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Abstract

Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis
of EMG signals has been widely used to detect human movement intent, control
various human-machine interfaces, diagnose neuromuscular diseases, and model
neuromusculoskeletal system. With the advances of artificial intelligence and soft
computing, many sophisticated techniques have been proposed for such purpose.
Hybrid soft computing system (HSCS), the integration of these different techniques,
aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis.
This paper reviews and compares key combinations of neural network, support
vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG
analysis. Our suggestions on the possible future development of HSCS in EMG
analysis are also given in terms of basic soft computing techniques, further combination
of these techniques, and their other applications in EMG analysis.
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Background
During a voluntary contraction of skeletal muscles, the electrical activity of activated

motor units can be detected with surface or inserted electrodes. The resulting electro-

myographic (EMG) signal is the summation of motor unit action potentials (MUAPs)

discharged by the muscle fibers nearby recording electrodes [1,2]. EMG contains rich

information of motor unit recruitment and firing, motion intention, and general

physiological state of neuromuscular system. Since EMG directly reflects neuromuscu-

lar activities, EMG signal analysis has been applied in prosthetic devices control [3-6],

human-machine interaction [7-9], functional electrical stimulation [10-12], kinematic

parameters prediction [13-15], and neuromuscular diseases diagnosis [16-18]. The ap-

plication of EMG varies from medicine, rehabilitation to sports, from biomechanics,

ergonomics to basic physiology [19].

One of the main challenges in EMG analysis is the low quality of EMG signals. EMG

is not always strictly repeatable, and may sometimes even be contradictory since it

may be modified by many factors such as muscular fatigue, electrode shift, sweat,

changing in thickness of skins, tissues. Moreover, it is a weak bio-signal contaminated

by the noise from the internal cross-talk, ambient electromagnetic radiation, and

movement artifacts. The major tasks for EMG analysis can be summarised as pattern

detection, classification, decomposition, and modelling. A basic scheme for such
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analysis often includes a front-end feature extraction and a back-end classification or

regression model. In order to extract differentiable features from noisy EMG signals,

various features have been exploited in time, frequency, time-frequency, and phase-

space domains, most of which have been reviewed by Phinyomark et al. [20]. To

identify the general physiological state of neuromuscular system or motion intent from

extracted features, many traditional statistical classification or regression models have

been suggested to resolve the problem using extracted EMG features [21]. These statis-

tical models include linear discriminant analysis (LDA) [22], quadratic discriminant

analysis (QDA) [23], Gaussian mixture models (GMM) [24], hidden Markov models

(HMM) [25], and k-nearest neighbors classifier [26].

In the meantime, with the rapid advance of soft computing (SC) techniques, a sub-

stantial amount of research efforts has been directed to its application in EMG-related

pattern classification and regression problems. The term soft computing was first

proposed by Zadeh [27] for constructing a new generation of computational intelligent

system. The ultimate goal of soft computing is to provide human-like expertness such

as specific knowledge for a particular domain, uncertain reasoning, and adaptation to a

time varying environment. All these features of soft computing are important for solv-

ing practical computing problems. Conventional artificial intelligence techniques only

deal with precision and certainty, whilst soft computing, by exploiting the tolerance for

imprecision, uncertainty, and partial truth with low solution cost, can achieve tractabil-

ity, robustness, and better report with reality. Soft computing consists of several tech-

niques, among which artificial neural networks (ANN), evolutionary computing (EC),

fuzzy logic (FL), and swarm intelligence (SI) have been the most widely-used in the past

few years [28]. However, a consensus to the exact scope or definition of SC has not yet

been reached. For instance, swarm intelligence (SI), a family of nature inspired algo-

rithms, has recently emerged as a new branch of SC, which is capable of producing

low-cost, fast, and reasonably accurate solutions to complex problems [29-31]. Unlike

hard computing methods, SC methods cope up with problems that deal with impreci-

sion, uncertainty, learning, and approximation to achieve tractability, robustness, and

low-cost solutions [32]. The unique property of SC is that it is heavily involved in

learning from experimental data, making it suitable for EMG analysis. Many methods

based on a single technique of ANN, EC, FL, and SI have been evaluated based on their

applicability to EMG analysis, some of which can be found in earlier reviews [21,33].

Constituent components of soft computing have provided efficient solution to wide

range of problems in different domains including EMG analysis. However, each of these

technologies has its inherent advantages and disadvantages. Taking ANN for example,

the precision of its output is often limited to least square errors. Its training time is

often quite long, and the training data have to be chosen over the entire range where

the variables are expected to change. In addition, it is difficult to determine the proper

size and structure of an ANN to solve a given problem. As for the fuzzy logic algo-

rithms, the correct set of fuzzy rules and membership functions are difficult to be

determined to describe system behaviour, as the system complexity increases. The use

of fixed geometric-shaped membership functions in fuzzy logic limits system know-

ledge more in the rule base than in the membership function base, resulting in requir-

ing more system memory and processing time. Moreover, fuzzy logic utilises heuristic

algorithms for defuzzification, rule evaluation, and antecedent processing. However,
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heuristic algorithms are also problematic since heuristics do not guarantee satisfactory

solutions under all possible conditions. Fortunately, the significance of different SC

techniques lies in the fact that they are complementary, instead of competitive. In many

cases a problem can be solved by combining these techniques rather than using one

exclusively. It is therefore appropriate to fuse these techniques into a hybrid soft com-

puting system (HSCS), so that the merits of one technique can compensate for the

demerits of another. Moreover, HSCS is beneficial for technique enhancement, multi-

plicity of application tasks, and realizing multifunctionality [34]. The aim of this paper

is to provide a comprehensive review of key applications of various hybrid SC methods

used in EMG analysis. Based on the review, we will also present our suggestions for

HSCS in EMG analysis in future research.
Neural-fuzzy hybridisation

Neuro-fuzzy systems have been the most widely exploited HSCS in EMG pattern rec-

ognition, which are summarised in Table 1. In order to discriminate 10 hand/wrist

motions from 16-channel EMG signals, Khushaba and Al-Jumaily [35] used fuzzy

C-means (FCM) to select those wavelet features that maximised the class separability.

