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a b s t r a c t

Two novel approaches are proposed for elimination of stress concentrations in tensile and compressive

testing of unidirectional carbon/epoxy composites. An interlayer hybrid specimen type is proposed for

tensile testing. The presented finite element study indicated that the outer continuous glass/epoxy plies

suppress the stress concentrations at the grips and protect the central carbon/epoxy plies from premature

failure, eliminating the need for end-tabs. The test results confirmed the benefits of the hybrid specimens

by generating consistent gauge-section failures in tension. The developed hybrid four point bending spec-

imen type and strain evaluation method were verified and applied successfully to determine the com-

pressive failure strain of three different grade carbon/epoxy composite prepregs. Stable failure and

fragmentation of the high and ultra-high modulus unidirectional carbon/epoxy plies were reported.

The high strength carbon/epoxy plies exhibited catastrophic failure at a significantly higher compressive

strain than normally observed.

� 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Carbon fibre reinforced composites offer outstanding strength

and stiffness, low density, corrosion resistance and therefore they

are more and more considered for advanced, lightweight structural

applications such as aero-structures, spacecraft, motorsports and

high specification sport equipment. However, their low failure

strain and brittle failure character not only limit their adoption

in safety-critical applications such as automotive or construction,

but also makes their mechanical testing challenging.

The most basic material properties of a unidirectional (UD) car-

bon/epoxy composite are its elastic modulus, failure strain and

strength, which are essential input parameters for design and mod-

elling, but usually problematic to measure accurately. Even if the

conventional non-hybrid specimens are laid-up, cured, machined

and gripped carefully, they usually fail prematurely around the

grips at strains significantly lower than the ultimate strain of the

fibres. The reduction in the measured tensile failure strain is

mainly attributed to the stress concentrations at the edge of the

end-tabs due to localised stress-transfer from the tabs to the

specimen.

The specimens recommended by the ISO 527-5 [1] and ASTM

D5083–10 [2] standards require prismatic end-tabs and ASTM

D3039/D3039M–08 [3] requires special tapered end-tabs to pro-

tect the specimen surface from the serrated grip faces. The end-

tabs are useful, but they still generate stress concentrations where

they terminate and the specimens tend to fracture first in this

region. Careful design, especially tapering of the end-tabs, use of

thick, ductile adhesive layers and precise fabrication can reduce

the stress concentrations [4,5], but they cannot be fully eliminated

even with this significant extra effort and cost. De Baere et al. [6]

reported up to 12% and 27% stress concentration for tapered and

prismatic end tabs respectively in UD carbon fibre reinforced spec-

imens with glass/epoxy tabs modelling only the composite parts

without the adhesive layer. Wisnom et al. [7–9] developed special

UD tensile specimens which were tapered using extra, chamfered

plies in the gripping regions to make the ends thicker and contin-

uous plies running along the whole specimen. Consistent gauge

section failures and high ultimate strength and strain values were

reported. For example tapered unidirectional carbon/epoxy speci-

mens gave strengths 14% higher than with end-tabbed straight

sided coupons, and 21% higher than those given in the manufac-

turer’s data sheet [9]. However the complicated manufacturing

process of the special tapered specimens is not ideal for standard
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material testing. A simple and practical approach to make the most

of conventional UD composite tests is to use the thinnest possible

specimens, which are less affected by stress concentrations

because their failure loads are lower, therefore more easily trans-

ferred from the end-tabs to the gauge section. Thin specimens also

require lower grip pressures, which increases the probability of

gauge section failure. Although the knock-down of the measured

ultimate properties may be reduced with thin specimens, they

are still affected by the stress concentrations.

Our first aim is to propose a novel approach to suppress the

end-tab stress concentrations by using UD glass/carbon interlayer

hybrid composite specimens avoiding the need to optimise the

gripping conditions for tensile testing. Interlayer hybrids have

shown good potential for creating gradual [10–13] and stable

pseudo-ductile failure [14–18] in high performance UD compos-

ites, but in the current study they are designed to show a single

fracture of the carbon layer followed by catastrophic delamination

within the gauge section to produce a clear and detectable event

(i.e. a significant stress drop) in the stress-strain response, which

can be exploited for carbon/epoxy layer failure strain detection.

This approach offers the further advantage of eliminating the need

for end tabs altogether, since the surface glass layers protect the

carbon plies from the grips.

Compressive testing of UD composites is even more demanding,

because the specimens need to be perfectly aligned and supported

against buckling. Several test fixture designs and corresponding

specimen types have evolved since the early seventies. The main

approaches for direct compression testing are shear-loaded

specimens with short, unsupported gauge sections according to

ASTM D3410/D3410M–03 [19] and end-loaded specimens with

anti-buckling support as specified in ASTM D695–10 [20]. Both test

setups have advantages and shortcomings, therefore combined

end- and shear loading fixtures were developed in the mid-

nineties. The so called Imperial College rig [21] was presented first

in 1994 and then the Combined Loading Compression (CLC) fixture

[22] in 1997, which was standardised as ASTM D6641/D6641M in

2001 [23]. These are currently the most successful fixtures both

combining end- and shear load transfer to minimise stress concen-

trations and premature failure around the ends of the specimens.

However, the combined loading technique requires expensive,

time consuming precision machining of the loaded and clamped

surfaces of the specimens and simple optical video-

extensometers are usually difficult to apply due to the constrained

space and problem of providing adequate lighting conditions.

Therefore the strains are usually monitored by less simple proce-

dures such as use of strain gauges on both sides of the specimen

involving extra preparation. The failure strains determined even

with these advanced techniques are still affected by stress concen-

trations and shear stresses around the tabs and grips. The speci-

mens usually show the shear instability failure type typical of

most UD carbon fibre composites. The ASTM D5467/D5467M-97

[24] standard recommends a relatively large sandwich beam and

four point bending test setup for compressive testing. The manu-

facturing of this specimen type is expensive and complicated,

and the failure type may not always be acceptable (e.g. the com-

posite skin may de-bond or the core may be crushed), therefore

this technique has never been widely adopted.

Our second aim is to propose a simple monolithic four point

bending specimen and test setup, which is capable of putting a

UD carbon/epoxy layer in compression as part of a thick glass/car-

bon interlayer hybrid specimen. This new approach is capable of

avoiding the stress concentrations around the load introduction

regions of combined loading compression fixtures and solving

the undesired failure issues of the sandwich beam specimens.

Therefore this test method may enable researchers to investigate

compressive failure mechanisms at higher strains without prema-

ture unstable failure.

