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ABSTRACT

We show that a hybrid (nuclear+quark matter) star can have a mass-radius relationship very similar to that pre-
dicted for a star made of purely nucleonic matter. We show this for a generic parameterization of the quark matter
equation of state and also for an MIT bag model, each including a phenomenological correction based on gluonic
corrections to the equation of state. We obtain hybrid stars as heavy as 2M� for reasonable values of the bag model
parameters. For nuclear matter, we use the equation of state calculated by Akmal and coworkers using many-body
techniques. Both mixed and homogeneous phases of nuclear and quark matter are considered.

Subject headings: dense matter — elementary particles — stars: neutron

Online material: color figures

1. INTRODUCTION

It has long been hypothesized that some compact stars might
actually be ‘‘hybrid stars’’ containing cores of quark matter. The
observationally accessible features of compact stars include their
mass and radius, and there have been various investigations of
how the presence of a quark matter core would affect the mass-
radius relationship of a compact star. The general conclusion has
been that quark matter softens the equation of state, so that hybrid
stars are predicted to have lower maximum mass (M P 1:7 M�)
than nuclear matter stars (M P 2:2 M�) (Lattimer & Prakash
2001; Haensel 2003;Maieron et al. 2004; Alford & Reddy 2003;
Buballa et al. 2004; Banik &Bandyopadhyay 2003; Burgio et al.
2002a, 2002b; Gocke et al. 2001; Schertler et al. 2000). (In this
paper we only consider two-flavor nuclear matter. Introducing hy-
perons or kaon condensation into the nuclear matter also softens
the equation of state and lowers the maximum mass [Lattimer &
Prakash 2001].) On the observational side, all massmeasurements
are currently compatible, at the 2 � level, with M P 1:7 M�
(Thorsett & Chakrabarty 1999; Lattimer & Prakash 2004).
However, some are near the limit of compatibility, for example,
pulsar J0751+1807 in a white dwarf–neutron star binary system,
whose mass is currently measured at 2:1� 0:4 M� (Nice et al.
2005). The error bars on these measurements will decrease over
time, so quark matter cores may seem to be on the point of being
ruled out. Our purpose in this paper is to show that in fact it will
be harder to rule out quark matter via M(R) observations than
these simple considerations indicate.

In an earlier paper (Alford&Reddy 2003),we performedmass-
radius calculations for hybrid and pure quark matter stars using a
simple Massachusetts Institute of Technology (MIT) bag model
equation of state. In that model, correlations arising due to quark-
quark interactions were neglected. However, the effects of the
strange quark mass and corrections to the equation of state due

to the pairing energy associated with color superconductivity
(Rajagopal & Wilczek 2002; Alford 2001; Rischke 2004; Schäfer
2003; Reddy 2002; Shovkovy 2004), the formation of quark
Cooper pairs, were incorporated.We found that color superconduc-
tivity boosts the pressure of the quark matter relative to nuclear
matter, lowering the transition density (at a fixed bag constant),
but that the maximum mass was similar to that obtained in other
work, namely, about 1.6M�. We found that in order to form stars
near this upper bound it was necessary to set the bag constant to
a low value, so that quark matter is very nearly stable and the
nuclear matter to quark matter (NM ! QM) phase transition
occurs below nuclear saturation density, nsat ¼ 0:16 fm�3: the
heaviest stars consisted almost entirely of quark matter, with
only a thin crust of nuclear matter.

1.1. Overview of This Study

In this paper we again use equations of state based on the
MIT bag model for the quark matter, but we include an addi-
tional parameter that imitates the effect of including perturba-
tive quantum chromodynamics (QCD) corrections.

For the first stage of this analysis (x 3) we actually do not use
anymodel at all.Wewrite down a purely phenomenological quark
matter equation of state, consisting simply of a power series ex-
pansion in the quark chemical potential, �,

�QM ¼ � 3

4�2
a4�

4 þ 3

4�2
a2�

2 þ BeA; ð1Þ

where a4, a2, and Beff are independent of �. We show that for
a4 � 0:7 (which we see below is physically reasonable), one
can obtain heavy hybrid stars (M � 2 M�) while still ensuring
that the NM ! QM phase transition occurs above nuclear sat-
uration density. In fact, we show that it is possible to mimic the
mass-radius behavior of nucleonic stars over a wide range of
masses.

We then go on to the second stage of our analysis, in which we
use a quark matter equation of state based on a physical model:
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competition between a ‘‘normal’’ unpaired quark matter phase
and the color-flavor-locked (CFL) color-superconducting phase,
in an MIT bag model formalism. This corresponds to giving a2
andBeff a simple step-function dependence on the chemical poten-
tial, with the step occurring at the transition between these phases.
The details are determined by the microscopic parameters of the
model, the strange quark mass ms and the pairing gap �.

The coefficient a4 � 1� c is a rough parameterization of QCD
corrections to the pressure of the free-quark Fermi sea, and pre-
vious calculations (Fraga et al. 2001) show that the values a4 �
0:7 and c � 0:3 are reasonable. The physical model also allows
us to calculate the behavior of charged phases and hence to study
inhomogeneous ‘‘mixed’’ phases of nuclear matter and quark
matter.

The results from the quark matter model turn out to be very
similar to those obtained with the simple parameterization. We
also find that, given our current (and, likely, future) ignorance of
the high-density values of basic parameters like the strange quark
mass and bag constant, there are no characteristic features of the
M(R) relationship that could be used to verify the presence of
color superconductivity in the quark matter core.

