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Abstract: Non-Hermitian skin effect (NHSE) in non-Hermitian lattice systems, associated with a
point gap on the complex energy plane, has attracted great theoretical and experimental interest.
Much less is studied on the so-called second-order non-Hermitian skin effect, where the bulk does
not support a point gap but localization at the corner still occurs. This work discovers a class of
hybrid skin-topological modes as the second-order non-Hermitian skin effect without asymmetric
couplings. Specifically, by only adding gain/loss to two-dimensional Chern insulators and so long
as the gain/loss strength does not close the line gap, all the topological edge states are localized
at one corner under the open boundary condition, with the bulk states extended. The resultant
non-Hermitian Chern bands can be still topologically characterized by Chern numbers, whereas the
hybrid skin-topological modes are understood via some auxiliary Hermitian systems that belong to
either intrinsic or extrinsic second-order topological insulator phases. By proposing an innovative
construction of auxiliary Hamiltonian, our generic route to hybrid skin-topological modes is further
successfully extended to nonequilibrium topological systems with gain and loss, where the anomalous
Floquet band topology is no longer captured by band Chern numbers. The extension thus leads
to the intriguing finding of nonequilibrium hybrid skin-topological modes. In addition to offering
a straightforward route to experimental realization of hybrid topological-skin effects, this study
also opens up a promising perspective for the understanding of corner localization by revealing
the synergy of three important concepts, namely, non-Hermitian topological insulator, second-order
non-Hermitian skin effect, and second-order topological insulator.

Keywords: second-order non-Hermitian skin effect, non-Hermitian Chern insulator, second-order
topological insulator, nonequilibrium hybrid skin-topological modes.

INTRODUCTION

Non-Hermitian systems are now widely known to sup-
port topological states that may not exist in Hermi-
tian system [1–3]. The bulk spectrum of non-Hermitian
lattice systems under the periodic boundary condition
(PBC) is typically complex, and the gap can be either
a line gap or a point gap. Different gaps associated
with specific symmetries can then be used to classify a
wide variety of non-Hermitian topological phases [4, 5].
Though line-gap topology may be transformed to a Her-
mitian counterpart without closing the band gap, point-
gap topology is unique to non-Hermitian systems. In
particular, point-gap topology is the underlying topologi-
cal protection responsible for the so-called non-Hermitian
skin effect (NHSE) [6, 7], causing all the bulk states to be
localized under the open boundary condition (OBC) [8–
20].

NHSE, as guaranteed by a point-gap topology, has
spurred a great deal of theoretical interest because it
breaks the usual bulk-edge correspondence for line-gap
topology [21, 22]. Indeed, non-Bloch topological band
theory has been developed to recover the bulk-edge cor-
respondence for non-Hermitian systems [8, 23–37]. A va-
riety of physical platforms, such as cold atoms, photonics,
electrical circuits, mechanics, and acoustics have been de-
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veloped to study NHSE experimentally, with motivating
findings [38–48].

It is fair to say that most studies to date have focused
on NHSE in one-dimensional (1D) systems. In other case
studies that do involve two-dimensional (2D) systems,
the interplay of NHSE and topological bands is already
found to bring interesting physics, such as non-Hermitian
Chern bands [23, 49–53], defect induced NHSE [54–57],
and the hybrid skin-topological modes [17, 46, 58, 59]
where corner localization is due to the interplay of topo-
logical localization and NHSE. Nevertheless, as far as
NHSE is concerned in these studies of 2D systems, it is
essentially the 1D (or first-order) NHSE that is in force,
because the source of NHSE can be clearly attributed to
one direction, but not the other direction. In particular,
to date our knowledge of hybrid skin-topological mode
is based on a specific lattice design [17, 58], namely, the
manifestation of asymmetric coupling in one direction in
the presence of topological localization in the other di-
rection.

There have also been growing interest in the so-called
second-order NHSE that can localize certain states at the
corner while all the bulk states are still extended under
OBC [60–63]. Second-order NHSE is remarkable because
the bulk band does not even support a point gap, so the
resulting skin corner models are clearly beyond the usual
paradigm of NHSE. A point gap now emerges only after
one of the dimensions is placed under OBC and the sec-
ond dimension is under PBC. This being the case, skin
corner modes can be obtained after placing two differ-

ar
X

iv
:2

20
3.

03
28

4v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  7
 M

ar
 2

02
2

mailto:phyzhuw@gmail.com
mailto:phygj@nus.edu.sg


2

ent dimensions under OBC, hence of second-order. Such
type of skin corner modes is of second-order for another
physical reason. That is, available studies [60–63] indi-
cate that second-order NHSE can be connected with a
second-order topological insulator phase of some auxil-
iary Hamiltonian. However, all theoretical models pro-
posed to date require asymmetric couplings (plus, posi-
tive couplings along one direction and negative couplings
along anther direction). These constructions are con-
venient in theory, but far from trivial in experimental
realizations.