2. Materials

The hybrid composite constituent materials considered for

design, and applied in the demonstration tests to present the

advantages of the proposed test methods were standard thickness

E-glass/epoxy and S-glass/epoxy prepregs supplied by Hexcel, and

various thin carbon/epoxy prepregs from SK Chemicals and North

Thin Ply Technology (see Tables 1 and 2). The epoxy resin systems

in the prepregs were the aerospace grade 913 (Hexcel), ThinPreg

120 EPHTg-402 (North TPT) and K50 (SK chemicals). All resins in

the designed hybrid laminates were 120 �C cure epoxies, which

were found to be compatible, although no details were provided

by the suppliers on the chemical formulation of the resins. Good

integrity of the hybrid laminates was confirmed during test proce-

dures and no phase separation was observed on cross-sectional

micrographs. Basic properties of the applied fibres and prepreg sys-

tems can be found in Tables 1 and 2.

3. Proposed test method for tensile failure strain determination

3.1. Concept

Interlayer hybrid composites are suitable for generating gradual

or pseudo-ductile failure if the absolute and the relative thickness

of the constituent layers are designed carefully [14–18]. On the

other hand, it is possible to design interlayer hybrids deliberately

to exhibit a significant stress drop at failure of the low strain layer

(i.e. carbon in a glass/carbon hybrid) followed instantaneously by

delamination. Fig. 1 shows the key feature of the proposed tensile

test method: the easily detectable stress drop at carbon layer fail-

ure + delamination and the corresponding change of the specimen

appearance in an interlayer hybrid specimen. The change from

dark to light colour is due to the separation of the glass and carbon

layers. The high strength glass layers in a hybrid specimen can

shield the carbon layer and therefore failure is not necessarily ini-

tiated by stress concentrations around the end-tabs. Fig. 1 captures

the typical gauge section failure of a carbon layer in a glass/carbon

hybrid specimen initiated far away from the end-tabs in the

middle of the specimen and instantly followed by delamination.

Table 1

Fibre properties of the applied UD prepregs based on manufacturer’s data determined from impregnated strands except for the S-glass where single fibre tests were performed

(Carbon fibre types: HS- high strength, HM- high modulus and UHM- ultra-high modulus, CTE- coefficient of thermal expansion).

Fibre type Manufacturer Elastic modulus Density Tensile strain to failure Tensile strength CTE

[GPa] [g/cm3] [%] [GPa] [1/K]

Pyrofil TR30 carbon Mitsubishi Rayon 234 (HS) 1.79 1.9 4.4 �4 � 10�7

Torayaca M55JB Toray 540 (HM) 1.91 0.8 4.02 �1.1 � 10�6

Granoc XN80 Nippon GFC 780 (UHM) 2.17 0.5 3.43 �1.5 � 10�6

EC9 756 P109 E-glass Owens Corning 72 2.56 4.5 3.5 4.9 � 10�6

FliteStrand S ZT S-glass Owens Corning 88 2.45 5.5 4.8–5.1 2 � 10�6
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3.2. Specimen design

The hybrid specimens tested within the experimental part of

the study were UD, parallel edge tensile specimens with the

following nominal dimensions 260/160/20/hmm overall

length/Lf-free length/W-width/h-variable thickness respectively

(see Fig. 2a). The geometry of the interlayer hybrid specimen types

proposed for determination of the tensile failure strain of UD car-

bon fibre reinforced composite layers is shown in Fig. 2. As seen

in Fig. 2a, the simplest prismatic end-tab geometry was chosen,

because the proposed hybrid specimens are not sensitive to the

tab design.

Tabs were used in the main tests as a precaution, but one series

of tests were executed on parallel edge 20 mm wide 100 mm free

length hybrid specimens without end-tabs to demonstrate that

they can be eliminated altogether. This very simple specimen

design is shown schematically in Fig. 2b.

The following design criteria needed to be fulfilled for the pre-

ferred delamination failure type in UD interlayer hybrid composite

specimens:

(i) The outer, glass fibre reinforced layers need to be strong

enough to take the full load after carbon layer fracture with

a sufficient margin required to account for stress concentra-

tions which are not considered in this simple equation.

r1b >
r2bð2E1t1 þ E2t2Þ

2E2t1
ð1Þ

where E1 is the modulus of the glass layers, E2 is the modulus

of the carbon layer, t1 is the thickness of one glass layer, t2 is

the thickness of the carbon layer as shown in Fig. 2, r1b is the

strength of the high strain layers, r2b is the strength of the

low strain layer which can be approximated using the

expected fibre failure strain and modulus.

(ii) The energy release rate (GII) at the expected failure strain of

the carbon layer must be higher than the mode II fracture

toughness (GIIC) of the interface to drive delamination at first

carbon layer fracture as given by Eq. (2). This criterion

assures the condition for a clearly detectable stress drop,

the basis of the carbon layer failure strain evaluation. The

details of the GII formulation can be found in [14].

GIIC < GII ¼
e
2
2bE2 t2ð2E1t1 þ E2t2Þ

8E1t1
ð2Þ

Table 2

Cured ply properties of the applied UD prepregs (Figures with references are measured values.).

Prepreg type Fibre mass per

unit area

Cured ply

thickness

Fibre volume

fraction

Initial elastic

modulus

Tensile strain

to failure

Compressive

strain to failure

[g/m2] (CV [%])a [lm] [%] [GPa] (CV [%]) [%] (CV [%]) [%]

TR30 carbon/epoxy 21.2 (4.0) [14] 28.9 [25] 41 [14] 101.7 (2.8)b [25] 1.5 (7.5)b [25] –

M55 carbon/epoxy 30 30.5 52 280.0c 0.6d 0.26d

XN80 carbon/epoxy 50 50.5 46 357.5c 0.31d 0.093d

E-glass/epoxy 192 140 54 40.0c 3.07d –

S-glass/epoxy 190 155 51 45.7 (3.2) [15] 3.98 (1.1) [15], 3.56d 2.33d

a Coefficient of variation.
b Measured in specimens with 100/10 mm free length/width.
c Calculated for the given fibre volume fraction.
d Based on manufacturer’s data for 60% fibre volume fraction.

Fig. 1. Typical stress-strain response of a UD glass/carbon hybrid specimen with the change in the appearance of the specimen at carbon layer failure.

Fig. 2. Schematic of the proposed UD interlayer hybrid tensile specimen types (a)

with end-tabs and (b) without end-tabs.
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where e2b is the expected failure strain of the carbon layer (taken as

the manufacturer’s quoted fibre failure strain for design purposes).

Table 3 shows the specimen configurations designed to demon-

strate the potential in the proposed test setup for accurate deter-

mination of the failure strain of UD carbon composite layers. The

GIIC was taken as 1.1 N/mm, which was measured in similar hybrid

specimens with cut central plies [26]. Three of the four hybrid con-

figurations had significantly higher energy release rates than the

estimated fracture toughness of the glass-carbon interface, there-

fore favourable delamination with a stress drop was expected for

these. The 2EG/3TR30/2EG configuration had borderline GII so tran-

sitional behaviour may be expected for that specimen type.

