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ABSTRACT
Motivation: To be valuable to biological or biomedical
research, in silico methods must be scaled to complex path-
ways and large numbers of interacting molecular species.
The correct method for performing such simulations, discrete
event simulation by Monte Carlo generation, is computationally
costly for large complex systems. Approximation of molecu-
lar behavior by continuous models fails to capture stochastic
behavior that is essential to many biological phenomena.
Results: We present a novel approach to building hybrid sim-
ulations in which some processes are simulated discretely,
while other processes are handled in a continuous simula-
tion by differential equations. This approach preserves the
stochastic behavior of cellular pathways, yet enables scaling
to large populations of molecules. We present an algorithm
for synchronizing data in a hybrid simulation and discuss the
trade-offs in such simulation. We have implemented the hybrid
simulation algorithm and have validated it by simulating the
statistical behavior of the well-known lambda phage switch.
Hybrid simulation provides a new method for exploring the
sources and nature of stochastic behavior in cells.
Contact: simmons@research.ge.com
Supplementary information: The SBML file for the lambda
phage tests will be made available at the OUP site.

INTRODUCTION
New data from high-throughput biology will enable more
ambitious, more complete and better-validated simulation
models, allowing in silico methods to take an important place
in biological research. Indeed, understanding the functional
significance of protein pathways (Biocarta, 2002, http://www.
biocarta.com; KEGG, 2003, http://www.genome.ad.jp/kegg/,
Li et al., 2002; Bader, 2003; Demir et al., 2002) will require
the extensive use of simulations. Critical to this program is the
ability to capture and analyze stochastic processes that arise
from the low copy number of molecules participating in path-
ways, and the complex interactions that amplify molecular
variability to create stochastic behavior at the cellular level.

MODELING OF CELLULAR PROCESSES
Computer simulations can now replicate important biolo-
gical behavior (Kitano, 2002). Early success was achieved

with the simplest organisms: the phages. The lambda phage
‘switch’ has been a target of several efforts (Shea and
Ackers, 1985; Arkin et al., 1998). The T-7 phage has been
studied in a fruitful combination of simulation and labor-
atory measurements (Endy et al., 1997; You et al., 2002).
However eukaryotes in general, and mammalian cells in
particular, are much more challenging targets (Asthagiri
and Lauffenburger, 2000). The scope of models considered
here is intended to cover cellular processes with stochastic
properties of importance in biomedical studies. This neces-
sarily includes stochastic regulation of gene expression,
cellular signaling and related pathways. Some ambitious
efforts are underway to create whole cell models, most not-
ably E-Cell (Tomita et al., 1999; Bioinformatics.org, 2002,
http://www.bioinformatics.orgle-cell), Virtual Cell (Loew and
Schaff, 2001; NRCAM, 2002, http://www.nrcam.uchc.edu/
vcell_development/vcell_dev.html), MCell (MCell, 2002,
http://www.mcell.cnl.salk.edu) and IECA (Holden, 2002).
We note that such large simulations when done completely
through Monte Carlo methods require immense computa-
tional resources. This is one motivation for the hybrid method.
We also note that large discrete simulation models are not
very transparent: it is difficult to understand the sources of
stochastic behavior. The hybrid method allows smaller and
more transparent stochastic models since non-stochastic parts
of the system can be abstracted as conventional deterministic
equations.

A model is an integral part of the research process, and as
such it should be sharable in a standard format. The major
standards relevant to cellular simulation are Systems Biology
Markup Language (SBML, 2002, http://www.cds.caltech.
edu/erato/sbml/docs/) and CellML (CellML.org, 2002, http://
www.cellml.org/public/about/what_is_cellml.html). We have
utilized SBML (Level 1) with annotations that allow for
adding optional information to a standards-compliant SBML
model.