Principal component analysis (PCA) was then employed to remove redundancy by pro-

jecting the features onto their eigenvectors. Finally, the resultant features were fed to a

multilayer perception (MLP) to be classified into different patterns. FCM was subse-

quently replaced by fuzzy entropy measure to determine features suitability in classify-

ing the same EMG datasets [35]. Both fuzzy logic based feature selection techniques

combined with MLP could produce about 99% classification accuracy by using only a

small portion of the original feature set. Malcolm and Granat [36] applied a neuro-

fuzzy classifier to classify single-site EMG signals from the biceps and triceps brachii

muscles. The aim was to detect the intention of a paraplegic person to stand up or to

sit down for use with an electrical stimulation orthosis. This neuro-fuzzy hybridisation

was functionally based on the Surgeno-type fuzzy rule base; at the same time, it had an

architecture equivalent to a radial basis function (RBF) neural network under some

constraints, allowing the system to learn from the training data. This neuro-fuzzy clas-

sifier was found capable of identifying 29 standing and 28 sitting EMG signals out of

60 EMG signals by using seven bell-shape membership function and 30 rules. Balbinot

and Favieiro [37] evaluated the performance of a similar Sugeno fuzzy model-based

adaptive neuro-fuzzy system to classify seven distinct movements in a long test dur-

ation lasting for about three hours, achieving an average accuracy of 86%. Karlik et al.

[38] presented a comparative study of classification accuracy of EMG signals using the

MLP, back-propagation (BP) network, conic section function NN, and fuzzy clustering

neural network (FCNN). In this study, a fuzzy clustering-based approach was first

adopted to compute autoregressive (AR) model parameters and their signal power be-

fore these values were fed to ANN. After the test, the recognition rates using FCNN

varied between 95% and 100%, with average recognition accuracy of 98%.

Adaptive neuro fuzzy inference system (ANFIS) is a kind of neural network structure

based on Takagi–Sugeno fuzzy inference system. Since it integrates both neural net-

works and fuzzy logic principles, it has the potential to capture the benefits of both

techniques in a single framework. Its inference system corresponds to a set of fuzzy



Table 1 A summary of hybrid neural-fuzzy techniques applied to EMG analysis

Reference Task Techniques Results

[35] Classification: 10 hand motions Fuzzy-C means + MLP Accuracy: 99%

[35] Classification: hand motions Fuzzy entropy +MLP Accuracy: 99%

[36] Classification: 2 leg motions Surgeno model + RBF Accuracy: 57/60

[37] Classification: 7 arm motions Surgeno model + MLP Accuracy: 86%

[38] Classification: 6 hand motions Fuzzy clustering NN Accuracy: 95% ~ 100%

[39-41] Classification: 6 classes
hand motions

ANFIS Accuracy: 96.7±1.2% [40] Accuracy:
maximum 100%, mean 92% [41]
Accuracy: mean 94% [42]

[42] Prediction gait events ANFIS Accuracy: 95.3%. ~ 98.6%.

[43,44] Classification: 3 arm motions Abe-Lan fuzzy network Abe-Lan fuzzy network performed
better than SOM, FCM, and MLP

[45] Classification: 6 motions Fuzzy Min-Max ANN Accuracy: 10% higher than without
fatigue compensation

[46] Classification: 4 hand motions Fuzzy SVM Accuracy: Fuzzy SVM outperformed
BP NN 5%

[47] Classification: 6 hand motions FuzzyEn + ELM,
CrEn + ELM

CrEn outperformed FuzzyEn

[48] Classification: 10 grasps or
in-hand manipulations

FGMM Accuracy: 96.7% of FGMM,
better than HMM, SVM

[49,50] Modelling: EMG-movements ANFIS Accuracy: 97%, 99%, 87.9%,
and 81.8% for four subjects,
respectively

[51] Modelling: force moment and
velocity-peak EMG

Neuro-fuzzy Error: 4.97% ~ 13.16%

[52,53] Modelling: kinematics-EMG-force RFNN Small prediction error

[54] Modelling: EMG-force moment Takagi-Sugeno EMG-to-activation model
performed better than
Takagi-Sugeno

[55,56] Control upper-limb exoskeleton Neuro-fuzzy Effectiveness of the control
method

[7] Control upper-limb exoskeleton Neuro-fuzzy Low RMS errors

[57] Control ankle exoskeleton Neuro-fuzzy Low RMS errors

[58] Diagnosis Fuzzy integral +
BP NN

Accuracy: 80.95±7.2%

[16] Diagnosis FSVM Accuracy: 93.5±1.4% FSVM
performed better than LDA,
BP and RBF

[59] Decomposition AFNNC Accuracy: AFNNC performed
better than ACC at roughly 6.1%

[60] Diagnosis NEFCLASS Accuracy: 90%

[61] Diagnosis ANFIS Accuracy: 76.43%
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IF–THEN rules, which is capable of learning to approximate any nonlinear functions.