Our conclusion is that the maximum mass of hybrid stars is
mainly determined by the size of the QCD corrections to the co-
efficient a4 in the quark matter equation of state (1) and that for
reasonable values of a4 hybrid stars can be as heavy as 2 M�.
This result is robust: it is not affected when we move up to a
more sophisticated model or by the introduction of mixed phases.
There is therefore little reason to expect it to change when the
model is made even more complicated, e.g., by including kaon-
condensed (Bedaque & Schäfer 2002; Kaplan & Reddy 2002;
Kryjevski et al. 2005), crystalline (Alford et al. 2001a; Casalbuoni
& Nardulli 2004), mixed (Reddy & Rupak 2005), or gapless
(Shovkovy &Huang 2003; Alford et al. 2004) phases or allowing
continuous �-dependence in the strange quark mass or pairing
gap (see below).

1.2. Other Approaches

Our calculations use a basicMIT bagmodel, in which the bag
constant and quarkmasses are assumed to be density-independent.
Other approaches are certainly possible.Within theMITbagmodel
one can use a density-dependent bag constant, although this does
not appreciably change the maximum mass prediction (Burgio
et al. 2002a, 2002b). The density-dependence of the constituent
quark masses and the color superconducting gap � can be esti-
mated by using a Nambu-Jona-Lasinio (NJL) model instead of a
bagmodel, with coupledmean field Schwinger-Dyson equations
for the masses and gaps. Such models give a high effective bag
constant and quark masses and typically predict small numbers
of strange quarks, with two-color–flavor superconductor (2SC)
rather than CFL color superconductivity, but again themaximum
masses turn out to be of order 1.6M� (Buballa et al. 2004; Gocke
et al. 2001), although folding certain Gaussian form factors into
the four-fermion interaction can give masses up to 1.8 M�
(Grigorian et al. 2004). While these models are well motivated
theoretically, their specific predictions relating to the density de-
pendencies of quark masses and the effective bag constant re-
main untested. In this work we adopt a minimal approach and
retain quartic and quadratic powers of the chemical potential in
our expression for the free energy. This allows us to do a param-
eter study independent of any specific model. It would be inter-
esting to see whether including a reasonable estimate of QCD
corrections in the NJL model increases the maximum mass in
that context also.

2. THE NUCLEAR MATTER EQUATION OF STATE

Our treatment of nuclear matter is completely standard: at
densities above half the nuclear saturation density (nsat) we em-
ploy the equation of state ofAkmal, Pandharipande, andRavenhall
(APR; Akmal et al. 1998). At lower densities we use the standard
tabulated low-density equation of state (Baym et al. 1971; Negele
& Vautherin 1973). Our previous studies of hybrid stars (Alford
& Reddy 2003; Alford et al. 2001b) used the relativistic mean
fieldWalecka model (Serot &Walecka 1986) to describe nuclear
matter or APR for �-stable charge-neutral nuclear matter. The
relativistic mean field is an effective description of the nuclear
matter that is constrained by properties of nuclear matter at satu-
ration density. The mean field approximation ignores many-body
correlations that could play an important role. APR use the var-
iational chain summation (VCS) to include these correlations in
calculating the equation of state of nucleonmatter (Pandharipande
& Wiringa 1979; Akmal & Pandharipande 1997). They employ a
realistic nonrelativisticHamiltonianwith theArgonne v18 (Wiringa
et al. 1995) two-body potential and the Urbana IX (Pudliner et al.
1995) three-nucleon interaction. An equation of state as a func-
tion of baryon density and proton fraction, xp, is obtained by in-
terpolating between the pure neutron matter (PNM) xp ¼ 0 and
symmetric nuclear matter (SNM) xp ¼ 0:5 results using a gen-
eralized Skyrme interaction containing momentum- and density-
dependent delta function interactions (Pandharipande&Ravenhall
1989) described below.

The energy is evaluated for a variational wave function that
takes into account many-body correlation effects. It is composed
as a symmetrized product of two-body correlation operators, Fij,
acting on the Fermi gas wave function. The correlation operators
are written as a sum of terms that include operators appearing in
the Hamiltonian. The two-body cluster contribution to the energy
is minimized by Fij that satisfy the Euler-Lagrange equations de-
termined within this Ansatz. Heuristically, two-body operators that
appear in the Hamiltonian induce correlations between particles
whose spatial dependence is approximated by solving a two-body
Schrödinger-like equation subject to suitable boundary condi-
tions. The variation of the wave function is effected at the two-
body level by varying parameters appearing in this equation.
Although this wave function neglects three-body correlations, it
is estimated to be accurate to a few MeV nucleon�1 in SNM and
about 1 MeV nucleon�1 in PNM at nuclear density. This accu-
racy is achieved through the inclusion of many-body effects via
the VCS technique. Comparable accuracy is obtained with the
other many-body techniques like the Brueckner-Bethe-Goldstone
method of Baldo et al. (1997).
The APR equation of state exhibits a transition from a low-

density phase (LDP) to a high-density phase (HDP) having spin-
isospin order, possibly due to neutral pion condensation, in PNM
at a density of�0.20 fm�3 and in SNM at�0.32 fm�3. The VCS
calculations of the energy of PNM and SNM are extrapolated to
general values of xp using a function of the form

�N (�; xp)¼
f2

2mN

þ f (�; xp)

� �
�p þ

f2

2mN

þ f (�; 1� xp)

� �
�n

þ g (�; xp ¼ 0:5) 1� (1� 2xp)
2

� �
þ g (�; xp ¼ 0)(1� 2xp)

2 ð2Þ

motivated by a generalized Skyrme interaction. Here �N is
the total nuclear energy density, �n,p are the neutron and proton
Fermi gas kinetic densities, f (�, xp) and f (�; 1� xp) are func-
tions that parameterize the effective mass of the nucleons, and
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g(�; xp ¼ 0) and g(�; xp ¼ 0:5) are potential energy terms. These
functions are parameterized to fit the energies of PNM and SNM
calculated in VCS. Separate parameterizations are used in the
LDP and HDP for the functions g. The energy density of nuclear
matter is used to determine the allowed equation of state of
hybrid stars for the case of a sharp transition to quark matter and
to determine the allowed phases for a mixed transition to quark
matter.