3.3. Finite element modelling of the end-tab region of hybrid

specimens

To demonstrate that the stress concentration around the end

tab does not affect the strain in the central carbon layer of the

designed interlayer hybrid specimens, the longitudinal section of

an end-tabbed 2SG/4TR30/2SG type specimen has been modelled

using linear elastic Finite Element (FE) analysis. Quadratic plane

stress elements and a fine mesh of about 30 � 50 lm elements

were applied. The material properties of the S-glass/epoxy and

TR30 carbon/epoxy layers were selected based on previous studies

[16,17]. The 1.5 mm thick end-tab has been made out of cross-ply

S-glass laminate, so homogenised material properties of Ex = -

Ez = 28.185 MPa, Ey = 10.27 MPa, Gxy = 3.1 GPa and txy = 0.27 have

been calculated for the layup using the classical laminate theory

and applied in the modelling. Note that y is the through-

thickness direction in Fig. 3. No cohesive elements or nonlinear

material model are applied in this study and perfect bonding

between the end tab and the UD S-glass is assumed. In reality how-

ever there may be interfacial damage between the end-tab and the

specimen, which would reduce the stress concentration. Therefore

our linear elastic approach would give a higher stress concentra-

tion than that present in a real specimen and so the model and

the results are expected to be conservative.

The FE model is 80 mm long, consisting of a 40 mm long end tab

as well as a 40 mm UD hybrid laminate gauge section with the

applied load as shown schematically in Fig. 3. The end tab was

1.5 mm thick and was constrained on the top surface to have zero

displacements at all nodes in the x direction to simulate gripping

in a very stiff test fixture. A small compressive vertical deformation

of 2 lm has also been applied to the entire top surface of the tab in

the y-direction to keep it straight and simulate the compressive pres-

sure of approximately 10 MPa, but the applied value of y-direction

displacement did not affect the x-direction stress distribution around

the edge of the end-tab. An x-direction displacement of d = 0.8 mm

has been applied to the UD hybrid laminate at its end as the main

load. Due to symmetry, only a quarter of the specimenwas necessary

to be modelled and symmetric boundary conditions were applied to

the laminate mid-plane and at the centre of the gauge section.

Fig. 4 shows the distribution of x-direction normal strain (e11)

around the end tab edge in the FE model. The high strain gradient

area is restricted to the surface of the glass layer. The x direction

Fig. 4. The distribution of x-direction strain (e11) over the tabbed glass/carbon hybrid specimen. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

Table 3

Tensile test configurations (Specimen type designation: SG- S-glass, EG- E-glass.

Numbers ahead of the material abbreviations indicate the number of plies. Relative

carbon layer thickness was normalised by the full specimen thickness).

Lay-up sequence No. of

tested

spec.

Nominal

thickness

Relative

carbon

layer

thickness

GII at

expected

carbon fibre

failure strain

[–] [mm] [–] [N/mm]

16TR30 non-hybrid

baseline

10 0.464 [25] 1 –

2EG/4TR30/2EG 6 0.671 0.208 1.536

2EG/3TR30/2EG 5 0.642 0.156 1.055

2SG/4TR30/2SG 5 0.736 0.157 1.430

2SG/4TR30/2SG no end-tab 7 0.736 0.157 1.430

1SG/3TR30/1SG 5 0.397 0.2184 1.225

Fig. 3. Schematic of the FE model used for stress concentration analysis around the end tab. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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normal strain variation along three paths (i) on the UD S-glass sur-

face (ii) at the TR30 carbon layer mid-plane and (iii) through the

thickness at the end tab edge is shown in Fig. 5. These paths are

highlighted with dashed lines in Fig. 4 as well. Due to the singular-

ity at the edge of the end tab, the normal strain at the UD S-glass

top surface has a high gradient (dashed line in Fig. 5). This high

peak in practice would be relieved by some non-linearity or dam-

age in the tab or at the bonded interface between the end-tab and

the specimen. However, the strain in the carbon layer varies

smoothly from zero at the tabbed area to the maximum applied

strain without any singularity or effect of stress concentration. In

fact, high values of strain in the glass surface layer around the sin-

gularity point actually lead to reduced strain in the carbon layer at

the same distance from the tab edge because the resultant force

from the integration of the stress distribution have to be constant

in the non-tabbed area. In other words, the stress concentration in

the glass layers ensures that there is no stress concentration in the

carbon layer underneath the tab and stress variation is kept

smooth. The variation of strain along the top surface of the carbon

layer was found to be very similar to the solid line in Fig. 5 and

therefore it is not depicted separately. The FE study highlights

the benefits of the outer glass layers to shield the stress concentra-

tions, therefore gauge section carbon layer failures are expected for

the interlayer hybrid tensile specimens, overcoming one of the key

limitations of conventional tensile tests.

3.4. Specimen manufacturing

The interlayer hybrid specimens were made by stacking the

specified glass and carbon prepreg layers on top of each other, vac-

uum bagging the composite plate and curing it in an autoclave at

their common 120 �C cure temperature and 0.7 MPa pressure for

2 h. The individual specimens were fabricated with a diamond cut-

ting wheel. Finally 40 mm long cross-ply glass/epoxy tabs were

bonded to the ends of the specimens except for one set that were

tested without end-tabs.

3.5. Test setup and equipment

Testing of the parallel edge specimens was executed under uni-

axial tensile loading and displacement control using a crosshead

speed of 2 mm/min on a computer controlled Instron 8801 type

100 kN rated universal servo-hydraulic test machine with a regu-

larly calibrated 100 kN rated load cell and Instron 2743-401 type

hydraulic wedge grips with 50 mm wide Instron 2704-521 type

serrated steel jaw faces. The controllable hydraulic grip pressure

was set to a moderate 6.9 MPa value, which prevented the slippage

of all tested specimen types. Strains were measured using an Ime-

trum videogauge system, with a nominal gauge length of 130 mm.

3.6. Tensile test results and discussion

Fig. 6 shows the stress-strain responses of the delaminating

hybrid composite specimens. The measured strains at the signifi-

cant stress-drops corresponded to the carbon layer failure, which

typically took place in the gauge section. The stronger S-glass as

the ‘‘embedding” high strain material of the hybrid plates resulted

in higher final failure strains (see Fig. 6b) but the detection of the

carbon layer failure was possible with both types of glass/epoxy.

The tensile test results of the hybrid specimens are affected by

the small thermal residual strains arising from the mismatch in the

coefficient of thermal expansion of the carbon and glass fibres.