Khezri and Jahed [39] integrated the ANFIS with a real-time learning scheme to iden-

tify six classes of hand motion commands from EMG signals. In their work, a hybrid

method, consisting of back-propagation and least mean square (LMS), was utilized to

train the fuzzy system. In addition, in order to optimize the number of fuzzy rules, a

subtractive clustering algorithm based on a measure of data point density in the feature

space was developed. The idea behind this approach was to find regions in the feature

space with high densities of data points. Their results revealed that the real-time ANFIS
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approach provided 96.7±1.2% average accuracy, superior to the BP artificial network

(87.3±2.6%). Furthermore, they compared the effects of EMG features in time and

time–frequency domains respectively and their combination [40]. The recognition

scheme utilizing the combined features with an ANFIS classification provided the best

result in identifying the same six classes of hand movements. With a maximal identifi-

cation rate of 100% and an average classification accuracy of 92%, the ANFIS system

proved outstanding in comparison with other studies using relevant algorithms such as

ANN, LDA, Bayes’ classifier, fuzzy interference system, and nonlinear discriminant

functions. Zhang et al. [41] also designed a similar neuro-fuzzy system with C-means

algorithm for initialising fuzzy membership functions to classify six hand motions. The

feature set they used was singular values of a wavelet coefficient matrix. The accuracy

of their approach was higher than MLP by roughly 6% across six motions. ANFIS with

a supervisory control system (SCS) was also used to predict the occurrence of gait

events by analysing the EMG activity of lower extremity muscles in children with cere-

bral palsy (CP) [42]. In this study, a Type-3 ANFIS, i.e., an ANFIS employing a first-

order Sugeno fuzzy model, was employed as the rule generator [62]. Using one EMG

signal and its derivative from each leg as inputs, the ANFIS with SCS was able to pre-

dict all gait events in seven out of eight children. Overall accuracy in predicting gait

events ranged from 98.6% to 95.3%.

Some more sophisticated neuro-fuzzy systems were also developed to classify compli-

cated EMG patterns. Micera et al. [43] utilised a hybrid supervised learning scheme

termed Abe-Lan fuzzy network to EMG pattern analysis for classification of arm move-

ments. The method required that the input feature space was subdivided into a number

of regions, i.e., hyperboxes. The second-layer units consisted of fuzzy rules, which cal-

culate the degrees of membership for the rules to resolve the overlaps between activa-

tion hyperboxes. The third-layer units for the ith class took the maximum value of the

inputs from the second layer; the fourth-layer units took the minimum value among

the maximum values generated by the third layer. Finally, an unknown feature vector

was recognised as the class with the maximum membership assignments. The study

found the classification method able to correctly classify all the EMG patterns related

to the selected planar arm pointing movements. In a follow–up comparative study,

Micera et al. [44] compared self-organizing map (SOM), fuzzy c-means (FCM), and MLP, to

the Abe-Lan fuzzy network in classifying those three muscles in the same arm pointing task

with small-size training sets. The results indicated that Abe-Lan fuzzy network was more

robust than SOM, FCM, and MLP when working with small training sets. Muscular fatigue

causes decrease in recognition rates due to the time-varying EMG feature, and therefore

Song et al [45] adopted a Fuzzy Min-Max neural network (FMMNN) to compensate for the

fatigue effect for robust EMG classification. In FMMNN, each fuzzy set is a union of fuzzy

set hyperboxes. Fuzzy set hyperbox is an n-dimensional box defined by a min point and a

max point with a corresponding membership function. Since EMG feature variations during

muscle contractions are consistent, dynamically adjusting min-max values of hyperboxes

according to the contraction time in FMMNN learning could compensate for the fatigue

effect. The method was evaluated to follow four-channel EMG signals of six motions, and a

significant improvement in recognition rates was found.

Support vector machine (SVM) is another machine learning method based on statis-

tical learning theory, more suitable for small sample classification problems [63].
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However, SVM was originally developed for solving regression and binary classification

problems [46]. Several techniques have been proposed to extend a binary classifier to

multi-class problems, including one-against-all (OAA), one-against-one (OAO, also

known as pairwise), and error-correcting -output code (ECOC) [64]. However, indeci-

sive regions often exist in these strategies to classify multiple patterns [46]. In order to

avoid the indecisive regions, Yan et al. [46] constructed a fuzzy support vector machine

(FSVM) model, in which a fuzzy membership function was utilised to transfer the out-

put of a SVM discriminant function into a fuzzy class score. They made a comparison

between the FSVM scheme and a BP neural network. The results indicated that four

hand/wrist motions could be identified by FSVM with about 5% higher accuracy than

BP network. Fuzzy entropy (FuzzyEn) is an improved nonlinear time series complexity

measure which utilizes a continuous and convex fuzzy membership function to quan-

tify the similarity between vectors’ [65]. Shi et al. [47] compared EMG classification

performance by features extracted from FuzzyEn, approximate entropy (ApEn), sample

entropy (SampEn), and cumulative residual entropy (CrEn). Classifiers compared in the

study were SVM, LDA, single-hidden layer NN, and extreme learning machine (ELM).

They suggested the combination of CrEn and ELM, a new NN architecture, performed

significantly faster than other hybrid systems in EMG pattern decision. In order to

equip Gaussian mixture models with nonlinear fitting capabilities, Ju et al. proposed a

fuzzy Gaussian mixture model (FGMM) [48]. They found that FGMMs outperformed

commonly used approaches including LDA, HMM, and SVM in terms of the accuracy

in recognising different ten hand grasps and in-hand manipulations captured from dif-

ferent subjects. The best performance with the recognition rate of 96.7% was achieved

by FGMMs with the multi-feature combining Willison amplitude and Determinism ex-

tracted from recurrence qualification analysis (RQA).