Stochastic simulation algorithms
Biochemical processes within cells (other than metabolic
processes) are generally characterized by interactions of
molecular species at low concentrations in a small volume,
and hence at very low numbers. Thus in modeling such
systems, we are working within the regime of statistical
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mechanics, rather than in the ‘large N’, limit of thermody-
namics. The usual method for simulation of such systems
is detailed Monte Carlo simulation of the statistical form of
chemical rate equations.

We will confine our discussion here to a single compart-
ment model, though our method is also valid for multiple
compartments. Within the compartment, it is assumed that
all molecular species are well mixed, so that the techniques
of statistical mechanics are applicable. The species in the
compartment engage in a fixed set of reactions with known
stoichiometry and reaction rates. The state of the system at
any moment is represented by the number of molecules of
each species, a vector X of n non-negative integers. Sim-
ilarly, the stoichiometry of a reaction r is represented by
a vector Yr of n integers, where Yr ,i represents the num-
ber of molecules of species i produced by the reaction r .
A negative value indicates consumption of the correspond-
ing species. The propensity of a reaction channel αr [X(t)] dt

is the probability, given that the system is in state X(t),
that a reaction will occur on channel r in the time interval
[t , t + dt). Using statistical mechanics arguments, Gillespie
derives αr [X(t)] as a function of the standard chemical
reaction rate constants, the populations of reactants and a com-
binatorial measure of the number of reacting configurations
(Gillespie 77).

Gillespie proposed two algorithms for Monte Carlo gen-
eration of stochastic trajectories of such a chemical system
(Gillespie 77). The first reaction algorithm proceeds by gen-
erating a random event time for each reaction channel from
the exponential distributions of each. The alternative direct
method generates the time of the next reaction from an expo-
nential distribution with the sum of the channel propensities
as the characteristic time. In either method, the system is
updated according to the stoichiometry of the chosen reaction
channel, and the simulation time is updated to the gener-
ated event time. The equivalence of these two methods has
been established (Gillespie, 1977). Monte Carlo methods
become expensive for systems where reactions run at very
high rates. When the high rates are a result of high con-
centrations, it is possible to take time steps that are longer
than a single reaction in a method called τ -leap (Gillespie,
2001).

Gibson (2000) has addressed the key algorithmic issues,
repeated recalculation of propensities and generation of many
random numbers. Algorithmic and analytical improvements
combined with advances in computing platforms over the
years have made feasible simulation of realistically sized sys-
tems (Endy and Brent, 2001; MCell, 2002). However even
with these improvements, the cost of discrete event simula-
tion has motivated the development of alternative or hybrid
methods for approximating the fully discrete simulation. In
particular, efforts have been made to include some stochastic
effects within deterministic models, as described in the next
section.

Stochastic modeling with differential equations
Ordinary Differential Equations (ODEs) are the most common
approach to modeling systems of chemical reactions. Any
systems other than the simplest require a numerical solver.
These range from the trivial Euler method, to more stable
mid-point methods, to the ‘workhorse’ Runge–Kutta family
of methods (Press et al., 2002). ODEs are relatively easy both
conceptually and computationally. However their underlying
model is completely deterministic.

The Langevin equation, originally formulated for Brownian
motion (van Kampen, 1992), extends the ODE formulation
by adding random noise terms, and thus allowing the repres-
entation of some stochastic behavior. The noise terms must
be statistically independent. Gillespie (2000) has adapted the
Langevin equation for application to chemical reaction chan-
nels. There are two assumptions required in his derivation (the
assumptions are similar to the τ -leap requirements).

• The propensities cannot change too rapidly over small
time intervals.

• Over those same intervals, there must be significant
activity in all reaction channels.

The requirements are jointly satisfiable in systems where all
species populations are large.

We note that the lambda phage does not meet the conditions
of either the τ -leap or the Langevin methods. There are low
copy numbers of some species (1–10), low rates of some reac-
tions (once per min), and the reactions are strongly coupled
to each other. We expect the same to be true of other mod-
els of biological and biomedical significance. This motivates
our development of another method for integrating stochastic
behavior into systems of differential equations.

