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This article proposes a combined prediction method based on the Markov chain to realize
precise short-term wind power predictions. First, three chaotic models are proposed for
the prediction of chaotic time series, which can master physical principles in wind power
processes and guide long-term prediction. Then, considering a mechanism switching
between different physical models via a Markov chain, a combined model is constructed.
Finally, the industrial data from a Chinese wind farm were taken as a study case, and the
results validated the feasibility and superiority of the proposed prediction method.
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1 INTRODUCTION

To solve the global energy crisis and environmental pollution around the world, wind energy has
become one of the most potential sources due to its clean and renewable properties (Brouwer et al.,
2016; Yang et al., 2021a). In China, America, and many European countries, more and more wind
power generation has been highly concentrated to the power system in the past decades (Huber et al.,
2014; Yang et al., 2021b; Yang et al., 2022a), while in this case, the intermittency and variability of
wind bring great challenges to the safety of power systems (Tang et al., 2020; Yang et al., 2022b).
Therefore, an accurate wind power prediction system is required by system operators to mitigate the
undesirable effects. Especially as the installed capacity of wind farms increases, this situation is more
urgent than ever.

Currently, the major wind power prediction system related to power system schedule is based on
short-term predictions. The existing short-term wind power prediction methods are mainly data-
driven models, also known as statistical models. These methods usually utilize the statistical features
of historical data and machine learning algorithms to train and build models, for example, auto-
regressive and moving average models (ARMA), KNN, neural networks (NNs), support vector
machines (SVMs), extreme learning machines (ELMs), and so on (Valipour et al., 2013; Doucoure
et al., 2016; Tang et al., 2021). For instance, in Kanna and Singh (2012), several data-driven models
were introduced for short-term wind power prediction. In Liu et al. (2012), an ELM-based wind
power predictionmodel was also applied to the real wind farm data. All of these models could achieve
high accuracy in short-term prediction, but their shortage is also obvious since residuals are
cumulated as prediction is going on.

To improve the performance of wind power predictions, there are several ways for model
improvement. This first type is to consider the combination of physical and statistical factors of data
together. In this way, the multiple step prediction could be improved with the assistance of physical
trends. For example, one useful model considering wind power data’s physical factors is based on
chaotic time series prediction, since the process of wind was validated to obey the variance of the
chaotic system (Lange and Focken 2006). In Lei et al. (2007), wind power data were verified as a
chaotic time series and reconstructed for wind power prediction. The second type is to consider
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different patterns in time series data and to build a hybrid
prediction model. For example, some short-term prediction
models utilize signal decomposition to generate different
patterns, for example, wavelet decomposition and empirical
mode decomposition (EMD) (An et al., 2011; Li et al., 2021a),
and then combine predictions of different patterns for the final
prediction. In this way, the prediction can be improved with more
robustness. The more direct way is to use different models to
reflect different patterns in prediction. For example, in
Tascikaraoglu and Uzunoglu (2014), a linear combined model
was proposed to average the prediction results of different
methods. In Ouyang et al. (2016), a Markov chain was
regarded as a switching regime to select different parameters
in a prediction model.

Considering the aforementioned descriptions, this article
proposed a hybrid model which considers the aforementioned
two factors to realize precise short-term wind power prediction.
The advantages of the proposed model can be summarized as
follows: First, considering the physical characteristics of wind
power time series, different chaotic time series models are used to
form the model library. Since chaotic time series models are
physics-based models, they are more reliable than data-driven
models, especially in long-term trend prediction. Second,
considering the mechanism of hybrid modeling, this study
considers using the Markov chain to estimate wind patterns
and to guide the selection of suitable physical models in
prediction. Finally, combining these contributions to realize a
high-precision wind power prediction, industrial wind power
data are studied to validate the effectiveness of the proposed
method.