Apart from EMG pattern recognition, HSCS is often adopted to model the relation-

ship between EMG signals and kinetics or kinematics variables. Liu and Young [49]

proposed an initial point detection method to establish the relationship between the

upper-arm EMG signals and corresponding movements, avoiding the learning and

training processes accompanied by huge computational loads and complicated system.

Via ANFIS, the critical values for the initial point detection method adopted in the pro-

posed system were determined. In a subsequent study, Liu and Young [50] used the

empirical mode decomposition (EMD) method to break down the EMG signals into a

set of intrinsic mode functions (IMF) to replace time domain features in their previous

study [49], with each IMF representing different physical characteristics of muscular

movement. ANFIS they employed in the study was not intended to provide a classifier

could accurately identify human intention from EMG signals, but to efficiently establish

the relationship between EMG signals and corresponding movements. The prediction

accuracy for four subjects was 97%, 99%, 87.9%, and 81.8%, respectively. Lee et al. [51]

developed a neuro-fuzzy model to predict peak EMG values for trunk muscles based

on lifting task variables. Their model utilised two task variables, trunk moment and

trunk velocity, as inputs, and 10 types of muscle activities as outputs. The input and

output variables were represented using the triangular-shape membership functions.

The initial fuzzy rules were generated by a vector quantization neural network using

collected EMG data. The vector quantisation algorithm included the differential com-

petitive learning rule that combined competitive and differential Hebbian learning. The
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final fuzzy rules were used to derive the prediction model. The developed model was

capable of estimating the normalised peak EMG values only with the mean absolute

error ranging from 4.97% to 13.16%. Since it is difficult to directly evaluate the spinal

forces from kinematics, Hou et al. extended the above work to establish the

kinematics-EMG-force relationship and modelled the dynamics of muscular activities

based on a four-layer recurrent fuzzy neural network (RFNN) [52]. EMG signals were

used as an intermediate output and were fed back to the input layer. The trained model

could then have the forces predicted directly from kinematic variables while bypassing

the procedure of measuring EMG signals and avoiding the use of biomechanics model.

Karwowski et al. [53] further improved the above kinematics-EMG prediction model in

two aspects: they modelled the EMG responses for 10 trunk muscles in manual-lifting

tasks using new fuzzy relational rule network (FRRN) architecture. FRRN was a modifi-

cation of a conventional fuzzy rule based hybrid neuro-fuzzy system which, in addition

to modelling the input-output relationship, allows linear relationships among the input

variables of the system to be modelled with reduced complexity. Brzostowski and

Swiatek [54] modelled the relationship between EMG signals and the force moment

generated by moving upper or lower limb using a hybrid method termed Takagi-

Sugeno system. EMG-to-activation model, ARMAX model, Box–Jenkins model, and a

neural network were also conducted for comparison.

Variables predicted by or combined with EMG have also been used to drive various

external devices. Kiguchi et al. [55] developed robotic exoskeletons controlled by EMG

signals using a neuro-fuzzy algorithm to assist motion of physically weak persons. In

their method, two kinds of nonlinear functions were applied to express the membership

function of the neuro-fuzzy controller. The initial fuzzy IF–THEN control rules were

designed according to the human elbow and shoulder motion patterns analysed in the

pre-experiment, and then transferred to the neural network form. The input variables

for the neuro-fuzzy controller were eight kinds of mean absolutes of EMG, with 21

rules in each neuro-fuzzy controller. The outputs of the neuro-fuzzy controller were

the torque command for shoulder motion, desired impedance parameters, and desired

angle for elbow motion of the exoskeleton system. The effectiveness of proposed con-

trol method in human upper-limb motion assist was validated by the trajectory of the

wrist defined by a compound sine and cosine function on the horizontal plane. Subse-

quently, they improved their neuro-fuzzy controller to five layers: the input, fuzzifier,

rule, defuzzifier, and output layer, and the number of EMG channels increased from

eight to twelve [56]. In order to solve the problem of EMG-based control caused by hu-

man anatomy, multiple neuro-fuzzy controllers were applied in this system. When the

magnitude of the muscle activity levels of the user was small, the exoskeleton was con-

trolled based on the wrist force sensor to avoid mis-operation. When the user activated

the muscles, the force sensor signals were ignored and the EMG-based control was

evolved. Kiguchi and Hayashi [7] recently designed an improved upper-limb power-

assist exoskeleton using a 16-channel EMG impedance control method. A five-layer

neuro-fuzzy muscle-model matrix modifier was applied to take into account the effect

resulting from the difference of user upper-limb posture. Input variables to the neuro-

fuzzy modifier were joint angles of theupper limb, whilst the modifier output the coeffi-

cient for each weight of the muscle-model matrix to modify the weight matrix in real

time based on the upper-limb posture. A neuro-fuzzy controller integrating EMG
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sensor and artificial proprioceptor, which imitated the closed-loop control system of

human body, was developed to achieve real-time control of the ankle exoskeleton by

Fan et al. [57]. Their controller combined fuzzy rules established on detailed anatomical

knowledge and the results of previously performed experiment with hybrid learning

algorithm. It was built to decode the human motion in real time using the fusion of

EMG signals and the precise proprioception providing joint angular information

feedback. Corresponding experimental results demonstrated that the parallel ankle exo-

skeleton met the kinematical and dynamical requirements of ankle joint, and the

neuro-fuzzy controller with proprioception was accurate and effective with low root

mean square (RMS) errors.