Therefore the residual strains in the different specimen types were

calculated. The coefficient of thermal expansion (CTE) of a UD com-

posite layer acomp was estimated from Eq. (3) which is based on the

rule of mixtures, and takes the relative stiffness of the constituents

into account as proposed in [27].

acomp ¼ v f � af �
Ef

Ecomp

þ ð1� v f Þ � am �
Em

Ecomp

ð3Þ

where vf, af and Ef are the volume fraction, the CTE and the elastic

modulus of the fibres respectively while am and Em are the CTE

and modulus of the matrix material.

The residual strains were calculated for force-equilibrium

between the carbon/epoxy and glass/epoxy layers assuming con-

stant strain through the thickness and a 100 �C temperature

change from the cure temperature to room temperature. The CTE

values for the different fibres included in Table 1 were taken from

the product datasheets or estimated with general data for the same

fibre grade from the literature. (am = 6 � 10�5 [1/K] was assumed

for both epoxy matrices in the hybrid composites from the

literature.)

Table 4 shows the results of the tensile tests corrected with the

calculated residual strains. It can be seen, that the residual strains

are higher for the E-glass configurations, but still minor (less than

3% of the carbon fibre failure strain). The corrected TR30 carbon/

epoxy layer failure strains are consistent, and the overall average

value of 1.88% is significantly higher than the 1.50% value obtained

from conventional non-hybrid carbon/epoxy specimens and close

to the manufacturer’s quoted fibre failure strain.

The significant increase in measured failure strain of the carbon

layer in the hybrid specimens compared to that of the non-hybrid

ones is primarily attributed to the elimination of stress concentra-

tions and the associated premature failure. This is clearly demon-

Fig. 5. Normal strain (a) along the UD S-glass surface and TR30 carbon mid-plane

(b) through the thickness of the specimen at the end-tab edge. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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strated by the failure of nearly all of these specimens in the gauge

section rather than near the tabs.

Although the volume of carbon/epoxy is relatively small in

these specimens, only slightly lower failure strains would be

expected if larger specimens were tested due to the size effect

and higher probability of finding a larger defect [28]. The magni-

tude of this stressed volume effect is relatively small, for example

only 1.7 relative% reduction in strain at failure would be expected

for a doubling of specimen volume using a Weibull modulus of 41

(determined for IM7/8552 carbon/epoxy in [8]) so this effect can-

Fig. 6. Test results of (a) E-glass/TR30 carbon (b) S-glass/TR30 carbon hybrid configurations, (c) 4S-glass/4TR30 without end-tabs. (d) Photos showing typical tested tab-less

specimens. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4

Tensile test results (Specimen type designation: SG- S-glass, EG- E-glass. Numbers ahead of the material abbreviations indicate the number of plies.).

Specimen type designation Compressive thermal residual

strain in carbon layer

Measured carbon layer

failure strain

Corrected carbon layer

failure strain

[%] [%] (CV[%]) [%]

16TR30 non-hybrid baseline – 1.50 (7.53) [25] –

2EG/4TR30/2EG 0.0404 1.932 (5.87) 1.892

2EG/3TR30/2EG 0.0441 1.927 (1.97) 1.883

2SG/4TR30/2SG 0.0226 1.900 (1.5) 1.877

2SG/4TR30/2SG no end-tab 0.0226 1.917 (3.3) 1.895

1SG/3TR30/1SG 0.0198 1.859 (2.1) 1.839
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not explain the observed significant increase in strain here. The

proposed test method however would be a good way to study

the stressed volume effect further, since it eliminates the stress

concentration which tends to mask the size effect in conventional

tests.

The ‘‘hybrid effect” whereby failure strains may be higher than

in a single material was investigated extensively in [29] by the

authors for several configurations of the same S-glass/TR30 carbon

material combination with thinner carbon layers. It was shown

both experimentally and by modelling that a hybrid effect only

arises for thinner carbon layers than the ones used here, therefore

this effect is eliminated in the present study.

Fig. 6c and d indicate that it is possible to test the proposed

hybrid specimens without end-tabs using standard Instron grips

with serrated jaw faces and low hydraulic grip pressure as speci-

fied in Section 3.5. Table 4 highlights that very similar failure

strains were obtained from tab-less specimens than those from

the same configuration with end-tabs. All 7 hybrid specimens

without end-tabs consistently showed carbon layer fracture in

the gauge section away from the gripped sections, which demon-

strates, that the glass plies successfully accommodated the extra

tensile stress around the edges of the jaw faces and acted as in-

situ end-tabs protecting the carbon/epoxy layer from damage from

the grips. Two typical specimens are shown in Fig. 6d where the

positions of the carbon layer fractures are marked. It was also

noted that the glass plies did not encounter visible damage until

at least 3% overall strain due to the high failure strain of S-glass

fibres.

The differences between the average carbon layer failure strains

obtained for the same carbon/epoxy prepreg material from the four

different interlayer hybrid configurations are within the scatter

bands of the experimental series. The presented test method gave

carbon layer failure in the gauge section for the majority of the

hybrid specimens and therefore shows excellent potential for accu-

rate determination of the failure strain of carbon/epoxy compos-

ites. However care has to be exercised in using UD carbon

reinforced composite failure strain values obtained from hybrid

tensile specimens without any reduction factors in order to be con-

servative, as in practice lower strains may be obtained for other

reasons, such as the presence of stress concentrations or larger vol-

umes of material in the real structure.

4. Proposed test method for compressive failure strain

determination

4.1. Concept

Bending of thick beam specimens results in tensile or compres-

sive strains in specific layers of the specimens depending on which

side of the neutral axis they are positioned. The strains in the spec-

imens have a gradient across the thickness, which is assumed to be

linear according to the classic beam theory. This is a straightfor-

ward way of putting a thin layer of carbon/epoxy in compression

as part of a thick glass/carbon interlayer hybrid specimen (see

Fig. 7a). The embedding glass/epoxy layers may also help make

the failure of the carbon plies stable and progressive so that their

failure mechanisms can be studied up to higher strains without

the risk of premature unstable failure. The strains can be evaluated

continuously from optical curvature monitoring of the specimens.

Caution however is needed in comparing results to those obtained

from conventional compressive tests. For UD composites failing by

shear instability it has been shown that the strain gradient can sig-

nificantly increase the compressive failure strain [30]. The high

strain embedding glass layers may also suppress the shear instabil-

ity, which is the primary reason for compressive failure in many

carbon/epoxy composites in conventional direct compression tests.

However for materials where failure occurs due to fibre fracture,

similar mechanisms may be present in bending and direct com-

pression tests, although higher strains may be obtained in bending

due to the effect of the smaller stressed volume.