3. A SIMPLE PHENOMENOLOGICAL QUARK MATTER
EQUATION OF STATE

One of the main points of this paper is to show the effects of
including a parameter in the quark matter equation of state that
roughly incorporates the effects of gluon-mediated QCD inter-
actions between the quarks in the Fermi sea. We first do this in
the context of a simple parameterization of the quark matter equa-
tion of state and show that the resulting hybrid stars can have
mass-radius relations very similar to those of pure nuclear stars,
with masses up to 2 M�. Below (x 4) we show that these con-
clusions remain true in a more sophisticated model.

The simple phenomenological parameterization of the quark
matter equation of state is

�QM ¼ � 3

4�2
a4�

4 þ 3

4�2
a2�

2 þ BeA;

a4 � 1� c; ð3Þ

where the parameters a4, a2, and Beff are independent of �.

The quartic coefficient a4 ¼ 1� c.—For quark matter con-
sisting of three flavors of free noninteracting quarks, c ¼ 0, so
a4 ¼ 1 (see the discussion of the physical model of quark matter
in x 4). However, once QCD corrections are taken into account,
we expect c 6¼ 0.

The QCD corrections to the quark matter equation of state
were first evaluated toO(�2

s ) by Freedman andMcLerran (Farhi
& Jaffe 1984; Freedman&McLerran 1977a, 1977b, 1977c, 1978;
Baluni 1978); then Fraga et al. (2001, hereafter FPS) showed that
the O(�2

s ) pressure for three massless flavors can be approxi-
mated by a bag model–inspired form,

P� 2
s
� 3

4�2
(1� c)�4� BeA: ð4Þ

Matching to the O(�2
s ) perturbative calculations in the interval

� ’ 300 600 MeV, they found that Beff varies widely with
renormalization scale (see also Andersen & Strickland 2002),
but they consistently find c � 0:37. We do not use FPS’s spe-
cific values of Beff and c because, as they observe, the QCD cou-
pling is strong at the density of interest for compact star physics,
so there is no reason to expect the leading order calculation to be
accurate. However, we take their results as indicating that QCD
corrections are not negligible, so one should include c as an
additional parameter in the quark matter equation of state, with
a value of order 0.3.

The quadratic coefficient a2.—As we see in x 4, the �2 term
can arise from the strange quark mass (which increases the free
energy) or color superconductivity (which reduces it). If chiral
symmetry remains broken in the light quark sector due to a ro-
bust hq̄qi condensate, then the large (�100–300 MeV) constit-
uent quark masses of the up and down quarks would also result
in a �2 term similar to that due to the strange quark mass. For
CFL quark matter, a2 ¼ m2

s � 4�2. For now, we simply include
a2 as a phenomenological parameter.

The bag constant and the transition density �c.—In our pa-
rameterization the effective bag constant simply accounts for the
free energy contribution that is independent of �. While this is
related to the vacuum pressure, its numerical value in our param-
eterization need not be the same as in early bag model studies
of hadron phenomenology (Chodos et al. 1974). The effective
bag constant is unknown and difficult to calculate or measure,
so we do not use it as a parameter, since that would obscure the
fact that part of the effect of varying other parameters may sim-
ply be a renormalization of the unknown parameter Beff. To ex-
pose the physically significant effects of varying a4, a2, and Beff ,
we specify a more physical quantity, the maximum density �c of
nuclear matter, i.e., the density at which the NM ! QM tran-
sition occurs. The structure of the star is then calculated as a
function of a4, a2, and �c.

Two subtle points arise in such a reparameterization. First, as
we see below, for values of the perturbative correction param-
eter c around 0.3, the quark matter and APR nuclear matter
equations of state have almost exactly the same shape over a
wide range of pressures. This can lead to multiple phase transi-
tions back and forth between NM and QM. Of course, when the
two phases have almost identical equations of state, it does not
matter (for mass and radius calculations) where transitions be-
tween them occur. We therefore simply choose �c to be asso-
ciated with the location of the first transition.

Second, whenwe use themore complicatedmodel in x 4,we al-
low for the possibility of mixed phases, which blur out the NM !
QM transition over a range of densities and pressures, making it
hard to identify ‘‘the’’ transition density. However, for the pur-
pose of fixing the bag constant, we do not have to allow mixed
phases.We therefore defineBeff (a4, a2, �c) as the value of the bag
constant that would give a sharp NM ! QM transition at a nu-
clear matter density �c if only charge neutral bulk phases were
permitted (as would happen if the NM-QM surface tension were
�40 MeV fm�3).

