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Abstract

Reconfigurable devices (RDs) are extremely advantageous when employed in real-
time embedded systems. Nonetheless, they are susceptible to soft errors. In a broad 
sense, the present research addresses the challenge of improving the reliability of 
independent periodic real-time hardware tasks in RDs by utilizing hybrid fault-tol-
erant scheduling. The current paper combines static and dynamic real-time sched-
uling techniques to improve the reliability of the system. First, the proposed algo-
rithm statically schedules primary tasks and preserves area and time for possible 
backup tasks on the RD. The overlapping of passive backup tasks is possible. Next, 
at the run time, event-triggered dispatcher dynamically determines which candi-
date backup copy should be selected for configuration on the overloaded preserved 
areas. Reliability, task deadline, and RD area limitations are the determining fac-
tors of backup overloading in the static phase. On the other hand, in the dynamic 
phase, the execution result of the primary tasks—in this case, success or failure—is 
the deciding factor based on which the dispatcher configures the true backup task 
on the preserved area. Experimental results show that the hybrid scheduling tech-
nique enhances the mean-time-to-failure of the system by an average factor of 1.22 
in comparison with a similar state-of-the-art study.
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1 Introduction

Reconfigurable devices (RDs) are general purpose hardware devices with the ability 
to be programmed and re-programmed over and over again [1]. Apart from flexibil-
ity, RDs eliminate the need to fetch, decode, and execute instructions since data are 
sent to the next stage on every clock cycle. Therefore, RDs offer the intrinsic feature 
of concurrency. This is especially the case for high-performance supercomputing 
applications that are usually implemented on general purpose multiprocessing com-
puters/clusters. State-of-the-art RDs, currently, have been highly sophisticated that 
they can be employed for such applications which target both fine grain and coarse 
grain parallelism (called embedded supercomputing).

The most prominent, widespread, and well-known RDs are static memory-based 
(SRAM-based) field-programmable gate arrays (FPGAs) [2, 3]. Because of their re-
programmability and use of standard CMOS process technology, FPGAs provide a 
superior trade-off between the performance of dedicated hardware (e.g., application-
specific integrated circuits) and flexibility [4, 5]. Moreover, FPGAs perform remark-
ably on stream processing and cryptographic problems [6, 7]. Such distinguishing 
features have led to the increased employment of SRAM-based FPGAs in broad 
applications as controllers and data processors, particularly in bioinformatics and 
safety critical embedded systems (e.g., avionics and space missions) [8, 9].

For configuring hardware tasks, SRAM-based FPGAs generally use an array 
of latches (called a configuration file or bitstream) to switch pass transistors ON 
or OFF. The bitstream contains SRAM bits to store configuration data for lookup 
tables, block RAMs, and flip-flops which occupy more than 95% of the FPGA area 
[8]. Similar to other electronic integrated circuits, SRAM-based FPGAs are well-
known for their susceptibility to transient and intermittent faults1 mainly caused by 
high-energy neutrons, protons, or heavy ions [10]. So-called single event effects 
(SEEs), such as single event upsets (SEUs), multiple bit upsets, and multiple cell 
upsets, affect bitstream memory cells by modifying their values [11] and thus pos-
sibly disrupt the normal operation of the FPGA. Hence, reliability and mean-time-
to-failure (MTTF) are of particular concern to all critical embedded systems using 
SRAM-based FPGAs [8].

There are several well-known resilience techniques for FPGAs according to their 
technology, architecture, and operating environment. These generally fall into three 
categories [8]: (1) Fabrication process-based techniques, e.g., silicon-on-insulator, 
(2) design-based techniques, e.g., hardware/time redundancy, duplication with com-
pare (DWC) and triple modular redundancy (TMR), and (3) recovery-based tech-
niques, e.g., scrubbing. However, many studies do not consider fault-tolerant (FT) 
scheduling on FPGAs. Furthermore, critical embedded systems are quite often hard 
real-time (RT) [12]. That is, tasks have predefined specified time constraints, usually 
referred to as hard deadlines, and missing too many deadlines may cause, for exam-
ple, a human or natural catastrophe or severe financial losses. Hence, to achieve a 

1 Throughout the remainder of the present paper, both transient and intermittent faults are referred to as 
soft errors (SEs).
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high degree of reliability, both the timelines and the logical correctness of the output 
are crucial.

Critical embedded systems employing FPGAs as a processing element (PE), 
however, inherently have severe limitations on available resources and power capa-
bility [3]. Along with the marked tendency of utilizing FPGAs in critical RT embed-
ded systems, these limitations have brought to light the need for a reliable schedul-
ing algorithm design. The main goal of scheduling in computing is to efficiently use 
shared resources (e.g., PE) so as to make the system fair and fast. In contrast to the 
mentioned resilience techniques, the real advantage of FT scheduling is improving 
reliability on FPGAs—and the system—without the need for new additional exter-
nal resources.

There is, however, a dearth of research aiming to employ scheduling techniques 
for fault tolerance in FPGAs. A few existing studies use, for the most part, the 
strongly static primary-backup (PB) scheduling technique with active redundancy 
[12, 13]. Although static scheduling has many benefits (e.g., synchronization and 
safeness for low-laxity tasks), only dynamic FT scheduling can efficiently utilize 
shared resources. Furthermore, the cost of increased power will be considerable with 
the use of active backup tasks, such as TMR. Thus, for critical embedded systems, 
where satisfaction with the energy constraint is absolutely vital, the focus should be 
on scheduling passive backups. To take advantage of both static and dynamic task 
scheduling, a hybrid scheduling technique can be used to manage and handle tasks 
and their active/passive backups under execution time constraints [14].

The present study proposes a novel hybrid RT scheduling technique to improve 
the MTTF of a system in the presence of soft errors (SEs). First, the proposed tech-
nique combines two traditional scheduling approaches, static and dynamic, for the 
FT scheduling of independent periodic RT hardware tasks on FPGA. For this pur-
pose, some main principles are presented and proven. Next, all scheduled jobs are 
reordered according to the mentioned principles. The scheduler then applies both 
active and passive redundancies to the hardware tasks. Given that it is possible to 
overlap some passive backup copies in the schedule, the scheduler dynamically 
selects a candidate backup task to be configured in the preserved overloaded area 
at run time according to the proven principles. In comparison with the fully static 
fault tolerance study conducted by the active backup redundancy method [13], the 
experimental results show that the proposed hybrid scheduling approach enhances 
the MTTF of the system by an average factor of 1.22.

The rest of the current paper is organized as follows. Section  2 covers related 
work, while Sect. 3 describes the system model and provides notations. Section 4 
formulates the problem in detail, for which Sect. 5 provides an illustrative example. 
Section 6 elaborates on the details of the proposed scheme and supports it by pro-
viding several lemmas and theorems. In Sect. 7, experimental results and a compara-
tive study are presented. Finally, Sect. 8 concludes the paper and discusses potential 
future work.
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2  Related work

In efforts to increase the reliability of FPGAs, several studies have introduced 
recovery-based and design-based techniques. Recovery-based techniques are spe-
cifically developed to prevent fault accumulation in SRAM memory cells [15]. 
For instance, to maximize the total reliability of the system, the authors in Ref. 
[16] established different scrubbing rates for different circuits based on the failure 
rate, so that the total reliability of the system is maximized. Periodical scrubbing 
permits the recovery from errors in SRAM cells induced by SEs periodically [17]. 
Another example is the scrubbing method presented in Ref. [18] which increases 
reliability by considering power optimization. Routing and re-routing techniques 
also improve FPGA reliability [19, 20]. Nevertheless, in order to achieve a high 
degree of reliability, such techniques should be employed in combination with 
design-based techniques [21].