Echoing with the possibility of inducing non-Hermitian
topological phase transitions solely by gain and loss [64–
69], in this work we shall reveal a generic route to hybrid
skin-topological modes without asymmetric couplings, by
applying solely gain and loss to topological insulators
with chiral edge states, for both conventional Chern in-
sulator phases and periodically driven (hence nonequilib-
rium) topological phases. The subtle interplay between
topology and non-Hermitian effects then leads to hybrid
skin-topological modes, which can be identified as a new
type of second-order NHSE. In particular, upon the intro-
duction of some gain and loss that still maintains the line-
gap topology of the starting topological insulator phase,
the system continues to support chiral edge states, which
now however acquire gain and loss as they propagate
along the edges of the system. For example, in the case of
a non-Hermitian Chern insulator, it is still topologically
described by a non-zero Chern number upon introduc-
ing gain and loss. Remarkably, we show that skin corner
modes generically exist under OBC, with their number
being proportional to the length of a 2D system and lo-
calized at one corner of the system only. As shown be-
low, the localization behavior of the obtained corner skin
models can be phenomenologically understood by state
accumulation of chiral edge states with gain and loss.
Furthermore, the existence of corner skin models can also
be understood through the construction of an auxiliary
Hamiltonian [70–84]. That is, the non-Hermitian sys-
tems under consideration must host skin corner modes if
the auxiliary Hamiltonian is in a second-order topolog-
ical insulator phase, protected by a bulk gap (intrinsic
second-order) or an edge-state gap inside the bulk gap
(extrinsic second-order) [85]. In either case the intro-
duced gain and loss can induce an edge band gap opening
and thus a phase transition to the second-order topolog-
ical insulating phase. We also show that the nature of
hybrid skin-topological modes allows for the construction
of a topological switch to turn on/off skin effects, simply
by introducing topological phase transitions.

As compared with the asymmetric couplings previ-
ously assumed in second-order NHSE or hybrid skin-
topological modes [17, 46, 58, 59], the physics revealed
in this work is widely applicable because gain or loss is
much easier to realize. As a matter of fact, loss is ubiq-
uitous due to absorbing materials or some leaky modes,

and gain can also be introduced by optical or electri-
cal pumping in photonic systems. Because our route
to hybrid skin-topological modes is rather general, we
are motivated to explore the possibility of nonequilib-
rium skin-topological modes. We indeed manage to ex-
tend our approach to nonequilibrium topological systems
with gain and loss, where the anomalous Floquet band
topology is no longer captured by band Chern numbers.
To better connect nonequilibrium hybrid skin-topological
modes with second-order topology, we have proposed an
innovative construction of auxiliary Hamiltonian to treat
periodically driven topological systems with gain and
loss.

HYBRID SKIN-TOPOLOGICAL MODES IN A
NON-HERMITIAN HALDANE MODEL

Haldane model with gain and loss

We start with a non-Hermitian Haldane model, as de-
picted in Fig. 1(a). This non-Hermitian version of the
Haldane model is obtained by introducing gain and loss
to two sublattices respectively [86]. The resulting tight-
binding lattice Hamiltonian can be expressed as follows:

H =t1
∑
〈i,j〉

c†i cj + t2e
iνijφ

∑
〈〈i,j〉〉

c†i cj

+ ig
∑
i∈A

c†i ci − ig
∑
i∈B

c†i ci
(1)

where c†i (ci) is the creation (annihilation) operator for
a particle at the ith site. The first term is the nearest-
neighbor hopping with an amplitude t1. The second term
is the next-nearest-neighbor hopping with an amplitude
t2 and a phase νijφ. The phase is direction dependent.
If the hopping is along the arrows in Fig. 1(a), the phase
is positive νij = +1. If the hopping is in the opposite
direction, the phase is negative νij = −1. The second
term breaks the time reversal symmetry so that the sys-
tem can support quantum anomalous Hall effect. The
third term is what we introduce in this work, represent-
ing the on-site gain (loss) on sublattice A (sublattice B).
In the absence of such gain and loss, the system is a well-
known Chern insulator and supports topological chiral
edge states.

As a rather standard treatment, one can now apply a
Fourier transformation to the real-space Hamiltonian in
Eq. 1, obtaining the momentum-space Hamiltonian:

H(k) = ~d(k) · ~σ + igσz (2)

where ~d(k) = (d0(k), dx(k), dy(k), dz(k)) is a vector as
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FIG. 1. (Color online) Hybrid skin-topological modes as a
second-order non-Hermitian skin effect in a non-Hermitian
Haldane model. (a) Non-Hermitian Haldane model with gain
(blue) and loss (red). (b) Summation of the state density
profile over all edge states

∑
n∈edge |Ψn(x)|2. Color represents

the strength of localization on the left edge
∑

x∈edge |Ψn(x)|2.

(c) Summation of the state density profile over all bulk
states

∑
n∈bulk |Ψn(x)|2. Color represents the strength of

localization of all the bulk states
∑

x∈bulk |Ψn(x)|2. (d)
Spectrum of the system under PBC along both directions.
Color represents the strength of localization on the left edge∑

x∈edge |Ψn(x)|2 (e) Spectrum of a semi-infinite structure
with PBC along x and OBC along y. Color represents the
strength of localization on the left edge

∑
x∈edge |Ψn(x)|2. (f)

Spectrum of a finite structure with OBC along both direc-
tions. Color represents the strength of localization on the left
edge

∑
x∈edge |Ψn(x)|2.

function of k, ~σ = (σ0, σx, σy, σz) and

d0(k) =2t2 cosφ[cos kx + 2 cos(kx/2) cos(
√

3ky/2)],

dx(k) =t1[1 + 2 cos(kx/2) cos(
√

3ky/2)],

dy(k) =2t1 cos(kx/2) sin(
√

3ky/2),

dz(k) =− 2t2 sinφ[sin kx + 2 sin(kx/2) cos(
√

3ky/2)],

(3)

with k = (kx, ky) being quasimomentum, σ0 being two-
by-two identity matrix and σi, i = x, y, z being the Pauli
matrices.