2 PREDICTION MODEL FOR CHAOTIC
TIME SERIES

Generally, if time series data are from a chaotic system, it is
possible to reproduce the dynamics information of its related
system. To realize this idea, time series data are usually embedded
into a new diffeomorphism space where data have the same
dynamic behaviors as the original space and better representation
ability (Rand and Young 1988; Chen et al., 2019). Therefore, data
in the reconstructed phase space would be better for modeling
and data mining. Here, referring to Packard et al. (1980), wind
power time series could be reconstructed as chaotic time series
according to Takens’ theory (Rand and Young 1988), expressed in
the following form:

xn � (xn, xn+τ ,/xn+(m−1)τ) ∈ Rm, n � 1, 2/, N0 � N − (m − 1)τ,
(1)

where {xn} represents the series of wind power data; xn is the
reconstructed data, which is a vector xn R

m; and τ andm are delay
time and embedding dimension parameters, which can be
calculated by using the mutual information (MI) method
(Fraser and Swinney 1986) and false nearest neighbors (FNN)
method (Xiong et al., 2017), respectively. Then, based on the
reconstructed chaotic time series in eq. 1, several prediction

models could be built, for example, local prediction models,
global prediction methods, prediction methods based on the
Lyapunov exponent and Volterra prediction models (Zhang
and Liang 2012; Jinquan et al., 2016). Considering the
prediction precision, the global prediction method is rarely
used in wind power prediction, so three selected models are
introduced as follows.

2.1 Local Linear Model With First Order
Local prediction models have different orders, but the first-order
linear model is used the most. Assuming a given point x(t) in the
phase space, q nearest points xi(t), i = 1,2. . ., q, are taken as
reference in prediction. Then the prediction model is described in
eq. 2: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1(t + k)
x2(t + k)
..
.

xq(t + k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � A + Bp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1(t)
x2(t)
..
.

xq(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
i � 1, 2,/, q; k � 1, 2,/;

, (2)

where A and B are the coefficient matrixes of the prediction
model, which can be trained by the least square method, and k is
the prediction time interval, but its value cannot be too large since
the evolution over a long period is not linear for chaotic systems.

Then the prediction is calculated as x(t + k) = A + Bpx(t).

2.2 Prediction Method Based on the
Lyapunov Exponent
In the chaotic system, it is known that two nearby tracks are linear
in the short term and have an exponent trend in the longer term.
This feature is utilized in the prediction method based on the
Lyapunov exponent. Then the prediction model is expressed in
eq. 3:

Lt+k � Lt · eλk , (3)
where k is the prediction time interval, Lt is the distance between
x(t) and its nearest neighbor x(t’), Lt+k is the distance between x(t
+ k) and x(t’+k), λk is the Lyapunov exponent related to the
interval k, and it is calculated when T = k.

2.3 Volterra Prediction Model
The Volterra algorithm is a non-linear filter and can be expressed
in eq. 4:

x(n + 1) � h0 +∑+∞
t�0

h1(t)x(n − t) + ∑+∞
t1�0

∑+∞
t2�0

h2(t1, t2)x(n − t1)x(n − t2)

+ ∑+∞
t1�0

∑+∞
t2�0

/ ∑+∞
tp�0

hp(t1, t2/tp)∏p
j�1

x(n − tj) +/,
(4)

where x(n+1) is the predicted value, x(n-t) are historical values, p
is the order of a Volterra filter, and h is the coefficient
corresponding to different elements. It is seen that a Volterra
filter with a high order is complex, so a second-order model is
usually used for predicting wind power time series, as described in
eq. 5:
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x(t + k) � h0 + ∑m−1

u�0
h1(u)x(t − uτ)

+ ∑m−1

v�0
∑m−1

w�0
h2(v, w)x(t − vτ)x(t − wτ),

(5)

where m is the embedded dimension, τ is the delay time, k is the
prediction time interval, and u, v, andw represent the index of the
selected data.

3 HYBRID MODELING WITH THE
MECHANISM OF MARKOV CHAIN

The previously mentioned three models were proposed to apply
in chaotic time series prediction in many references. The three
methods perform differently in different scenarios and even have
different accuracy in the same period in same scenario. Therefore,

a suitable solution to achieve relatively better performance is to
construct a combined model as described as follows:

ŷ � ∑wi · ŷi, (6)
where ŷi represents the output of an individual prediction model,
ŷ is the final output of the combined model, and wi is the weight
coefficient for the combination of different models.