To mitigate SEs, design-based techniques are generally dependent on resource 
redundancy [8]. These techniques utilize different replications, at different gran-
ularities, to increase system reliability [22]. Redundancy-based techniques have 
been investigated in several reliability studies in space mission systems [23], 
the cloud computing environment [24], and the multiprocessor platforms [25]. 
Numerous similar and dissimilar possible combinations of hardware, informa-
tion, software, and time redundancy have been employed to recover failures by 
performing computations two- or more times [12, 26]. Nonetheless, most studies 
in the literature address only pure hardware redundancy techniques on FPGAs 
without considering scheduling. The main drawback is the throwing of too much 
redundant hardware, which is often impossible because of the severe limitations 
on the resources, costs, and power availability of embedded systems. Moreover, 
the overwhelming majority of faults in PEs are non-permanent in nature [12], and 
consequently, there is a need for a mechanism to protect the system from SEs.

As the term implies, FT scheduling complements enormous redundancy 
to achieve higher reliability. Irrespective of algorithms, all FT scheduling pro-
cedures are basically similar in that their main goal is to ensure the successful 
completion of tasks in spite of PE failure. Toward that aim, FT scheduling pro-
cedures, by and large, utilize time and PE redundancy with the PB approach. In 
the PB approach, at least two versions (primary and backup) of a task are sched-
uled. If the primary version of the task fails, then the backup copy offers another 
chance to complete the execution. The need for some fault detection mechanisms, 
such as acceptance test in the system should be noted, to detect task failure [12]. 
For further information about FT scheduling and RT systems, Refs. [12, 26] may 
be consulted.

For FT scheduling on the multiprocessor platform, Pathan in Ref. [27] intro-
duced an FT perspective that executes backup tasks when faults are detected. A 
global PB scheduling algorithm was also proposed by employing both active and 
passive backups of RT sporadic tasks on a multi-core system [25]. In another 
work [28], researchers assumed only active backups and considered tolerating 
processor failures. Furthermore, authors in Ref. [29] utilized the PB approach for 
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FT scheduling in clouds. On the whole, it is possible to claim that a mature body 
of literature, currently, exists on the subject of FT RT scheduling in multipro-
cessor systems [12, 30]. Despite this, very few studies, in fact, have considered 
implementing both scheduling and fault tolerance techniques on FPGAs.

Not surprisingly, fault tolerance is a principal avenue in SRAM-based FPGA 
research. Employing FT scheduling techniques can be effective in mitigating SEs 
in FPGA-based critical embedded systems. For instance, [31] employed the PB 
approach with the aim of minimizing overlap time. Similarly, Ref. [32] presented 
an FT algorithm for scheduling hybrid tasks. The authors of a related research [13] 
introduced Pareto-based optimization methods to increase the reliability of depend-
ent tasks running on SRAM-based FPGAs without deteriorating the total makes-
pan. This Pareto-based technique conducts an exhaustive search to find the optimal 
scheduling table (with the highest reliability) of all tasks coupled with their active 
backups at design time. The present study considers, to the best of its knowledge, 
the Pareto-based approach to be the work most closely related to its own. Shortly 
after their research in [13], the same authors proposed another concept well-suited 
for scheduling periodic tasks, which is a technique for increasing the reliability of 
hardware task graphs called the configuration early fetch [33].

Although the studies discussed above focus on the FT scheduling of hardware 
tasks in FPGA, most do not consider RT constraints. Critical embedded systems, 
however, are quite often RT, as mentioned earlier. In other words, critical embedded 
systems must be based on guaranteed timeliness to meet predefined hard deadlines. 
Actually, however, most activities performed by RT systems are periodic in nature, 
e.g., regularly monitoring special conditions/cases or frequently receiving data from 
sensor nodes. The current paper presents a hybrid static-dynamic scheduling tech-
nique aiming to improve the total MTTF of periodic RT hardware tasks (represented 
as a bag-of-tasks) on SRAM-based FPGAs, without any need for extra external 
hardware redundancy.

3  Models and preliminaries

This section provides models and preliminaries. Section 3.1 introduces task model. 
In Sect.  3.2, reconfigurable device model is described. After that, reliability and 
fault models are presented in Sect. 3.3. Furthermore, to facilitate easy reading, some 
variables and symbols that are frequently used in the current paper are summarized 
in Table 1.

3.1  Task model

The present research assumes that the system is critical hard real-time consisting of n 
independent periodic hardware tasks with no interdependence constraints and repre-
sented as the bag-of-tasks Γ =

{

�1, �2,… , �
n

}

 scheduled on an SRAM-based partially 
run-time reconfigurable FPGA. As the name indicates, each periodic task �

i
∈ Γ is 
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made up of an infinite number of jobs (instances) and every job is issued exactly once 
every period of Ti time units. τi is characterized as follows:

where Ci is the worst-case computation time (or simply computation time through-
out the present paper) of τi, and Wi represents the size of the task in terms of config-
urable logic blocks (CLBs) count [34]. Bi denotes the number of configuration bits 
of the task in the bitstream, and Si is the number of sensitive bits in Bi expressed as a 
percentage. Any change in the value of sensitive bits affects the functionality of the 
task and will lead to a task failure [35]. The exact amount of sensitive bits of a hard-
ware task is determined by experiments, such as radiation ground, fault injection, 
and emulation tests [13]. To the best of the present study’s knowledge, the amount 
of sensitive bits reported in the literature has been no more than 35% [36], a figure 
taken into consideration by the current research. Finally, Di and Ti are the relative 
hard deadline parameter or deadline (for the sake of simplicity in the remainder of 
the current paper) and the period of time, respectively.

In the majority of RT systems, the periodic tasks are synchronous and the relative 
deadline is equal to the period [12, 26]. The present study also assumes that Di, which 
is called the implicit deadline, also represents the period (Di = Ti). Furthermore, the 
scheduling table is made only for the smallest time interval called hyperperiod (T) at 
design time; after that, it is repeated. Hyperperiod is equal to the least common multi-
ple of all periods of the tasks.

(1)∀�
i
∈ Γ, �

i
=
(

C
i
, W

i
, B

i
, S

i
, D

i
, T

i

)

(2)T = LCM
(

T1, T2,… , T
n

)

Table 1  A summary of frequent notations used in this paper

Notation Description

τi Real-time hardware task i

Γ Set of all independent periodic real-time tasks: Γ =
{

�1, �2,… , �
n

}

Ci Worst-case computation time of τi

Wi Size of τi in terms of configuration logic blocks (CLBs) count

Bi Number of configuration bits of task τi in the bitstream

Si Number of sensitive bits in Bi expressed as a percentage

Di Relative hard deadline parameter

Ti Period of τi which is equal to the deadline in the current paper

T Hyper period of all tasks in Γ: T = LCM
(

T1, T2,… , T
n

)

SR, SC Count of rows and columns in reconfigurable device

CDG Configuration delay time of a CLB group

CDi Configuration delay time for configuring task τi on FPGA

ri,j Residency time of τi,j

R(t)
�i,j

Reliability of the jth job of task τi which operates during t time units

λi Failure rate of task τi in a given time interval

RD Reconfigurable device

SEE, SEU Single event effect, single event upset

SE Soft error
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Therefore, each synchronous task τi has a total of T
/

T
i
 jobs in the hyperperiod, each 

of which is released exactly at the beginning of the period. This can be shown by the 
quantification:

The current paper shows each backup copy with a superscript (an integer number 
just top-right of the job) indicating the backup number (� (m)

i,j
) . For example, � (2)

3,1
 repre-

sents the second backup of the first job of task τ3. Without loss of generality, all backup 
tasks are assumed to be clones of their primaries. That is, all backup task characteris-
tics, such as computation time and deadline, are exactly equal to those of the primary 
version (�i,j = �

(1)

i,j
= �

(2)

i,j
= ⋯) . For fully utilizing PE to increase system reliability by 

responding to multiple task failures, it is also assumed that, except for resource availa-
bility, there is no limit to the number of backups for each job.