Let us first investigate the spectrum of the above-
described non-Hermitian Haldane model under the open
boundary condition (OBC). In our sample calculations,
we use the following system parameters t1 = 3, t2 = 0.5,
g = 0.6 and φ = π/3 unless specified otherwise. For zero
gain and loss, the model system here is a Chern insu-
lator with chiral edge states propagating along the sys-
tem’s edge with a definite direction due to time-reversal-
symmetry breaking [86]. Upon introduction of the gain
and loss to two sublattices, it is expected that there
will be no band gap closure so long as the strength of
the gain and loss terms is not too strong. Remarkably,
all the identified topological edge states in the bulk gap
are found to be localized at the system’s left corner, as
shown in Fig. 1(b) whereas all the bulk states are ex-
tended as shown in Fig. 1(c). Furthermore, without a
line-gap topological transition, the system in the presence
of the gain and loss is still classified as a Chern insulator,
but as a non-Hermitian version. Fig. 1(d)-(f) compare
the spectrum plotted on the complex energy plane un-
der PBC, mixed PBC-OBC, and OBC. The PBC spec-
trum in Fig. 1(d) depicts two well-separated bulk bands.
The spectrum of the system of an semi-infinite (strip)
structure in Fig. 1(e) shows that the chiral edge states
together with the bulk spectrum encloses a nonzero area,
thus potentially allowing a point gap. In Fig. 1(f) for the
system under OBC, two well-separated bulk bands are
seen. Between the two bulk bands in Fig. 1(f), there are
gapless topological edge states connecting the two bulk
gaps. That the energies of the chiral edge states here
are dramatically different when we change the boundary
condition from mixed PBC-OBC to OBC strongly sug-
gests that the observed corner modes here are due to the
skin localization of chiral edge states and hence represent
hybrid skin-topological modes.

It is now necessary to digest why the topological chiral
edge states are all localized at one corner of the system.
To that end we next look into more details of the en-
ergy bands of this system in a zigzag strip structure with
periodic boundary condition (PBC) along x and OBC
along y. The real part and imaginary parts of the com-
plex spectrum under such a mixed PBC-OBC boundary
condition are shown in Fig. 2(a) and Fig. 2(b), respec-
tively, as a function of the Bloch momentum kx along
the x direction. From Fig. 2(a) and Fig. 2(b) one clearly
sees that there are two topological edge channels marked
by red color and blue color. The red one represents the
edge channel propagating towards the left direction with
gain (because of the positive imaginary part), whereas
the blue one represents the edge channel that only allows
transport to the right with loss (because of the negative
imaginary part). To reflect this observation, in Fig. 1(b)
we further mark the gain edge states and loss edge states
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by blue arrows and red arrows. Evidently, then, as gain
edge states propagate to the left with gain, it tends to
accumulate population on the left corner. Interestingly
and analogously, because the loss edge state propagate to
the right with loss, the loss edge states prefer to accumu-
late to the left corner. Thus, no matter what edge state
channels we inspect, they all tend to be localized at the
left corner. This is a noteworthy feature of the system
and can only be taken as a phenomenological explanation
of why skin corner modes should generically emerge in a
non-Hermitian Chern insulator.

FIG. 2. (Color online) Topological edge states of a non-
Hermitian Haldane model in a zigzag strip structure. (a)
Real part of the energy bands. (b) Imaginary part of the
energy bands. Note that the edge states propagate to the
left has positive imaginary parts and hence acquire gain, and
the edge states propagate to the right has negative imaginary
parts and hence experience loss.

The non-Hermitian Haldane model thus depicts a non-
Hermitian Chern insulator, of which the topological char-
acterization can be captured by the following Chern num-
ber defined as [23]

Cn =
1

2πi

∫
BZ

d2kεij〈∂iuLn(k)|∂juRn(k)〉 (4)

where n is the band number, i, j = x, y and εxy = −εyx =
1. |uLn(k)〉 and |uRn(k)〉 are left and right eigenvectors of
H(k) with normalization condition 〈uLn(k)|uRn(k)〉 = 1.
Because all the bulk bands here are extended, the conven-
tional (first-order) NHSE is not manifested by the bulk
bands under PBC and hence the non-Hermitian band
Chern numbers can be defined in the usual Brillouin zone,
without invoking the so-called non-Bloch Chern number
in the generalized Brillouin zone. Indeed, the Chern num-
bers for the two bands based on the usual Brillouin zone
are ±1, as shown in Fig. 2(a). The conventional bulk-
boundary correspondence is also obeyed: there are two
chiral edge channels in the band gap, as shown in Fig. 2,
propagating towards opposite directions and found at op-
posite edges of the strip geometry.

Topological characterization of hybrid
skin-topological modes

The topological Chern numbers discussed at the end
of the previous section can be used to understand the
bulk-edge correspondence of the non-Hermitian Chern
insular in a strip geometry. However, it remains to es-
tablish the bulk-corner correspondence in order to reveal
the nature of hybrid skin-topological modes discovered
above. For conventional (first-order) NHSE, it is known
to have a topological origin and can be associated with
some nonzero winding number of the spectrum on the
complex plane [6, 7]. By analogy, the skin corner modes
arising from the localization of chiral edge modes can be
associated with some nonzero spectral winding number
of non-Hermitian chiral edge states. However, in practice
it is not an easy task to solely extract the edge states to
facilitate the calculation of the spectral winding number
of the edge sates. This is most obvious if we return to the
spectrum shown in Fig. 1(e), where the energies of the
edge states at the opposite sides of a strip structure are
connected with delocalized states and hence there is no
distinct closed spectral loops. Physically, this is because
the edge states at one side of the strip cannot be adiabat-
ically connected with (or pumped to) those at the other
side, unless there is a delocalization transition through
the bulk states.