In Ouyang et al. (2016), theMarkov chain was used as a regime
switching different models to improve the accuracy of short-term
wind power prediction. The process is decided by the transition
probability matrix of a Markov chain. In this article, a new
combined model based on the transition probability and
prediction models of chaotic time series is proposed to predict
wind power.

By assuming these three chaotic time series models as three
different patterns, as {S1, S2, S3}, the idea of the Markov process is
to suppose that the states st+1 are related to the states st, described
in eq. 7:

Pij(t, t + 1) � P(st+1 � Sj
∣∣∣∣st � Si), (7)

where Pij (t,t+1) is the transition probability on the condition of
satisfying the current pattern Si and the next pattern Sj. Assuming
the wind power time series as Ωt and the tth value is yt, then the
forward probability is defined in eq. 8:

FIGURE 1 | Wind power prediction based on three given chaotic time series models.

TABLE 1 | Four error metrics of three individual chaotic prediction models.

MAE RMSE SDofAE CC

S1 18.578 28.477 19.694 0.9470
S2 18.460 26.230 19.128 0.9354
S3 17.907 21.556 18.431 0.9838
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p(j)t|t � P(st � j|Ωt) � P(yt, st � j|Ωt−1)
P(yt|Ωt−1) , (8)

where p(j)
t|t is the probability of st = jwith a given seriesΩt, and the

numerator and denominator are calculated by eq. 9:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
P(yt, st � j|Ωt−1) � p(j)t|t−1 · P(yt

∣∣∣∣st � j,Ωt−1),
p(j)t|t−1 � P(st � j|Ωt−1),
P(yt|Ωt−1) � ∑N

j�1
P(yt, st � j|Ωt−1), (9)

where N = 3, since there are only three available prediction
models. Conversely, assuming that the whole wind power time
series is given as ΩT ( where T is the length of the given time
series), the backward probability is calculated in eq. 10:

p(j)t|T � P(st � j|ΩT). (10)
Combining the forward probability and backward probability,

the probability of states at each time is calculated by using the

maximum likelihood estimation (MLE) method. Then the
weights of the combined model in eq. 6 are decided by the
calculated probability, and the final prediction model is expressed
as eqn 11:

ŷt � p1 · ŷ1 + p2 · ŷ2 + p3 · ŷ3, (11)
where pi is the probability of the ith model.

4 EXPERIMENTS AND DISCUSSION

4.1 Prediction Based on Individual Models
In this study, a real-world wind power dataset from Chinese wind
farms is taken for the case study. This dataset collected samples
for 2 years with a sampling period of 15 min. There are a total of
70,176 samples. By taking 70% of the data (viz., historical data
from the last 17 months) as the training set, the data from the rest
of the months are used for validation and testing. First, the phase
space of the data is reconstructed based on eq. 1 by applying the
reconstruction parameters with τ = 7 andm = 9 based on MI and

FIGURE 2 | Probability of three states (three models) at each time.
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FNN. Then the reconstructed chaotic time series are used to train
and predict wind power based on three models introduced in
Section 2.

Figure 1 depicts the prediction results of three models: S1, S2,
and S3 (representing local linear predictionmodels with first-order,
prediction models based on the Lyapunov exponent, and Volterra
prediction models, respectively). Figures 1A,B present the
predicted wind power and prediction errors, respectively. It is
qualitatively found that these three models have good performance
in predicting wind power in Figure 1A. However, the prediction
errors in Figure 1B illustrate that each model have its best
prediction performance at different local times.

Moreover, to evaluate the time series prediction
performance quantitatively, some useful error metrics could
be applied (He et al., 2017). For example, the commonly used
mean absolute error (MAE), mean squared error (MSE), root-
mean-square error (RMSE), and the standard deviation of
absolute error (SDofAE) are possible options. These metrics
have advantages in evaluating the error on prediction
amplitude and are commonly used in prediction research.
Moreover, a kind of transverse error metric could also be used
for evaluation, such as correlation coefficient (CC), which
aims to evaluate the prediction model’s performance in
time delay. In this study, four selected metrics are given to
evaluate the performance of wind power time series
predictions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MAE � ∑n
i�1

∣∣∣∣yi − ŷi

∣∣∣∣/n,

RMSE �
�������������∑n
i�1
(yi − ŷi)2/n,

√
SDofAE �

���������������������∑n
i�1
(∣∣∣∣yi − ŷi

∣∣∣∣ −MAE)2/n

√
,

CC � cov(y, ŷ)���
Dy

√ ���
Dŷ

√ ,

(12)

where yi and ŷi are predicted and observed values of wind power
time series, respectively, and n is the number of testing data
points. According to the definition of error metrics before, we can
see that the former three (MAE, RMSE, and SDofAE) are required
to be small when the model performs well. However, on the other
hand, the value of CC needs to be as close to 1 as possible.