4.2. Specimen design

The selected four point bending test setup assures that carbon

layer failure takes place between the inner loading noses where

the bending moment is maximum and constant. An additional ben-

efit of this setup is that the specimen preparation is very simple

and cheap with no need for end-tabbing and precision machining

(e.g. grinding) typically utilised for direct compression specimens.

The double loading noses of the 4 PB fixture reduce the compres-

sive stress concentration on the specimen surface compared to

the 3 PB test setup and carbon layer failure most likely takes place

in the central free section. Similarly to the tension specimens, the

thin carbon layer is designed to be covered with one standard

thickness glass layer (see Fig. 7a) which protects it against stress

concentrations at the loading points, but still allows the damage

to be seen. The majority of the specimens were designed to be

asymmetric, with the carbon layer positioned close to the com-

pression surface of the specimen. Note that the same test could

also be used to investigate tensile loading by positioning the spec-

imen the other way round in the test fixture, which is an additional

benefit. The specimens were also designed to be thick enough to

undergo significant surface strains at relatively small deflections

in order to minimise the geometric non-linearity of the load-

deflection response. This was achieved by adding a number of glass

plies to one side of the carbon layer and only one to the other side

(see Table 5 for lay-up sequences). High strain S-glass/epoxy plies

were used either side of the carbon plies and on the opposite sur-

face of the specimen where strains are highest and standard E-

glass/epoxy elsewhere. A limiting factor in the specimen design

was the possibility of local compressive failure of the surface glass

plies under the inner loading noses due to high and concentrated

contact forces. The likelihood of this premature failure was

Fig. 7. Schematics of (a) the four point bending test setup with an asymmetric

interlayer hybrid specimen, (b) the phenomenon of optical strain measurement

from curvature change. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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reduced by using reinforced rubber pads under the inner loading

noses. Fig. 7a shows the schematic of the specimen geometry and

the test setup. The applied setup for the 4 PB tests was the follow-

ing: support span: 60 mm, inner span: 20 mm, nominal specimen

thickness h = 2.7 mm, specimen width b = 8 mm and specimen

length l = 80 mm. Table 5 shows the specimen configurations and

geometry. One set of symmetric specimens comprising two TR30

carbon layers placed symmetrically, close to the top and bottom

surfaces were made for strain-gauge validation of the new optical

strain evaluation method, while the asymmetric ones containing

only one carbon layer on one side of the specimens were made

for carbon layer failure strain determination.

4.3. Specimen manufacturing

The glass/carbon hybrid bending specimens were made in a

similar way as the tensile ones described in Section 3.4. Fabrication

of the prismatic specimens was executed simply with a diamond

cutting wheel. Strain gauges were bonded on both sides of one

symmetric TR30 type specimen and on the carbon side of three

of the asymmetric TR30 type specimens for strain measurement

validation purposes. One edge of each specimen was hand-

polished with medium grit size sandpaper, painted black with per-

manent marker and then five white dots were created in the mid-

dle section with a white paint marker for optical curvature

monitoring.

4.4. Test setup and equipment

Four point bending of the prismatic specimens was executed at

a constant 3 mm/min crosshead speed on a computer controlled

Instron 8872 type 25 kN rated universal servo-hydraulic test

machine with a regularly calibrated 10 kN rated load cell. The posi-

tions of the five dots on the edge of the specimens between the

inner loading noses were recorded with an Imetrum optical strain

measurement system (see Fig. 7b).

4.5. New optical strain evaluation method for four point bending

Since the aim of the study is to determine the failure strain of

the carbon layer, it is essential to measure the strains in the carbon

layer during the test accurately, which may be done with conven-

tional strain gauges or optically, with the assumption of a linear

strain distribution through the thickness for both approaches.

Optical methods have the advantages of being contactless, cheap

and less demanding in terms of specimen preparation time than

conventional strain gauges. The curvature of the bending speci-

mens can be determined from a curve fitted through dots at

recorded positions on the edge of the specimen. Although four

point bending (4 PB) is more difficult to set up than three point

bending, it was selected because it has constant bending moment

between the inner loading noses, which results in a constant radius

deformed shape keeping the curve fitting simple. Since there is

negligible shear, the assumption of linear strain variation through

the thickness is valid. If the positions of the dots are recorded at a

high sampling rate during the test, it is possible to get similarly

processable strain data to that given by strain gauges.

The sequence of the data acquisition and evaluation during and

after the 4 PB tests was the following:

1. Recording the x and y positions of the centre of the five dots on

the edge of the specimen (see Fig. 7b) in pixels with a 17 Hz

sampling rate during the test with an Imetrum optical strain

measurement system.

2. Transformation of the coordinates of the dots from pixels to

millimetres using the videos recorded by the Imetrum system.

(The thickness of the specimens measured previously with a

calliper can be determined in pixels on specific frames of the

video in the initial and in a slightly deformed state to calibrate

the position data.)

3. Fitting circular arcs to each set of five dot displacements using

the Curve Fitting toolbox in Matlab.

4. Calculation of the curvature (j = 1/R) of the specimens from the

radius of the fitted curves.

5. Calculation of the strain (e = z⁄j) in the specimens at specific

through thickness coordinates corresponding to the carbon

layer top and bottom positions from the neutral axis (see

Fig. 7a).

The required position of the neutral axis is calculated with the

classical laminate and beam theories from the tensile stiffness

and compliance matrices ([A] and [a] = [A]�1) and the through

thickness positions of the layers of the asymmetric hybrid speci-

mens. The strain evaluation relies on accurate determination of

the neutral axis position, which will be affected by the non-

linearity in the carbon fibre stress-strain response. To check the

sensitivity of the method to the stiffness of the carbon, the neutral

axis position was reanalysed by arbitrarily cutting the modulus of

the TR30 carbon/epoxy in half, and checking the change in the cal-

culated failure strain. The change in the neutral axis position was

2.05%, and the change in evaluated failure strain was only 2.69 rel-

ative% even with the large 50% modulus reduction of the carbon

layer. This quick check indicated that the strain evaluation method

is not highly sensitive to the neutral axis position, because the con-

tribution of the carbon plies to the bending stiffness of the whole

specimen is only moderate.

Fig. 7a shows the schematic of the four point bending test setup,

and an asymmetric specimen with a carbon/epoxy layer on the

compressive side. Fig. 7b shows an annotated video frame taken

with the Imetrum optical strain measurement system, suitable

for tracking and recording the positions of the five dots painted

on the edge of the specimen. The fitted circular arc and the con-

stant radius are also indicated in Fig. 7b which illustrates a sym-

metric TR30 type specimen with strain gauges bonded on both

sides for the validation of the new strain measurement method.

4.6. Optical strain measurement validation

The new optical strain measurement approach was validated

against conventional strain gauge measurements executed on the

same specimens. Both top and bottom faces of one symmetric

Table 5

Four point bending specimen types (Designation: SG- S-glass, EG- E-glass).