Backup tasks can be scheduled as passive or active. In the passive mode, backups 
start execution only after the completion time of their primary versions. On the other 
hand, in the active mode, backups and primaries are executed at the same time. Regard-
less of the backup mode, scheduling techniques are either static or dynamic. If the 
schedule is created at design time (i.e., static scheduling), all tasks priorities are deter-
mined before the system begins to run. In contrast, a dynamic scheduler determines 
tasks priorities as it executes. The present study utilizes a hybrid (static-dynamic) tech-
nique to schedule both active and passive backup tasks.

Generally, schedulers can be either preemptive or non-preemptive. Inasmuch as 
interrupting hardware tasks requires additional time for saving the current state of the 
task, and later probably considerable overhead for re-configuring the preempted task 
on the FPGA, the current work presents its technique with the assumption that there is 
no preemption in the run-time of the hardware tasks [13, 33, 37]. Thus, under a non-
preemptive scheduling regime, once a hardware task begins its execution, it completes 
its computation at all times without any interruption. Nevertheless, the proposed hybrid 
scheduling technique can easily be ported to systems with a preemptive scheduler.

3.2  RD model

The target RD is an SRAM-based FPGA with partial run-time re-configurability which 
includes an array of CLBs. All hardware tasks in Γ are configured and run on a subset 
of this array, but the minimum addressable content in the FPGA is a group of CLBs 
referred to as a CLB group in the present paper. Thus, the target RD is characterized as 
follows:

where SR and SC represent the count of rows and columns, respectively. SG indicates 
the size of a CLB group in terms of CLBs, and  CDG is the configuration delay time 
of a CLB group.

(3)∀�i ∈ Γ, ∃�i,j ∶ �i,j ∈

{

�i,1, �i,2,… , �
i,
T∕Ti

}

(4)RD =

(

SR, SC, SG, CDG

)
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Since SRAM is volatile, the FPGA, upon starting, must read the initial configura-
tion data from a non-volatile memory. It is assumed that this initial data is protected 
against SEs. According to the inherent limitation of configuring tasks on an FPGA, the 
task configuration process is performed in a serial manner [13, 38]. It is also assumed 
that hardware task τi can be configured on any location of the device if there is enough 
space for at least Wi [13, 33]. Finally, the FPGA utilization factor (UΓ), which is the 
unitless fraction of time and area spent in the execution of the task set during a hyper-
period on the FPGA, is calculated as follows:

where S
R
× S

C
 is the FPGA size in terms of the CLB and  CDi represents the configu-

ration delay time of task τi, which is easily calculated as follows:

In other words, UΓ is the fraction of total time–space area used by all tasks and 
their jobs relative to the entire time–space area in a hyperperiod.

3.3  Reliability and fault models

Of all fault types in digital systems, the current paper addresses SEs (intermittent 
faults and single/multiple transient faults) and assumes that permanent faults are 
dealt with by manufacturing testing or field testing methods [39]. A fault detection 
mechanism is also considered to be in place, such as an acceptance test, execut-
able assertions, or a fail signal that detects job failure in the system [12]. Failure 
is detected exactly at the scheduled completion time of the job. Moreover, the time 
overhead for detecting job failure is included in the worst-case computation time 
(Ci).

In a recent work [40], researchers at the DDEmS laboratory introduced a reliabil-
ity model for hardware tasks running on an FPGA to SEs. To validate the presented 
model, a complete set of practical experiments on real hardware tasks were con-
ducted. Results confirmed the high accuracy of the model, especially in harsh envi-
ronments in which only a 0.5% discrepancy was recorded between the true experi-
mental results and estimated values. The present study also employs this reliability 
model which follows Poisson probability distribution. That is, faults are supposed to 
independently occur in an FPGA at a constant rate [13, 41]. Therefore, the reliability 
of the jth job of task τi, which operates during t time units, is calculated as follows:

(5)UΓ =

∑n

i=1

T

T
i

× (C
i
+ CD

i
) × W

i

S
R
× S

C
× T

=
1

S
R
× S

C

n
�

i=1

(C
i
+ CD

i
) × W

i
∕T

i

(6)CD
i
=

W
i

S
G

× CD
G

(7)R
(

t = Ci + ri,j

)

�i,j

= e
−�i(Ci+ri,j), i ∈ {1, 2,… , n}, j ∈

{

1, 2,… , T
/

Ti

}
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where ri,j is the residency time of �i,j indicating the time elapsed from when a job 
is configured on the FPGA until its execution begins. If �i,j immediately starts its 
execution after the configuration, ri,j is equal to zero. However, as seen in the next 
section, it is sometimes possible to configure �i,j ahead of its arrival time. In such a 
circumstance, ri,j is added to the computation time. λi is the failure rate of task τi in a 
given time interval, which depends on the soft error rate (SER) of the environment, 
the number of configuration bits of the task in the bitstream (Bi), and the number of 
sensitive bits (Si). λi is calculated as follows:

where Λ indicates the bit flip rate in one bit of the bitstream and is a representative 
of the environment’s SER, which is exponentially related to the critical charge of the 
circuit and radiation intensity (neutron flux) [42]. It should be noted that λi does not 
vary with time and is a constant rate for all τi jobs. Once the constant failure rate of 
the task is achieved, the task MTTF is easily calculated as follows [43]:

It is assumed that the system is properly executed if and only if all independent 
tasks correctly finish execution before their individual deadlines. In other words, the 
system runs as a series-parallel system. To calculate the reliability of the series-par-
allel system, the current paper utilizes the reliability block diagram (RBD), which 
is an inductive model for analyzing the reliability of complex systems [37, 44, 45]. 
Hence, the total reliability of the system in the hyperperiod is calculated as follows:

It is worth mentioning that every job of a task may have several backups. Since 
only one instance of a job (the primary or one of its backups) is needed to success-
fully complete its execution, the reliability of �i,j with m backup copies is calculated 
as a consecutive-one-out-of-m system. Therefore, the reliability of every job in one 
period is calculated as follows:

Finally, the total MTTF of the system is evaluated by:

(8)�
i
= Λ × B

i
× S

i

(9)MTTF
�

i
=

1

�
i

=

C
i

1 − R
(

C
i

)

�
i

(10)R(T)Sys =

n
∏

i=1

T∕Ti
∏

j=1

R
(

Ti

)

�i,j

(11)

R
(

Ti

)

�i,j

= 1 −

(

1 − R
(

Ci + ri,j

)

�i,j

)

(

1 − R

(

Ci + r
(1)

i,j

)

�
(1)

i,j

)

…

(

1 − R

(

Ci + r
(m)

i,j

)

�
(m)

i,j

)

(12)MTTFSys =
T

1 − R(T)Sys



 A. Ghavidel et al.

1 3

4  Problem formulation

Given the following as inputs:

1. A task set Γ =
{

�1, �2,… , �
n

}

 of independent periodic RT hardware tasks, where 
τi is modeled by a 6-tuple �

i
=

(

C
i
, W

i
, B

i
, S

i
, D

i
, T

i

)

2. The target RD given by RD =

(

SR, SC, SG, CDG

)

Determine a scheduling S for all tasks and their jobs so as to find

possible slack times and areas to preserve for backup copies, and
candidate backup tasks to overload preserved areas

such that while SEs occur:

1. Candidate tasks have another chance of meeting their individual deadlines, and
2. The MTTF of the system is increased.

Quite apart from algorithms, the PB approach for FT scheduling is, perhaps, the 
most important approach in the literature [12]. As SEs occur, jobs affected by the 
faults need to be re-configured (backup jobs) so as to not to miss their individual 
deadlines. Due to severe limitations on available resources and power capability, 
determining candidate jobs for true backup overloading on preserved areas on the 
FPGA must be carefully considered. In addition, as seen later, selecting true candi-
date backups can dramatically increase the total MTTF. Methods, such as [13, 37, 
44], utilize the fully static FT scheduling of hardware tasks to improve reliability. 
However, static scheduling imposes a penalty on the perfect usage of slack times 
and areas. The present paper addresses these challenges by benefiting from a hybrid 
static-dynamic scheduling technique.