Simulation of high-frequency reactions
In the approaches described above, reactions with high fre-
quency cause a severe computational burden. Approximate
methods can reduce this burden for two specific types of reac-
tions: fast statistical-thermodynamic reactions that maintain
a quasi-steady state (i.e. average occupancy of a promoter
binding site), and reaction sequences that consist of a large
fixed number of identical steps (i.e. gene transcription and
translation). In this section, we review these methods as a
background to the next section in which we describe our
hybrid method for approximate simulation of other types of
reactions.

The binding of promoters and repressors controls stochastic
gene expression events. Ackers et al. developed a meth-
odology for approximating such statistical-thermodynamic
binding events and applied it to simulation of the lambda
phage (Ackers et al., 1982; Shea and Ackers, 1985). This
approach has since been used to reduce the computational bur-
den of discrete event simulation of regulated gene expression
(Arkin et al., 1998; Gibson, 2000).
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Transcription and translation, once initiated, typically con-
tinue by repetition of molecular binding and reaction steps
until a stopping point is reached. If the steps can be treated
as identical and statistically independent, then an approxima-
tion can be used for the probability of completion and for the
time to completion (Gibson, 2000). If the time duration of
each step is exponentially distributed, then the duration of the
entire process has a Gamma distribution.

Combining deterministic and stochastic solvers
The ‘gold standard’ in simulation of cellular processes is
a full microscopic discrete event simulation. Anything else
is an approximation. In the section above, we gave two
examples of methods for treating special types of high fre-
quency events within a discrete simulation without simulating
each individual event. We now formulate an approach for
a more general class of reactions. Our approach preserves
probabilistic behavior but provides greater computational effi-
ciency for those reaction types that occur with high rates. This
approach merges the Monte Carlo algorithm of discrete sim-
ulation with the time-step integration of ordinary differential
equations. This avoids the approximations necessary in adding
stochastic noise terms to differential equations.

We partition the set of reaction channels in a simulation
into two regimes: continuous and discrete. Reactions placed
in the continuous regime are implemented in differential equa-
tions. The remainder of the model, with events of lower
frequency, such as transcription, translation and molecular
signaling, are retained in the stochastic regime so that import-
ant consequences of their stochastic behavior are preserved.
The continuous regime must satisfy conditions for accuracy
and stability of the numerical solution technique: the number
of instances of each molecular species in a reaction in the con-
tinuous regime must be large relative to one, and the number
of reaction events of each reaction occurring within one time
step of the numerical solver must be large relative to one. If
either condition is not satisfied for a reaction, then it must be
handled in the discrete regime.

This partitioning leaves some molecular species (those
participating in reactions assigned to both regimes) being
represented in both the discrete and the continuous regimes.
These ‘bridging’ species are represented simultaneously by
two variables: one an integer and one a floating point number.
Both regimes can ‘read’ this species (in the data type required)
and both can ‘write’ updates to the species from reactions that
produce or consume the species. In linking the two solvers for
these variables, we must assure that

• information in the two solvers is properly synchronized,

• conversions between continuous and discrete variables
are well behaved and

• correctness and stability of each solver are not
compromised.

Synchronization must cope with the fact that the discrete
solver is essentially asynchronous—the time of the next event
is a random variable—while in the continuous solver time is
usually synchronous—clocked by the step size of the numer-
ical algorithm. The synchronization algorithm we present
below links these two clocks.

In converting between a discrete variable (the number of
molecules of a given species) and a continuous variable (the
chemical concentration), we will need to assure that round trip
conversions do not introduce errors that could accumulate and
thus compromise stability and accuracy of the algorithms.