3.1. The Physical Effects of the ‘‘Perturbative
Correction’’ Parameter

We now discuss the physical importance of the QCD cor-
rection c. Firstly, it is clear analytically that, at a fixed bag con-
stant, c has very little effect on the relation E( p) between energy
density and pressure for quark matter, which enters into the
Tolman-Oppenheimer-Volkoff (TOV) equation (Tolman 1939;
Oppenheimer &Volkoff 1939). This can be seen by setting a2 ¼
0 (i.e., neglecting quark masses and pairing), in which case

p ¼ (1� c)
3�4

4�2
� BeA;

E ¼ 3(1� c)
3�4

4�2
þ BeA;

jE ¼ 3pþ 4BeA independent of c: ð5Þ

However, this does not mean that c is unimportant. Clearly c
makes a dramatic difference to p(�), so it strongly affects the po-
sition of theNM ! QM transition.Moreover, as described above,
we are not working at fixed Beff : when we change c, we keep the
transition density �c fixed, with a resulting change in Beff.

We illustrate the effect of nonzero c in Figure 1, which shows
p(�) and E(�) for APR nuclear matter and for the phenomeno-
logical description of quark matter, with a2 ¼ (150 MeV)2, for
the cases c ¼ 0 and 0.3 (tuning Beff to keep the transition density
� ¼ 1:5nsat).We see that the c ¼ 0:3 quarkmatter equation of state
is very similar to APR over the pressure range10–200 MeV fm�3.
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In fact, close examination of the p(�) relationship shows that
there are three phase transitionswith increasing density: from APR
nuclear matter at low density to quark matter, then back to APR,
then back to quark matter again. On this basis, we expect stars
containing quark matter with c � 0:3 to showM(R) curves very
similar to those of nuclear matter stars, making them correspond-
ingly difficult to rule out fromM(R) measurements alone. In x 3.3
we see that this is indeed the case.

The p(�) relations for c ¼ 0:3 quark matter and APR are so
similar that it can be difficult to say where the phase transition
really occurs. In Figure 2 we show the pressure difference for the
parameters of Figure 1 (B1=4

eA ¼ 141:2 MeV, solid curve) and for
a higher value of the bag constant (B1=4

eA ¼ 141:5 MeV, dashed
curve). At B1=4

eA ¼ 141:2 MeV, the three transitions are clearly

visible. We see that when the bag constant is raised to B1=4
eA ¼

141:5 MeV to obtain a transition at higher density, the value of
the chemical potential at the transition, and hence the density,
jumps discontinuously from � ¼ 338 MeV (� ¼ 1:9nsat) to � ¼
458MeV (� ¼ 4:3nsat). This is illustrated in Figure 2 (right). It is
therefore technically impossible to choose Beff so as to obtain a
(first) transition density in the range 1:9nsat < �c < 4:3nsat.
It is very interesting to speculate on the possibility of mul-

tiple phase transitions inside compact stars, but this feature is
highly sensitive to the precise relative shapes of our quark mat-
ter and APR equations of state. We cannot claim to know these
to the level of accuracy (a few percent, i.e., a fewmillion electron
volts per cubic fermi) that would be required to say whether
the number of transitions is one, three, or even five. Our main

Fig. 1.—Equations of state for APR nuclear matter (solid curve) and for quark matter with the phenomenologically parameterized equation of state (3) with a2 ¼
(150 MeV)2 [dashed curves: upper curve has no perturbative correction (c ¼ 0), lower one has c ¼ 0:3]. For each quark matter equation of state, the bag constant Beff

was fixed by requiring that nuclear matter give way to quark matter at �c ¼ 1:5nsat. The figure shows that when we include perturbative-type corrections, quark matter
has a p(�) relation almost identical to that of APR nuclear matter, and its E( p) is also very similar over the range of pressures that is relevant to compact star masses. [See
the electronic edition of the Journal for a color version of this figure.]

Fig. 2.—Pressure difference between quark matter and APR nuclear matter for a4 ¼ 0:7, a2 ¼ (150 MeV)2, illustrating how the near-identity of their p(�) relations
leads to difficulties in defining a unique transition density. In the left panel, the solid curve is for B1=4

eA ¼ 141:2 MeVand shows three transitions, the first occurring at
� ¼ 324:4 MeV, corresponding to �c ¼ 1:5nsat (Fig. 1). Raising Beff gives a transition at higher �, but it is technically impossible to achieve a (first) transition in the
range 338 MeV < � < 458 MeV (1:9nsat < � < 4:3nsat): at B

1=4
eA ¼ 141:5 MeV (dashed curve) the transition jumps from the bottom of this range to the top. The right

panel illustrates how this translates to a discontinuous behavior in dependence of �c on Beff . [See the electronic edition of the Journal for a color version of this figure.]
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message in this paper is that for reasonable values of the quark
matter parameters, the equations of state may be very similar. A
realistic interpretation of Figure 2 is that at B1=4

eA ¼ 141:5 MeV
the critical density jumps rapidly from 1.9nsat to 4.3nsat . Any �c
in that range therefore corresponds to B1=4

eA ¼ 141:5 MeV. (Pic-
torially, this corresponds to blurring out the curves in Figure 2 by
a few million electron volts per cubic fermi.) This is the proce-
dure we follow in determining Beff for given �c,ms, and�when
we investigate how the maximum compact star mass depends on
these parameters.

One can extrapolate from Figures 1 and 2 to predict what will
happen for even larger values of c. For suitable values of the bag
constant, there will be a small range of densities (near nuclear
density) in which quark matter has higher pressure than APR
nuclear matter; then at intermediate densities APRwill be favored
again; and finally quark matter will win at high densities. When
such equations of state are used to construct compact stars, the
result will be a star containing a shell of quark matter with APR
nuclear matter outside and inside it. This also leads to large masses,
but only because most of the star is nuclear matter. In the rest of
this paper we discuss values of c up to 0.3, which is suggested
by Fraga et al.’s fit to the two-loop equation of state (Fraga et al.
2001) and also offers the possibility of heavy stars with a con-
siderable quark matter fraction.