5  Illustrative example

This section presents a simple yet comprehensive motivational example of an RT 
task set composed of three hardware tasks. In the following example, it is assumed 
that the amount of sensitive bits is the same for all tasks and, hence, the differences 
between the reliabilities of the tasks depend on computation time, residency time, 
and task size.

Γ1 =
{

�1, �2, �3

}

 shall be a task set and RD is assumed to be a simple FPGA. 
Each task �

i
=

(

C
i
, W

i
, CD

i
, D

i

)

 , where Ci is the computation time, Wi is the size of 
the task in terms of CLBs,  CDi is the configuration delay time of the task, and Di is 
the relative deadline equal to the period (Di = Ti). All three tasks in Γ1 have the same 
size, deadline, and configuration delay time: W

1
= W

2
= W

3
 , D

1
= D

2
= D

3
= 12 s , 

CD
1
= CD

2
= CD

3
= 1 s , and C1, C2, C3 are 3, 4, and 5 s, respectively. Therefore, 
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each task has exactly one job in the hyperperiod ( T = 12 s ). Since all tasks have the 
same size, their failure rate (λi) is also constant and equal to one another. For this 
example, it is supposed that the average number of task failures is 2 in 1000 s of 
execution of the task (�

i
= 0.002).

Figure  1 shows one possible static scheduling of the three tasks. All tasks 
arrive simultaneously at time 0 (i.e., critical instant scenario). As seen, each job 
has one backup. Thus, this system has the ability to tolerate a total of one job 
failure. It should be noted that the backups of �1,1 and �2,1 are configured and exe-
cuted only when their primaries fail, as indicated by the acceptance test flags, 
and this embodies the main concept of the passive backup mode. On the other 
hand, the backup of �3,1 is configured and executed before its primary finishes 
execution. In other words, passive and active backups are employed together in 
order to increase reliability. According to Eq. (11), the reliability of each job, as a 
consecutive-one-out-of-two system, is calculated as follows:

By studying Fig. 1, one recognizes that the residency time is zero for all jobs 
and their backups. Consequently, according to Eq.  (7), R

(

t = Ci

)

�i,j

= e
−�iCi . 

Therefore:

As a result, the reliability and MTTF of the system are evaluated by the aid of 
Eqs. (10) and (12):

R(t = 12)
�i,j

= 1 −

(

1 − R
(

t = Ci + ri,j

)

�i,j

)

(

1 − R

(

t = Ci + r
(1)

i,j

)

�
(1)

i,j

)

R(12)
�1,1

= 1 −
(

1 − e−0.002×3
)2

, R(12)
�2,1

= 1 −
(

1 − e−0.002×4
)2

,

R(12)
�3,1

= 1 −
(

1 − e−0.002×5
)2

R(T = 12)Sys = R(12)
�1,1

× R(12)
�2,1

× R(12)
�3,1

≈ 0.999801731

MTTFSys =
T

1 − R(T)Sys

≈ 5043T

Fig. 1  A simple example of the strong static scheduling of task set Γ1, which is composed of three tasks 
with the PB approach
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To put it simply, the  MTTFSys value means it is expected that the system cor-
rectly operates for 5043 hyperperiods (or 60516 s). The MTTF (and reliability) 
of this system is also estimated by our simulation program. To better simulate 
scheduling, the current work chooses true random numbers—generated via 
atmospheric noise [46]—over pseudo-random numbers which are typically gener-
ated by computer programs in a predictable fashion via a mathematical formula. 
The slight difference of about 3.18E−06% between the exact value of reliability 
and its simulated result proves the accuracy of the present study’s simulation.

Now, by changing the scheduling technique, the current paper presents another 
possible scheduling of task set Γ1 (Fig. 2a). In this hybrid scheduling, jobs and their 
backups are first statically scheduled in such way that some preserved slack areas on 
the FPGA are overloaded with different backup jobs; backups are allowed to overlap 
other backup copies. Then, at run time, the scheduler dynamically decides which 
backup copy should be configured and executed. Since the scheduling is static-
dynamic, the exact number of backups for each job is unknown a priori. For this 
reason, the notation �′

i,j
 distinguishes backup jobs from their primaries. It should be 

noted that primary jobs are configured at the end of the hyperperiod. Thus, the job 
residency times (ri,j) for �2,1 and �1,1 are 1 and 2 s, respectively, which must be con-
sidered when calculating job reliability [Eq. (7)].

One example is the scheduling table shown in Fig.  2a with the following sce-
nario. All three jobs simultaneously start their execution at time 0. If �1,1 fails, it will 
be detected at time 3 and then the scheduler configures its backup (��

1,1
) . Otherwise, 

the scheduler will configure �′
2,1

 , which is the backup of job �2,1 . If �1,1 successfully 
finishes its execution at time 3, there is no need to re-execute it and so a backup 
of �2,1 is configured at this time. �′

2,1
 starts its execution at time 4. Exactly at this 

time, a failure in �2,1 is detected and the scheduler immediately configures another 
backup of this job (��

2,1
) . This new backup starts its execution at time 5, at which 

point there are two backups for �2,1 simultaneously executed. Following the assump-
tion of the consecutive-one-out-of-three system, it is logical that reliability increases 
in comparison with the strong static scheduling in Fig. 1.  MTTFSys for the hybrid 

Fig. 2  Two possible hybrid scheduling tables for task set Γ1



1 3

Hybrid scheduling to enhance reliability of real-time tasks…

scheduling shown in Fig. 2a is 7104 T  , which represents a 40.8% increase as com-
pared to the scheduling table in Fig. 1.

Although the MTTF of the system can remarkably increase by the hybrid sched-
uling technique, improvement is still possible in the static phase by correct selec-
tion of candidate backups for overloading preserved areas. For example, Fig. 2b pro-
vides another possible hybrid scheduling of task set Γ1. Clearly, the only difference 
between Fig. 2a, b is the overlapped backup jobs. In this scheduling, if both �1,1 and 
�2,1 successfully complete their execution, then �3,1 will have three backups (a con-

secutive-one-out-of-four system). With this scheduling,  MTTFSys is 7202T  , which 
indicates a 1.4% increase compared to the scheduling table in Fig. 2a.

Surprisingly, the hybrid static-dynamic scheduling in Fig. 2b enhances the MTTF 
of the system by a factor of 1.43 in contrast to the strongly static scheduling table in 
Fig. 1. Furthermore, Fig. 2b presents a dedicated preserved slack area for �′

3,1
 which 

is not overloaded with another backup. That is, if �3,1 does not fail, this slack area 
will be useless, which occurs 99% of the time ( �3,1 ’s reliability is 0.9900498.). Con-
sidering this, if �′

3,1
 overlaps with �′

1,1
 in the time interval of 5 s to 9 s, then  MTTFSys 

will rise up to 12552T  . In contrast to the static scheduling in Fig. 1, this dramatic 
increase of about 2.5 times is because, at time 5, a third chance is given to �1,1 to 
meet its deadline whenever �3,1 does not fail. The next section shall describe the pro-
posed scheme in detail.

6  Proposed scheme

The first stage of the proposed algorithm schedules tasks according to a non-
preemptive earliest deadline first (EDF-NP) policy. Next, the algorithm addresses 
the issue of selecting candidate backup jobs for overloading in the possible slack 
times and areas. Finally, it determines which candidate backup job should be config-
ured and executed at run time.

6.1  Principles for backup overloading

This subsection highlights some fundamental principles of the proposed technique 
by presenting several lemmas and theorems that provide the criteria by which 
backup jobs can provide higher reliability. Then, the proposed algorithm is summa-
rized in two pseudo-codes. The main principles are first discussed.

Principle A1: When there is a free area for configuring a backup task and there 
are two candidate tasks, scheduling a backup of the task with lower reliability leads 
to greater improvement of total system reliability.