EMG is the summation of motor unit action potential (MUAP) trains from all active

motor units within the recording electrode range. MUAPs provide important informa-

tion for assessing neuromuscular disorders. Xie et al. [58] presented a hybrid decision

support system based on the fusion of outputs from multiple neural networks using

fuzzy integral to enhance the diagnosis accuracy. BP network was used as a single diag-

nosis model in three various feature domains, i.e., morphological measures, frequency

parameters, and wavelet transform features. The outputs of three BP networks were

combined using fuzzy integral to provide a final diagnosis evaluation. The consensus

diagnosis obtained from fuzzy integral achieved 80.95 ± 7.2% accuracy, higher than

each single network in discriminating patients with motor neuron disease or myopathic

patients from normal subjects. Subasi [16] conducted a similar experiment to discrim-

inate neurogenic or myopathic subjects based on MUAPs analysis, achieving 93.5±1.4%

diagnosis accuracy. The comparative analysis suggested that FSVM was superior to

LDA, BP and RBF network, C4.5 decision tree, and SVM in at least three aspects: mod-

erately high recognition rate; insensitivity to overtraining; and consistent outputs which

demonstrated high reliability. Decomposition of surface or intramuscular EMG signals

into their constituent MUAPs is the primary step before MUAPs based neuromuscular

diagnosis. Rasheed et al. [59] presented an adaptive fuzzy k-nearest neighbour classifier

(AFNNC) for EMG signal decomposition. The performance of the developed classifier

was compared to an adaptive template matching classifier, an adaptive certainty classi-

fier (ACC), by using synthetic signals with specific properties and experimental signals.

For experimental EMG signals, the AFNNC had on average an improved correct classi-

fication rate (8.1%) compared to ACC. Others tried to diagnose neuromuscular disor-

ders by analysing surface EMG signals without decomposition. Kocer [60] fed AR

model coefficients of EMG signals into a three-layer neuro-fuzzy system termed

NEFCLASS, and 90% classification success rate was obtained from this system using

EMG signals collected from 177 subjects. Compared with MUAPs analysis, their study

suggested that the application of AR model coefficients of EMG signals followed by the

neuro-fuzzy system might produce a new and reliable classification system for rapid

diagnosis. Khasawneh et al. [61] collected three types of electrophysiological signals in-

cluding EMG, electroencephalogram (EEG), and electrooculogram (EOG) to train an

ANFIS system for sleep multistage level scoring. The input pattern adopted to train the

ANFIS subsystem was a set of extracted features based on the entropy. Finally, an out-

put selection subsystem was utilized to provide an appropriate sleep stage according to

the ANFIS stage subsystems outputs. The developed system was able to provide an ac-

ceptable estimation for six sleep stages with an average accuracy of 76.43%. In order
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to improve the medical information management and decision making, Arasu and

Palanisamy [66] proposed the concept of neuro-fuzzy agents (NFA) to analyse the

electrophysiological signals, such as EEG, ECG, and EMG, recorded from different pa-

tients located across the hospital campuses.
Neural-evolutionary hybridisation

Evolutionary computing conventionally refers to four main algorithms: genetic algo-

rithms (GA), genetic programming (GP), evolutionary strategies (ES), and evolutionary

programming (EP) [67]. More recent developments, such as gene expression program-

ming (GEP) [68], cultural algorithm (CA) [69], and differential evolution (DE) [70], ob-

tain some characteristics of the earlier algorithms. In hybrid neural-evolutionary

methods, evolutionary computing techniques are mainly adopted to select discriminant

features from the feature pool, and to optimize the structure or parameters of a neural

network for EMG classification or modelling, all of which are summarised in Table 2.

In the early 1990s, Kwon et al. [71] described an approach for classifying EMG sig-

nals of six arm movements using a MLP with GA and HMMs hybrid classifier. Instead

of using MLP as probability generators for HMMs, they utilised MLP with GA as the

secondary classifiers to increase discrimination rates of myoelectric patterns. In this

study, GA was used to generate network's initial connection weights to shorten the

learning time which produced 87.7% recognition rate. Yazama et al. [72] selected essen-

tial bands of EMG signals to construct feature vectors using GA. An EMG recognition

experiment of seven wrist operations was performed using a BP neural network with

the selected frequency band. They subsequently improved their study by maximizing

distances of feature vectors between various classes and minimising the variance in a
Table 2 A summary of hybrid neural-evolutionary techniques applied to EMG analysis

Reference Task Techniques Results

[71] Classification: 6 arm motions GA +MLP + HMMs Accuracy: 87.7%

[72,73] Classification: 7 wrist motions GA + BP ANN Accuracy: 5% ~ 10% [74,75],
10% [76] improvement
compared to without
GA optimization

[74] Classification: 7 wrist motions GA +MLP Feature reduction rate: 70% Accuracy:
6% improvement

[75] Classification: 6 hand motions GA +MLP Error: 4.89%

[76] Classification: 4 hand motions GA + BP ANN Accuracy: 91.38%

[77] Classification: 4 hand motions GA + RBF +MLP Accuracy: 6% improvement
compared to MLP

[78] Classification: 4 hand motions GA + FFT + PCA +MLP Improved accuracy and speed

[79] Modelling: EMG-on/off
signals during stride

GA + BP ANN Improved speed

[80] Classification: 12 finger motions GA + SVM Reducing 8 ~ 11 channels and
comparable accuracy

[81] Classification: 10 hand motions GA + BP ANN Accuracy: 98%

[82] Classification: 6 wrist motions GA + RBF Accuracy: 75%

[83] Classification: 2 muscle states GA + SVM Accuracy: 97.3%

[84] Modelling: EMG-force GA + BP ANN Accuracy: 99%

[85] Diagnosis GBLS Accuracy: 95% for training, 70% for test
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class during GA optimization [72]. There was about 5% to 10% rate improvement using

the optimized feature vectors in each person. In the meantime, Yazama et al. [86] also

decomposed the original EMG signals into the product of two matrices using non-

negative matrix factorization. Noise rejection was then performed by applying a filter

optimised by GA to the decomposed matrix. The noise rejection with GA-based filter

led to about 10% improved accuracy in a subsequent BP network recognition system.