3.2. Mass-Radius Relationship: A Hybrid Star
That ‘‘Looks Nuclear’’

Before surveying a wide range of values of the parameters
a4 ¼ 1� c, a2, and �c, we first display theM(R) curve for some
specific cases, showing how masses approaching 2 M� can be
achieved. TheM(R) relation is obtained by solving the TOVequa-
tion in the standard way, as described by Alford &Reddy (2003).
We choose a range of central pressures and integrate the TOV
equation outward until the pressure drops to zero, which marks
the surface of the star, and the integrated energy density yields
the mass (Glendenning 1997). In Figure 3 we show the result-

ing M(R) curves for quark matter with a2 ¼ (180 MeV)2. We
performed calculationswith c ¼ 0 and 0.3 (Fraga et al. 2001).We
tuned the bag constant to give a range of homogeneous neutral-
matter transition densities �c ¼ (2 4)nsat.

The most obvious feature is the dependence on c: com-
pared to the stars with c ¼ 0, hybrid stars containing quark matter
with a larger perturbative correction c ¼ 0:3 are significantly
heavier and a little larger, with masses approaching 2 M� and
radii around 11 km. It is also striking that stars with c ¼ 0:3
have an M(R) relation essentially identical to that of APR nu-
clear matter, up to masses around 1.9M�. This is because quark
matter with c ¼ 0:3 has an equation of state very close to that of
APR nuclear matter over the relevant range of pressures. This
was discussed in x 3.1.

In Figure 4 we show, for the same family of stars, the radius at
which the first (lowest density) transition from nuclear matter to
quark matter occurs. Note that this radius is quite large for the
heavier stars. In the c ¼ 0:3 case there may be transitions back
and forth between quark and nuclear matter as one goes deeper
into the star, because the equations of state are so similar. While
suchmultiple transitions cannot be ruled out a priori, we suspect
that they are not physical. They are an artifact of our model de-
scription of the nuclear and quark phases and not a robust pre-
diction. Here and in the rest of the paper we ignore this possibility
and entertain only one transition from nuclear to quark matter,
beyond which we use the quark matter equation of state. While
this will make little difference to the structure of the star, since
the nuclear and quark matter equations of state are both very
similar in this regime, it would have important consequences for
transport properties.

3.3. Maximum Mass as a Function of Quark
Matter Parameters

Having seen that with a perturbative correction c set to a
reasonable value we can increase themaximum hybrid star mass,
we now look at how maximum hybrid star mass depends on the
parameters of our phenomenological equation of state (3): a4, a2,
and the transition density �c.

In Figure 5 we plot the maximum mass, Mmax, obtained by
varying the central pressure and choosing the heaviest resulting

Fig. 3.—The M(R) relationship for hybrid stars involving quark matter
obeying the phenomenological equation of state (3) with a2 ¼ (180 MeV)2. In
each case the bag constant was chosen to give the desired transition density. The
line with filled circles is the M(R) relation for a pure nuclear APR star. All the
phases are neutral and homogeneous. We see that the maximum mass Mmax

is very sensitive to the QCD correction c but not to the transition density. For
c ¼ 0:3, which is close to the value suggested by Fraga et al. (2001), Mmax �
1:9 M�. Note also that the c ¼ 0:3 equation of state is so similar to APR that its
M(R) curve is almost identical to that of pure APR. [See the electronic edition of
the Journal for a color version of this figure.]

Fig. 4.—Radius at which the first (lowest density) transition from nuclear
matter to quark matter occurs, for the families of stars whose M(R) relations
were given in Fig. 3. Note that this radius is quite large for the heavier stars. In
the c ¼ 0:3 case there may be transitions back and forth between quark and nu-
clear matter at higher density (smaller radii). [See the electronic edition of the
Journal for a color version of this figure.]
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stable star that contains some quark matter. We calculatedMmax

as a function of a2, for a4 ¼ 1, 0.8, 0.7, and 0.65. In each case
we repeated the calculation for two different transition densities,
�c ¼ 3nsat (solid lines) and �c ¼ 2nsat (dashed lines). The lines
in Figure 5 end when there is no longer a stable hybrid star. This
corresponds to the hybrid star branch in the M(R) plot having a
positive slope along its whole length.

We see that masses up to 2M� can be obtained by choosing a
small value of a4 and setting a1

=2
2 to an appropriate value in the

range 150–250 MeV. (Recall that in unpaired quark matter a1=22

corresponds to the strange quark mass.) This is understandable,
since the effective bag constant must decrease with increasing
a2 at fixed �c: it is well known that in stars dominated by quark
matter, Mmax � B�1=2

eA (Witten 1984).
One might want to ask how large the quark matter core is for

the heaviest stars, but this question does not have an easy an-
swer. For a4 � 0:7 (c � 0:3), the quarkmatter and nuclearmatter
equations of state are so similar that the transition density is not
precisely defined (as we saw in Fig. 2), so it is not clear where
the transition occurs: there is a whole range of transition densi-
ties that correspond to the same bag constant. This is why, for
lower values of a4, the maximum mass is not very sensitive to
the transition density. Figure 4 shows that the first transition
from nuclear to quark matter occurs at quite large radii for the
heavy stars.