Information passing from the discrete regime to the con-
tinuous includes the number of molecules of each of the
bridging species. This number will remain constant in the
discrete regime until the next occurrence of a reaction that
alters that species. Thus, the numerical algorithm in the con-
tinuous regime can treat the concentrations of bridging species
from the discrete regime as being constant for at least some
interval of time. However the same is not true in the opposite
direction. The predictions of the continuous regime for the
concentrations of bridging species depend upon the details
of the numerical algorithm. Thus Runge–Kutta methods will
produce polynomial predictions of concentrations over the
current time step of the algorithm. These predictions will in
general produce time-dependent propensities in the discrete
regime Monte Carlo process. It is possible to generate Monte
Carlo events according to a time-dependent propensity. We
have explored several methods for generating Monte Carlo
events according to the concentrations generated in Runge–
Kutta methods (up to fourth order). A power series expansion
over the uniform Monte Carlo variable can give acceptable
approximations to the event time distributions.

Synchronization of the two regimes is accomplished by
the following algorithm. While this description refers to only
one discrete regime and one continuous regime, the algorithm
extends directly to multiple regimes of each type. There is one
global time, t . The molecular species xi , are converted to float-
ing point numbers in the continuous regime and to integers in
the discrete regime. The time step (possibly adaptive) of the
numerical algorithm in the continuous regime is δt . This ver-
sion of the algorithm uses the Gillespie direct method, but
other methods could be used in the discrete regime.

Set time t = 0 and set xi (0) = initial values.
While t is less than the simulation duration

Calculate the propensity for each discrete reaction from
the values xi (t ).

From the propensities of the discrete reactions, select
a discrete time step size δτ .

Set t0 to the minimum of t + δτ and t + δt .
While there is no discrete event

In the continuous regime, generate predicted
populations xc,i (t ) over the time step [t , t0].

Communicate xc,i (t ) to the discrete regime.
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In the discrete regime, compute the (time-varying)
propensities over [t , t0]

Generate a candidate next event with its time of
occurrence t1.

If t1 > t0 then // No discrete events occurred in
this time step.
t ← t0
xi (t ) ← xc,i (t ).

else // There was a discrete event in this time step.
t ← t1
xi (t ) ← xc,i (t ) + Yr ,i

EndIf
End

End

A reasonable choice for the discrete time step size δτ is the
expected time to the next event, thus taking the two branches
of the if statement approximately equally often. This version
of the algorithm is conservative in that it forces a complete
recomputation of all parameters in the continuous regime after
each discrete event. This should not always be necessary. A
threshold could be used to determine when the discrete event
makes a large enough change in a bridging species that a sig-
nificant change in Runge–Kutta parameters is necessary. This
should improve the speed of computation with little effect on
accuracy. It is not necessary that Runge–Kutta be used in the
continuous regime: this algorithm is compatible with other
methods. The step size in the continuous regime need not be
fixed: adaptive time step methods can be used so long as the
current step size is used in the comparisons with the predicted
time of the next discrete event.

This version of the algorithm uses time-varying propensities
in the discrete regime, which is not necessary if the size of the
time step in the continuous regime is kept small. This is a
trade-off of increased complexity in generating Monte Carlo
events against smaller step size and increased number of steps
in the continuous solver. The best approach will depend upon
the relative efficiencies of implementation of the two regimes.
There are many more opportunities for reducing the amount
of recomputation in the algorithm.

Errors and accuracy trade-offs
The sources of errors on the continuous regime consist of
the usual errors from the Runge–Kutta or similar numerical
solution algorithm, plus additional error terms introduced by
the bridging variables being altered in integer increments by
discrete events. In the conservative algorithm presented above,
we force a recomputation of the Runge–Kutta parameters after
every discrete event. If this were not done, we would have a
small error term in the continuous regime (corresponding to
changes of plus or minus one molecule) that would appear as
noise in the differential equations.

We have measured the errors introduced by the continu-
ous solver and by discrete event simulation (data not shown).

With appropriate choice of numerical algorithms, errors are
much smaller than the statistical variation of concentration
due to the discrete nature of the processes being simulated (i.e.
small numbers of molecules and small number of events). We
have also used simpler algorithms and approximations, with
a small step size, and obtained good results. Our tests with
lambda phage presented below used a Runge–Kutta algorithm,
constant propensity and an adaptive step size.