Following Refs. [60–62], below we turn to an auxiliary
Hamiltonian approach in order to reveal the nature of
the found hybrid skin-topological modes induced by gain
and loss in the Haldane model H(k). Specifically, let
us consider the following Hamiltonian constructed from
H(k),

H̃(k, Er) =

(
0 H(k)− Er

H†(k)− Er 0

)
, (5)

with Er being a real number and representing a refer-
ence energy. As seen above, the auxiliary Hamiltonian
is Hermitian by construction. Specifically, H̃(k, Er) lives
on the expanded Hilbert space, the tensor product of the
Hilbert space of H(k) and that of an additional fictitious
pseudo-spin degree of freedom, depicted by another set
of three Pauli matrices τj , j = x, y, z. The above-defined
auxiliary Hamiltonian can then be written as

H̃(k, Er) = τ+(H(k)− Er) + τ−(H†(k)− Er) (6)

τ± = τx ± τy. It is then seen clearly that the auxiliary
Hermitian Hamiltonian satisfies the following chiral sym-
metry

τzH̃(k, Er)τz = −H̃(k, Er). (7)

The usefulness of the above-constructed auxiliary
Hamiltonian can be appreciated as follows. Consider
1D Hermitian systems with chiral symmetry, where the
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pseudo-spin degree of freedom is defined via τj , j =
x, y, z. The emergence of topological zero modes in such
1D systems is protected by a non-zero winding of vec-
tor {<[Q(k)] − Er,=[Q(k)]} around the origin of com-
plex plane. Here Q(k) = det[H(k)] being the deter-
minant of H(k) is a complex number. For example,
for the 1D Su-Schrieffer-Heeger (SSH) model HSSH =
hx(k)τx+hy(k)τy, the existence of topological zero modes
can be directly connected, via the well-known bulk-
edge correspondence, with the winding of the 2D vector
[hx(k), hy(k)] around the origin as the 1D momentum k
is scanned across the whole Brillouin zone. With this
preparation, let us now return to our 2D auxiliary model
system but with mixed boundary condition, namely, one
direction is open and the second direction is under PBC,
with k‖ being the Bloch momentum parallel to the edge.
Let us further assume that the edge Hamiltonian of this
2D system is now reduced to

H̃edge(k‖, Er) = τ+(Hedge(k‖)−Er)+τ−(H†edge(k‖)−Er),
(8)

which can be understood in parallel with a 1D model
with chiral symmetry. Let Qedge(k) = det[Hedge(k‖)].
One can then infer that the nontrivial winding of
{<[Qedge(k‖)],=[Qedge(k‖)]} around Er has a definite
correspondence with the emergence of topological edge
modes of the edge Hamiltonian (hence topological cor-
ner modes, if the k‖ direction is also opened up).
Thus, the emergence of topological corner modes for
the system H̃(k, Er) under OBC reflects the wind-
ing of {<[Qedge(k‖)],=[Qedge(k‖)]} around Er. Re-
markably, precisely it is the winding behavior of
{<[Qedge(k‖)],=[Qedge(k‖)]} around Er that one needs
in order to confirm the occurrence of skin effects on the
chiral edge states of the original non-Hermitian Chern
insulator when the second direction is also placed under
OBC.

Insights above have made it clear the following bulk-
edge-corner correspondence: If Hedge(k‖) indeed has non-
zero spectral winding number for the chiral edge states,
or equivalently, if the auxiliary Hermitian Hamiltonian
H̃(k, Er) is actually a second-order topological insulator
supporting topological corner modes, then under OBC in
both directions, the non-Hermitian Chern insulator H(k)
hosts corner skin modes. We are now ready to carry out a
detailed analysis of the auxiliary Hamiltonian H̃(k, Er).
By substituting Eq. (2) into Eq. (5), the explicit auxiliary
Hamiltonian for our non-Hermitian Haldane model reads
as follows:

H̃(k, Er) =[d0(k)− Er]τxσ0 + dx(k)τxσx+

dy(k)τxσy + dz(k)τxσz + gτyσz.
(9)

Here the second and third terms yield Dirac points at
some high-symmetry momentum points. Interestingly,
the fourth term opens a band gap and gives rise to gap-
less edge states. The first term commutes with these

three terms so that it just shifts the gapless edge state.
In the absence of any gain or loss, the auxiliary Hamilto-
nian hence supports gapless edge states. The gray lines
shown in Fig. 3(a) show one such example with Er = −t2.
In particular, the existence of gapless edge states clearly
indicates that the auxiliary Hamiltonian without gain
or loss is a first-order topological insulator. Intriguing
physics sets in when gain and loss are introduced. It
is seen from Fig. 3(a) (blue lines) that the edge states
will acquire a band gap, hinting that the gain and loss
introduced here, no matter how weak their strength is,
can in fact induce a topological phase transition. In-
deed, the gain/loss term is reflected in the fifth term in
Eq. 9, which anti-commutes with the fourth term. The
gain/loss scheme advocated here is hence the main rea-
son to induce gapped edge states, one main feature of
second-order topological insulators.

FIG. 3. (Color online) Second-order topological insulator of
the auxiliary Hamiltonian defined in the main text. (a) En-
ergy bands of zigzag strip structure. Gray (blue) lines show
the results without (with) gain and loss, g = 0 (g = 0.6). (b)
Spectrum of finite structure as a function of reference energy
Er. (c) State density profile for the topological zero-energy
corner states with Er = −t2.

