
Vol.:(0123456789)

The Journal of Supercomputing

https://doi.org/10.1007/s11227-019-02976-6

1 3

Hybrid scheduling to enhance reliability of real‑time tasks
running on reconfigurable devices

Abolfazl Ghavidel1 · Yasser Sedaghat1 · Mahmoud Naghibzadeh1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Reconfigurable devices (RDs) are extremely advantageous when employed in real-
time embedded systems. Nonetheless, they are susceptible to soft errors. In a broad
sense, the present research addresses the challenge of improving the reliability of
independent periodic real-time hardware tasks in RDs by utilizing hybrid fault-tol-
erant scheduling. The current paper combines static and dynamic real-time sched-
uling techniques to improve the reliability of the system. First, the proposed algo-
rithm statically schedules primary tasks and preserves area and time for possible
backup tasks on the RD. The overlapping of passive backup tasks is possible. Next,
at the run time, event-triggered dispatcher dynamically determines which candi-
date backup copy should be selected for configuration on the overloaded preserved
areas. Reliability, task deadline, and RD area limitations are the determining fac-
tors of backup overloading in the static phase. On the other hand, in the dynamic
phase, the execution result of the primary tasks—in this case, success or failure—is
the deciding factor based on which the dispatcher configures the true backup task
on the preserved area. Experimental results show that the hybrid scheduling tech-
nique enhances the mean-time-to-failure of the system by an average factor of 1.22
in comparison with a similar state-of-the-art study.

Keywords Real-time scheduling · Fault tolerance · Mean-time-to-failure ·
Reconfigurable device

 * Yasser Sedaghat
 y_sedaghat@um.ac.ir

 Abolfazl Ghavidel
 ghavidel@mail.um.ac.ir

 Mahmoud Naghibzadeh
 naghibzadeh@um.ac.ir

1 Dependable Distributed Embedded Systems (DDEmS) Laboratory, Department of Computer
Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02976-6&domain=pdf

 A. Ghavidel et al.

1 3

1 Introduction

Reconfigurable devices (RDs) are general purpose hardware devices with the ability
to be programmed and re-programmed over and over again [1]. Apart from flexibil-
ity, RDs eliminate the need to fetch, decode, and execute instructions since data are
sent to the next stage on every clock cycle. Therefore, RDs offer the intrinsic feature
of concurrency. This is especially the case for high-performance supercomputing
applications that are usually implemented on general purpose multiprocessing com-
puters/clusters. State-of-the-art RDs, currently, have been highly sophisticated that
they can be employed for such applications which target both fine grain and coarse
grain parallelism (called embedded supercomputing).

The most prominent, widespread, and well-known RDs are static memory-based
(SRAM-based) field-programmable gate arrays (FPGAs) [2, 3]. Because of their re-
programmability and use of standard CMOS process technology, FPGAs provide a
superior trade-off between the performance of dedicated hardware (e.g., application-
specific integrated circuits) and flexibility [4, 5]. Moreover, FPGAs perform remark-
ably on stream processing and cryptographic problems [6, 7]. Such distinguishing
features have led to the increased employment of SRAM-based FPGAs in broad
applications as controllers and data processors, particularly in bioinformatics and
safety critical embedded systems (e.g., avionics and space missions) [8, 9].

For configuring hardware tasks, SRAM-based FPGAs generally use an array
of latches (called a configuration file or bitstream) to switch pass transistors ON
or OFF. The bitstream contains SRAM bits to store configuration data for lookup
tables, block RAMs, and flip-flops which occupy more than 95% of the FPGA area
[8]. Similar to other electronic integrated circuits, SRAM-based FPGAs are well-
known for their susceptibility to transient and intermittent faults1 mainly caused by
high-energy neutrons, protons, or heavy ions [10]. So-called single event effects
(SEEs), such as single event upsets (SEUs), multiple bit upsets, and multiple cell
upsets, affect bitstream memory cells by modifying their values [11] and thus pos-
sibly disrupt the normal operation of the FPGA. Hence, reliability and mean-time-
to-failure (MTTF) are of particular concern to all critical embedded systems using
SRAM-based FPGAs [8].

There are several well-known resilience techniques for FPGAs according to their
technology, architecture, and operating environment. These generally fall into three
categories [8]: (1) Fabrication process-based techniques, e.g., silicon-on-insulator,
(2) design-based techniques, e.g., hardware/time redundancy, duplication with com-
pare (DWC) and triple modular redundancy (TMR), and (3) recovery-based tech-
niques, e.g., scrubbing. However, many studies do not consider fault-tolerant (FT)
scheduling on FPGAs. Furthermore, critical embedded systems are quite often hard
real-time (RT) [12]. That is, tasks have predefined specified time constraints, usually
referred to as hard deadlines, and missing too many deadlines may cause, for exam-
ple, a human or natural catastrophe or severe financial losses. Hence, to achieve a

1 Throughout the remainder of the present paper, both transient and intermittent faults are referred to as
soft errors (SEs).

1 3

Hybrid scheduling to enhance reliability of real-time tasks…

high degree of reliability, both the timelines and the logical correctness of the output
are crucial.

Critical embedded systems employing FPGAs as a processing element (PE),
however, inherently have severe limitations on available resources and power capa-
bility [3]. Along with the marked tendency of utilizing FPGAs in critical RT embed-
ded systems, these limitations have brought to light the need for a reliable schedul-
ing algorithm design. The main goal of scheduling in computing is to efficiently use
shared resources (e.g., PE) so as to make the system fair and fast. In contrast to the
mentioned resilience techniques, the real advantage of FT scheduling is improving
reliability on FPGAs—and the system—without the need for new additional exter-
nal resources.

There is, however, a dearth of research aiming to employ scheduling techniques
for fault tolerance in FPGAs. A few existing studies use, for the most part, the
strongly static primary-backup (PB) scheduling technique with active redundancy
[12, 13]. Although static scheduling has many benefits (e.g., synchronization and
safeness for low-laxity tasks), only dynamic FT scheduling can efficiently utilize
shared resources. Furthermore, the cost of increased power will be considerable with
the use of active backup tasks, such as TMR. Thus, for critical embedded systems,
where satisfaction with the energy constraint is absolutely vital, the focus should be
on scheduling passive backups. To take advantage of both static and dynamic task
scheduling, a hybrid scheduling technique can be used to manage and handle tasks
and their active/passive backups under execution time constraints [14].

The present study proposes a novel hybrid RT scheduling technique to improve
the MTTF of a system in the presence of soft errors (SEs). First, the proposed tech-
nique combines two traditional scheduling approaches, static and dynamic, for the
FT scheduling of independent periodic RT hardware tasks on FPGA. For this pur-
pose, some main principles are presented and proven. Next, all scheduled jobs are
reordered according to the mentioned principles. The scheduler then applies both
active and passive redundancies to the hardware tasks. Given that it is possible to
overlap some passive backup copies in the schedule, the scheduler dynamically
selects a candidate backup task to be configured in the preserved overloaded area
at run time according to the proven principles. In comparison with the fully static
fault tolerance study conducted by the active backup redundancy method [13], the
experimental results show that the proposed hybrid scheduling approach enhances
the MTTF of the system by an average factor of 1.22.

The rest of the current paper is organized as follows. Section 2 covers related
work, while Sect. 3 describes the system model and provides notations. Section 4
formulates the problem in detail, for which Sect. 5 provides an illustrative example.
Section 6 elaborates on the details of the proposed scheme and supports it by pro-
viding several lemmas and theorems. In Sect. 7, experimental results and a compara-
tive study are presented. Finally, Sect. 8 concludes the paper and discusses potential
future work.

 A. Ghavidel et al.

1 3

2 Related work

In efforts to increase the reliability of FPGAs, several studies have introduced
recovery-based and design-based techniques. Recovery-based techniques are spe-
cifically developed to prevent fault accumulation in SRAM memory cells [15].
For instance, to maximize the total reliability of the system, the authors in Ref.
[16] established different scrubbing rates for different circuits based on the failure
rate, so that the total reliability of the system is maximized. Periodical scrubbing
permits the recovery from errors in SRAM cells induced by SEs periodically [17].
Another example is the scrubbing method presented in Ref. [18] which increases
reliability by considering power optimization. Routing and re-routing techniques
also improve FPGA reliability [19, 20]. Nevertheless, in order to achieve a high
degree of reliability, such techniques should be employed in combination with
design-based techniques [21].

To mitigate SEs, design-based techniques are generally dependent on resource
redundancy [8]. These techniques utilize different replications, at different gran-
ularities, to increase system reliability [22]. Redundancy-based techniques have
been investigated in several reliability studies in space mission systems [23],
the cloud computing environment [24], and the multiprocessor platforms [25].
Numerous similar and dissimilar possible combinations of hardware, informa-
tion, software, and time redundancy have been employed to recover failures by
performing computations two- or more times [12, 26]. Nonetheless, most studies
in the literature address only pure hardware redundancy techniques on FPGAs
without considering scheduling. The main drawback is the throwing of too much
redundant hardware, which is often impossible because of the severe limitations
on the resources, costs, and power availability of embedded systems. Moreover,
the overwhelming majority of faults in PEs are non-permanent in nature [12], and
consequently, there is a need for a mechanism to protect the system from SEs.

As the term implies, FT scheduling complements enormous redundancy
to achieve higher reliability. Irrespective of algorithms, all FT scheduling pro-
cedures are basically similar in that their main goal is to ensure the successful
completion of tasks in spite of PE failure. Toward that aim, FT scheduling pro-
cedures, by and large, utilize time and PE redundancy with the PB approach. In
the PB approach, at least two versions (primary and backup) of a task are sched-
uled. If the primary version of the task fails, then the backup copy offers another
chance to complete the execution. The need for some fault detection mechanisms,
such as acceptance test in the system should be noted, to detect task failure [12].
For further information about FT scheduling and RT systems, Refs. [12, 26] may
be consulted.