This simple yet important principle can be easily proven by the following Lemma.

Lemma 1 Consider two tasks �1, �2 where R
𝜏

1

< R
𝜏

2

. Slack time t is available while 
t = max

{

C1, C2

}

, and there exist at least free CLBs where  = max{W1, W2}; then, 

scheduling a backup of �
1
 better improves the total reliability of the system.
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Proof If a backup of �
1
 is considered, according to Eqs. (10) and (11), the reliability 

of the system would be:

and if a backup of task τ2 is created, then

Since 𝜆
1
C

1
> 𝜆

2
C

2
 (R

𝜏
1

< R
𝜏

2

) , it is concluded that (13) > (14), thus indicating that, 
when there are two tasks, making a backup of the task with lower reliability will fur-
ther increase the whole reliability. Considering this, the following principle extends 
Lemma 1 by about three tasks. □

Principle A2: When there are three candidate tasks in which R
�

1

≤ R
�

2

 , 
R
�

1
≤ R

�
3
 , R

�
1
≥ R

�
2
R
�

3
 and there is enough free area for configuring and executing 

either a backup task of �
1
 or two backups of �

2
 and �

3
 , then the scheduling of the 

two backups, �
2
 and �

3
 , better improves the total reliability of the system (Fig. 3).

This principle is proven in the following Theorem 1:

Theorem  1 Assume that �1, �2, and �
3
 are three RT tasks in which R

�
1

≤ R
�

2

 , 
R
�

1
≤ R

�
3
, the reliability of task �

1
 is equal to or more than the multiplication of the 

other tasks’ reliabilities (R
�

1
≥ R

�
2
R
�

3
⇒ �

1
C

1
≤ �

2
C

2
+ �

3
C

3
), and there exists 

enough free area for configuring and executing either a backup of �
1
 or two backups 

of �
2
 and �

3
. Then, scheduling a backup of �

1
 yields a reliability equal to or less than 

that of scheduling backups of the other two tasks.

Proof Consider a backup of �
1
 is scheduled. Therefore, the reliability of the system 

is calculated as follows:

(13)RSys =

(

1 −

(

1 − e−�1C1

)2
)

e−�2C2

(14)RSys =

(

1 −

(

1 − e−�2C2

)2
)

e−�1C1

(15)
RSys(option a) =

(

1 −
(

1 − R
�1

)2
)

R
�2

R
�3

= R
�1

R
�2

R
�3

(

2 − R
�1

)

Fig. 3  Principle A2: scheduling two backups of tasks �
2
 and �

3
 yields higher reliability than scheduling a 

backup of task �
1
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On the other hand, if a backup of each task �2, �3 is scheduled, the total reliability 
would be

and we want to prove that

R
�

1
≥ R

�
2
R
�

3
 is known and hence �

1
C

1
≤ �

2
C

2
+ �

3
C

3
 . Suppose 

�
1
C

1
= �

2
C

2
+ �

3
C

3
− � , where α is a nonnegative real number. As a consequence,

If this is substituted for R
�

1

 in Inequality (17), then

Now, considering inequality (19), the following two bounds for α may be assumed 
as:

(A) α is very high

As R
�

i

∈ [0, 1] , clearly, Inequality (19) always holds.

(B) α is very small

(16)
RSys(option b) =

(

1 −
(

1 − R
�2

)2
)(

1 −
(

1 − R
�3

)2
)

R
�1
= R

�1
R
�2

R
�3

(

2 − R
�2

)(

2 − R
�3

)

(17)

RSys(option a) ≤ RSys(option b)

⇒ R
�1

R
�2

R
�3

(

2 − R
�1

)

≤ R
�1

R
�2

R
�3

(

2 − R
�2

)(

2 − R
�3

)

⇒ 2 − R
�1
≤
(

2 − R
�2

)(

2 − R
�3

)

(18)R
�1
= e

−�1C1 = e
−�2C2−�3C3+� =

R
�2

R
�3

e−�
, � ∈ ℝ

≥0

(19)2 −

R
�

2
R
�

3

e−�
≤
(

2 − R
�

2

)(

2 − R
�

3

)

(20)

lim
�→∞

R
�

2
R
�

3

e−�
= +∞

⇒ 2 −∞ ≤
(

2 − R
�

2

)(

2 − R
�

3

)

(21)
lim
�→0

R
�

2
R
�

3

e−�
= R

�
2
R
�

3

⇒ 2 − R
�

2
R
�

3
≤
(

2 − R
�

2

)(

2 − R
�

3

)



 A. Ghavidel et al.

1 3

The following two conditions can be assumed for the environment:

1. The environment is not too harsh and the amount of �
i
 is very low. As a result, 

the reliability of the tasks is very high. That is,

2. The environment is very harsh and the amount of �
i
 is also very high. As a result, 

the reliability of the tasks is very low. That is,

From Eq.  (22) and Inequality (23), it is easily concluded that Inequality (21) also 
holds.Since upper and lower bounds were considered to prove Inequality (19), it is 
essential to prove that f (x) = e

−x is a monotonic (non-increasing or non-decreasing) 
function on the interval [0,+∞) . In this case, e−x is non-increasing. By definition, 
the continuous function f (x) is non-increasing on the closed interval [a, b] if and 
only if

Moreover, f (x) = e
−x is a continuous function on ℝ(f ∶ ℝ → ℝ

>0
) and

Evidently, not only is the reliability function f (x) = e
−x non-increasing, it is also 

decreasing and so this completes the proof of Theorem 1. In other words, in such con-
ditions, the best option is to schedule backups of the two more reliable tasks, espe-
cially when the reliability of the tasks is not high. The induction is complete. □

Principle A3: When there are three candidate tasks in which R
�

1

≤ R
�

2

 , R
�

1
≤ R

�
3
 , 

R
�

1
≤ R

�
2
R
�

3
 and there is a slack time and free area for configuring and executing 

either a backup of �
1
 or two backups of �

2
 and �

3
 , then scheduling two backups of �

2
 

and �
3
 better improves the total reliability of the system if R

�
2
+ R

�
3
≤ 1.

This principle states that, when R
�

1
≤ R

�
2
R
�

3
 , then selecting candidate tasks for 

the backup is not simple and requires exact calculation. However, if R
�

2
+ R

�
3
≤ 1 , 

then two backups of �
2
 and �

3
 should be scheduled (Fig. 4). This claim is proven in 

Theorem 2.

Theorem  2 Assume that �1, �2, and �
3
 are three independent RT tasks in which 

R
�

1

≤ R
�

2

 , R
�

1
≤ R

�
3
 and the reliability of task �

1
 is equal to or less than the 

(22)lim
R
�2

,R
�3→1

2 − R
�2

R
�3
= lim

R
�2

,R
�3→1

(

2 − R
�2

)(

2 − R
�3

)

= 1

(23)

(

lim
R
𝜏2

,R
𝜏3→0

2 − R
𝜏2

R
𝜏3
= 2

)

<

(

lim
R
𝜏2

,R
𝜏3→0

(

2 − R
𝜏2

)(

2 − R
𝜏3

)

= 4

)

(24)∀x ∈ (a, b);f �(x) ≤ 0

(25)∀x ∈ ℝ; f
�

(x) = −e
−x

< 0
(

f
�

∶ ℝ → ℝ
<0

)

.
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multiplication of the other task reliabilities (R
�

1
≤ R

�
2
R
�

3
⇒ �

1
C

1
≥ �

2
C

2
+ �

3
C

3
). 

There are also enough area and time for scheduling either a backup task of �
1
 or two 

backups of �
2
 and �

3
. Scheduling backups of �

2
 and �

3
 then further increases the total 

reliability of the system if R
�

2
+ R

�
3
≤ 1.