To strengthen our findings on corner skin modes that
can be obtained only under OBC for both dimensions,
next we further confirm that the auxiliary Hermitian
Hamiltonian H̃(k, Er) is a second-order topological in-
sulator by symmetry analysis and spectrum calculations.
Firstly, note that H(k) supports pseudo inversion sym-
metry σxH(k)σx = H†(−k) so that the auxiliary Hamil-
tonian are inversion-symmetric, namely, IH̃(k, Er)I

−1 =
H̃(−k, Er) with I = τxσx. Upon a symmetry anal-
ysis applied to two lower bands at inversion symmet-
ric momentum points, it is found that the auxiliary
Hermitian Hamiltonian here does not have the Wan-
nier representation. However, it can be Wannierized by
adding a trivial atomic insulator s@q1c [87] and is hence
a fragile topological phase, which can be expressed as
s@q1b ⊕ p@11a ⊕ p@q1d 	 s@q1c (See Appendix A). Such
fragile topological phase has half topological charge at
the left and right corners. Combined with the above-
identified chiral symmetry, this auxiliary system can
be predicted to support topological zero-energy corner
modes [88]. Fig. 3(b) presents the spectrum of the aux-
iliary system with OBC in both directions, as a function
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of Er. The auxiliary system is seen to support topolog-
ical zero-energy states in the range of −3.5 . Er . 2.5,
which agrees perfectly with the spectrum of the skin cor-
ner modes of our non-Hermitian Chern insulator under
OBC, as shown in Fig. 1(f). Fig. 3(c) further presents
state density profiles of the found topological zero-energy
states of H̃(k, Er), with Er = −t2. These topological
states are indeed localized at the corners and hence are
second-order topological corner states. This comparison
in terms of the zero-energy states between the auxiliary
system and our actual non-Hermitian Chern insulator
verifies our physical insights above.

FIG. 4. Spectrum and hybrid skin-topological modes in
a non-Hermitian Haldane model with on-site potential dif-
ference introduced. (a)-(c): Spectrum of the system un-
der PBC, mixed PBC-OBC, and OBC, respectively. Color
represents the strength of localization on the left edge∑

x∈edge |Ψn(x)|2. (d) Summation of state densities for all

edge states
∑

n∈edge |Ψn(x)|2. (e) Spectrum of the con-

structed auxiliary Hamiltonian. (f) The profile of zero-energy
topological corner mode shown in (e) In all the calculations,
µ is chosen as 0.5.

Our discussions so far have connected with the hy-
brid skin-topological modes with an auxiliary Hamilto-
nian as a second-order topological insulator protected by

inversion symmetry and chiral symmetry. The involved
second-order topological insulator phase is of the intrinsic
type, because this phase is protected by the bulk topol-
ogy with crystal symmetry, and so no topological phase
transitions can occur without bulk-gap closing or sym-
metry breaking. This brings us an interesting question
as follows: is it possible to have hybrid skin-topological
modes with a second-order topological insulator of the
extrinsic type, where the second-order topological phase
is only protected by a gap of the edge states or by the
edge topology [85].

To address this interesting question we now intro-
duce a weak on-site potential difference (µ

∑
i∈A c

†
i ci −

µ
∑
i∈B c

†
i ci) to Eq. (1). This additional term breaks

the pseudo inversion symmetry of H(k) so that it also
breaks the inversion symmetry of the associated auxil-
iary Hamiltonian. Without such crystal symmetry, the
obtained second-order topological insulator phase is not
protected by a bulk gap.

Consider then first the spectrum of the system H +
µ
∑
i∈A c

†
i ci − µ

∑
i∈B c

†
i ci, under PBC, mixed PBC-

OBC, and OBC, as shown in Fig. 4(a)-(c). The main
spectral features observed in the previous case are also
observed here. Fig. 4(a) depicts two bulk bands under
PBC. Under mixed PBC-OBC in Fig. 4(b), edge states
are observed on top of the bulk spectrum, with the whole
spectrum enclosing a nonzero area. The energetics of the
edge states change dramatically again when we change
from mixed PBC-OBC to OBC in Fig. 4(c). Interestingly,
regardless of the boundary condition, the bulk states are
always extended. Fig. 4(d) shows that the edge states are
localized at one corner when the system is under OBC.

To verify that these states localized at corner arise from
NHSE, we investigate in parallel the spectrum and local-
ization behavior of the corresponding auxiliary Hamilto-
nian. The spectrum of the auxiliary Hamiltonian under
OBC is shown in Fig. 4(e), with in-gap states observed.
However, due to the lack of the inversion symmetry pos-
sessed in the previous case, the in-gap states are only pro-
tected by a gap in the edge states, not by the bulk gap.
That is, the presence of edge states is not in one-to-one
correspondence with bulk gap closure/opening. The in-
gap states can thus only be interpreted as the edge states
of 1D edge states and hence the auxiliary Hamiltonian is
an extrinsic second-order topological insulator. Never-
theless, Fig. 4(f) verifies that this auxiliary Hamiltonian
does support second-order corner modes. The agreement
is also checked quantitatively, insofar as the auxiliary
Hamiltonian only supports topological zero-energy states
in the range of −3.2 . Er . 2.2 (See Appendix B), fully
consistent with the energetics of the corner states shown
in Fig. 4(c).