3.4. Conclusion

We have seen that the very simple phenomenological pa-
rameterization (3) of the quark matter equation of state allows
us to survey themain effects of the various parameters andmakes
it clear that a4 ¼ 1� c is the most important in determining the
maximum mass. With a value corresponding to free-quark mat-
ter (c ¼ 0), we find amaximum hybrid star mass of about 1.6M�,
similar to the value found in previous studies. With a value cor-
responding to QCD corrections of a plausible strength (c �
0:35), we find a maximum mass of about 2 M�.

In x 4 we show that this conclusion is robust. We repeat our
analysis with a more complicated quark matter equation of state,
based on the expected physics of dense quark matter. We allow
competition between paired and unpaired phases and mixed

quark and nuclear matter phases. We find that these factors have
no effect on our essential findings regarding the maximum mass
of hybrid stars.

4. A MORE SOPHISTICATED APPROACH: A PHYSICAL
MODEL OF QUARK MATTER AND MIXED PHASES

The model we use in this section is more complicated and
physically well founded than the phenomenological parame-
terization of x 3, but it is still a relatively simpleMIT bagmodel.
We allow competition between two phases of quark matter, the
three-flavor unpaired phase and the CFL color-superconducting
phase. The phase with the lowest free energy (highest pressure)
is favored.
The parameters of this model are the strange quark mass ms,

the CFL pairing gap �, the density �c of the nuclear-to-quark-
matter transition (which determines the bag constant), and a
QCD-inspired correction parameter c. This is similar to the phe-
nomenological parameterization of x 3, but the effective param-
eter a2 is now calculated within a model.
At asymptotically high chemical potential on the order of

108 MeV, the CFL phase is known to be the ground state of
three-flavor quark matter, although it may persist to much lower
chemical potentials. At lower densities the strange quark mass
becomes nonnegligible relative to the chemical potential, and at
m2

s /� ¼ 4� there is a transition to unpaired quark matter (Alford
& Rajagopal 2002).2 When we include the nuclear matter, there
is a three-way competition between nuclear matter, unpaired
quark matter, and CFL quark matter.
Now that we have a physical model in hand, we can calculate

the pressure of charged, as well as neutral, phases of quark mat-
ter. This means that we can study mixed, as well as homoge-
neous, phases. The transition from nuclear matter to quarkmatter
can proceed via a mixed phase (Glendenning 1992), in which
there is charge separation, and a positively charged nuclear phase
interpenetrates with a negatively charged quark matter phase,
yielding a globally neutral inhomogeneous phase. This will only
occur if the surface tension at the boundary of the two phases is
low enough. Otherwise there will be a sharp interface between
the two homogeneous neutral phases. The critical surface ten-
sion is �c � 40 MeV fm�3 (Heiselberg et al. 1993; Alford et al.
2001b). Since the surface tension is completely unknown, we
separately consider both mixed phases and sharp interfaces in
our calculations.

4.1. Unpaired Three-Flavor Quark Matter

In the naive bag model, in which perturbative corrections are
ignored, the free energy of free-quark matter consists of the ki-
netic contribution from a degenerate free gas of three colors of
relativistic quarks and the negative vacuum pressure from the
bag constant, Beff ,

�unp(�u; �d;�s) ¼
3

�2

X
i¼u;d;s

Z ffiffiffiffiffiffiffiffiffiffiffi
�2
i
�m2

i

p

0

dp p2(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ m2

i

q
� �i)þ BeA;

ð6Þ

Fig. 5.—Dependence of Mmax on a2 for hybrid stars involving quark matter
obeying the phenomenological equation of state (3). Increasing a2 decreases Beff

at fixed �c, giving rise to larger maximummasses. We show results for two tran-
sition densities, �c ¼ 3nsat and 2nsat. The maximummass is not very sensitive to
the transition density. [See the electronic edition of the Journal for a color ver-
sion of this figure.]

2 Actually, before that, at m2
s ¼ 2��, there is a transition to a gapless phase

(Alford et al. 2004, 2005), and at ms � m1=3
light�

2=3 there is the possibility of K 0

condensation in the CFL phase (Bedaque & Schäfer 2002; Kaplan & Reddy
2002; Kryjevski et al. 2005): we ignore these additional complications because
their contributions to the pressure are of order m4

s , which is just a renormali-
zation of the bag constant, which for us is a nonphysical parameter.
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where �u ¼ �� 2/3ð Þ�e, �d ¼ �s ¼ �þ 1/3ð Þ�e are the indi-
vidual quark chemical potentials and � and �e are the baryon
and electron chemical potentials, respectively. We may neglect
the quark masses of the up and down quarks in quark matter,
sincemlight � mu � mdT�. On the other hand, the strange quark
mass is not negligible compared to �. In this work we assume
that ms < � so that an expansion in powers of ms/� is meaning-
ful and study three-flavor quark matter.

In neutral unpaired quark matter, the electron chemical po-
tential is determined by the condition of charge neutrality and is
given by

�e ¼
m2

s

4�
� m4

s

48�3
þ O

m6
s

�5

� �
: ð7Þ

Substituting this in equation (6) and expanding in powers of
ms /�, we obtain

�neutral
unpaired(�) ¼� 3

4�2
(1� c)�4

þ 3�2m2
s

4�2
þ 12 log

�ms

2�

	
� 7

� �
m4

s

32�2

þ 5m6
s

576�2�2
þ BeA þ O

m8
s

�4

� �
; ð8Þ

where we have dropped terms of order m8
s /�

4 and higher and
introduced a parameter c corresponding to the QCD-inspired
corrections of Fraga et al. (2001), just as we did in x 3. From equa-
tion (8) we see that the expansion in powers of ms/� is rapidly
convergent, even forms � �. The contribution to the free energy
from the m6

s /�
2 term is less than one part in 104 of the �4 term

whenms � 300MeVand � ¼ 350MeV. This means that neutral
unpaired quark matter is really just a particular case of the phe-
nomenological parameterization explored in x 3.