For FT scheduling on the multiprocessor platform, Pathan in Ref. [27] intro-
duced an FT perspective that executes backup tasks when faults are detected. A
global PB scheduling algorithm was also proposed by employing both active and
passive backups of RT sporadic tasks on a multi-core system [25]. In another
work [28], researchers assumed only active backups and considered tolerating
processor failures. Furthermore, authors in Ref. [29] utilized the PB approach for

1 3

Hybrid scheduling to enhance reliability of real-time tasks…

FT scheduling in clouds. On the whole, it is possible to claim that a mature body
of literature, currently, exists on the subject of FT RT scheduling in multipro-
cessor systems [12, 30]. Despite this, very few studies, in fact, have considered
implementing both scheduling and fault tolerance techniques on FPGAs.

Not surprisingly, fault tolerance is a principal avenue in SRAM-based FPGA
research. Employing FT scheduling techniques can be effective in mitigating SEs
in FPGA-based critical embedded systems. For instance, [31] employed the PB
approach with the aim of minimizing overlap time. Similarly, Ref. [32] presented
an FT algorithm for scheduling hybrid tasks. The authors of a related research [13]
introduced Pareto-based optimization methods to increase the reliability of depend-
ent tasks running on SRAM-based FPGAs without deteriorating the total makes-
pan. This Pareto-based technique conducts an exhaustive search to find the optimal
scheduling table (with the highest reliability) of all tasks coupled with their active
backups at design time. The present study considers, to the best of its knowledge,
the Pareto-based approach to be the work most closely related to its own. Shortly
after their research in [13], the same authors proposed another concept well-suited
for scheduling periodic tasks, which is a technique for increasing the reliability of
hardware task graphs called the configuration early fetch [33].

Although the studies discussed above focus on the FT scheduling of hardware
tasks in FPGA, most do not consider RT constraints. Critical embedded systems,
however, are quite often RT, as mentioned earlier. In other words, critical embedded
systems must be based on guaranteed timeliness to meet predefined hard deadlines.
Actually, however, most activities performed by RT systems are periodic in nature,
e.g., regularly monitoring special conditions/cases or frequently receiving data from
sensor nodes. The current paper presents a hybrid static-dynamic scheduling tech-
nique aiming to improve the total MTTF of periodic RT hardware tasks (represented
as a bag-of-tasks) on SRAM-based FPGAs, without any need for extra external
hardware redundancy.

3 Models and preliminaries

This section provides models and preliminaries. Section 3.1 introduces task model.
In Sect. 3.2, reconfigurable device model is described. After that, reliability and
fault models are presented in Sect. 3.3. Furthermore, to facilitate easy reading, some
variables and symbols that are frequently used in the current paper are summarized
in Table 1.

3.1 Task model

The present research assumes that the system is critical hard real-time consisting of n
independent periodic hardware tasks with no interdependence constraints and repre-
sented as the bag-of-tasks Γ =

{

�1, �2,… , �
n

}

 scheduled on an SRAM-based partially
run-time reconfigurable FPGA. As the name indicates, each periodic task �

i
∈ Γ is

 A. Ghavidel et al.

1 3

made up of an infinite number of jobs (instances) and every job is issued exactly once
every period of Ti time units. τi is characterized as follows:

where Ci is the worst-case computation time (or simply computation time through-
out the present paper) of τi, and Wi represents the size of the task in terms of config-
urable logic blocks (CLBs) count [34]. Bi denotes the number of configuration bits
of the task in the bitstream, and Si is the number of sensitive bits in Bi expressed as a
percentage. Any change in the value of sensitive bits affects the functionality of the
task and will lead to a task failure [35]. The exact amount of sensitive bits of a hard-
ware task is determined by experiments, such as radiation ground, fault injection,
and emulation tests [13]. To the best of the present study’s knowledge, the amount
of sensitive bits reported in the literature has been no more than 35% [36], a figure
taken into consideration by the current research. Finally, Di and Ti are the relative
hard deadline parameter or deadline (for the sake of simplicity in the remainder of
the current paper) and the period of time, respectively.

In the majority of RT systems, the periodic tasks are synchronous and the relative
deadline is equal to the period [12, 26]. The present study also assumes that Di, which
is called the implicit deadline, also represents the period (Di = Ti). Furthermore, the
scheduling table is made only for the smallest time interval called hyperperiod (T) at
design time; after that, it is repeated. Hyperperiod is equal to the least common multi-
ple of all periods of the tasks.

(1)∀�
i
∈ Γ, �

i
=
(

C
i
, W

i
, B

i
, S

i
, D

i
, T

i

)

(2)T = LCM
(

T1, T2,… , T
n

)

Table 1 A summary of frequent notations used in this paper

Notation Description

τi Real-time hardware task i

Γ Set of all independent periodic real-time tasks: Γ =
{

�1, �2,… , �
n

}

Ci Worst-case computation time of τi

Wi Size of τi in terms of configuration logic blocks (CLBs) count

Bi Number of configuration bits of task τi in the bitstream

Si Number of sensitive bits in Bi expressed as a percentage

Di Relative hard deadline parameter

Ti Period of τi which is equal to the deadline in the current paper

T Hyper period of all tasks in Γ: T = LCM
(

T1, T2,… , T
n

)

SR, SC Count of rows and columns in reconfigurable device

CDG Configuration delay time of a CLB group

CDi Configuration delay time for configuring task τi on FPGA

ri,j Residency time of τi,j

R(t)
�i,j

Reliability of the jth job of task τi which operates during t time units

λi Failure rate of task τi in a given time interval

RD Reconfigurable device

SEE, SEU Single event effect, single event upset

SE Soft error

1 3

Hybrid scheduling to enhance reliability of real-time tasks…

Therefore, each synchronous task τi has a total of T
/

T
i
 jobs in the hyperperiod, each

of which is released exactly at the beginning of the period. This can be shown by the
quantification:

The current paper shows each backup copy with a superscript (an integer number
just top-right of the job) indicating the backup number (� (m)

i,j
) . For example, � (2)

3,1
 repre-

sents the second backup of the first job of task τ3. Without loss of generality, all backup
tasks are assumed to be clones of their primaries. That is, all backup task characteris-
tics, such as computation time and deadline, are exactly equal to those of the primary
version (�i,j = �

(1)

i,j
= �

(2)

i,j
= ⋯) . For fully utilizing PE to increase system reliability by

responding to multiple task failures, it is also assumed that, except for resource availa-
bility, there is no limit to the number of backups for each job.

Backup tasks can be scheduled as passive or active. In the passive mode, backups
start execution only after the completion time of their primary versions. On the other
hand, in the active mode, backups and primaries are executed at the same time. Regard-
less of the backup mode, scheduling techniques are either static or dynamic. If the
schedule is created at design time (i.e., static scheduling), all tasks priorities are deter-
mined before the system begins to run. In contrast, a dynamic scheduler determines
tasks priorities as it executes. The present study utilizes a hybrid (static-dynamic) tech-
nique to schedule both active and passive backup tasks.

Generally, schedulers can be either preemptive or non-preemptive. Inasmuch as
interrupting hardware tasks requires additional time for saving the current state of the
task, and later probably considerable overhead for re-configuring the preempted task
on the FPGA, the current work presents its technique with the assumption that there is
no preemption in the run-time of the hardware tasks [13, 33, 37]. Thus, under a non-
preemptive scheduling regime, once a hardware task begins its execution, it completes
its computation at all times without any interruption. Nevertheless, the proposed hybrid
scheduling technique can easily be ported to systems with a preemptive scheduler.

3.2 RD model

The target RD is an SRAM-based FPGA with partial run-time re-configurability which
includes an array of CLBs. All hardware tasks in Γ are configured and run on a subset
of this array, but the minimum addressable content in the FPGA is a group of CLBs
referred to as a CLB group in the present paper. Thus, the target RD is characterized as
follows:

where SR and SC represent the count of rows and columns, respectively. SG indicates
the size of a CLB group in terms of CLBs, and CDG is the configuration delay time
of a CLB group.

(3)∀�i ∈ Γ, ∃�i,j ∶ �i,j ∈

{

�i,1, �i,2,… , �
i,
T∕Ti

}

(4)RD =

(

SR, SC, SG, CDG

)

 A. Ghavidel et al.

1 3

Since SRAM is volatile, the FPGA, upon starting, must read the initial configura-
tion data from a non-volatile memory. It is assumed that this initial data is protected
against SEs. According to the inherent limitation of configuring tasks on an FPGA, the
task configuration process is performed in a serial manner [13, 38]. It is also assumed
that hardware task τi can be configured on any location of the device if there is enough
space for at least Wi [13, 33]. Finally, the FPGA utilization factor (UΓ), which is the
unitless fraction of time and area spent in the execution of the task set during a hyper-
period on the FPGA, is calculated as follows:

where S
R
× S

C
 is the FPGA size in terms of the CLB and CDi represents the configu-

ration delay time of task τi, which is easily calculated as follows:

In other words, UΓ is the fraction of total time–space area used by all tasks and
their jobs relative to the entire time–space area in a hyperperiod.

3.3 Reliability and fault models

Of all fault types in digital systems, the current paper addresses SEs (intermittent
faults and single/multiple transient faults) and assumes that permanent faults are
dealt with by manufacturing testing or field testing methods [39]. A fault detection
mechanism is also considered to be in place, such as an acceptance test, execut-
able assertions, or a fail signal that detects job failure in the system [12]. Failure
is detected exactly at the scheduled completion time of the job. Moreover, the time
overhead for detecting job failure is included in the worst-case computation time
(Ci).