Proof Similar to Inequality (17), a situation should be found in which

If condition R
�

2
+ R

�
3
≤ 1 is satisfied, then the statement is true. □

Principle A4: Tasks with lower reliabilities should be scheduled as soon as 
possible (ASAP). This will raise the chance of scheduling additional backups 
(a result of Lemma 1). With the ASAP strategy, tasks with lower reliability are 
moved toward the head of the ready queue and are scheduled before other tasks.

Principle A5: Pre-fetch tasks when possible.
Task pre-fetching is the configuring of tasks before they arrive. Consequently, 

this can release more free areas for scheduling more backups. However, the resi-
dency time overhead (ri,j) is added to the task computation time [Eq. (7)].

where EST
�i,j

 is the execution start time of �i,j and CFT
�i,j

 denotes the configuration 
finish time of �i,j.

Because configurations of tasks are performed in a serial manner, CFT
�i,j

 is cal-
culated as:

i in which CST
�i,j

 is the configuration start time of �i,j and CD
i
 is the configuration 

delay time of task i.
Since all tasks are independent, each job �i,j can be configured when RD is 

available:

(26)

RSys(option a) ≤ RSys(option b)

⇒ 2 − R
�1
≤
(

2 − R
�2

)(

2 − R
�3

)

⇒ 1 − R
�2
− R

�3
≥

−R
�1
− R

�2
R
�3

2

(27)ri,j = EST
�i,j

− CFT
�i,j

(28)CFT
�i,j

= CST
�i,j

+ CDi

Fig. 4  Principle A3: scheduling two backups of tasks �
2
 and �

3
 yields higher reliability than scheduling a 

backup of task �
1
 if R

�
2
+ R

�
3
≤ 1
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where avl
(

RD, �i,j

)

 determines the immediate time after the last configuration when 
the RD is available and has enough free area for configuring �i,j.

Principle A6: The difference in the number of task backups must not exceed 
1. In other words, as long as there are some tasks with m − 1 backups or less and 
there is enough time–space slack to schedule mth backup, m + 1th backups of the 
other tasks should not be scheduled.

In fact, Principle A6 explains that the slope (acceleration) of the reliability rise 
declines when the number of task backups increases. Figure 5 shows that the slope 
of reliability rises when the first, second, and third backups are added. The blue 
line depicts a rise in the slope of reliability when the first backup is added. That is, 
the result of R(1 out of 2 system)∕R(simple system) is at most 2 for a large value 
of �

i
C

i
 . With the addition of a second backup, the reliability of the task increases 

at most by a factor of 1.5 in comparison with the previous step, that is, the result 
of R(1 out of 3 system)∕R(1 out of 2 system) ∈ [1, 1.5] (Fig. 5’s red line). Similarly, 
the green line represents the reliability rise factor when the third backup is added, 
which is between 1 and 4/3.

The proposed heuristic algorithm mainly uses proven principles (A1, A2, A3, 
and A6) as well as Principles A4 and A5, which are good heuristics for schedul-
ing primary jobs and overloading possible free areas with candidate backups. The 
algorithm description is further detailed in Algorithm 1. This algorithm schedules 
all tasks and their jobs with the EDF-NP policy so that Principles A1–A6 hold. For 
example, after jobs are scheduled according to the EDF-NP policy on RD in Line 
4, jobs in Line 5 are reordered so that jobs with a lower reliability start their execu-
tion as soon as possible (Principle A4). Next, in Line 6, the algorithm attempts to 
pre-fetch jobs when possible (Principle A5). Finally, according to Principles A1, 
A2, A3, and A6, backup overloading is performed in Lines 7–9 for possible slack 
areas. In other words, in the for each loop, Principles A1–A3 are applied according 
to Principle A6.

(29)CST
�i,j

= avl
(

RD, �i,j

)

Fig. 5  The reliability rise rate 
(the slope of reliability rise) 
declines when the number of 
backups increases. The blue 
line indicates the reliability rise 
when the first backup is added. 
The red line and the green line 
show the reliability rise when 
the second and third backups are 
added, respectively (color figure 
online)
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In the dynamic phase, on the other hand, the scheduler behaves event-triggered at 
run time. That is to say, events, such as job arrive, job finish, and start backup jobs in 
slack areas, initiate activities in the system. Such events are detailed in Algorithm 2.

As seen, Algorithm  2 illustrates the three main run-time events which activate 
the dispatcher. The first event is upon the arrival of a new job (instance). The second 
event is when a job finishes its execution. The primary task’s execution result (suc-
cess or failure in the proposed algorithm) is the deciding factor for the dispatcher 
when determining which candidate backup copy should be selected to configure on 
the preserved overloaded area. This determination is made at the start of the third 
event (on slack start), as described in Lines 7 to 12. When the slack area starts, 
the scheduler dynamically checks the status of all overloaded backup jobs at run 
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time and removes those jobs whose primaries have successfully finished execution. 
Finally, among the remaining overloaded backups, the backup job with the lowest 
reliability is selected by the dispatcher to configure and execute on RD. In the fol-
lowing subsection, the working of the proposed hybrid technique is explained.

6.2  Example

This section offers a general example of the proposed algorithm’s operation by using 
task set Γ2 =

{

�1, �2, �3, �4

}

 . It is assumed that the RD is a simple FPGA with a 
capacity of 650 CLBs. All the assumptions of the earlier example hold but each task 
has its own size, configuration delay time, and deadline. Thus, the task failure rate, 
which depends on task size, computation (and residency) time, and the SER of the 
environment, is not the same for all tasks. Table 2 provides the task failure rates and 
other characteristics of Γ2.

Figure 6a shows a static FT scheduling without backup overloading. In this sched-
ule, �1,2 is pre-fetched at time 800 ms, which frees up additional time for configuring 
and executing another backup at time 1350 ms. As seen, �1,2 has three backups, but, 
according to Principle A6, the reliability rise declines when the number of backups 
of a specific task increases. The total reliability and MTTF of the system are about 
0.999997777 and 449999 T  , respectively.

According to Fig.  6b, all the mentioned principles, A1 to A6, are taken into 
account to schedule Γ2. The step-by-step explanation of Algorithm 1 is as follows: 
In Line 4, scheduling table S is created according to the EDF-NP policy.

It should be noted that, in the EDF-NP policy, whenever a scheduling event 
occurs, the task closest to its deadline is selected for execution. In this subsection’s 
example, �1, �2, �3 have the same deadline and, therefore, are selected in a random 
order. Next, Principle A4 is applied (Line 5) so that jobs with lower reliability start 
their execution sooner. According to Table 2:

Hence, �2,1 and �3,1 move to the front of the scheduling table:

S =

{

�4,1, �3,1, �1,1, �2,1, �1,2, �4,2, �3,2

}

R
𝜏

2
< R

𝜏
3
< R

𝜏
4
= R

𝜏
1

S =

{

�2,1, �3,1, �4,1, �1,1, �1,2, �4,2, �3,2

}

Table 2  Characteristics of task set Γ2 depicted in Fig. 6 (all times are in milliseconds)

Task (τi) Computation 
time (Ci)

Deadline (Di = Ti) CLB count (Wi) Configuration 
delay  (CDi)

Failure rate (λi)

τ1 350 1000 200 50 8.54701E−10

τ2 800 2000 250 150 1.68380E−9

τ3 200 1000 400 50 1.49573E−9

τ4 450 1000 200 150 8.54701E−10
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At this point, in Line 6, the algorithm looks for those tasks which are possible 
to pre-fetch before their next request (Principle A5). In this subsection’s example, 
there is enough area and time to pre-fetch �1,2 before time 1000 ms. Finally, in Lines 
7–9, the algorithm determines the candidate jobs for overloading in the time–space 
slacks. In the for each loop, it should be noted that Principle A6 always holds. That 
is to say, the algorithm first tries to avoid a situation in which some tasks have mul-
tiple backups, while some others do not. According to Principle A1, the best can-
didate task is the task with the lowest reliability. Therefore, in the present example, 
the first selected candidate for a backup is �

2
 . Furthermore, according to Principles 

A2 and A3, when there are three tasks, �1, �2, �3 , and there is enough free area for 
configuring and executing either a backup task of �

1
 or two backups of �

2
 and �

3
 , 

then scheduling two backups of �
2
 and �

3
 usually better improves the total reliability 

of the system than scheduling a backup of the task with the lowest reliability. Thus, 
instead of scheduling a backup of the task with the lowest reliability, all two-element 

Fig. 6  Two possible scheduling methods of task set Γ2 composed of four tasks. Gray boxes represent 
configuration delays
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subsets of Γ =
{

�1, �2,… , �
n

}

 are checked to find a pair of tasks for which to sched-
ule two backups. In this example, all two-element subsets eligible for replacement 
by a backup of �

2
 are:

By definition, a set of n elements has 
(

n

2

)

 subsets of 2 elements and, therefore, 

calculating all 2-element subsets is performed in O(n2). In the present example, the 
algorithm looks to replace a possible pair of tasks with a backup of candidate task �

2
 

between time 900 ms and 1850 ms. Since none of the above pair of tasks are schedu-
lable in this area, the first backup of �

2
 is scheduled (��

2,1
) . In the next step, the hybrid 

scheduler looks for the best option with which to overload the slack time–space area. 
Due to its high failure rate, the first candidate is �3,2 , but it does not fit into the slack 
area. The second candidate can be either �4,2 or �1,2 . Since it is possible for �1,2 to 
have a backup between 1350 and 1750 ms in the slack time–space area, a backup of 
�4,2 is used to overload the slack area according to Principle A6. Since, at the most, n 
jobs are checked, this step is performed in O(n).

The task with lower reliability, �
2
 , is thus configured and executed as soon as 

possible. As a result, it has enough area and time for scheduling a backup version 
at time 900 ms. Moreover, the preserved area between times 900 and 1850 ms is 
overloaded by backup copies of jobs �2,1 and �4,2 . If �2,1 fails, its backup (� (1)

2,1
) will 

be configured at time 900 ms. Otherwise, a backup of �4,2 (�
(1)

4,2
) will be configured. 

It should be noted that �2,1 is pre-fetched just before its period (at time 1850 ms). 
Furthermore, there is no scheduled job with a second or more backups (Principle A6 
holds). Similar to Fig. 6a, �1,2 is pre-fetched but its residency time decreases from 
150 ms in the previous scheduling table to 100 ms, thus indicating an increase in 
reliability. The result shows a considerable improvement in the MTTF of the system:

7  Simulation results and comparative study

The efficiency of the proposed hybrid scheduling technique is evaluated by com-
paring it with the static FT EDF-NP scheduling policy without backup overload-
ing. To achieve a fair comparison, the current study also adopted the Pareto-based 
technique in Ref. [13] for its platform. The Pareto-based technique conducts an 
exhaustive search for the optimal scheduling table (with the highest reliability) of all 
tasks coupled with their backups at design time. Some tasks may not have any back-
ups, while others may have one (DWC) or two (TMR) active backups. While in the 
Pareto-based technique all backups are active, in the hybrid technique proposed in 
this paper, backup tasks can be either active or passive. Scheduling passive backups 
offers a considerable advantage: There is no need to execute a backup if the primary 
successfully finishes its execution. Such abortions avoid unnecessary runs. This also 
indicates that slack areas, for the most part, will be overloaded with different backup 
tasks. The present work’s simulation experiments demonstrate the advantage of pas-
sive backup overloading as well.

{�1, �3}, {�1, �4}, {�3, �4}

R(T)Sys ≈ 0.999998718, MTTFSys ≈ 780031T (73.3% increase)
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In the current study, 3000 real-world inspired task sets were first generated, each 
of which contains 5 to 20 independent periodic tasks. These include H.264 and MP3 
task sets consisting of 10 tasks [47] with a hyperperiod less than the integer-max-
size; the task sets with a hyperperiod exceeding 2.14E09 ms have been dismissed 
to keep the simulation time within reasonable bounds. Task computation times are 
set in the range of 10–500 ms [48] and selected task width and height are between 
[7…42] CLBs [49]. As in the examples mentioned in Sects. 5 and 6.2, the hardware 
tasks of the present work’s experiments consist of CLBs. Nevertheless, the proposed 
hybrid scheduling technique is scalable to other tasks that exploit other types of 
FPGA resources.

In our experiments, the architecture of a realistic partial FPGA is assumed to 
model RD and task sets are generated to be emulated on it. In this particular case, 
the Xilinx™ Virtex-5 XUPV5LX110T FPGA has been employed [50]. This FPGA 
features 160 rows and 54 columns of CLBs. In total, there are eight CLB groups per 
column, each of which has 47,520 bits in the bitstream (36 frames × 1320 SRAM 
bits). As previously mentioned, the percentage of sensitive bits in the bitstream (Si) 
is considered to be no more than 35% to mimic the characteristics of real-world 
tasks [36]. Fairly extensive experiments were performed on this FPGA by our labo-
ratory members in Ref. [13] to determine the average time for configuring each CLB 
group. According to their results, each CLB group takes, on the average, 3.53 ms to 
be completely configured. Hence, RD = (160, 54, 20, 3.53 ms) [Eq. (4)].

According to the present study’s earlier discussion, the SER may be estimated 
as a number of SEUs per bit per time unit. Based on the values of SEs reported 
in Ref. [37], and with regard to different satellite orbits and solar conditions, fel-
low researchers [13] have employed CREME96 tools [51] to estimate SEs (Table 3). 
Even though Table 3 provides SERs [Λ in Eq. (8)] for the Virtex-5 XUPV5LX110T 
FPGA corresponding to different satellite orbits, the proposed hybrid schedul-
ing technique can be used for other SER values corresponding to other real space 
environments. For the proposed target FPGA, the SER range was determined by 
the SERs lower and upper bounds from Table 3 (6.09E−08 and 3.35E−04). Finally, 
with the independent RT tasks and SER, Eqs. (8), (10), and (12) could provide the 
total MTTF of the system before and after applying the FT techniques.

With scheduling possible backup jobs but without backup overloading, the pre-
sent study’s first set of experiments scheduled the randomly generated task sets 
with a static FT EDF-NP algorithm. Next, the proposed technique was applied to 

Table 3  Estimated SERs for different orbits and solar conditions

Orbit SEUs/bit/day (XUPV5LX110T)

Solar max Worst week Worst day

GEOsynchronous (GEO) 6.09E−08 6.47E−05 3.35E−04

Global positioning system (GPS) 6.09E−08 5.71E−05 2.89E−04

MOLniya (MOL) 3.01E−07 6.09E−05 3.12E−04

POLar (POL) 2.25E−07 1.33E−05 7.99E−05
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schedule the same tasks as well as their probable backups and to overload slack 
time–space areas with candidate backup copies. The acquired results are presented 
as an average value of 100 runs for each task set.

As Fig.  7 indicates, the proposed hybrid technique outperforms the FT EDF-
NP algorithm in terms of the system MTTF; in this set of experiments, the average 
MTTF rose 2.34 times. Task reliabilities increased because of applying the men-
tioned six principles (A1–A6) in Sect.  6.1. Principles A4 and A5 provided more 
slack areas on the FPGA. Consequently, there were more opportunities for schedul-
ing backup jobs. Furthermore, by using Principles A1–A3 as well as A6, the sched-
uler selected proper candidate backup jobs (with lower reliabilities) to be overlapped 
in the slack areas.

A similar trend is observed in Fig. 8 where, in the second part of the experiments, 
the proposed technique improves the total MTTF of the system by an average factor 

Fig. 7  Comparison of the proposed technique’s MTTF with the static FT EDF-NP algorithm

Fig. 8  Comparison of the proposed technique’s MTTF with the Pareto-based FT scheduling technique 
[13]
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of 1.22 in comparison with the Pareto-based FT technique. This increase factor is 
less than the 2.34 of the first part of the experiments. A plausible explanation is that 
the FT EDF-NP algorithm is much more basic than the FT scheduling algorithm 
proposed in Ref. [13], which conducts an exhaustive search for the optimal schedul-
ing table at design time. Thus, the proposed technique better improves the MTTF of 
task sets scheduled by FT EDF-NP.