The FPS parameterization relies on the analysis of Freedman
and McLerran, which is rigorous for massless quarks (Farhi &
Jaffe 1984; Freedman &McLerran 1977a, 1977b, 1977c, 1978;
Baluni 1978).We therefore apply the effects of the ‘‘perturbative’’
QCD correction only to the�4 (i.e., massless) part of the free energy.
Again, this is similar to the phenomenological parameteriza-
tion, where the QCD correction is a modification of the coef-
ficient of the �4 term.

If we do not impose the neutrality condition but expand in
powers of �e/� as well as ms/�, we find that the expansion does
not converge nearly as well, so for charged unpaired quark mat-
ter we must use the full form of the free energy equation (6).

4.2. Color-Flavor-locked Quark Matter

In CFL matter, the pairing locks the Fermi momenta of all
the quarks to a single value, requiring the number densities of
up, down, and strange quarks to be equal (Rajagopal &Wilczek
2001; Steiner et al. 2002). This costs free energy, which is offset
by the pairing contribution

�� ¼ � 3

�2
�2�2 þ O(�4): ð9Þ

Calculations of� with effective interactions yield values in the
range 10–100 MeV (Rajagopal & Wilczek 2001; Alford 2001;
Rischke 2004; Schäfer 2003; Reddy 2002; Shovkovy 2004) for
� in the range 300–600 MeV. So it is reasonable to retain only
the leading order (in powers of �) contribution. As in the case
of the strange quark mass, the�4 contribution has a weak (log-

arithmic) dependence on �, and its contribution to the equa-
tion of state is indistinguishable from Beff.

When color and electric neutrality is imposed, there are no
electrons in the CFL phase, since there are equal numbers of up,
down, and strange quarks, so the electron chemical potential �e ¼
0. Expanding the free energy in powers of ms/�, we find (Alford
et al. 2001b)

�neutral
CFL quarks ¼� 3

4�2
(1� c)�4 þ 3m2

s�
2

4�2
� 3�2�2

�2

þ 12 log
�ms

2�

	
� 1

� �
m4

s

32�2
þ BeA þ O

m6
s

�2

� �

¼ �neutral
unpaired þ

3m4
s � 48�2�2

16�2
þ O

m6
s

�2

� �
; ð10Þ

where we have assumed that the unpaired and CFL phases have
the same bag constant.

We see from the first line of this expression that the equation
of state of neutral CFL matter is controlled by the strange quark
mass and pairing gap in a combination that corresponds to the
parameter a2 in the phenomenological parameterization (3), if
we identify

a2 ¼ m2
s � 4�2: ð11Þ

Note that the m4
s terms do not follow such an identification, but

they are irrelevant because they are �-independent, so they are a
renormalization of the bag constant, which we choose to give
some specified transition density. Therefore, the neutral CFL
equation of state, to the order that we have expanded it, is rigor-
ously a function of the QCD-inspired correction c, the chosen
transition density �c , and m2

s � 4�2. However, the equation of
state for neutral quark matter in general is not rigorously a func-
tion ofm2

s � 4�2 only, because for a givenms and� there is com-
petition between the neutral CFL phase and the neutral unpaired
phase, whose equation of state is affected byms alone. However,
we expect the dependence on the linearly independent variable
4m2

s þ�2 to be very weak. By independently varyingms and�,
we have verified that this is the case. Of course, mixed phases are
complicated by the fact that they involve charged quark matter
whose equation of state depends on �e as an additional parameter.

We want to construct mixed phases, so we must also know
the equation of state for charged CFL matter with �e 6¼ 0. This
has contributions from the quarks, the electrons, and from the
Goldstone bosons. The Goldstone bosons arise due to the spon-
taneous breaking of chiral symmetry, analogous to the mecha-
nism in vacuum (Alford et al. 1999). The quark contribution is
independent of �e: CFL-paired quarks form an insulator with
gap �. So as long as �e < � there are no charged quasi-quark
excitations, so Q ¼ @�/@�e ¼ 0.

The Goldstone bosons are a consequence of spontaneous
breaking of chiral symmetry (Alford et al. 1999, 2001b) and,
like the octet of pseudoscalar mesons of QCD in vacuum, can be
described by an effective chiral field theory (Son & Stephanov
2000). When the electron chemical potential exceeds the mass
of the lightest negatively charged meson, which in the CFL phase
is the ��, these mesons condense (Bedaque & Schäfer 2002;
Kaplan & Reddy 2002; Kryjevski et al. 2005). The free energy
contribution of the meson condensate is

�GB
CFL(�; �e) ¼ � 1

2
f 2� �

2
e 1� m2

�

�2
e

� �2

; ð12Þ
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where the parameters are (Son & Stephanov 2000)

f 2� ¼ (21� 8 ln 2)�2

36�2
; m2

�� ¼ 3�2

�2f 2�
ms(mu þ md): ð13Þ

We used mu ¼ 3:75 MeV and md ¼ 7:5 MeV. Finally, the free
energy contribution from electrons and muons is given by