In a recent work [40], researchers at the DDEmS laboratory introduced a reliabil-
ity model for hardware tasks running on an FPGA to SEs. To validate the presented
model, a complete set of practical experiments on real hardware tasks were con-
ducted. Results confirmed the high accuracy of the model, especially in harsh envi-
ronments in which only a 0.5% discrepancy was recorded between the true experi-
mental results and estimated values. The present study also employs this reliability
model which follows Poisson probability distribution. That is, faults are supposed to
independently occur in an FPGA at a constant rate [13, 41]. Therefore, the reliability
of the jth job of task τi, which operates during t time units, is calculated as follows:

(5)UΓ =

∑n

i=1

T

T
i

× (C
i
+ CD

i
) × W

i

S
R
× S

C
× T

=
1

S
R
× S

C

n
�

i=1

(C
i
+ CD

i
) × W

i
∕T

i

(6)CD
i
=

W
i

S
G

× CD
G

(7)R
(

t = Ci + ri,j

)

�i,j

= e
−�i(Ci+ri,j), i ∈ {1, 2,… , n}, j ∈

{

1, 2,… , T
/

Ti

}

1 3

Hybrid scheduling to enhance reliability of real-time tasks…

where ri,j is the residency time of �i,j indicating the time elapsed from when a job
is configured on the FPGA until its execution begins. If �i,j immediately starts its
execution after the configuration, ri,j is equal to zero. However, as seen in the next
section, it is sometimes possible to configure �i,j ahead of its arrival time. In such a
circumstance, ri,j is added to the computation time. λi is the failure rate of task τi in a
given time interval, which depends on the soft error rate (SER) of the environment,
the number of configuration bits of the task in the bitstream (Bi), and the number of
sensitive bits (Si). λi is calculated as follows:

where Λ indicates the bit flip rate in one bit of the bitstream and is a representative
of the environment’s SER, which is exponentially related to the critical charge of the
circuit and radiation intensity (neutron flux) [42]. It should be noted that λi does not
vary with time and is a constant rate for all τi jobs. Once the constant failure rate of
the task is achieved, the task MTTF is easily calculated as follows [43]:

It is assumed that the system is properly executed if and only if all independent
tasks correctly finish execution before their individual deadlines. In other words, the
system runs as a series-parallel system. To calculate the reliability of the series-par-
allel system, the current paper utilizes the reliability block diagram (RBD), which
is an inductive model for analyzing the reliability of complex systems [37, 44, 45].
Hence, the total reliability of the system in the hyperperiod is calculated as follows:

It is worth mentioning that every job of a task may have several backups. Since
only one instance of a job (the primary or one of its backups) is needed to success-
fully complete its execution, the reliability of �i,j with m backup copies is calculated
as a consecutive-one-out-of-m system. Therefore, the reliability of every job in one
period is calculated as follows:

Finally, the total MTTF of the system is evaluated by:

(8)�
i
= Λ × B

i
× S

i

(9)MTTF
�

i
=

1

�
i

=

C
i

1 − R
(

C
i

)

�
i

(10)R(T)Sys =

n
∏

i=1

T∕Ti
∏

j=1

R
(

Ti

)

�i,j

(11)

R
(

Ti

)

�i,j

= 1 −

(

1 − R
(

Ci + ri,j

)

�i,j

)

(

1 − R

(

Ci + r
(1)

i,j

)

�
(1)

i,j

)

…

(

1 − R

(

Ci + r
(m)

i,j

)

�
(m)

i,j

)

(12)MTTFSys =
T

1 − R(T)Sys

 A. Ghavidel et al.

1 3

4 Problem formulation

Given the following as inputs:

1. A task set Γ =
{

�1, �2,… , �
n

}

 of independent periodic RT hardware tasks, where
τi is modeled by a 6-tuple �

i
=

(

C
i
, W

i
, B

i
, S

i
, D

i
, T

i

)

2. The target RD given by RD =

(

SR, SC, SG, CDG

)

Determine a scheduling S for all tasks and their jobs so as to find

possible slack times and areas to preserve for backup copies, and
candidate backup tasks to overload preserved areas

such that while SEs occur:

1. Candidate tasks have another chance of meeting their individual deadlines, and
2. The MTTF of the system is increased.

Quite apart from algorithms, the PB approach for FT scheduling is, perhaps, the
most important approach in the literature [12]. As SEs occur, jobs affected by the
faults need to be re-configured (backup jobs) so as to not to miss their individual
deadlines. Due to severe limitations on available resources and power capability,
determining candidate jobs for true backup overloading on preserved areas on the
FPGA must be carefully considered. In addition, as seen later, selecting true candi-
date backups can dramatically increase the total MTTF. Methods, such as [13, 37,
44], utilize the fully static FT scheduling of hardware tasks to improve reliability.
However, static scheduling imposes a penalty on the perfect usage of slack times
and areas. The present paper addresses these challenges by benefiting from a hybrid
static-dynamic scheduling technique.

5 Illustrative example

This section presents a simple yet comprehensive motivational example of an RT
task set composed of three hardware tasks. In the following example, it is assumed
that the amount of sensitive bits is the same for all tasks and, hence, the differences
between the reliabilities of the tasks depend on computation time, residency time,
and task size.

Γ1 =
{

�1, �2, �3

}

 shall be a task set and RD is assumed to be a simple FPGA.
Each task �

i
=

(

C
i
, W

i
, CD

i
, D

i

)

 , where Ci is the computation time, Wi is the size of
the task in terms of CLBs, CDi is the configuration delay time of the task, and Di is
the relative deadline equal to the period (Di = Ti). All three tasks in Γ1 have the same
size, deadline, and configuration delay time: W

1
= W

2
= W

3
 , D

1
= D

2
= D

3
= 12 s ,

CD
1
= CD

2
= CD

3
= 1 s , and C1, C2, C3 are 3, 4, and 5 s, respectively. Therefore,

1 3

Hybrid scheduling to enhance reliability of real-time tasks…

each task has exactly one job in the hyperperiod (T = 12 s). Since all tasks have the
same size, their failure rate (λi) is also constant and equal to one another. For this
example, it is supposed that the average number of task failures is 2 in 1000 s of
execution of the task (�

i
= 0.002).

Figure 1 shows one possible static scheduling of the three tasks. All tasks
arrive simultaneously at time 0 (i.e., critical instant scenario). As seen, each job
has one backup. Thus, this system has the ability to tolerate a total of one job
failure. It should be noted that the backups of �1,1 and �2,1 are configured and exe-
cuted only when their primaries fail, as indicated by the acceptance test flags,
and this embodies the main concept of the passive backup mode. On the other
hand, the backup of �3,1 is configured and executed before its primary finishes
execution. In other words, passive and active backups are employed together in
order to increase reliability. According to Eq. (11), the reliability of each job, as a
consecutive-one-out-of-two system, is calculated as follows:

By studying Fig. 1, one recognizes that the residency time is zero for all jobs
and their backups. Consequently, according to Eq. (7), R

(

t = Ci

)

�i,j

= e
−�iCi .

Therefore:

As a result, the reliability and MTTF of the system are evaluated by the aid of
Eqs. (10) and (12):

R(t = 12)
�i,j

= 1 −

(

1 − R
(

t = Ci + ri,j

)

�i,j

)

(

1 − R

(

t = Ci + r
(1)

i,j

)

�
(1)

i,j

)

R(12)
�1,1

= 1 −
(

1 − e−0.002×3
)2

, R(12)
�2,1

= 1 −
(

1 − e−0.002×4
)2

,

R(12)
�3,1

= 1 −
(

1 − e−0.002×5
)2

R(T = 12)Sys = R(12)
�1,1

× R(12)
�2,1

× R(12)
�3,1

≈ 0.999801731

MTTFSys =
T

1 − R(T)Sys

≈ 5043T

Fig. 1 A simple example of the strong static scheduling of task set Γ1, which is composed of three tasks
with the PB approach

 A. Ghavidel et al.

1 3

To put it simply, the MTTFSys value means it is expected that the system cor-
rectly operates for 5043 hyperperiods (or 60516 s). The MTTF (and reliability)
of this system is also estimated by our simulation program. To better simulate
scheduling, the current work chooses true random numbers—generated via
atmospheric noise [46]—over pseudo-random numbers which are typically gener-
ated by computer programs in a predictable fashion via a mathematical formula.
The slight difference of about 3.18E−06% between the exact value of reliability
and its simulated result proves the accuracy of the present study’s simulation.

Now, by changing the scheduling technique, the current paper presents another
possible scheduling of task set Γ1 (Fig. 2a). In this hybrid scheduling, jobs and their
backups are first statically scheduled in such way that some preserved slack areas on
the FPGA are overloaded with different backup jobs; backups are allowed to overlap
other backup copies. Then, at run time, the scheduler dynamically decides which
backup copy should be configured and executed. Since the scheduling is static-
dynamic, the exact number of backups for each job is unknown a priori. For this
reason, the notation �′

i,j
 distinguishes backup jobs from their primaries. It should be

noted that primary jobs are configured at the end of the hyperperiod. Thus, the job
residency times (ri,j) for �2,1 and �1,1 are 1 and 2 s, respectively, which must be con-
sidered when calculating job reliability [Eq. (7)].

One example is the scheduling table shown in Fig. 2a with the following sce-
nario. All three jobs simultaneously start their execution at time 0. If �1,1 fails, it will
be detected at time 3 and then the scheduler configures its backup (��

1,1
) . Otherwise,

the scheduler will configure �′
2,1

 , which is the backup of job �2,1 . If �1,1 successfully
finishes its execution at time 3, there is no need to re-execute it and so a backup
of �2,1 is configured at this time. �′

2,1
 starts its execution at time 4. Exactly at this

time, a failure in �2,1 is detected and the scheduler immediately configures another
backup of this job (��

2,1
) . This new backup starts its execution at time 5, at which

point there are two backups for �2,1 simultaneously executed. Following the assump-
tion of the consecutive-one-out-of-three system, it is logical that reliability increases
in comparison with the strong static scheduling in Fig. 1. MTTFSys for the hybrid

Fig. 2 Two possible hybrid scheduling tables for task set Γ1

1 3

Hybrid scheduling to enhance reliability of real-time tasks…

scheduling shown in Fig. 2a is 7104 T , which represents a 40.8% increase as com-
pared to the scheduling table in Fig. 1.

Although the MTTF of the system can remarkably increase by the hybrid sched-
uling technique, improvement is still possible in the static phase by correct selec-
tion of candidate backups for overloading preserved areas. For example, Fig. 2b pro-
vides another possible hybrid scheduling of task set Γ1. Clearly, the only difference
between Fig. 2a, b is the overlapped backup jobs. In this scheduling, if both �1,1 and
�2,1 successfully complete their execution, then �3,1 will have three backups (a con-

secutive-one-out-of-four system). With this scheduling, MTTFSys is 7202T , which
indicates a 1.4% increase compared to the scheduling table in Fig. 2a.