The hybrid skin-topological corner modes revealed in
this work suggests that we may envision the construction
of a topological switch to turn on/off the skin effect via
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FIG. 5. Topological phase transition causing hybrid skin-
topological modes to disappear, thus offering a topological
switch to control skin effects. (a) Spectrum of the auxil-
iary Hamiltonian associated with our non-Hermitian Haldane
model, where an on-site potential difference with a varying
strength parameter µ is introduced, with fixed Er = 0. (b)
Real part of the energy bands for our non-Hermitian Haldane
model vs Bloch momentum kx under mixed PBC-OBC. (c)-
(e): Spectrum of the system plotted on the complex energy
plane, under PBC, mixed PBC-OBC, and OBC, respectively.
Color represents the strength of localization on the left edge∑

x∈edge |Ψn(x)|2. µ is chosen as 3.5 for panels (b)-(e).

topological phase transitions. To explore this possibility,
we tune the above-introduced on-site potential difference
µ to induce a topological phase transition, from a Chern
insulator to a normal insulator. With this topological
phase transition, the underlying mechanism for hybrid
skin-topological corner modes ceases to exist and hence
the skin effect should disappear as well. Fig. 5(a) de-
picts this topological phase transition via the spectrum
of the auxiliary Hamiltonian. Specifically, the auxiliary
systems changes from a second-order topological insula-
tor to a normal insulator with the increase of µ, with the
topological phase transition point at around µ ≈ 2. Tak-
ing the case of µ = 3.5 as an example, the non-Hermitian
Haldane model introduced here features a normal insu-
lator, as shown in Fig. 5(b) with no gapless topological

chiral edge states. The overall spectrum under PBC,
mixed PBC-OBC, and OBC of our system is shown in
Fig. 5(c)-(e) on the complex plane. It is now seen that
not only the bulk states are insensitive to the boundary
conditions, but also the edge states become insensitive to
the boundary conditions. Consistent with these observa-
tions, hybrid skin-topological modes are not obtained.
This strengthens our understanding of the newly discov-
ered class of hybrid skin-topological modes. Indeed, the
edge states seen in Fig. 5(d)-(e) are just defect states
and not chiral (unidirectional), and hence there will not
be net accumulation of gain or loss for these defect states.

NONEQUILIBRIUM HYBRID
SKIN-TOPOLOGICAL MODES

Hybrid skin-topological modes in a non-Hermitian
periodically driven model

To further confirm that our route towards the hybrid
skin-topological modes is widely applicable, we now ap-
ply the same strategy to periodically driven (Floquet)
topological phases [90–100]. Given that nonequilibrium
topological matter is less well understood due to the pos-
sibility of anomalous chiral edge states. It is indeed
timely to investigate the consequences of adding gain
and loss to Floquet topological matter. To our knowl-
edge, so far there is no study whatsoever on hybrid skin-
topological modes in nonequilibrium systems.

Without loss of generality, let us consider a model of
anomalous Floquet topological phase, as first proposed
by in Ref. [89]. This model can be realized with an ex-
plicit platform, i.e., coupled ring resonators [81, 101, 102].
The time-dependent Bloch Hamiltonian consists of four
steps,

H(k, t) =


H1(k) 0 < t ≤ T/4 ,
H2(k) T/4 < t ≤ T/2 ,
H3(k) T/2 < t ≤ 3T/4 ,
H4(k) 3T/4 < t ≤ T ,

(10)

where

Hm(k) = 4 ∗ θ(eibm·kσ+ + h.c.) + igσz, (11)

for m = 1, 2, 3, 4. Here σ+ = (σx+iσy)/2 and the vectors
bm are given by b1 = (0, 0), b2 = (1/

√
2, 1/
√

2), b3 =
(0,
√

2) and b4 = (−1/
√

2, 1/
√

2). We set T = 1. As also
seen above, the gain and loss are also introduced to two
sublattice through the term igσz. Fig. 6(a) illustrates
this nonequilibrium topological phase model.

The quasi-energy Floquet bands ε(k) of the above-
described nonequilibrium system can be obtained by
solving the following eigen-equation,

UT (k) |Ψ(k)〉 = e−iε(k)T |Ψ(k)〉 , (12)



8

FIG. 6. (Color online) Hybrid skin-topological modes in a
non-Hermitian Floquet system with chiral edge states. (a)
A periodically driven lattice model proposed in Ref. [89]
with gain and loss introduced to two sublattices. (b) Quasi-
energies plotted on the complex plane of eiε when the sys-
tem is under OBC. The unit circle is marked where ε is real.
Color represents the strength of localization on the left edge∑

x∈edge |Ψn(x)|2. (c) Summation of state densities for all

edge states
∑

n∈edge |Ψn(x)|2. (d) Summation of state densi-

ties for all bulk states
∑

n∈bulk |Ψn(x)|2. (e) Same as in panel
(b) but under PBC. (f) Same as in panel (b) but the system is
under mixed PBC-OBC. The system parameters chosen are
θ = 0.6π and g = 0.5.

where UT (k) ≡ T exp
[
− i
∫ T
0
H(k, τ) dτ

]
is the Floquet

operator, T is the time-ordering operator.