Specimen type designation Lay-up sequence No. of tested specimens Nominal thickness Width Support span Inner span

[mm] [mm] [mm] [GPa]

Symmetric TR30 [SG1/TR302/SG3/EG5]S 1 2.8 8 60 20

Asymmetric TR30 [SG1/EG14/SG2/TR302/SG1] 6 2.70

Asymmetric M55 [SG2/EG13/SG2/M552/SG1] 5 2.71

Asymmetric XN80 [SG2/EG11/SG4/XN802/SG1] 6 2.76
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TR30 and the carbon side of three asymmetric TR30 type speci-

mens were equipped with strain gauges as well as dots for optical

strain measurement. One symmetric TR30 type specimen was

deformed up to 2% surface strain in multiple runs and three asym-

metric TR30 type specimens were loaded until carbon layer failure.

Fig. 8 shows one typical load-strain graph of both configurations,

comparing the absolute values of the surface strains measured by

the two different techniques. Excellent agreement can be judged

visually from the graphs of Fig. 8. Strain values determined with

the two different approaches were compared at increasing load

levels. In the case of the symmetric specimen type, the difference

between the gauge strain readings and the optical strain was com-

parable to the difference between the two strain gauge readings

(less than 1 relative% on average for two separate loading cycles

and max. 2.5 relative%). In the case of the asymmetric specimens

with strain gauges only on the carbon side, the differences between

the measured gauge and optical strains were found to be very

small, with a maximum of around 1%. According to the results of

the optical strain validation tests, it was concluded, that the new

optical strain measurement method is capable of determining the

surface strains of 4 PB specimens with similar accuracy to that of

conventional strain gauges, with the benefit that the maximum

strain to be measured was not limited by gauge fracture, de-

bonding or specimen surface damage. This advantageous feature

is demonstrated on Fig. 8b, although the optical strains were only

approximate after the first fracture of the specimen (i.e. significant

load drop), because the neutral axis may have been displaced by

asymmetric damage or failure of specific layers in the specimen.

4.7. Compression test results and discussion

Figs. 9, 11 and 13 show typical load-compressive strain curves

obtained for different grade carbon/epoxy plies. The strains were

evaluated from the curvature data assuming a linear through thick-

ness distribution and plotted for the top of the carbon layer where

the strain was the highest within the layer, because failure would

be expected to initiate there. The variation of the strain across the

carbon layer is small (around 3.5 relative% for the asymmetric

TR30 specimens), because of the low layer thickness.

Fig. 9 shows a typical load-compressive strain curve of an asym-

metric M55 type specimen. The change in slope (see Table 6)

indicates the progressive fibre fracture in the carbon layer of the

hybrid specimen which is a surprising phenomenon, not normally

observed in compression tests. The fitted line shown on the graph

was used to determine the carbon layer failure strain, where the

curve deviated from the straight line. The measured average com-

pressive failure strain of the M55 carbon/epoxy was 0.456%, signif-

icantly higher than the 0.26% calculated from the compressive

strength and modulus quoted on the fibre datasheet as UD

composite properties. The measured compressive strain increased

further to 0.51% after thermal strain correction (see Table 6). Spec-

imens loaded up to a point beyond the carbon layer failure and

unloaded before final failure, showed a periodic striped pattern

Fig. 8. Typical load-absolute strain graphs of (a) symmetric TR30 and (b) asymmetric TR30 specimens measured with strain gauges and optically. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Typical load-strain graph of asymmetric M55 type specimens based on

optically measured strains at the top of the carbon layer (Line fitted to the initial

part of the curve is included to show the progressive carbon layer failure detection

from the change in slope). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

Table 6

Summary of four point bending test results.

Specimen type Thickness Change in slope at

carbon layer failure

Measured compressive

failure strain

Compressive thermal residual

strain in carbon layer

Corrected compressive

failure strain

[mm] (CV [%]) [%] (CV [%]) [%] (CV [%]) [%] [%]

Asymmetric TR30/epoxy 2.74 (0.9) – 2.457 (5.6) 0.051 2.508

Asymmetric M55/epoxy 2.70 (0.7) 15.3 (11.7) 0.456 (4.5) 0.057 0.513

Asymmetric XN80/epoxy 2.77 (0.4) 30.5 (6.7) 0.090 (7.0) 0.051 0.141
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as shown in Fig. 10a. The visual assessment indicated that the M55

carbon layer progressively fragmented under compressive loading

and interfacial damage at the top glass-carbon layer interface

became visible. Fig. 10b shows a micrograph of the edge of a spec-

imen loaded up to 700 N and unloaded. The sharp cracks through

the carbon layer marked with white arrows confirm that the car-

bon plies were fragmented under compression and no kink bands

were observed.

Fig. 11a shows a typical overall load-strain graph of an asym-

metric XN80 type specimen. The graph does not show any notice-

able feature until the first load-drop at around 2.5% strain except

for a slight non-linearity in the initial section. Fig. 11b magnifies

this initial section and reveals that the UHM carbon layer started

failing progressively at around 0.1% strain as indicated by the sig-

nificant (up to 30%, see Table 6) reduction in the slope of the curve.

This figure highlights the good quality of the generated strain data

even in the low strain regime.

The determination of the carbon layer failure strain was

performed with the help of a fitted line as done earlier for the

asymmetric M55 type specimens. The parameters and the consis-

tency of the decrease in slope were analysed for all six XN80 test

graphs by fitting straight lines to the initial and the second

quasi-linear part of the graphs and the early non-linearity proved

to be present consistently in all the test graphs. The results are

summarised in Table 6. For the XN80 carbon/epoxy, the strain at

the limit of linearity corrected with the thermal residual strain

(0.141%) is significantly higher than the compressive failure strain

quoted by the fibre manufacturer for the UD epoxy matrix compos-

ite (0.093%). The determined carbon failure strain and the decrease

in slope showed acceptable coefficients of variation. The reason for

the early reduction in slope of the stress-strain curve is that the

carbon layer is significantly damaged early on during compression

loading, but the glass plies continue carrying the load until final

failure which is the fracture of the surface glass ply on the com-

pression side of the specimen.

The tests of two specimens were interrupted after the initial

non-linearity and examined under an optical microscope (see

Fig. 12). A periodic damage pattern was observed on the top

glass-carbon layer interface which was caused by progressive frag-

Fig. 10. Damage analysis of an asymmetric M55 type specimen after an interrupted four point bending test (a) Photograph showing the striped pattern of the carbon/glass

layer interface in top view (b) Micrograph of the longitudinal edge confirming the fragmentation of the carbon plies (Arrows point on through thickness cracks in the carbon

layer).