Surprisingly, the hybrid static-dynamic scheduling in Fig. 2b enhances the MTTF
of the system by a factor of 1.43 in contrast to the strongly static scheduling table in
Fig. 1. Furthermore, Fig. 2b presents a dedicated preserved slack area for �′

3,1
 which

is not overloaded with another backup. That is, if �3,1 does not fail, this slack area
will be useless, which occurs 99% of the time (�3,1 ’s reliability is 0.9900498.). Con-
sidering this, if �′

3,1
 overlaps with �′

1,1
 in the time interval of 5 s to 9 s, then MTTFSys

will rise up to 12552T . In contrast to the static scheduling in Fig. 1, this dramatic
increase of about 2.5 times is because, at time 5, a third chance is given to �1,1 to
meet its deadline whenever �3,1 does not fail. The next section shall describe the pro-
posed scheme in detail.

6 Proposed scheme

The first stage of the proposed algorithm schedules tasks according to a non-
preemptive earliest deadline first (EDF-NP) policy. Next, the algorithm addresses
the issue of selecting candidate backup jobs for overloading in the possible slack
times and areas. Finally, it determines which candidate backup job should be config-
ured and executed at run time.

6.1 Principles for backup overloading

This subsection highlights some fundamental principles of the proposed technique
by presenting several lemmas and theorems that provide the criteria by which
backup jobs can provide higher reliability. Then, the proposed algorithm is summa-
rized in two pseudo-codes. The main principles are first discussed.

Principle A1: When there is a free area for configuring a backup task and there
are two candidate tasks, scheduling a backup of the task with lower reliability leads
to greater improvement of total system reliability.

This simple yet important principle can be easily proven by the following Lemma.

Lemma 1 Consider two tasks �1, �2 where R
𝜏

1

< R
𝜏

2

. Slack time t is available while
t = max

{

C1, C2

}

, and there exist at least free CLBs where = max{W1, W2}; then,

scheduling a backup of �
1
 better improves the total reliability of the system.

 A. Ghavidel et al.

1 3

Proof If a backup of �
1
 is considered, according to Eqs. (10) and (11), the reliability

of the system would be:

and if a backup of task τ2 is created, then

Since 𝜆
1
C

1
> 𝜆

2
C

2
 (R

𝜏
1

< R
𝜏

2

) , it is concluded that (13) > (14), thus indicating that,
when there are two tasks, making a backup of the task with lower reliability will fur-
ther increase the whole reliability. Considering this, the following principle extends
Lemma 1 by about three tasks. □

Principle A2: When there are three candidate tasks in which R
�

1

≤ R
�

2

 ,
R
�

1
≤ R

�
3
 , R

�
1
≥ R

�
2
R
�

3
 and there is enough free area for configuring and executing

either a backup task of �
1
 or two backups of �

2
 and �

3
 , then the scheduling of the

two backups, �
2
 and �

3
 , better improves the total reliability of the system (Fig. 3).

This principle is proven in the following Theorem 1:

Theorem 1 Assume that �1, �2, and �
3
 are three RT tasks in which R

�
1

≤ R
�

2

 ,
R
�

1
≤ R

�
3
, the reliability of task �

1
 is equal to or more than the multiplication of the

other tasks’ reliabilities (R
�

1
≥ R

�
2
R
�

3
⇒ �

1
C

1
≤ �

2
C

2
+ �

3
C

3
), and there exists

enough free area for configuring and executing either a backup of �
1
 or two backups

of �
2
 and �

3
. Then, scheduling a backup of �

1
 yields a reliability equal to or less than

that of scheduling backups of the other two tasks.

Proof Consider a backup of �
1
 is scheduled. Therefore, the reliability of the system

is calculated as follows:

(13)RSys =

(

1 −

(

1 − e−�1C1

)2
)

e−�2C2

(14)RSys =

(

1 −

(

1 − e−�2C2

)2
)

e−�1C1

(15)
RSys(option a) =

(

1 −
(

1 − R
�1

)2
)

R
�2

R
�3

= R
�1

R
�2

R
�3

(

2 − R
�1

)

Fig. 3 Principle A2: scheduling two backups of tasks �
2
 and �

3
 yields higher reliability than scheduling a

backup of task �
1

1 3

Hybrid scheduling to enhance reliability of real-time tasks…

On the other hand, if a backup of each task �2, �3 is scheduled, the total reliability
would be

and we want to prove that

R
�

1
≥ R

�
2
R
�

3
 is known and hence �

1
C

1
≤ �

2
C

2
+ �

3
C

3
 . Suppose

�
1
C

1
= �

2
C

2
+ �

3
C

3
− � , where α is a nonnegative real number. As a consequence,

If this is substituted for R
�

1

 in Inequality (17), then

Now, considering inequality (19), the following two bounds for α may be assumed
as:

(A) α is very high

As R
�

i

∈ [0, 1] , clearly, Inequality (19) always holds.

(B) α is very small

(16)
RSys(option b) =

(

1 −
(

1 − R
�2

)2
)(

1 −
(

1 − R
�3

)2
)

R
�1
= R

�1
R
�2

R
�3

(

2 − R
�2

)(

2 − R
�3

)

(17)

RSys(option a) ≤ RSys(option b)

⇒ R
�1

R
�2

R
�3

(

2 − R
�1

)

≤ R
�1

R
�2

R
�3

(

2 − R
�2

)(

2 − R
�3

)

⇒ 2 − R
�1
≤
(

2 − R
�2

)(

2 − R
�3

)

(18)R
�1
= e

−�1C1 = e
−�2C2−�3C3+� =

R
�2

R
�3

e−�
, � ∈ ℝ

≥0

(19)2 −

R
�

2
R
�

3

e−�
≤
(

2 − R
�

2

)(

2 − R
�

3

)

(20)

lim
�→∞

R
�

2
R
�

3

e−�
= +∞

⇒ 2 −∞ ≤
(

2 − R
�

2

)(

2 − R
�

3

)

(21)
lim
�→0

R
�

2
R
�

3

e−�
= R

�
2
R
�

3

⇒ 2 − R
�

2
R
�

3
≤
(

2 − R
�

2

)(

2 − R
�

3

)

 A. Ghavidel et al.

1 3

The following two conditions can be assumed for the environment:

1. The environment is not too harsh and the amount of �
i
 is very low. As a result,

the reliability of the tasks is very high. That is,

2. The environment is very harsh and the amount of �
i
 is also very high. As a result,

the reliability of the tasks is very low. That is,

From Eq. (22) and Inequality (23), it is easily concluded that Inequality (21) also
holds.Since upper and lower bounds were considered to prove Inequality (19), it is
essential to prove that f (x) = e

−x is a monotonic (non-increasing or non-decreasing)
function on the interval [0,+∞) . In this case, e−x is non-increasing. By definition,
the continuous function f (x) is non-increasing on the closed interval [a, b] if and
only if

Moreover, f (x) = e
−x is a continuous function on ℝ(f ∶ ℝ → ℝ

>0
) and

Evidently, not only is the reliability function f (x) = e
−x non-increasing, it is also

decreasing and so this completes the proof of Theorem 1. In other words, in such con-
ditions, the best option is to schedule backups of the two more reliable tasks, espe-
cially when the reliability of the tasks is not high. The induction is complete. □

Principle A3: When there are three candidate tasks in which R
�

1

≤ R
�

2

 , R
�

1
≤ R

�
3
 ,

R
�

1
≤ R

�
2
R
�

3
 and there is a slack time and free area for configuring and executing

either a backup of �
1
 or two backups of �

2
 and �

3
 , then scheduling two backups of �

2

and �
3
 better improves the total reliability of the system if R

�
2
+ R

�
3
≤ 1.

This principle states that, when R
�

1
≤ R

�
2
R
�

3
 , then selecting candidate tasks for

the backup is not simple and requires exact calculation. However, if R
�

2
+ R

�
3
≤ 1 ,

then two backups of �
2
 and �

3
 should be scheduled (Fig. 4). This claim is proven in

Theorem 2.

Theorem 2 Assume that �1, �2, and �
3
 are three independent RT tasks in which

R
�

1

≤ R
�

2

 , R
�

1
≤ R

�
3
 and the reliability of task �

1
 is equal to or less than the

(22)lim
R
�2

,R
�3→1

2 − R
�2

R
�3
= lim

R
�2

,R
�3→1

(

2 − R
�2

)(

2 − R
�3

)

= 1

(23)

(

lim
R
𝜏2

,R
𝜏3→0

2 − R
𝜏2

R
𝜏3
= 2

)

<

(

lim
R
𝜏2

,R
𝜏3→0

(

2 − R
𝜏2

)(

2 − R
𝜏3

)

= 4

)

(24)∀x ∈ (a, b);f �(x) ≤ 0

(25)∀x ∈ ℝ; f
�

(x) = −e
−x

< 0
(

f
�

∶ ℝ → ℝ
<0

)

.

1 3

Hybrid scheduling to enhance reliability of real-time tasks…

multiplication of the other task reliabilities (R
�

1
≤ R

�
2
R
�

3
⇒ �

1
C

1
≥ �

2
C

2
+ �

3
C

3
).

There are also enough area and time for scheduling either a backup task of �
1
 or two

backups of �
2
 and �

3
. Scheduling backups of �

2
 and �

3
 then further increases the total

reliability of the system if R
�

2
+ R

�
3
≤ 1.

Proof Similar to Inequality (17), a situation should be found in which

If condition R
�

2
+ R

�
3
≤ 1 is satisfied, then the statement is true. □

Principle A4: Tasks with lower reliabilities should be scheduled as soon as
possible (ASAP). This will raise the chance of scheduling additional backups
(a result of Lemma 1). With the ASAP strategy, tasks with lower reliability are
moved toward the head of the ready queue and are scheduled before other tasks.

Principle A5: Pre-fetch tasks when possible.
Task pre-fetching is the configuring of tasks before they arrive. Consequently,

this can release more free areas for scheduling more backups. However, the resi-
dency time overhead (ri,j) is added to the task computation time [Eq. (7)].

where EST
�i,j

 is the execution start time of �i,j and CFT
�i,j

 denotes the configuration
finish time of �i,j.