Implementation and modeling standards
Our primary aim in implementation has been flexibility and
extensibility for a program of experiments on the hybrid
algorithm. A simulator was built using object oriented design
practices in C++. This simulator has been used for reprod-
ucing results of several published models and to explore
variations on the hybrid algorithm. In addition to the Gamma
processes for transcription and translations and the statistical-
thermodynamic reactions to govern the initiation of transcrip-
tion, we can add other abstracted types of reactions. We can
experiment with various continuous and discrete solvers and
with assigning reactions to either a stochastic or continuous
reaction engine.

We chose to utilize Level 1 SBML for storing models
(SBML, 2002). One advantage of SBML is the allowance for
annotations, supporting the attachment of additional inform-
ation to the standard representation. We used this annota-
tion mechanism for the abstract reaction types. The lambda
phage model used annotations for both the fast statistical-
thermodynamic abstract reaction of gene promoters, and for
the Gamma processes of transcription and translation.

Tests with lambda phage
The lambda phage ‘switch’ is a thoroughly studied and
well-documented mechanism, which has been eloquently elu-
cidated by Ptashne (1992). Briefly stated, the lambda phage
is a virus that infects Escherichia coli. Infection can result in
two states. One possibility is that the lambda phage DNA is
integrated into the DNA of the host E.coli, where it remains
dormant and is passed from one generation of E.coli to the
next. When the E.coli enters this state, it is said to be in a state
of lysogeny. Alternatively, the phage DNA can be expressed,
leading to the production of the protein components for more
phage particles. This eventually leads to the demise of the
cell and a release of many new phage progeny into the envir-
onment. This is known as the lytic state. The state decision
is binary—the cell cannot remain between these two. This
switching behavior is the result of the complex interactions
between repressors and promoters present in the lambda phage
DNA. The fact that there are two stable states of the lambda
system can be seen in the structure of a deterministic differ-
ential equation models. However deterministic models cannot
generate correctly the probability of the two states being taken,
nor predict how this probability will depend upon attributes
of the infected cell.
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This system has been analyzed in several simulations and
the results compared to experimental measurements (Ackers
et al., 1982; Arkin et al., 1998; Gibson, 2000). Our model was
built using parameters from the models by Arkin et al. and by
Gibson. We focus on one specific stochastic phenomenon,
the dependence of the probability of lysogeny upon of the
multiplicity of infection (MOI). The MOI is the number of
phage particles that have infected a single E.coli cell. The
probability of lysogeny increases with MOI, reaching nearly
100% with MOI above 10. The dependence of probability on
MOI cannot be predicted by a deterministic model, and would
be expected to be sensitive to any failure to maintain important
stochastic effects in the simulation.

Implementing the model
In order to establish the validity of our simulation engine
and the model itself we first executed the entire model using
only the stochastic reaction engine. The model consists of
40 species interacting through 71 reaction channels. With pop-
ulations of the individual species corresponding to a moderate
MOI, simulating 35 min of the cell life cycle, with 3.4 × 105

reaction events, required 4 s. Further improvements could be
had by optimizing the code and by streamlining the logging.
Numerous runs were made to obtain results for comparison
with published results (Arkin et al., 1998; Gibson, 2000).
This validated our implementation of the direct method in
the stochastic reaction engine.

Once the stochastic engine had been verified, we realloc-
ated some of the reactions in the model. The criteria outlined
above led us to move the following reactions to the continuous
regime:

• Zeroth order reactions: Those introducing new material
into the system at a constant rate.

• Dimerization reactions: Those governing the steady-state
ratio of monomer to dimer for several key proteins in the
system (cro, cI and N).

• Degradation reactions: Those responsible for degrading
those same key proteins.