In 2006, Tohi et al. [74] proposed an EMG recognition system that utilised the combin-

ation of GA and MLP at two stages to classify seven wrist motions: the extraction of

important frequency bands from each signal was performed using the first combination

of GA and MLP; a function converting the frequency spectrum into a feature vector

was then obtained by using GA and MLP again. GA was applied twice to each subject,

and the feature vector specialized in the individual was extracted. The feature reduction

rate was about 70% while recognition rate improved about 6% across three subjects. Al-

most at the same time, Oskoei and Hu [75] adopted a cascaded genetic algorithm as a

search strategy to select optimal subset of features from EMG in both time and fre-

quency domains using GA. Davies-Bouldin index (DBI) and Fishers linear discriminant

index (FLDI) were employed as the filter objective functions and LDA has been used as

the wrapper objective function. 4.89% error rate was obtained for the elite subset of fea-

tures applied to ANN. Wang et al. [76] utilised similar procedures of GA selected fea-

tures and a BP network as the classifier to classify EMG signals of four hand motions.

Different from Oskoei and Hu [75], Wang et al. used the discrete harmonic wavelet

packet transform as the feature extractor to decompose EMG into time-frequency

plane, achieving averaged 91.38% accuracy across ten subjects.

Many studies focused on optimising the structure of various EMG classifier or pre-

dictor. In 2000, Zabala and Chaiyaratana [77] introduced a hybrid neural structure

using RBF and MLP networks. The hybrid network was composed of one RBF network

and a number of MLPs, trained by a GA/unsupervised/supervised-combined learning

algorithm. The GA and unsupervised learning algorithms were used to locate the cen-

tres of the RBF in the hybrid network. In addition, the supervised learning algorithm,

based on the BP algorithm, was used to train the connection weights of the MLP in the

hybrid network. Their results suggested that the classification accuracy of the hybrid

RBF-MLP network was approximately 6% higher than a MLP in the classification

four-class EMG signals. Matsumura et al. [78] aimed at constructing a high-speed and

high-accuracy EMG recognition system with fast Fourier transform (FFT) for feature

extraction, simple-PCA for feature compression, and ANN for recognition. In the

meantime, they reduced the node number in the input layer of the ANN using GA

optimization to improve training and testing efficiency. According to their simulations,

this approach was effective for improving both recognition accuracy and speed. In

Chen et al.’s study [79] about a control concept of above-knee prosthesis, surface EMG

signals extracted from leg muscles were translated into on-off signal of self-lock control

by a hybrid neural network-genetic algorithm to recognize the phase of stride. In their

study, GA was applied to avoid the BP network trapping to a local optimum and to

speed up the convergence in searching optimal weights. In 2011, Kanitz et al. [80]

tested the performance of both channel and feature reduction using GA for EMG data

collected from 16 channels on five unimpaired subjects and one transradial amputee

performing 12 individual finger movements and a rest state. The classification was
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performed by a LDA, k-NN, and SVM classifier, respectively. The GA-based optimisa-

tion demonstrated a high redundancy in the recorded 16-channel data, as well as an in-

significance of certain features — reducing 8 ~ 11 channels, depending on the subject,

had little to no effect on the classification accuracy. In the same year, Karimi [81]

employed GA to determine the best values for mother wavelet function, decomposition

level of wavelet packet analysis, and number of neurons in the hidden layer of BP net-

work in order to obtain a high-speed and small-size BP network structure for EMG

classification. This optimised network with minimised size can recognise ten hand mo-

tions with a recognition accuracy of over 98%, and it also resulted in an improvement

of system stability and reliability for practical considerations. Different from above

study, an RBF network was utilised as an EMG recognizer in [82], in which hidden

nodes number, centre position, and standardisation parameters were optimised by GA.

This GA-RBF structure could reach approximately 75% accuracy for recognising six

wrist motions, as well more than or equal to 90% for four motions. Recently, Rong

et al. [83] investigated the recognition result of EMG recorded under conditions of a

maximum voluntary contraction (MVС) and fatigue states using wavelet packet trans-

form and energy analysis. They used GA to optimise the error penalty parameter and

kernel parameters of a SVM classifier. The classification correct rate reached 97.3%

with seven fold cross-validation.

Naeem and Xiong [84] proposed a neural-genetic model to predict muscle force from

EMG signal, consisting of the genetic state and neural stage. GA was initially employed

to convert the raw EMG signal into a representation of muscle activation. At the sec-

ond stage, the BP neural network method was applied to extract muscle force from the

muscle activation obtained previously. Their results showed that the regression of this

neural-genetic model exceeded 99%.

Pattichis and Schizas [85] introduced a hybrid diagnosis system combining a neural

network and a genetics-based learning system (GBLS) model to classify MUAPs into

motor neuron disease and myopathy. The performance of the classifier system was en-

hanced by updating rules throughout the call of GA, achieving a diagnostic yield higher

than 95% and 70% for the training and evaluation sets, respectively.
Neural-swarm intelligence hybridisation

Swarm Intelligence (SI) has recently emerged as a family of nature-inspired algorithms

that are capable of producing low-cost, fast, and reasonably accurate solutions to com-

plex problems [31,87,88]. These algorithms are motivated by the collective social be-

havior of a group of unsophisticated organisms, such as, ants, bees, birds, and fishes.