Although the Pareto-based technique statically finds the optimal scheduling 
table for all tasks coupled with their active backups (e.g., DWC and TMR) via an 
exhaustive search, the MTTF of the task sets scheduled by the proposed technique 
is higher. The reason for this result is very simple: Passive backup overloading in 
the slack areas outperforms scheduling tasks as active backups. In other words, in 
the Pareto-based technique, active backups are always executed even for no-failure 
(fault-free) cases.

In the proposed technique, by contrast, the slack areas are overloaded with pas-
sive backups and the event-triggered dispatcher dynamically decides which backup 
should be executed at run time (backups remain dormant until their primaries fail). 
If a primary task successfully finishes its execution, the execution of all its passive 
backup copies is immediately canceled (Lines 9–11 in Algorithm 2). Then, another 
candidate backup, with the lowest reliability and without a priori knowledge of 
whether its primary fails or not, is then re-configured (Line 12 in Algorithm 2). Such 
abortions, which avoid unnecessary runs, point out the superiority of passive backup 
tasks in the reliability rise. Nonetheless, when the scheduling table is so tight that 
the scheduler cannot find enough slack area and time to schedule tasks as passive 
backups or when tasks are very low-laxity, then tasks are inevitably scheduled as 
active backups.

By looking further at Figs. 7 and 8, it can be seen that the magnitude of MTTF 
falls as the value of SER rises. According to Table 3, the lowest and the highest SER 
occur in the GEO orbit in Solar Max and Worst Day conditions, respectively. This 
decline in MTTF is quite logical owing to the exponential relationship between the 
task reliability and task failure rate (Eqs. 7–12 in Sect. 3.3). It is important to note 
that the MTTF (T) is a logarithmic function. However, MTTF values for the pro-
posed technique are rather different in Figs. 7 and 8, because the FPGA has a higher 
utilization factor in the first set of experiments (Fig. 7). It was observed that the task 
set with a higher FPGA utilization factor virtually had a lower MTTF [Eq. (5)].

The experimental results depicted in Fig.  9 show how the task set MTTF 
decreases with an increasing FPGA utilization factor. Similar to the concept of mul-
tiprocessor systems, the higher the FPGA utilization, the less slack areas provided 
by the FPGA. Thus, probably a few numbers of tasks can have backups. Moreover, 
higher FPGA utilization means that the total task computation time over a hyper-
period rises, consequently yielding to lower reliability [Eqs. (10), (11)].

The present study conducted another set of experiments in which two principles 
(Principles A4 and A5) were ignored and for which Fig.  10 provides the results. 
As mentioned in Sect. 6.1, Principle A4 suggests that tasks with lower reliabilities 
should be scheduled as soon as possible. With the removal of Line 5 from Algo-
rithm 1, this principle was ignored. As a result, the MTTF decreased between 20 
and 40% in regard to the SER. Next, only Principle A5 (job pre-fetch) was ignored 
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by removing Line 6 from Algorithm 1. Consequently, the MTTF decreased between 
10 and 29%. These two experiments indicate that Principle A4 is more important 
than Principle A5. In the end, though, both Principles A4 and A5 were ignored. As 
shown in Fig. 10, the experiments show an MTTF decline between 29 and 55%.

8  Conclusion and potential future work

It is patently obvious that RT embedded systems are widely utilized in critical appli-
cations, such as safety and mission critical systems. As the most prominent RDs, 
SRAM-based FPGAs are employed in many such systems. Nevertheless, SRAM-
based FPGAs are well-known for their susceptibility to transient and intermittent 

Fig. 9  The relationship between FPGA utilization factor and MTTF

Fig. 10  The impact of applying Principles A4 and A5 on the MTTF of task sets
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faults mainly caused by high-energy neutrons, protons, or heavy ions. As a result, 
SRAM-based FPGAs need protection. Generally, FT scheduling complements the 
enormous redundancy of achieving higher reliability as an effective solution. Conse-
quently, the need for FT scheduling will exponentially grow in the years ahead.

The current paper outlines a hybrid technique for the RT FT scheduling of inde-
pendent periodic tasks. The proposed technique schedules tasks in two main phases: 
a static phase and a dynamic phase. In the static phase, all jobs are scheduled 
according to the EDF-NP policy. Next, according to the mentioned principles (Prin-
ciples A1–A6), jobs are reordered (re-scheduled). Furthermore, candidate backup 
jobs are selected to overload possible slack areas. Then, in the dynamic phase, an 
event-triggered dispatcher decides which candidate backup job should be configured 
and executed on FPGA at run time. Experimental results show that applying the 
proposed principles to the scheduling algorithm enhances the MTTF of the system 
by an average factor of 1.22 in comparison with the previous strongly static fault 
tolerance study.

While the focus of this paper has been on calculating task reliability after con-
figuration, assessing the reliability of tasks during configuration is also an important 
yet complex novel issue for future research. To solve this problem, the configuration 
process of hardware tasks must be studied in detail to calculate task reliability at any 
specific time in the course of the configuration process. In addition, not only does 
task size affect the configuration delay time of any hardware task but so do the con-
figured and currently running tasks on FPGA. Moreover, the partial reconfiguration 
view involves many constraints such as routing, location, and macro blocks. Consid-
ering a general hardware model for reliability estimation and scheduling purposes in 
such a way that its parameters can be easily adapted to the architecture of existing 
well-known FPGAs, researchers can provide more real conditions in ongoing works.

From the point of view of importance level, the same digital system might exe-
cute both soft and hard real-time tasks. In other words, the functionalities of differ-
ent levels of criticalities coexist in many embedded systems. Moreover, such com-
plex RT systems are usually subject to sudden changes in their environments. That 
is, tasks criticality levels can change with time. Recently, significant research atten-
tion has been directed to mixed-critical (MC) systems that can be found in applica-
tions such as avionics and automobiles. The FT scheduling of RT tasks in MC sys-
tems that use FPGAs is another interesting—indeed absolutely crucial—issue that 
has not yet attracted the attention it deserves.

As a growing area of research, multi-FPGA systems offer high-performance solu-
tions to highly complex computing tasks. Furthermore, in multi-FPGA systems, it 
is possible to schedule big tasks that cannot be configured on a single FPGA. How-
ever, the scheduling issue on the multi-FPGA platform is more complex than that 
on a multiprocessor because of FPGA limitations on configuration management. 
The problem becomes even more complicated when the system consists of FPGAs 
with different characteristics. In such systems, tasks can have different computation/
configuration times on different FPGAs. Moreover, the task failure rate differs from 
one FPGA to another. Hence, as another interesting issue for future work, RT FT 
scheduling on multi-FPGA systems will call for an in-depth study as it raises many 
unanswered questions.
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Needless to say, current critical embedded systems that employ an FPGA as a 
PE inherently have severe limitations on available resources and power capabil-
ity. Therefore, another major problem in FT scheduling on FPGAs is power and 
energy consumption. This is especially the case when the number of active backups 
increases. Reliability-aware power management and thermal-aware fault-tolerant 
scheduling on FPGAs are other interesting research topics that deserve great atten-
tion. That is to say, as the workload on FPGA increases, static and dynamic power 
consumption along with the temperature increase and increase in the FPGA temper-
ature results in the SER increase. Consequently, studying the impact of scheduling 
itself on the reliability of system can be one of the most critical issues to enhance 
future studies.

As can be deduced from the above discussion, there already exists a noteworthy 
body of potential work in the area of FT scheduling of RT embedded systems utiliz-
ing SRAM-configured FPGAs.
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