Table 1 shows the values of four error indicators in wind
power prediction. S1, S2, and S3 represent the three prediction

models introduced in Section 2, respectively. It is seen that the
difference between the former three models is not large and that
S1 has the worst prediction performance, while S3 has the best
prediction performance according to the values of the error
indicators.

4.2 Prediction Based on the Proposed
Hybrid Model
According to the description of the proposed method, a
combined model could effectively improve the shortages of
individual models at local prediction. Therefore, a combined
model is proposed in eq. 11, where its weights are selected as
the transition probability of the Markov chain. Taking the three
given prediction models as three states, the transition
probabilities of states at each time are calculated based on
eqs 7–10.

Figure 2 depicts the transition probability of three states in the
same period as Figure 1. It is seen that the wind power is
predicted by one model with a given probability at each time.
Therefore, if the probability of each state is taken as the weight of
the combined model in eq. 11, then wind power for the same
period with Figure 1 can be predicted.

Then, also making use of the given error metrics in
evaluation, the performance of the proposed method is
presented in the following table. For the consideration of
the comparison study, several other prediction methods are
also evaluated, such as two combined models, namely, a linear
combined model of S1, S2, and S3 and a Markov-switching-
autoregression model (MSAR), three generally used data-
driven models based on neural networks (NNs), support
vector machine (SVM) (Li et al., 2021b), and extreme
learning machine (ELM) (Shen et al., 2020). All of their
results are presented in Table 2.

Table 2 shows the error metrics of wind power prediction
based on different models, including individual data-driven
models and combined models. Through the comparison, some
phenomena could be found. First, the combined models
generally outperform all of these individual models, including
the common statistical models and the chaotic time series models
in Table 1, which validates the effectiveness of combined models
in improving wind power prediction performance. Second,
through comparison between individual and combined
chaotic models, it is seen that considering the combination or
switching of different physical models is helpful to improve
prediction accuracy. Moreover, the switching mechanism with
consideration of the Markov chain can outperform the simple
linear combination model. Finally, the proposed method
combining both the chaotic time series model and the
Markov chain could further improve the prediction
performance. In the comparison study, it is reasonable that
for individual chaotic time series, models cannot achieve
obvious superiority than traditional data-driven models which
can achieve high-precision in short-term prediction. However,
chaotic time series models are more reliable than data-driven
models since they consider physical principles of the wind
development process. Therefore, chaotic models would be

TABLE 2 | Wind power prediction using various methods.

MAE RMSE SDofAE CC

Combined method Proposed 16.398 17.887 14.421 0.9650
Linear 16.660 22.541 16.831 0.9854
MSAR 16.547 19.538 15.482 0.9768

Data-driven SVM 18.610 26.789 19.290 0.9276
ELM 18.651 27.885 19.797 0.9359
NN 17.741 24.154 16.402 0.9506
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helpful to capture wind trends, and guarantee good accuracy in
the long-term prediction in the future study.

5 CONCLUSION

To realize precise short-term wind power prediction, this article
proposed a more reliable combined model considering both
chaotic time series modeling and the Markov chain
mechanism. First, by reconstructing the wind power data into
a new space with the consideration of the wind’s chaotic physical
features, three chaotic time series models consist of the primary
model library. Second, by taking different models as the states of
the Markov chain, and a combined model utilizing the transition
probability of the Markov chain as the weight is constructed. The
results of Table 2 verify that the combined model based on the
Markov chain is feasible to predict wind power. Moreover,
through the comparison study, the proposed method is
validated to improve the precision of wind power prediction,

which will be helpful for direct scheduling and planning in the
power system in the future.
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