Although these organisms have very limited individual capability, they can coopera-

tively interact together to perform complex tasks essential for their survival. The most

two popular SI-based algorithms are ant colony optimisation (ACO) and particle swarm

optimisation (PSO). ACO draws inspiration from the social behavior of ant colonies,

and it has been found both robust and versatile in handling a wide range of optimisa-

tion problems [89,90]. PSO is inspired by the social behavior of birds within a flock, in

which particles are conceptual entities that fly through the multi-dimensional search

space. Unlike most soft computing techniques, PSO does not need the gradient infor-

mation of objective function. Due to this simplicity, the main strength of PSO is its fast
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convergence, which compares favorably with other global optimisation algorithms in-

cluding GA and simulated annealing [91,92]. Table 3 is the summarisation of major

findings of hybrid neural-swarm intelligence in EMG analysis.

In 2011, Huang [93] proposed an ACO-based feature selection scheme using the

heuristic information measured by the minimum redundancy maximum relevance

(mRMR) criterion to classify hand motion EMG signals. The mRMR criterion is a fast

and accurate feature selection method. Huang used it to approximate the heuristic

value of each feature to decrease the computational complexity of ACO searching. His

experiments were conducted on ten subjects with eight upper limb motions and two

feature sets, i.e., time domain and wavelet transform features. The classification accur-

acy of using ACO reduced features and BP or LDA was significantly higher than PCA-

based method. Khushaba and Al-Jumaily [94] employed PSO to search both the feature

and channel space for important subsets. These important subsets were then evaluated

to classify an EMG dataset consisting of ten motions associated with three degrees of

freedom of the wrist, two different hand grips, and a rest state using a BP classifier.

99% accuracy was achieved for the problem using the PSO method with only 25 fea-

tures. Shang et al. [95] used the independent component analysis method to eliminate

the power frequency interference in EMG. The filtered EMG was then decomposed by

EMD. Afterwards, AR model coefficients of IMFs were fed to a probabilistic neural net-

work (PNN) whose transmission rate was optimised by PSO to classify six types of

forearm motions. The recognition rate is 93.3% and 85% for with and without EMD, re-

spectively. Ortiz-Catalan et al. [96] made a comparative study of biologically-inspired

algorithms to identify different components of EMG patterns upon the control of ro-

botic prosthetics. In order to contribute to a different training paradigm, GA and PSO

algorithms were adopted to find the optimal weights of a MLP during training. In

addition, since the optimal input set of signal features was unknown at the beginning,

an extra GA was used to search for the optimal features, which allowed the fastest

training with the most accurate prediction and lowest failure rate. PSO achieved better

performance than GA as a training algorithm, providing over 95% accuracy in predict-

ing ten movements. Wu et al. [97] aimed to accurately recognize and predict the

tremor onset in the patients with Parkinson's disease and thus implemented an on-

demand stimulator. In their approach, by using an RBF neural network based on PSO

with local field potential (LFP) data recorded via the stimulation electrodes, the activity

related to tremor onset could be predicted. To validate the performance of this hybrid

system, EMG signals from patient's forearm were recorded in parallel with LFPs to ac-

curately determine occurrences of tremor. The centres of neurons in RBF neural net-

work were initially determined by a FCM clustering approach, subsequently, the
Table 3 A summary of hybrid neural-swarm intelligence techniques applied to EMG analysis

Reference Task Techniques Results

[93] Classification: 8 hand motions ACO + BP Better than PCA + BP

[94] Classification: 10 hand motions PSO + BP Accuracy: 99%

[95] Classification: 6 hand motions PSO + EMD + PNN Accuracy: 93.3%

[96] Classification: 10 hand motions PSO +MLP Accuracy: 95%

[97] Diagnosis PSO + RBF Accuracy: 88.92%

[98] Diagnosis PSO + SVM Accuracy: 97.41%
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centres and widths were optimized by PSO so that more suitable parameters for the

RBF neural network could be found, thus reducing the number of neurons in the hid-

den layer. Compared to 89.91% detection rate of conventional RBF neural network, this

approach demonstrated a comparable detection rate (88.92%) but notable reduction in

computational overhead. Subasi [98] proposed a PSO-SVM model that hybridised the

PSO and SVM to improve the EMG signal classification accuracy for neuromuscular

diagnosis. The penalty parameter and kernel function parameter for the RBF kernel

was tuned by PSO. The experiments were conducted to classify EMG signals into nor-

mal, neurogenic or myopathic. The PSO-SVM yielded an overall accuracy of 97.41% on

1200 EMG signals selected from 27 subject records, in comparison with 96.75%,

95.17% and 94.08% for the SVM, k-NN, and RBF classifier, respectively.
Other hybrid soft computing systems

Apart from the approaches reviewed above, many other HSCSs have also been pro-

posed for EMG analysis over the past few years, which are summarised in Table 4.

Although ACO was proved to be a powerful technique in different optimisation prob-

lems, it still needs some improvements when applied to the feature selection problem.