Fig. 11. Typical load-strain graph of asymmetric XN80 type specimens based on

optically measured strains at the top of the carbon layer (a) Overall behaviour, (b)

Detection of low strain progressive carbon layer failure using a fitted line. (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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mentation of the XN80 carbon/epoxy layer under compression. No

kink-bands were visible in the micrographs taken from the edge of

the specimen (see Fig. 12b) and dense fragmentation of the carbon

plies was observed.

The high strength asymmetric TR30/epoxy specimens failed

catastrophically, with a load drop as shown in Fig. 13, and the glass

ply on the surface was fractured and delaminated together with

the carbon one. This is completely different from the progressive

failure type observed in the case of the high modulus carbon spec-

imens. No signs of kink-bands were found during microscopy of

the tested specimens although the catastrophic failure may have

affected the appearance of the fracture surface. The determination

of the failure mechanism of these specimens requires further work.

The carbon layer failure strains at the first load drop were easily

detectable. The slight non-linearity of the curve before the load

drop was the result of the increasing geometrical non-linearity of

the test setup at large deflections. The measured average compres-

sive failure strain is 2.46%, much higher than expected for high

strength carbon composites. This is partly due to the test method

successfully reducing the stress concentrations but may also be

because the hybrid configuration suppresses the shear instability

failure mechanism. The measured compressive failure strain of

the carbon plies is also significantly higher than the tensile failure

strain of the same material (1.88%) obtained with the proposed

hybrid specimens and the tensile failure strain of TR30 fibres

(1.9%) quoted by the manufacturer.

The data presented in Table 6 demonstrates that the proposed

4 PB tests of interlayer hybrid specimens and the novel strain eval-

uation procedure are able to produce good compressive failure

strain data for carbon/epoxy composites with acceptable scatter.

A key benefit of the proposed test method is that it provides an

opportunity to load carbon/epoxy plies until high strains without

premature catastrophic failure and allows for study of the failure

mechanisms. The two high modulus type carbon samples (XN80

and M55) failed by progressive ply fragmentation with no kink

bands observed. This failure mechanism has not been reported in

the literature in compression for UD carbon reinforced composites

according to the best knowledge of the authors. On the contrary,

the high strength TR30 carbon plies failed catastrophically, at high

strains suggesting that the failure may have been delayed by the

supporting glass plies. The lack of stiffness loss, post mortem

microscopy and the unstable final failure at high strains all indicate

that the high strength TR30 carbon fibre reinforced plies did not

fragment. However a deeper understanding of the mechanism

behind the observed catastrophic failure requires further work.

The obtained failure strain values for all the tested carbon/epoxy

composites were higher than the fibre manufacturer’s data. The

increase in strain can be attributed to (i) elimination of the stress

concentrations by the use of 4 PB specimens and (ii) the small

stressed volume and associated reduced defect probability. For

the high strength TR30 fibres the increase in strain was also due

to the suppression of the shear instability by the strain gradient

and support of the glass plies. For the high- and ultra-highmodulus

Fig. 12. Damage analysis of an asymmetric XN80 type specimen after an interrupted four point bending test (a) Micrograph showing the striped pattern of the carbon/glass

layer interface in top view (b) Micrograph of the longitudinal edge confirming the fragmentation of the carbon plies (Arrows point on cracks in the carbon layer).

Fig. 13. Typical load-compressive strain graph of asymmetric TR30 type specimens

based on optically measured strains at the top of the carbon layer.
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carbon composite specimens (with M55 and XN80 fibres) failing by

progressive fibre fracture (i.e. fragmentation), another reason why

the strain was higher was because the change in slope corresponds

to the point where multiple fractures of the ply occur as it frag-

ments, rather than a single first catastrophic fracture. For these

reasons the measured compressive strains cannot be taken as

material design allowable strains to failure, as this could be signif-

icantly un-conservative.

5. Conclusions

The following conclusions were drawn from the presented

study of new failure strain determination approaches for UD car-

bon/epoxy composites:

� A new UD glass/carbon interlayer hybrid specimen type was

successfully applied for determination of the carbon/epoxy

layer tensile failure strain. The measured strains were signifi-

cantly higher than those measured in conventional non-

hybrid carbon/epoxy baseline specimens. This is primarily due

to the elimination of stress concentrations since the specimens

were designed to exclude the hybrid effect and the volume

effect on the failure strain is small.

� The FE study indicated that the inner carbon layer in the hybrid

tensile specimens did not experience any stress concentration

around the end-tabs. This prediction was confirmed as the posi-

tions of the carbon layer failures in the experiments were far

away from the grips in the majority of the specimens.

� A further advantage of the proposed hybrid tensile specimens is

that end-tabs can be eliminated altogether, as the surface glass

layers protect the carbon plies and act as in-situ end-tabs.

� The compressive failure strains of three different (high

modulus, ultra-high modulus and high strength) UD carbon

fibre/epoxy layers were successfully determined with the novel

interlayer hybrid four point bending specimens applying the

developed optical strain evaluation method.

� Progressive ply fragmentation was consistently observed during

the four point bending based compression tests of the high

(M55) and ultra-high modulus (XN80) carbon/epoxy plies. The

absence of kink-bands suggests that the resulting failure strains

are close to the intrinsic compressive failure strain of the carbon

fibres. The unique fragmentation failure mechanism is different

from that previously reported in compression of high strength

carbon/epoxy.

� The failure of the high strength carbon plies (TR30) was catas-

trophic, and the obtained compressive failure strains were sig-

nificantly higher than those from conventional compression

tests, due to the suppression of stress concentrations at the load

introduction points and delayed final failure due to the strain

gradient and support from the surrounding glass layers. No

kink-bands were observed, but more work is needed to fully

understand the compressive failure mechanisms of the high

strength carbon/epoxy plies under four point bending.

� Caution is required in interpreting the high compressive strains

due to the strain gradient and small stressed volume, which

means that they cannot be used as design allowables.

Acknowledgement

This work was funded under the UK Engineering and Physical

Sciences Research Council Programme Grant EP/I02946X/1 on High

Performance Ductile Composite Technology in collaboration with

Imperial College London. Gergely Czél acknowledges the Hungar-

ian Academy of Sciences for funding through the Post-Doctoral

Researcher Programme fellowship scheme, the János Bolyai schol-

arship and the Hungarian National Research, Development and

Innovation Office - NKFIH for funding through grant ref. OTKA K

116070. The authors acknowledge Putu Suwarta for his help with

a micrograph. The authors acknowledge Hexcel Corporation and

North TPT for supplying materials for this research. All data

required for reproducibility are provided within the paper.

References

[1] ISO 527-5. Plastics – Determination of tensile properties – Part 5: test
conditions for unidirectional fibre-reinforced plastic composites; 2009.