Because configurations of tasks are performed in a serial manner, CFT
�i,j

 is cal-
culated as:

i in which CST
�i,j

 is the configuration start time of �i,j and CD
i
 is the configuration

delay time of task i.
Since all tasks are independent, each job �i,j can be configured when RD is

available:

(26)

RSys(option a) ≤ RSys(option b)

⇒ 2 − R
�1
≤
(

2 − R
�2

)(

2 − R
�3

)

⇒ 1 − R
�2
− R

�3
≥

−R
�1
− R

�2
R
�3

2

(27)ri,j = EST
�i,j

− CFT
�i,j

(28)CFT
�i,j

= CST
�i,j

+ CDi

Fig. 4 Principle A3: scheduling two backups of tasks �
2
 and �

3
 yields higher reliability than scheduling a

backup of task �
1
 if R

�
2
+ R

�
3
≤ 1

 A. Ghavidel et al.

1 3

where avl
(

RD, �i,j

)

 determines the immediate time after the last configuration when
the RD is available and has enough free area for configuring �i,j.

Principle A6: The difference in the number of task backups must not exceed
1. In other words, as long as there are some tasks with m − 1 backups or less and
there is enough time–space slack to schedule mth backup, m + 1th backups of the
other tasks should not be scheduled.

In fact, Principle A6 explains that the slope (acceleration) of the reliability rise
declines when the number of task backups increases. Figure 5 shows that the slope
of reliability rises when the first, second, and third backups are added. The blue
line depicts a rise in the slope of reliability when the first backup is added. That is,
the result of R(1 out of 2 system)∕R(simple system) is at most 2 for a large value
of �

i
C

i
 . With the addition of a second backup, the reliability of the task increases

at most by a factor of 1.5 in comparison with the previous step, that is, the result
of R(1 out of 3 system)∕R(1 out of 2 system) ∈ [1, 1.5] (Fig. 5’s red line). Similarly,
the green line represents the reliability rise factor when the third backup is added,
which is between 1 and 4/3.

The proposed heuristic algorithm mainly uses proven principles (A1, A2, A3,
and A6) as well as Principles A4 and A5, which are good heuristics for schedul-
ing primary jobs and overloading possible free areas with candidate backups. The
algorithm description is further detailed in Algorithm 1. This algorithm schedules
all tasks and their jobs with the EDF-NP policy so that Principles A1–A6 hold. For
example, after jobs are scheduled according to the EDF-NP policy on RD in Line
4, jobs in Line 5 are reordered so that jobs with a lower reliability start their execu-
tion as soon as possible (Principle A4). Next, in Line 6, the algorithm attempts to
pre-fetch jobs when possible (Principle A5). Finally, according to Principles A1,
A2, A3, and A6, backup overloading is performed in Lines 7–9 for possible slack
areas. In other words, in the for each loop, Principles A1–A3 are applied according
to Principle A6.

(29)CST
�i,j

= avl
(

RD, �i,j

)

Fig. 5 The reliability rise rate
(the slope of reliability rise)
declines when the number of
backups increases. The blue
line indicates the reliability rise
when the first backup is added.
The red line and the green line
show the reliability rise when
the second and third backups are
added, respectively (color figure
online)

1 3

Hybrid scheduling to enhance reliability of real-time tasks…

In the dynamic phase, on the other hand, the scheduler behaves event-triggered at
run time. That is to say, events, such as job arrive, job finish, and start backup jobs in
slack areas, initiate activities in the system. Such events are detailed in Algorithm 2.

As seen, Algorithm 2 illustrates the three main run-time events which activate
the dispatcher. The first event is upon the arrival of a new job (instance). The second
event is when a job finishes its execution. The primary task’s execution result (suc-
cess or failure in the proposed algorithm) is the deciding factor for the dispatcher
when determining which candidate backup copy should be selected to configure on
the preserved overloaded area. This determination is made at the start of the third
event (on slack start), as described in Lines 7 to 12. When the slack area starts,
the scheduler dynamically checks the status of all overloaded backup jobs at run

 A. Ghavidel et al.

1 3

time and removes those jobs whose primaries have successfully finished execution.
Finally, among the remaining overloaded backups, the backup job with the lowest
reliability is selected by the dispatcher to configure and execute on RD. In the fol-
lowing subsection, the working of the proposed hybrid technique is explained.

6.2 Example

This section offers a general example of the proposed algorithm’s operation by using
task set Γ2 =

{

�1, �2, �3, �4

}

 . It is assumed that the RD is a simple FPGA with a
capacity of 650 CLBs. All the assumptions of the earlier example hold but each task
has its own size, configuration delay time, and deadline. Thus, the task failure rate,
which depends on task size, computation (and residency) time, and the SER of the
environment, is not the same for all tasks. Table 2 provides the task failure rates and
other characteristics of Γ2.

Figure 6a shows a static FT scheduling without backup overloading. In this sched-
ule, �1,2 is pre-fetched at time 800 ms, which frees up additional time for configuring
and executing another backup at time 1350 ms. As seen, �1,2 has three backups, but,
according to Principle A6, the reliability rise declines when the number of backups
of a specific task increases. The total reliability and MTTF of the system are about
0.999997777 and 449999 T , respectively.

According to Fig. 6b, all the mentioned principles, A1 to A6, are taken into
account to schedule Γ2. The step-by-step explanation of Algorithm 1 is as follows:
In Line 4, scheduling table S is created according to the EDF-NP policy.

It should be noted that, in the EDF-NP policy, whenever a scheduling event
occurs, the task closest to its deadline is selected for execution. In this subsection’s
example, �1, �2, �3 have the same deadline and, therefore, are selected in a random
order. Next, Principle A4 is applied (Line 5) so that jobs with lower reliability start
their execution sooner. According to Table 2:

Hence, �2,1 and �3,1 move to the front of the scheduling table:

S =

{

�4,1, �3,1, �1,1, �2,1, �1,2, �4,2, �3,2

}

R
𝜏

2
< R

𝜏
3
< R

𝜏
4
= R

𝜏
1

S =

{

�2,1, �3,1, �4,1, �1,1, �1,2, �4,2, �3,2

}

Table 2 Characteristics of task set Γ2 depicted in Fig. 6 (all times are in milliseconds)

Task (τi) Computation
time (Ci)

Deadline (Di = Ti) CLB count (Wi) Configuration
delay (CDi)

Failure rate (λi)

τ1 350 1000 200 50 8.54701E−10

τ2 800 2000 250 150 1.68380E−9

τ3 200 1000 400 50 1.49573E−9

τ4 450 1000 200 150 8.54701E−10

1 3

Hybrid scheduling to enhance reliability of real-time tasks…

At this point, in Line 6, the algorithm looks for those tasks which are possible
to pre-fetch before their next request (Principle A5). In this subsection’s example,
there is enough area and time to pre-fetch �1,2 before time 1000 ms. Finally, in Lines
7–9, the algorithm determines the candidate jobs for overloading in the time–space
slacks. In the for each loop, it should be noted that Principle A6 always holds. That
is to say, the algorithm first tries to avoid a situation in which some tasks have mul-
tiple backups, while some others do not. According to Principle A1, the best can-
didate task is the task with the lowest reliability. Therefore, in the present example,
the first selected candidate for a backup is �

2
 . Furthermore, according to Principles

A2 and A3, when there are three tasks, �1, �2, �3 , and there is enough free area for
configuring and executing either a backup task of �

1
 or two backups of �

2
 and �

3
 ,

then scheduling two backups of �
2
 and �

3
 usually better improves the total reliability

of the system than scheduling a backup of the task with the lowest reliability. Thus,
instead of scheduling a backup of the task with the lowest reliability, all two-element

Fig. 6 Two possible scheduling methods of task set Γ2 composed of four tasks. Gray boxes represent
configuration delays

 A. Ghavidel et al.

1 3

subsets of Γ =
{

�1, �2,… , �
n

}

 are checked to find a pair of tasks for which to sched-
ule two backups. In this example, all two-element subsets eligible for replacement
by a backup of �

2
 are:

By definition, a set of n elements has
(

n

2

)

 subsets of 2 elements and, therefore,

calculating all 2-element subsets is performed in O(n2). In the present example, the
algorithm looks to replace a possible pair of tasks with a backup of candidate task �

2

between time 900 ms and 1850 ms. Since none of the above pair of tasks are schedu-
lable in this area, the first backup of �

2
 is scheduled (��

2,1
) . In the next step, the hybrid

scheduler looks for the best option with which to overload the slack time–space area.
Due to its high failure rate, the first candidate is �3,2 , but it does not fit into the slack
area. The second candidate can be either �4,2 or �1,2 . Since it is possible for �1,2 to
have a backup between 1350 and 1750 ms in the slack time–space area, a backup of
�4,2 is used to overload the slack area according to Principle A6. Since, at the most, n
jobs are checked, this step is performed in O(n).

The task with lower reliability, �
2
 , is thus configured and executed as soon as

possible. As a result, it has enough area and time for scheduling a backup version
at time 900 ms. Moreover, the preserved area between times 900 and 1850 ms is
overloaded by backup copies of jobs �2,1 and �4,2 . If �2,1 fails, its backup (� (1)

2,1
) will

be configured at time 900 ms. Otherwise, a backup of �4,2 (�
(1)

4,2
) will be configured.

It should be noted that �2,1 is pre-fetched just before its period (at time 1850 ms).
Furthermore, there is no scheduled job with a second or more backups (Principle A6
holds). Similar to Fig. 6a, �1,2 is pre-fetched but its residency time decreases from
150 ms in the previous scheduling table to 100 ms, thus indicating an increase in
reliability. The result shows a considerable improvement in the MTTF of the system:

7 Simulation results and comparative study

The efficiency of the proposed hybrid scheduling technique is evaluated by com-
paring it with the static FT EDF-NP scheduling policy without backup overload-
ing. To achieve a fair comparison, the current study also adopted the Pareto-based
technique in Ref. [13] for its platform. The Pareto-based technique conducts an
exhaustive search for the optimal scheduling table (with the highest reliability) of all
tasks coupled with their backups at design time. Some tasks may not have any back-
ups, while others may have one (DWC) or two (TMR) active backups. While in the
Pareto-based technique all backups are active, in the hybrid technique proposed in
this paper, backup tasks can be either active or passive. Scheduling passive backups
offers a considerable advantage: There is no need to execute a backup if the primary
successfully finishes its execution. Such abortions avoid unnecessary runs. This also
indicates that slack areas, for the most part, will be overloaded with different backup
tasks. The present work’s simulation experiments demonstrate the advantage of pas-
sive backup overloading as well.

