02 168.59

ULTRASOUND80 46.02 42.52 35.96 33.85

Table 4: Factorization time in seconds with 64 and 128 processors.

well. We can see for example on problems like CONV3D64 or AUDIKW 1 a very significant
improvement in terms of factorization time (near to 30% reduction for matrix CONV3D64).
Even, for problems requiring less computation, we can see that the new strategy is very effi-
cient in comparison to the standard one (see CONESHL mod), except for ULTRASOUND80
for which gains are relatively minor. Our results show that thanks to the new hybrid dynamic
scheduler and to the fact that it can be combined with a modified and improved static ap-
proach, we have freedom to schedule/manage better parallel tasks even under much tighter
memory constraints.

Finally, concerning the scalability of the factorization time, we can observe that for sym-
metric problems, the relative speed-up between 64 and 128 processors is not too far from 2
(1.80 for AUDIKW 1 and 1.65 for CONESHL mod). Furthermore, we could factorize the
symmetric matrices on one processor (3401 seconds for AUDIKW 1 and 1195 seconds for
CONESHL mod) and obtained ratios between the sequential and the parallel factorization
time on 128 processors of 78.18 and 79.80 for respectively AUDIKW 1 and CONESHL mod.
This illustrates the good scalability of our scheduling strategies with symmetric matrices.
Concerning unsymmetric problems, the speed-ups between 64 and 128 processors are not as
good (1.45 for CONV3D64 and 1.25 for ULTRASOUND80). This is mainly due to the fact
that for unsymmetric problems, the size of master tasks is relatively bigger than for symmetric
ones (see Figure 3) and may become a bottleneck, since increasing the number of processors
does not decrease the size of master tasks. Even if a splitting mechanism [1] is available in
MUMPS to reduce the size of such tasks, it induces a lot of extra communications and some
stronger synchronisation that affect the performance. Improving the splitting strategy is
possible but is out of the scope of this study.

To conclude this section, we report in Figure 6 the influence of relaxing the memory allocated
(memory estimated × percentage of relaxation) on the factorization time and on the memory
effectively used to factor the matrix CONV3D64 on 128 processors. This study will also give
us the opportunity to comment on the effect of an algorithmic tuning not yet introduced but
already used in all previously presented results. The algorithmic modification results from
the following observation. The memory constraint relative to the deviation of the size of
the factors (see Section 4.2) makes sense only when the processor still has master tasks to
process. Otherwise, all tasks that will be treated by the processor are slave tasks managed by
our dynamic scheduler, and if there is enough redundancy between the candidate processors,
the dynamic scheduler will be able to avoid choosing a processor that has no more memory
available. It is then possible to deviate from the analysis for those processors and assign them
more factors than authorized by our memory bounds.

Figure 6(a) shows that with strict memory constraints the memory relaxation parameter
(whose default value is 20 %) influences both factorization time and the memory effectively
used. We can observe that with no relaxation (i.e., relaxation parameter equal to 0), both
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(b) with relaxed memory constraints

Figure 6: Influence of the memory relaxation on the factorization time and on the memory
effectively used for matrix CONV3D64 on 128 processors.

the factorization time and the memory peak increase because the scheduler has no freedom
for its slave selection: all candidates processors are chosen and are assigned a task of the
same size, following exactly the predictions from the analysis. It is interesting to notice that,
in this case, the factorization time (230 seconds) is comparable with the time obtained with
the MUMPS cand version (240 seconds). We also see in Figure 6(a) that for all values of this
relaxation greater than 5 %, the scheduler has enough freedom since the curves have no
significant variations. Note that the memory peak is even less sensitive to the value of the
relaxation parameter.
Figure 6(b) shows that relaxing the memory constraints improves the performance obtained
with small values of the relaxation parameter. Although a strategy with no memory relaxation
at all should not be advised, we see that the behaviour is quite good. This is mainly because,
in that case, several processors have not been assigned any master task intitially. Thus,
the dynamic hybrid scheduler can give more work to those processors, creating in this way
extra freedom for the other processors. Furthermore, the number of processors with no
incoming master tasks increases while processing the tree and will provide extra freedom to
the schedulers. The curves of Figure 6(b) thus shows that with this simple modification of
the management of memory constraints it is possible to make the factorization less sensitive
to the memory relaxation parameter.

8 Concluding remarks and future work

We presented in this paper a hybrid approach to dynamic scheduling that takes into account
information about both the workload and the memory availability of the processors in the
context of the parallel LU and LDLT multifrontal factorizations. We proposed modifications
concerning the static mapping of computational tasks, as well as a new scheduler combining
workload and memory constraints for its dynamic decisions. We have shown the benefits of our
approach on four large test cases (symmetric and unsymmetric) on 64 and 128 processors. For
our future work, we plan to further improve the parallel behaviour of our approach following
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two directions.

Firstly, the candidate version of MUMPS has been adapted to clusters of SMPs in [3]. We want
to adapt our hybrid approaches to better exploit this feature of the computer architecture. In
our context, it seems already natural that the size of the SMP nodes will give a criterion to
define the size of the clusters in zone 3. The information about the SMP nodes could then be
used to influence the dynamic scheduler in its decisions (i.e., try to select as slaves processors
belonging to a same SMP node).

Secondly the task selection strategy that manages the ready nodes on each processor (see
Section 2.2) can be improved. Indeed, the current strategy is local and greedy. It can
be improved by designing more sophisticated strategies based on workload, topological and
memory criteria. An example of such a strategy could be to select among all ready tasks on
the most costly (in terms of computation) branches of the assembly tree the one that is best
at reducing the current global memory peak.
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