Let us first examine the spectrum for both dimensions
under OBC. In our calculations, we set θ = 0.6π as an
example. For this choice, the system with g = 0 sup-
ports chiral edge states [81]. With gain and loss at a
small strength switched on, the chiral edge states per-
sist. The results for g = 0.5 are shown in Fig. 6(b),
where a single bulk band and gapless topological edge
states are observed. All the edge states are localized at
the left corner of the 2D lattice, as shown in Fig. 6(c).
By contrast, the bulk states are still extended as shown
in Fig. 6(d). All these features are analogous to the pre-
vious non-Hermitian Chern insulator case and hence one
can expect that hybrid skin-topological modes can be
also induced here. In Fig. 6(e) and Fig. 6(f) we also

present the spectrum when the system is under PBC and
mixed PBC-OBC, respectively. Again, the energetics of
the nonequilibrium chiral edge states are sensitive to the
boundary condition, with the PBC-OBC case featuring
one clear loop in the spectrum (here we only show the
edge states with gain, the edge states with loss out the
unit circle also forms a loop).

An auxiliary Hamiltonian approach to
nonequilibrium cases

To investigate on a solid ground whether the above-
observed corner modes are hybrid skin topological modes,
it is necessary to examine the winding behavior of the en-
ergetics of the Floquet chiral edge states, again through
the emergence of topological corner modes of an auxil-
iary Hamiltonian. For Floquet systems, it is tempting to
define a Floquet Hamiltonian HF (k) = (i/T ) ln(UT (k)),
whose eigenvalues are connected with the quasi energies
ε(k). In this naive approach, an auxiliary Hamiltonian
analogous to Eq. (5) can be defined from HF (k). How-
ever, such definition of a Floquet Hamiltonian HF (k) ac-
tually needs to pre-define branch cuts for different quasi-
energy gaps in order to take the logarithm operation
without ambiguity. In addition, the full topology of a
Floquet topological system cannot be captured solely by
HF (k), given that here the Floquet band Chern numbers
are zero but there are still chiral edge states [102]. As
one contribution of this work, we avoid involving HF (k)
and propose to examine instead the winding behavior of
UT (k).

Specifically, let us now construct the following auxil-
iary Hamiltonian with the Floquet operator UT (k) di-
rectly,

H̃(k, εr) =

(
0 UT (k)− e−iεr

U†T (k)− eiεr 0

)
, (13)

where εr is a real number ranging from 0 to 2π as a
reference quasi-energy. By construction, this auxiliary
Hamiltonian is Hermitian. Analogous to our previous
construction, this auxiliary system also possess the chi-
ral symmetry. The existence of topological corner modes
indicates the nontrivial winding of the edge Hamiltonian
as k‖, the Bloch momentum parallel to the edge, varies
over one period. This then suggest the nontrivial wind-
ing of the quasi-energy of UT (k) if one dimension is under
OBC and hence the skin effect on the chiral edge states.
Note also that our concern here is not about predict-
ing whether there are chiral edge states through a full
topological characterization and only spectral winding is
important, so the use of U†T (k) above suffices to under-
stand the consequences of gain and loss on any existing
chiral edge states.

Fig. 7(a) presents the energy bands of H̃(k, εr) un-
der a strip structure (mixed PBC-OBC). The edge states
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FIG. 7. (Color online) Second-order topological insulator of
the auxiliary Hamiltonian associated with the non-Hermitian
Floquet model. (a) Energy bands of strip structure for εr = π.
Gray (blue) lines show the results without (with) gain and
loss, g = 0 (g = 0.5). (b) Spectrum of finite structure as
a function of reference quasi-energy εr. The parameters we
used are θ = 0.6π and g = 0.5.

are gapless without gain and loss (g = 0), as shown
by the grey lines. However, upon introducing gain and
loss, the edge states of the auxiliary Hamiltonian opens
a band gap, as shown by the blue lines. This feature is
similar to the previous case constructed from the non-
Hermitian Chern insulator, where the gain and loss have
induced a topological transition from first-order insulator
to second-order insulator. Indeed, if both dimensions are
under OBC, this auxiliary system supports topological
corner states, as shown in Fig. 7(b). In particular, if the
quasi-energy parameter εr is in the range of [0.3π, 1.7π],
second-order zero-energy corner states are obtained. This
range agrees precisely with that of the quasi-energy of
skin corner states plotted on the unit circle in Fig. 6(b).
We have thus computationally and conceptually demon-
strated that even in nonequilibrium topological systems,
the occurrence of hybrid skin-topological modes, which
correspond to the winding behavior of the quasi-energy
of the edge states when one dimension is under OBC,
comes in parallel with second-order topological insulator
phase of an auxiliary Hamiltonian constructed directly
from the Floquet operator. Our approach here is ex-
pected to be widely useful when inspecting the existence
of nonequilibrium hybrid skin-topological modes.

DISCUSSION

It is made clear above that the hybrid skin-topological
modes arise from the skin effect localization of topological
chiral edge states, in both the static and the periodically
driven models as case studies. We highlight the similar-
ity and difference between our results and the previous
results of hybrid skin-topological modes [17, 46, 58, 59].
In both cases, the number of corner skin modes is pro-
portional to the length of the system and the corner
localization appears only if the system is under OBC
for two dimensions. However, in previous examples of

skin-topological modes, the role played by two dimen-
sions is entirely separate, one for topological localiza-
tion and one for skin localization. By contrast, in our
generic route here, the two system dimensions are under
the same footing, and the obtained skin-topological cor-
ner modes are deeply connected with some second-order
topological phase induced by gain and loss. Our system
is simultaneously a non-Hermitian Chern insulator/non-
Hermitian anomalous Floquet topological insulator and
supports gapless topological edge state. Furthermore,
our proposal is so general that it is extendable to nonequi-
librium situations, leading us to the finding of nonequi-
librium skin-topological modes.