In all, only 10 of the 71 reactions were allocated to the
continuous regime, but these represented the great bulk of
the reaction events. In runs with MOI = 6, the number
of discrete events was reduced from 337 100 to 10 836, a
savings of better than 95%. We observed that variance was
reduced for those species residing partially in the continu-
ous regime (Fig. 1). This would be expected, since some
of the reactions impacting those species were now comput-
ing only mean rates and mean populations. Our hypothesis
was that the loss of stochastic properties of these reactions
would not be important in the global stochastic behavior of
the system, of which the most notable is the probability of
lysogeny.

Comparison with previous work
To determine the dependence of probability of lysogeny on
MOI, many runs were executed at each value of MOI. The
runs were then partitioned into two sets by comparing the
concentrations of the cI dimer and cro dimer proteins at the end
of the 35 min simulation time. If cI dimer was greater than the
cro dimer, the cell was lysogenic. Likewise, if there was more
cro dimer than cI dimer, the cell was lytic. The estimated
probability of lysogeny was then the fraction of runs in the
lygsogenic set. Our results from these runs (Fig. 2) show that
the distinctive bifurcation behavior of the system had been
preserved, thus indicating that the necessary stochastic effects
had been preserved in the hybrid simulation.

Conclusions and future directions
We have presented a method to integrate discrete and con-
tinuous simulation of cellular processes. This approach
offers advantages in the scale-up of models to include high-
frequency reactions and molecular species in high concen-
trations, and yet maintains the stochastic behavior that is the
hallmark of many biological processes. This approach is sim-
ilar in spirit and method to the means previously used for
including high-frequency reactions in stochastic models, but
extends to a broad class of reaction types. We have examined
some of the trade-offs in using this approach with different
numerical algorithms. In tests this hybrid simulation has pro-
duced good results, including reproducing results of other
simulation engines.

We have not done a formal analysis of the accuracy of the
hybrid simulations. This will be difficult because the effects
of the stochastic regime are not easily characterized as noise
terms in the continuous regime. The low population and infre-
quent events of the model, and the lack of independence in
stochastic behavior do not satisfy the requirements for the
Langevin approach. The correct question is the accuracy rel-
ative the stochastic simulation methods that have been shown
to correctly implement the Chemical Master Equation. An
important challenge for further work is to develop criteria
for knowing which reactions are most important to global
stochastic behavior of the system. This would provide a basis
for deciding how to assign reactions between regimes. One
would like to know the minimum set of reactions that must be
handled stochastically, but we do not yet have a basis for such
a judgment.

Hybrid simulation can serve as a tool for exploring the
sources and nature of stochastic behavior. With this approach,
it is possible to easily experiment with moving one or more
reactions from the stochastic to the continuous regime, and
thus determine the global system consequences of stochastic
events in those reactions. It should also be feasible to dynam-
ically and automatically move reactions based on computed
rates and concentrations. As developed thus far, this approach
handles only reactions within one or a few ‘well-mixed’
chambers. We intend development of extensions to include
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Fig. 1. Examples of individual runs of the fully stochastic and hybrid implementations of the lambda phage model. (a) Stochastic lysogenic
run, (b) stochastic lytic run, (c) hybrid lysogenic run, and (d) hybrid lytic run. The hybrid runs show less short-term variance of the populations,
but have the same long-term behavior in choosing one or the other fate for the cell.

Fig. 2. Probability of lysogeny as a function of MOI. (a) Comparison of the published results of Arkin (closed circles) and Gibson (inverted
closed triangles) with the fully stochastic implementation, average of 1000 runs at each value of MOI (closed squares). In the few parameters
in which Arkin and Gibson differed in their models, we have followed Arkin. (b) Comparison of the same 1000 runs of the fully stochastic
implementation (closed circles) at each MOI with 1000 runs of the hybrid implementation (inverted closed triangles) at each MOI. The error
bars show the 95% confidence interval from a binomial distribution of 1000 samples.
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diffusion processes and geometry through integration of
partial differential equations and discrete simulation of diffu-
sion. The approach as developed thus far handles some issues
of widely disparate time scales, but much yet remains to be
done. Our interest is to eventually be able to combine models
of processes across widely varying scales of time and space.
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