This is due to the fact that ACO builds its solutions sequentially, where in feature se-

lection this behavior will most likely not lead to the optimal solution. Aiming to over-

come this problem in EMG classification, Khushaba et al. [99] presented a feature

selection algorithm based on a combination of artificial ant and differential evolution

(ANTDE) algorithm. The proposed combination enhanced both the exploration and

exploitation capabilities of search procedure. The performance of the proposed algo-

rithm was compared with uncorrelated linear discriminant analysis (ULDA) and PCA

in a classification task of seven limb motions. The accuracy achieved by the proposed

ANTDE was 94.73%, compared to 93.35% and 91.11% for ULDA and PCA respectively

for the validation set, while 93.39% for ANTDE against 92.41% and 89.52% for ULDA

and PCA respectively for the testing set. Khushaba et al. [100] then proposed another

feature projection technique based on a combination of fisher linear discriminant ana-

lysis, fuzzy logic, and differential evolution optimisation technique (DEFLDA). This

technique assigned different membership degrees to data points in order to reduce the

effect of overlapping points in the discrimination process. Furthermore, an optimizing

weighting scheme was presented in which certain weights were assigned to the features

according to their contribution in the discrimination process. The proposed DEFLDA

was tested on publicly available UCI datasets and the same EMG dataset used in [99].
Table 4 A summary of other hybrid soft computing techniques applied to EMG analysis

Reference Task Techniques Results

[99] Classification: 7 limb motions ACO + DE Accuracy: 94.73% (validation), 93.39% (test),
better than ULDA and PCA

[100] Classification: 7 limb motions FL + LDA + DE Accuracy: 93.75% (time domain feature),
94.71% (wavelet feature)

[101] Classification: 7 limb motions FL + LDA + PSO Accuracy: Similar to ANTDE in [102],
better than FLDA, ULDA, OLDA,
and PCA

[102] Modelling: EMG-force GA + FL RMS error: 12.4%
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DEFLDA achieved 93.75% and 94.71% accuracies across thirty subjects for time domain

and wavelet feature respectively, slightly higher than ANTDE hybridisation. Similarly, a

hybridisation of PSO, FL and LDA (PSOFLDA) was developed as an EMG feature re-

duction technique to reduce the computational cost and enhance the generalisation

capability of the classifier [101]. PSO was employed to optimise the weights of features

in this approach. The accuracy of this method was similar to ANTDE, but was higher

than the conventional FLDA, ULDA, OLDA, and PCA techniques when using the same

EMG dataset in [99,101].

In order to build a model for mapping EMG signals to the force generated by human

arm muscles, Rahatabad et al. [102] applied a fuzzy system which was robust to noise

and able to model the uncertainties of the muscle. Three fuzzy coefficients were added

to the relationships of force-length (active and passive) and force–velocity existing in

Hill’s model. Then, a genetic algorithm was used to optimise model parameters to

achieve the optimal fit. The proposed fuzzy genetic implementation Hill-based muscle

(FGIHM) model had 12.4% RMS error (in a worst case) in comparison to the experi-

mental data recorded from three healthy male subjects. Moreover, the FGIHM active

force–length relationship, which was the key characteristics of muscle, was compared

to virtual muscle (VM) and Zajac muscle model. The sensitivity of FGIHM was evalu-

ated by adding a white noise with zero mean to the input and FGIHM was proved with

lower sensitivity to input noise than the traditional Hill’s muscle model.
Discussion and conclusion
We have reviewed recent advances of hybrid SC techniques and evaluated their

performance on EMG classification, modelling and diagnosis. Most of these studies

demonstrated that a hybrid system is able to improve the classification or diagnosis ac-

curacy, robustness to noise, and to speed up the convergence of the system in

comparison with a single method. Nevertheless, one major drawback of some HSCSs is

the significant increase in the requirement of computational resources. In addition,

some HSCSs depend on auxiliary parameters, variables, or structure optimised by its

sub-systems or modules to enhance the performance. By summarising the merits and

drawbacks of HSCS in present EMG applications, we try to give some personal opin-

ions on the possible future researches of HSCS and its applications in EMG analysis

from three perspectives:
Basic methodology development

Although a variety of hybrid SC methods have been designed and successfully utilised

to solve several problems in EMG analysis, they have been mainly limited to neural-

fuzzy or neural-evolutionary hybridisation. However, various new types of SC tech-

niques have been developed in recent years. For instance, as the generalisation of the

ordinary fuzzy sets, type-2 fuzzy sets are now well established [103,104]. Recent studies

have demonstrated that type-2 fuzzy sets significantly outperformed ordinary fuzzy sets

in approximation, control, decision making, and clustering. In addition, many new nat-

ural or bio-inspired SC methods including artificial immune system, artificial bee col-

ony optimisation, membrane computing, and biogeography-based optimisation, have

been proposed recently, presenting various advantages in solving complex problems
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when co-operated with other SC approaches [105,106]. All of these new SC techniques

have provided increased opportunities to develop new and powerful HSCSs.

Combination

Each SC method has its inherent disadvantages which in return limit its application.

The combination or coupling manner is a key factor to design an HSCS. Most existed

HSCSs are problem-dependent, and therefore it is hard to provide a generic combin-

ation scheme. However, in order to maximise the advantage of each approach, an auxil-

iary or embedded combination is more favourable than a simple sequential grouping.

Other signal processing theories or methods, such as belief function and evidence

reasoning [107], may also be applied to effectively integrate various SC methods.

Applications

Present applications of HSCS are mainly limited to EMG pattern recognition, neuro-

muscular disease diagnosis, and EMG-force/torque modelling. There still are many

other important issues in EMG-based studies in which serious challenges and difficul-

ties exist. HSCS can thus be regarded as a promising way in future to solve these prob-

lems including differentiating MUAP waveforms in surface EMG recorded in high

voluntary contraction level, modelling multi-scale electric-mechanical relationship in

skeletal muscles, reducing channel and feature of high density EMG signals, and identi-

fying muscle synergies.
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