[2] ASTM D5083-10 Standard Test Method for Tensile Properties of Reinforced
Thermosetting Plastics Using Straight-Sided Specimens.

[3] ASTM D3039/D3039M–08 Standard Test Method for Tensile Properties of
Polymer Matrix Composite Materials.

[4] Hodgkinson JM. Mechanical testing of advanced fibre composites. Woodhead
Publishing; 2000.

[5] Adams DO, Adams DF. Tabbing guide for composite test specimens Technical
report. Washington, DC: Office of Aviation Research; 2002.

[6] De Baere I, Van Paepegem W, Degrieck J. On the design of end tabs for Quasi-
static and fatigue testing of fibre-reinforced composites. Polym Compos
2009;30:381–90.

[7] Wisnom MR, Atkinson JW. Reduction in tensile and flexural strength of
unidirectional glass fibre-epoxy with increasing specimen size. Compos Struct
1997;38:405–11.

[8] Wisnom MR, Khan B, Hallett SR. Size effects in unnotched tensile strength of
unidirectional and quasi-isotropic carbon/epoxy composites. Compos Struct
2008;84:21–8.

[9] Wisnom MR, Maheri MR. Tensile strength of unidirectional carbon fibre-epoxy
from tapered specimens. In: 2nd European Conf. on Composites Testing and
Standardisation. Hamburg; September 1994. p. 239–47.

[10] Short D, Summerscales J. Hybrids – a review Part 1. Techniques design and
construction. Composites 1979;10:215–21.

[11] Short D, Summerscales J. Hybrids – a review Part 2. Physical properties.
Composites 1980;11:33–8.

[12] Kretsis G. A review of the tensile, compressive, flexural and shear properties of
hybrid fibre-reinforced plastics. Composites 1987;18:13–23.

[13] Swolfs Y, Gorbatikh L, Verpoest I. Fibre hybridisation in polymer composites: a
review. Compos A Appl Sci Manuf 2014;67:181–200.

[14] Czél G, Wisnom MR. Demonstration of pseudo-ductility in high performance
glass-epoxy composites by hybridisation with thin-ply carbon prepreg.
Composites Part A 2013;52:23–30.

[15] Czél G, Jalalvand M, Wisnom MR. Demonstration of pseudo-ductility in
unidirectional hybrid composites made of discontinuous carbon/epoxy and
continuous glass/epoxy plies. Composites Part A 2015;72:75–84.

[16] Jalalvand M, Czél G, Wisnom MR. Numerical modelling of the damage modes
in UD thin carbon/glass hybrid laminates. Compos Sci Technol 2014;94:39–47.

[17] Jalalvand M, Czél G, Wisnom MR. Damage analysis of pseudo-ductile thin-ply
UD hybrid composites – a new analytical method. Composites Part A
2015;69:83–93.

[18] Jalalvand M, Czél G, Wisnom MR. Parametric study of failure mechanisms and
optimal configurations of pseudo-ductile thin-ply UD hybrid composites.
Composites Part A 2015;74:123–31.

[19] ASTM D3410/D3410M-03. Standard test method for compressive properties of
polymer matrix composite materials with unsupported gage section by shear
loading; 2008.

[20] ASTM D695-10 Standard Test Method for Compressive Properties of Rigid
Plastics.

[21] Haberle JG, Matthews FL. An improved technique for compression testing of
unidirectional fibre-reinforced plastics; development and results. Composites
1994;25:358–71.

[22] Adams DF, Welsh JS. The wyoming combined loading compression (CLC) test
method. J Compos Technol Res 1997;19:123–33.

[23] ASTM D6641/D6641M-14. Standard Test Method for Compressive Properties
of Polymer Matrix Composite Materials Using a Combined Loading
Compression (CLC) Test Fixture.

[24] ASTMD5467/D5467M-97. Standard Test Method for Compressive Properties of
Unidirectional Polymer Matrix Composite Materials Using a Sandwich Beam.

[25] Fuller JD. Pseudo-ductility of thin ply angle-ply laminates. PhD thesis,
University of Bristol; 2015.

[26] Czél G, Jalalvand M, Wisnom MR. Development of pseudo-ductile hybrid
composites with discontinuous carbon- and continuous glass prepregs. In:
Proceedings of ECCM-16 conference. Seville, June 2014.

[27] Schapery RA. Thermal expansion coefficients of composite materials based on
energy principles. J Compos Mater 1968;2:380–404.

[28] Wisnom MR. Size effects in the testing of fibre-composite materials. Compos
Sci Technol 1999;59:1937–57.

[29] WisnomMR, Czel G, Swolfs Y, Jalalvand M, Verpoest I. Larissa G. Hybrid effects
in thin ply carbon/glass unidirectional laminates: accurate experimental
determination and prediction. Composites Part A 2016;88:131–9.

[30] Wisnom MR, Atkinson JA. Constrained buckling tests show increasing
compressive strain to failure with increasing strain gradient. Composites
Part A 1997;28A:959–64.

12 G. Czél et al. / Composites: Part A xxx (2016) xxx–xxx

Please cite this article in press as: Czél G et al. Hybrid specimens eliminating stress concentrations in tensile and compressive testing of unidirectional

composites. Composites: Part A (2016), http://dx.doi.org/10.1016/j.compositesa.2016.07.021

http://refhub.elsevier.com/S1359-835X(16)30241-X/h0020
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0020
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0025
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0025
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0030
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0030
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0030
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0035
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0035
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0035
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0040
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0040
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0040
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0050
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0050
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0055
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0055
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0060
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0060
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0065
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0065
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0070
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0070
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0070
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0075
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0075
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0075
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0080
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0080
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0085
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0085
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0085
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0090
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0090
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0090
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0105
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0105
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0105
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0110
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0110
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0135
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0135
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0140
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0140
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0145
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0145
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0145
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0150
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0150
http://refhub.elsevier.com/S1359-835X(16)30241-X/h0150
http://dx.doi.org/10.1016/j.compositesa.2016.07.021

	Hybrid specimens eliminating stress concentrations in tensile and compressive testing of unidirectional composites
	1 Introduction
	2 Materials
	3 Proposed test method for tensile failure strain determination
	3.1 Concept
	3.2 Specimen design
	3.3 Finite element modelling of the end-tab region of hybrid specimens
	3.4 Specimen manufacturing
	3.5 Test setup and equipment
	3.6 Tensile test results and discussion

	4 Proposed test method for compressive failure strain determination
	4.1 Concept
	4.2 Specimen design
	4.3 Specimen manufacturing
	4.4 Test setup and equipment
	4.5 New optical strain evaluation method for four point bending
	4.6 Optical strain measurement validation
	4.7 Compression test results and discussion

	5 Conclusions
	Acknowledgement
	References