{�1, �3}, {�1, �4}, {�3, �4}

R(T)Sys ≈ 0.999998718, MTTFSys ≈ 780031T (73.3% increase)

1 3

Hybrid scheduling to enhance reliability of real-time tasks…

In the current study, 3000 real-world inspired task sets were first generated, each
of which contains 5 to 20 independent periodic tasks. These include H.264 and MP3
task sets consisting of 10 tasks [47] with a hyperperiod less than the integer-max-
size; the task sets with a hyperperiod exceeding 2.14E09 ms have been dismissed
to keep the simulation time within reasonable bounds. Task computation times are
set in the range of 10–500 ms [48] and selected task width and height are between
[7…42] CLBs [49]. As in the examples mentioned in Sects. 5 and 6.2, the hardware
tasks of the present work’s experiments consist of CLBs. Nevertheless, the proposed
hybrid scheduling technique is scalable to other tasks that exploit other types of
FPGA resources.

In our experiments, the architecture of a realistic partial FPGA is assumed to
model RD and task sets are generated to be emulated on it. In this particular case,
the Xilinx™ Virtex-5 XUPV5LX110T FPGA has been employed [50]. This FPGA
features 160 rows and 54 columns of CLBs. In total, there are eight CLB groups per
column, each of which has 47,520 bits in the bitstream (36 frames × 1320 SRAM
bits). As previously mentioned, the percentage of sensitive bits in the bitstream (Si)
is considered to be no more than 35% to mimic the characteristics of real-world
tasks [36]. Fairly extensive experiments were performed on this FPGA by our labo-
ratory members in Ref. [13] to determine the average time for configuring each CLB
group. According to their results, each CLB group takes, on the average, 3.53 ms to
be completely configured. Hence, RD = (160, 54, 20, 3.53 ms) [Eq. (4)].

According to the present study’s earlier discussion, the SER may be estimated
as a number of SEUs per bit per time unit. Based on the values of SEs reported
in Ref. [37], and with regard to different satellite orbits and solar conditions, fel-
low researchers [13] have employed CREME96 tools [51] to estimate SEs (Table 3).
Even though Table 3 provides SERs [Λ in Eq. (8)] for the Virtex-5 XUPV5LX110T
FPGA corresponding to different satellite orbits, the proposed hybrid schedul-
ing technique can be used for other SER values corresponding to other real space
environments. For the proposed target FPGA, the SER range was determined by
the SERs lower and upper bounds from Table 3 (6.09E−08 and 3.35E−04). Finally,
with the independent RT tasks and SER, Eqs. (8), (10), and (12) could provide the
total MTTF of the system before and after applying the FT techniques.

With scheduling possible backup jobs but without backup overloading, the pre-
sent study’s first set of experiments scheduled the randomly generated task sets
with a static FT EDF-NP algorithm. Next, the proposed technique was applied to

Table 3 Estimated SERs for different orbits and solar conditions

Orbit SEUs/bit/day (XUPV5LX110T)

Solar max Worst week Worst day

GEOsynchronous (GEO) 6.09E−08 6.47E−05 3.35E−04

Global positioning system (GPS) 6.09E−08 5.71E−05 2.89E−04

MOLniya (MOL) 3.01E−07 6.09E−05 3.12E−04

POLar (POL) 2.25E−07 1.33E−05 7.99E−05

 A. Ghavidel et al.

1 3

schedule the same tasks as well as their probable backups and to overload slack
time–space areas with candidate backup copies. The acquired results are presented
as an average value of 100 runs for each task set.

As Fig. 7 indicates, the proposed hybrid technique outperforms the FT EDF-
NP algorithm in terms of the system MTTF; in this set of experiments, the average
MTTF rose 2.34 times. Task reliabilities increased because of applying the men-
tioned six principles (A1–A6) in Sect. 6.1. Principles A4 and A5 provided more
slack areas on the FPGA. Consequently, there were more opportunities for schedul-
ing backup jobs. Furthermore, by using Principles A1–A3 as well as A6, the sched-
uler selected proper candidate backup jobs (with lower reliabilities) to be overlapped
in the slack areas.

A similar trend is observed in Fig. 8 where, in the second part of the experiments,
the proposed technique improves the total MTTF of the system by an average factor

Fig. 7 Comparison of the proposed technique’s MTTF with the static FT EDF-NP algorithm

Fig. 8 Comparison of the proposed technique’s MTTF with the Pareto-based FT scheduling technique
[13]

1 3

Hybrid scheduling to enhance reliability of real-time tasks…

of 1.22 in comparison with the Pareto-based FT technique. This increase factor is
less than the 2.34 of the first part of the experiments. A plausible explanation is that
the FT EDF-NP algorithm is much more basic than the FT scheduling algorithm
proposed in Ref. [13], which conducts an exhaustive search for the optimal schedul-
ing table at design time. Thus, the proposed technique better improves the MTTF of
task sets scheduled by FT EDF-NP.

Although the Pareto-based technique statically finds the optimal scheduling
table for all tasks coupled with their active backups (e.g., DWC and TMR) via an
exhaustive search, the MTTF of the task sets scheduled by the proposed technique
is higher. The reason for this result is very simple: Passive backup overloading in
the slack areas outperforms scheduling tasks as active backups. In other words, in
the Pareto-based technique, active backups are always executed even for no-failure
(fault-free) cases.

In the proposed technique, by contrast, the slack areas are overloaded with pas-
sive backups and the event-triggered dispatcher dynamically decides which backup
should be executed at run time (backups remain dormant until their primaries fail).
If a primary task successfully finishes its execution, the execution of all its passive
backup copies is immediately canceled (Lines 9–11 in Algorithm 2). Then, another
candidate backup, with the lowest reliability and without a priori knowledge of
whether its primary fails or not, is then re-configured (Line 12 in Algorithm 2). Such
abortions, which avoid unnecessary runs, point out the superiority of passive backup
tasks in the reliability rise. Nonetheless, when the scheduling table is so tight that
the scheduler cannot find enough slack area and time to schedule tasks as passive
backups or when tasks are very low-laxity, then tasks are inevitably scheduled as
active backups.

By looking further at Figs. 7 and 8, it can be seen that the magnitude of MTTF
falls as the value of SER rises. According to Table 3, the lowest and the highest SER
occur in the GEO orbit in Solar Max and Worst Day conditions, respectively. This
decline in MTTF is quite logical owing to the exponential relationship between the
task reliability and task failure rate (Eqs. 7–12 in Sect. 3.3). It is important to note
that the MTTF (T) is a logarithmic function. However, MTTF values for the pro-
posed technique are rather different in Figs. 7 and 8, because the FPGA has a higher
utilization factor in the first set of experiments (Fig. 7). It was observed that the task
set with a higher FPGA utilization factor virtually had a lower MTTF [Eq. (5)].

The experimental results depicted in Fig. 9 show how the task set MTTF
decreases with an increasing FPGA utilization factor. Similar to the concept of mul-
tiprocessor systems, the higher the FPGA utilization, the less slack areas provided
by the FPGA. Thus, probably a few numbers of tasks can have backups. Moreover,
higher FPGA utilization means that the total task computation time over a hyper-
period rises, consequently yielding to lower reliability [Eqs. (10), (11)].

The present study conducted another set of experiments in which two principles
(Principles A4 and A5) were ignored and for which Fig. 10 provides the results.
As mentioned in Sect. 6.1, Principle A4 suggests that tasks with lower reliabilities
should be scheduled as soon as possible. With the removal of Line 5 from Algo-
rithm 1, this principle was ignored. As a result, the MTTF decreased between 20
and 40% in regard to the SER. Next, only Principle A5 (job pre-fetch) was ignored

 A. Ghavidel et al.

1 3

by removing Line 6 from Algorithm 1. Consequently, the MTTF decreased between
10 and 29%. These two experiments indicate that Principle A4 is more important
than Principle A5. In the end, though, both Principles A4 and A5 were ignored. As
shown in Fig. 10, the experiments show an MTTF decline between 29 and 55%.

8 Conclusion and potential future work

It is patently obvious that RT embedded systems are widely utilized in critical appli-
cations, such as safety and mission critical systems. As the most prominent RDs,
SRAM-based FPGAs are employed in many such systems. Nevertheless, SRAM-
based FPGAs are well-known for their susceptibility to transient and intermittent

Fig. 9 The relationship between FPGA utilization factor and MTTF

Fig. 10 The impact of applying Principles A4 and A5 on the MTTF of task sets

1 3

Hybrid scheduling to enhance reliability of real-time tasks…

faults mainly caused by high-energy neutrons, protons, or heavy ions. As a result,
SRAM-based FPGAs need protection. Generally, FT scheduling complements the
enormous redundancy of achieving higher reliability as an effective solution. Conse-
quently, the need for FT scheduling will exponentially grow in the years ahead.

The current paper outlines a hybrid technique for the RT FT scheduling of inde-
pendent periodic tasks. The proposed technique schedules tasks in two main phases:
a static phase and a dynamic phase. In the static phase, all jobs are scheduled
according to the EDF-NP policy. Next, according to the mentioned principles (Prin-
ciples A1–A6), jobs are reordered (re-scheduled). Furthermore, candidate backup
jobs are selected to overload possible slack areas. Then, in the dynamic phase, an
event-triggered dispatcher decides which candidate backup job should be configured
and executed on FPGA at run time. Experimental results show that applying the
proposed principles to the scheduling algorithm enhances the MTTF of the system
by an average factor of 1.22 in comparison with the previous strongly static fault
tolerance study.