The two working models considered in this work are
highly feasible for experimental studies. Indeed, their
Hermitian counterparts (without gain or loss) have al-
ready been realized in photonics and acoustics [84, 103–
109]. Although in our theoretical considerations we in-
troduce both gain and loss to the system, in real ex-
periments only loss suffices because only the difference
between two sublattice sites matters. The loss can be
realized by sound/optical absorbing materials or leaky
modes [68, 110–114]. In future, it is also interesting to
study the discovered mechanism in continuous systems,
like topological photonic/phononic crystal [115, 116], in-
stead of lattice models. Considering the seminal Kane-
Mele model can be treated as two copies of the Haldane
model, it is also possible to find gain and loss induced
second-order NHSE in the Kane-Mele model or other
valley topological insulators and topological crystal in-
sulators [117].
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Research Fund Tier-3 Grant No. MOE2017-T3-1-001
(WBS. No. R-144-000-425-592) and by the Singa-
pore National Research Foundation Grant No. NRF-
NRFI2017- 04 (WBS No. R-144-000-378- 281). We
thank Ching Hua Lee and Linhu Li for very helpful dis-
cussions.

Appendix A: Symmetry analysis of an auxiliary
Hamiltonian associated with the non-Hermitian

Haldane model.

In this section, we present our finding that the auxil-
iary Hamiltonian of our non-Hermitian Haldane model,
as defined in the main text, is in fact a fragile topological
insulator with fractional charge at its corners. Together
with the chiral symmetry of the auxiliary Hamiltonian
by construction, this system supports topological corner
modes.

In Fig. 8(a), we show the unit cell of the honeycomb
lattice and its inversion symmetry points 1a, 1b, 1c and
1d. The first Brillouin zone and the inversion symmetric
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momentum points Γ, M1, M2, M3 are shown in Fig. 8(b).
The elementary band representations of the system can
be obtained by putting s or p orbital to the inversion sym-
metry points and are described by the symmetry eigen-
values at high symmetry momentum points [118]. The
elementary band representations are summarized in Ta-
ble.I.

FIG. 8. Fractional charge for the auxiliary Hamiltonian of our
non-Hermitian Haldane model. (a) The unit cell of the hon-
eycomb lattice. The inversion symmetry points are marked
as 1a, 1b, 1c and 1d. (b) The first Brillouin zone. The in-
version symmetry momentum points are marked Γ, M1, M2

and M3. The symmetry eigenvalues for the auxiliary Hamil-
tonian of non-Hermitian Haldane model are marked. (c) Two
electrons with representation s@q1b⊕p@11a⊕p@q1d	 s@q1c.
The electron charges at different unit cells are indicated mod
1 (in units of the electron charge e).

It is seen that there are two bands below the band
gap of the auxiliary Hamiltonian. The symmetry eigen-
values at high symmetry momentum points for t1 = 3,
t2 = 0.5, g = 0.6 and φ = π/3 are shown in Fig. 8(b).
Compared with the elementary band representations, it
is seen that there is no Wannier representation for this
auxiliary Hamiltonian. However, we can add one atom
orbital s@q1c to the two bands, then it can be repre-
sented as three atomic orbital s@q1b ⊕ p@11a ⊕ p@q1d.
This can then be identified as a fragile topological in-
sulator phase, which does not have its Wannier repre-
sentation but can be Wannerized by adding one atomic
orbital. The two bands then can be represented as
s@q1b ⊕ p@11a ⊕ p@q1d 	 s@q1c.

In Fig. 8(c), we show the charge distribution for the
two bands if the system is placed under OBC. The solid
circles with color black, blue and red means one orbital
at 1a, 1d and 1b, respectively. The open circle with color
green means removing one orbital at 1c. By numbering
these sites that keep the inversion symmetry, we can see
the fractional charge for the left corner and right corner

TABLE I. Inversion symmetry eigenvalues at high symmetry
moment points for eight elementary band representations of
honeycomb lattice with inversion symmetry. Each band rep-
resentation has either 0, 2 or 4 negative eigenvalues.

Γ M1 M2 M3

s@q1a +1 +1 +1 +1

p@q1a −1 −1 −1 −1

s@q1b +1 −1 +1 −1

p@q1b −1 +1 −1 +1

s@q1c +1 −1 −1 +1

p@q1c −1 +1 +1 −1

s@q1d +1 +1 −1 −1

p@q1d −1 −1 +1 +1

is 1/2. Together with the chiral symmetry, the system
supports topological corner modes [88].

Appendix B: Spectrum of the auxiliary Hamiltonian
for a non-Hermitian Haldane model with on-site

potential difference.

In Fig. 4 of the main text, we already presented the
main spectral results for the non-Hermitian Haldane
model with on-site potential difference µ

∑
i∈A c

†
i ci −

µ
∑
i∈B c

†
i ci. Here we present more results complemen-

tary to Fig. 4. The energy bands of the auxiliary Hamil-
tonian in zigzag strip structure with Er = −t2 are shown
in Fig. 9(a). When there is no gain/loss, the system
supports gapless edge state (grey lines). And the intro-
duction of gain/loss open a band gap to the edge state
(blue lines). Due to on-site potential breaking the in-
version symmetry, here the spectrum is not symmetric
anymore. The spectrum of the auxiliary Hamiltonian
under OBC as a function of the reference energy Er is
shown in Fig. 9(b). The system is seen to support zero
corner mode for the range −3.2 . Er . 2.2, which is
fully consistent with the band gap of Fig. 4(a) shown in
the main text.
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