While the focus of this paper has been on calculating task reliability after con-
figuration, assessing the reliability of tasks during configuration is also an important
yet complex novel issue for future research. To solve this problem, the configuration
process of hardware tasks must be studied in detail to calculate task reliability at any
specific time in the course of the configuration process. In addition, not only does
task size affect the configuration delay time of any hardware task but so do the con-
figured and currently running tasks on FPGA. Moreover, the partial reconfiguration
view involves many constraints such as routing, location, and macro blocks. Consid-
ering a general hardware model for reliability estimation and scheduling purposes in
such a way that its parameters can be easily adapted to the architecture of existing
well-known FPGAs, researchers can provide more real conditions in ongoing works.

From the point of view of importance level, the same digital system might exe-
cute both soft and hard real-time tasks. In other words, the functionalities of differ-
ent levels of criticalities coexist in many embedded systems. Moreover, such com-
plex RT systems are usually subject to sudden changes in their environments. That
is, tasks criticality levels can change with time. Recently, significant research atten-
tion has been directed to mixed-critical (MC) systems that can be found in applica-
tions such as avionics and automobiles. The FT scheduling of RT tasks in MC sys-
tems that use FPGAs is another interesting—indeed absolutely crucial—issue that
has not yet attracted the attention it deserves.

As a growing area of research, multi-FPGA systems offer high-performance solu-
tions to highly complex computing tasks. Furthermore, in multi-FPGA systems, it
is possible to schedule big tasks that cannot be configured on a single FPGA. How-
ever, the scheduling issue on the multi-FPGA platform is more complex than that
on a multiprocessor because of FPGA limitations on configuration management.
The problem becomes even more complicated when the system consists of FPGAs
with different characteristics. In such systems, tasks can have different computation/
configuration times on different FPGAs. Moreover, the task failure rate differs from
one FPGA to another. Hence, as another interesting issue for future work, RT FT
scheduling on multi-FPGA systems will call for an in-depth study as it raises many
unanswered questions.

 A. Ghavidel et al.

1 3

Needless to say, current critical embedded systems that employ an FPGA as a
PE inherently have severe limitations on available resources and power capabil-
ity. Therefore, another major problem in FT scheduling on FPGAs is power and
energy consumption. This is especially the case when the number of active backups
increases. Reliability-aware power management and thermal-aware fault-tolerant
scheduling on FPGAs are other interesting research topics that deserve great atten-
tion. That is to say, as the workload on FPGA increases, static and dynamic power
consumption along with the temperature increase and increase in the FPGA temper-
ature results in the SER increase. Consequently, studying the impact of scheduling
itself on the reliability of system can be one of the most critical issues to enhance
future studies.

As can be deduced from the above discussion, there already exists a noteworthy
body of potential work in the area of FT scheduling of RT embedded systems utiliz-
ing SRAM-configured FPGAs.

Acknowledgements The authors wish to sincerely acknowledge and thank Dr. Reza Ramezani, assistant
professor at the University of Isfahan. He, generously, provided many constructive comments that greatly
assisted the research.

References

 1. Cardoso J, Hübner M (2011) Reconfigurable computing: from FPGAs to hardware/software code-
sign. Springer, Berlin. https ://doi.org/10.1007/978-1-4614-0061-5

 2. Cetin E, Diessel O, Li T, Ambrose JA, Fisk T, Parameswaran S, Dempster AG (2016) Overview and
investigation of SEU detection and recovery approaches for FPGA-based heterogeneous systems.
In: Rech P (ed) FPGAs and parallel architectures for aerospace applications. Springer, Berlin, pp
33–46. https ://doi.org/10.1007/978-3-319-14352 -1_3

 3. Vipin K, Fahmy SA (2018) FPGA dynamic and partial reconfiguration: a survey of architectures,
methods, and applications. ACM Comput Surv (CSUR) 51:72. https ://doi.org/10.1145/31938 27

 4. Kean T, Buchanan I (1992) The use of FPGAs in a novel computing subsystem. Paper Presented at
the Proceeding of 1st International ACM/SIGDA Workshop on FPGAs

 5. Hauck S (1998) The roles of FPGA’s in reprogrammable systems. Proc IEEE 86:615–638. https ://
doi.org/10.1109/5.66354 0

 6. Koch D, Ziener D, Hannig F (2016) FPGA versus software programming: why, when, and how? In:
FPGAs for Software Programmers. Springer, Berlin, pp 1–21. https ://doi.org/10.1007/978-3-319-
26408 -0_1

 7. Parrilla L, Álvarez-Bermejo JA, Castillo E, López-Ramos JA, Morales-Santos DP, García A (2018)
Elliptic Curve Cryptography hardware accelerator for high-performance secure servers. J Super-
comput. https ://doi.org/10.1007/s1122 7-018-2317-6

 8. Kastensmidt FL, Carro L, da Luz Reis RA (2006) Fault-tolerance techniques for SRAM-based
FPGAs. Springer, Berlin. https ://doi.org/10.1007/978-0-387-31069 -5

 9. Bolchini C, Miele A, Sandionigi C (2013) Autonomous fault-tolerant systems onto SRAM-based
FPGA platforms. J Electron Test 29:779–793. https ://doi.org/10.1007/s1083 6-013-5418-4

 10. Zhao Z, Nguyen NT, Agiakatsikas D, Lee G, Diessel O (2018) Fine-grained module-based error
recovery in FPGA-based TMR systems. ACM Trans Reconfigurable Technol Syst 11:4. https ://doi.
org/10.1145/31735 49

 11. Kastensmidt F, Rech P (2016) Radiation effects and fault tolerance techniques for FPGAs and
GPUs. In: Rech P (ed) FPGAs and parallel architectures for aerospace applications. Springer, Ber-
lin, pp 3–17. https ://doi.org/10.1007/978-3-319-14352 -1_1

 12. Krishna C (2014) Fault-tolerant scheduling in homogeneous real-time systems. ACM Comput Surv
(CSUR). 46:48. https ://doi.org/10.1145/25340 28

https://doi.org/10.1007/978-1-4614-0061-5
https://doi.org/10.1007/978-3-319-14352-1_3
https://doi.org/10.1145/3193827
https://doi.org/10.1109/5.663540
https://doi.org/10.1109/5.663540
https://doi.org/10.1007/978-3-319-26408-0_1
https://doi.org/10.1007/978-3-319-26408-0_1
https://doi.org/10.1007/s11227-018-2317-6
https://doi.org/10.1007/978-0-387-31069-5
https://doi.org/10.1007/s10836-013-5418-4
https://doi.org/10.1145/3173549
https://doi.org/10.1145/3173549
https://doi.org/10.1007/978-3-319-14352-1_1
https://doi.org/10.1145/2534028

1 3

Hybrid scheduling to enhance reliability of real-time tasks…

 13. Ramezani R, Sedaghat Y, Naghibzadeh M, Clemente JA (2017) Reliability and makespan optimiza-
tion of hardware task graphs in partially reconfigurable platforms. IEEE Trans Aerosp Electron Syst.
https ://doi.org/10.1109/TAES.2017.26673 38

 14. Liang H, Sinha S, Zhang W (2018) Parallelizing hardware tasks on multicontext FPGA with effi-
cient placement and scheduling algorithms. IEEE Trans Comput Aided Design Integr Circuits Syst
37:350–363. https ://doi.org/10.1109/TCAD.2017.26979 52

 15. Stoddard A, Gruwell A, Zabriskie P, Wirthlin MJ (2017) A hybrid approach to FPGA configuration
scrubbing. IEEE Trans Nucl Sci 64:497–503. https ://doi.org/10.1109/TNS.2016.26366 66

 16. Zhang H, Kochte MA, Imhof ME, Bauer L, Wunderlich H-J, Henkel J (2014) GUARD: Guaranteed
reliability in dynamically reconfigurable systems. Paper presented at the Proceedings of the 51st
Annual Design Automation Conference. https ://doi.org/10.1145/25930 69.25931 46

 17. Santos R, Venkataraman S, Kumar A (2017) Scrubbing mechanism for heterogeneous appli-
cations in reconfigurable devices. ACM Trans Design Autom Electron Syst 22:33. https ://doi.
org/10.1145/29976 46

 18. Giordano R, Perrella S, Izzo V, Milluzzo G, Aloisio A (2017) Redundant-configuration scrub-
bing of SRAM-based FPGAs. IEEE Trans Nucl Sci 64:2497–2504. https ://doi.org/10.1109/
TNS.2017.27309 60

 19. Sterpone L, Violante M (2006) A new reliability-oriented place and route algorithm for SRAM-
based FPGAs. IEEE Trans Comput. https ://doi.org/10.1109/TC.2006.82

 20. Huang K, Hu Y, Li X (2014) Reliability-oriented placement and routing algorithm for SRAM-based
FPGAs. IEEE Trans Very Large Scale Integr (VLSI) Syst 22:256–269. https ://doi.org/10.1109/
TVLSI .2013.22393 18

 21. Bolchini C, Miele A, Sandionigi C (2011) A novel design methodology for implementing relia-
bility-aware systems on SRAM-based FPGAs. IEEE Trans Comput 60:1744–1758. https ://doi.
org/10.1109/TC.2010.281

 22. Tambara LA, Almeida F, Rech P, Kastensmidt FL, Bruni G, Frost C (2015) Measuring failure
probability of coarse and fine grain TMR schemes in SRAM-based FPGAs under neutron-induced
effects. Paper presented at the International Symposium on Applied Reconfigurable Computing.
https ://doi.org/10.1007/978-3-319-16214 -0_28

 23. Yang M, Hua G, Feng Y, Gong J (2017) Fault-tolerance techniques for spacecraft control comput-
ers. Wiley, London. https ://doi.org/10.1002/97811 19107 392

 24. Xie G, Zeng G, Chen Y, Bai Y, Zhou Z, Li R, Li K (2017) Minimizing redundancy to satisfy relia-
bility requirement for a parallel application on heterogeneous service-oriented systems. IEEE Trans
Serv Comput. https ://doi.org/10.1109/TSC.2017.26655 52

 25. Pathan RM (2017) Real-time scheduling algorithm for safety-critical systems on faulty multicore
environments. Real-Time Syst 53:45–81. https ://doi.org/10.1007/s1124 1-016-9258-z

 26. Kopetz H (2011) Real-time systems: design principles for distributed embedded applications.
Springer, Berlin. https ://doi.org/10.1007/978-1-4419-8237-7

 27. Pathan RMJR-TS (2014) Fault-tolerant and real-time scheduling for mixed-criticality systems. Real-
Time Syst 50:509–547. https ://doi.org/10.1007/s1124 1-014-9202-z

 28. Kim J, Lakshmanan K, Rajkumar R (2010) R-BATCH: task partitioning for fault-tolerant multi-
processor real-time systems. Paper presented at the 2010 IEEE 10th International Conference on
Computer and Information Technology (CIT). https ://doi.org/10.1109/CIT.2010.321

 29. Zhu X, Wang J, Guo H, Zhu D, Yang LT, Liu L (2016) Fault-tolerant scheduling for real-time scien-
tific workflows with elastic resource provisioning in virtualized clouds. IEEE Trans Parallel Distrib
Syst 27:3501–3517. https ://doi.org/10.1109/TPDS.2016.25437 31

 30. Löfwenmark A, Nadjm-Tehrani S (2018) Fault and timing analysis in critical multi-core systems—a
survey with an avionics perspective. J Syst Archit. https ://doi.org/10.1016/j.sysar c.2018.04.001

 31. Yin J-Y, Guo G-C, Wu Y-X (2009) A hybrid fault-tolerant scheduling algorithm of periodic and
aperiodic real-time tasks to partially reconfigurable FPGAs. Paper presented at the 2009 ISA 2009
International Workshop on Intelligent Systems and Applications. https ://doi.org/10.1109/IWISA
.2009.50726 24

 32. Yin J, Zheng B, Sun Z (2012) A hybrid real-time fault-tolerant scheduling algorithm for partial
reconfigurable system. JCP 7:2773–2780. https ://doi.org/10.4304/jcp.7.11.2773-2780

 33. Ramezani R, Sedaghat Y, Clemente JA (2017) Reliability improvement of hardware task graphs via
configuration early fetch. IEEE Trans Very Large Scale Integr (VLSI) Syst 25:1408–1420. https ://
doi.org/10.1109/TVLSI .2016.26317 24

https://doi.org/10.1109/TAES.2017.2667338
https://doi.org/10.1109/TCAD.2017.2697952
https://doi.org/10.1109/TNS.2016.2636666
https://doi.org/10.1145/2593069.2593146
https://doi.org/10.1145/2997646
https://doi.org/10.1145/2997646
https://doi.org/10.1109/TNS.2017.2730960
https://doi.org/10.1109/TNS.2017.2730960
https://doi.org/10.1109/TC.2006.82
https://doi.org/10.1109/TVLSI.2013.2239318
https://doi.org/10.1109/TVLSI.2013.2239318
https://doi.org/10.1109/TC.2010.281
https://doi.org/10.1109/TC.2010.281
https://doi.org/10.1007/978-3-319-16214-0_28
https://doi.org/10.1002/9781119107392
https://doi.org/10.1109/TSC.2017.2665552
https://doi.org/10.1007/s11241-016-9258-z
https://doi.org/10.1007/978-1-4419-8237-7
https://doi.org/10.1007/s11241-014-9202-z
https://doi.org/10.1109/CIT.2010.321
https://doi.org/10.1109/TPDS.2016.2543731
https://doi.org/10.1016/j.sysarc.2018.04.001
https://doi.org/10.1109/IWISA.2009.5072624
https://doi.org/10.1109/IWISA.2009.5072624
https://doi.org/10.4304/jcp.7.11.2773-2780
https://doi.org/10.1109/TVLSI.2016.2631724
https://doi.org/10.1109/TVLSI.2016.2631724

 A. Ghavidel et al.

1 3

 34. Say F, Bazlamaçcı CF (2012) A reconfigurable computing platform for real time embedded applica-
tions. Microprocess Microsyst 36:13–32. https ://doi.org/10.1016/j.micpr o.2011.08.013

 35. Herrera-Alzu I, Lopez-Vallejo M (2014) System design framework and methodology for Xilinx
Virtex FPGA configuration scrubbers. IEEE Trans Nucl Sci 61:619–629. https ://doi.org/10.1016/j.
micpr o.2011.08.013

 36. Monson JS, Wirthlin M, Hutchings B (2012) A fault injection analysis of Linux operat-
ing on an FPGA-embedded platform. Int J Reconfigurable Comput 2012:7. https ://doi.
org/10.1155/2012/85048 7

 37. Ramezani R, Sedaghat Y, Naghibzadeh M, Clemente JA (2018) A decomposition-based reliability
and makespan optimization technique for hardware task graphs. Reliab Eng Syst Saf 180:13–24.
https ://doi.org/10.1016/j.ress.2018.07.007

 38. Clemente JA, Resano J, González C, Mozos D (2011) A hardware implementation of a run-time
scheduler for reconfigurable systems. IEEE Trans Very Large Scale Integr (VLSI) Syst 19:1263–
1276. https ://doi.org/10.1109/TVLSI .2010.20501 58

 39. Bushnell M, Agrawal V (2004) Essentials of electronic testing for digital, memory and mixed-signal
VLSI circuits. Springer, Berlin. https ://doi.org/10.1007/b1174 06

 40. Ramezani R, Clement JA, Sedaghat Y, Mecha H (2016) Estimation of hardware task reliability on
partially reconfigurable FPGAs. Paper presented at the 2016 16th European Conference on Radia-
tion and Its Effects on Components and Systems (RADECS). https ://doi.org/10.1109/RADEC
S.2016.80931 84

 41. Mottaghi MH, Zarandi HR (2014) DFTS: a dynamic fault-tolerant scheduling for real-time tasks
in multicore processors. Microprocess Microsyst 38:88–97. https ://doi.org/10.1016/j.micpr
o.2013.11.013

 42. Hazucha P, Svensson C (2000) Impact of CMOS technology scaling on the atmospheric neutron soft
error rate. IEEE Trans Nucl Sci 47:2586–2594. https ://doi.org/10.1109/23.90381 3

 43. Koren I, Krishna CM (2010) Fault-tolerant systems. Morgan Kaufmann, Burlington. https ://doi.
org/10.1016/b978-0-12-08852 5-1.x5000 -7

 44. Namazi A, Safari S, Mohammadi S (2018) CMV: clustered majority voting reliability-aware
task scheduling for multicore real-time systems. IEEE Trans Reliab. https ://doi.org/10.1109/
TR.2018.28697 86

 45. Kuo W, Prasad VR (2000) An annotated overview of system-reliability optimization. IEEE Trans
Reliab 49:176–187. https ://doi.org/10.1109/24.87733 6

 46. Haahr M (2019) RANDOM.ORG: True Random Number Service. https ://www.rando m.org.
Accessed Sept 2018

 47. Clemente JA, Beretta I, Rana V, Atienza D, Sciuto D (2014) A mapping-scheduling algorithm
for hardware acceleration on reconfigurable platforms. ACM Trans Reconfigurable Technol Syst
(TRETS) 7:9. https ://doi.org/10.1145/26115 62

 48. Danne K, Platzner M (2006) An EDF schedulability test for periodic tasks on reconfigurable
hardware devices. Paper presented at the ACM SIGPLAN Notices. https ://doi.org/10.1145/11599
74.11346 65

 49. Steiger C, Walder H, Platzner M, Thiele L (2003) Online scheduling and placement of real-time
tasks to partially reconfigurable devices. Paper presented at the RTSS 2003. 24th IEEE Real-Time
Systems Symposium. https ://doi.org/10.1109/REAL.2003.12532 69

 50. XilinxCorporation Virtex-5 FPGA Configuration User Guide, UG191 (v 3.11). http://www.xilin
x.com/suppo rt/docum entat ion/user_guide s/ug191 .pdf. Accessed Sept 2018

 51. Tylka AJ, Adams JH, Boberg PR, Brownstein B, Dietrich WF, Flueckiger EO, Petersen EL, Shea
MA, Smart DF, Smith EC (1997) CREME96: a revision of the cosmic ray effects on micro-electron-
ics code. IEEE Trans Nucl Sci 44:2150–2160. https ://doi.org/10.1109/23.65903 0

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1016/j.micpro.2011.08.013
https://doi.org/10.1016/j.micpro.2011.08.013
https://doi.org/10.1016/j.micpro.2011.08.013
https://doi.org/10.1155/2012/850487
https://doi.org/10.1155/2012/850487
https://doi.org/10.1016/j.ress.2018.07.007
https://doi.org/10.1109/TVLSI.2010.2050158
https://doi.org/10.1007/b117406
https://doi.org/10.1109/RADECS.2016.8093184
https://doi.org/10.1109/RADECS.2016.8093184
https://doi.org/10.1016/j.micpro.2013.11.013
https://doi.org/10.1016/j.micpro.2013.11.013
https://doi.org/10.1109/23.903813
https://doi.org/10.1016/b978-0-12-088525-1.x5000-7
https://doi.org/10.1016/b978-0-12-088525-1.x5000-7
https://doi.org/10.1109/TR.2018.2869786
https://doi.org/10.1109/TR.2018.2869786
https://doi.org/10.1109/24.877336
https://www.random.org
https://doi.org/10.1145/2611562
https://doi.org/10.1145/1159974.1134665
https://doi.org/10.1145/1159974.1134665
https://doi.org/10.1109/REAL.2003.1253269
http://www.xilinx.com/support/documentation/user_guides/ug191.pdf
http://www.xilinx.com/support/documentation/user_guides/ug191.pdf
https://doi.org/10.1109/23.659030

	Hybrid scheduling to enhance reliability of real-time tasks running on reconfigurable devices
	Abstract
	1 Introduction
	2 Related work
	3 Models and preliminaries
	3.1 Task model
	3.2 RD model
	3.3 Reliability and fault models

	4 Problem formulation
	5 Illustrative example
	6 Proposed scheme
	6.1 Principles for backup overloading
	6.2 Example

	7 Simulation results and comparative study
	8 Conclusion and potential future work
	Acknowledgements
	References