�leptons(�e) ¼
X

i¼e�;��

1

�2

Z ffiffiffiffiffiffiffiffiffiffiffi
�2
e�m2

i

p

0

dp p2(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ m2

i

q
� �e):

ð14Þ

The total free energy for CFL quark matter is then

�charged
CFL (�; �e) ¼ �neutral

CFL quarks(�)þ �GB
CFL(�; �e)þ �leptons(�e):

ð15Þ

4.3. A Bag Model Hybrid Star that Masquerades
as a Neutron Star

Using the bag model equations of state for unpaired and CFL
quark matter, we can proceed as in x 3 to solve the TOV equa-
tion and obtain M(R) curves for hybrid stars. We first show a
specific example, in Figure 6. We have chosen the bag model
parameters to give the same equation of state for neutral matter
as was studied using the phenomenological parameterization in
Figure 3. Now, however, we can also study mixed phases. The
solid lines, for homogeneous neutral quark and nuclear matter
phases, are the same as in Figure 3. The dashed lines show the
M(R) relation when mixed phases are allowed. We see that
although the overall shape of the M(R) curve is quite different
when mixed phases are present, the maximum mass is not sig-
nificantly affected. Themaximummass of a compact star is there-
fore insensitive to the surface tension of the interface between
quark matter and nuclear matter. This is because the maximum
mass configuration is characterized by a baryon density that is

large compared to the transition density and most of the star is
either in the homogeneous quark matter phase or in a mixed
phase that is dominated by quark matter.
We can also see that, as in the phenomenological model ex-

plored in x 3, themaximummass is very sensitive to theQCDcor-
rection c and relatively insensitive to the transition density. All the
curves in Figure 6 are for ms ¼ 180 MeV and � ¼ 0, so from
this figure we cannot judge the sensitivity to those parameters.

4.4. Maximum Mass as a Function of Bag Model Parameters

In Figure 7 we give a more complete picture by plotting the
maximummass of the star as a function of ðm2

s � 4�2Þ1=2. Vary-
ing the independent variable, ð4m2

s þ�2Þ1=2, has negligible ef-
fect, as one would expect.We plot this relationship for �c ¼ 3nsat
and 2nsat. The stars with small m2

s � 4�2 correspond to hybrid
stars containing CFL quark matter, while those with large m2

s�
4�2 correspond to stars with unpaired quark matter. We see that
the largest masses are obtained by turning m2

s � 4�2 up to a
large value, corresponding to a strange quark mass in the range
200–300 MeV. This is the same situation that was described in
x 3.3, since the effective bag constant must decrease with increas-
ing m2

s � 4�2 at fixed �c. As mentioned earlier, stars dominated
by quark matter haveMmax � B�1=2

eA (Witten 1984). We also see
that the value of the transition density is not very important:
Mmax is only weakly dependent on the transition density, partic-
ularly when the perturbative correction is included.

5. CONCLUSIONS

We have studied the mass-radius relationship for hybrid com-
pact stars, with a nuclear matter crust (described by the APR
equation of state) and a quark matter core. We used a phenom-
enological parameterization (1) of the neutral quark matter equa-
tion of state and also a simple MIT bag model that allowed us to
construct mixed phases. In both cases we included a QCD cor-
rection parameter c in the quark matter equation of state, and we
found that increasing its value from zero (no QCD corrections)
to a reasonable value (c ¼ 0:35; Fraga et al. 2001) increases the
maximumhybrid star mass from about 1.6M� to about 2M�. This
is clear fromFigure 5 (for the phenomenological parameterization)
and Figure 7 (for the bag model). The reason is that increasing

Fig. 6.—The M(R) relationship for hybrid stars involving quark matter
obeying the simple bag model equation of state, with various values of c and �c ,
and ms ¼ 180 MeV and � ¼ 0. The line with filled circles is the M(R) relation
for a pure nuclear APR star. The solid lines are for hybrid stars with homoge-
neous neutral APR and CFL phases; the dashed lines are for hybrid stars with
mixed APR+CFL phases. We see that the maximummassMmax is very sensitive
to the perturbative correction c but not to the transition density or the occurrence
of mixed phases. For c ¼ 0:3, which is close to the value suggested in Fraga
et al. (2001), Mmax � 1:9 M�. [See the electronic edition of the Journal for a
color version of this figure.]

Fig. 7.—Maximum mass Mmax for hybrid stars containing quark matter
obeying the simple bag model equation of state. We show the dependence on
ðm2

s � 4�2Þ1=2. Increasing this quantity decreases Beff at fixed �c, giving rise to
larger maximum masses. The maximum mass is only weakly dependent on the
transition density, particularly when the perturbative correction is included. [See
the electronic edition of the Journal for a color version of this figure.]
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c hardens the quark matter equation of state, making it almost
indistinguishable from the APR nuclear equation of state (see
Fig. 1). It is important to note that we achieve these masses with
reasonable transition densities �c of order 2–3 times nsat. Our
stars have a proper crust of nuclear matter: we are not resorting to
low transition densities that yield ‘‘hybrid’’ stars that are actually
quark stars with a tiny shell of nuclear matter around the outside.

We conclude that it is harder than previously thought for a
simple mass measurement to rule out the presence of quark mat-
ter in compact stars. Currently published measurements of the
masses of compact stars are all consistent with a maximum mass
of Mmax � 1:7 M� at the 2 � level. Our results show that max-
imum masses of up to 2M� can be accommodated by models of
hybrid stars with reasonable quark matter equations of state.

We also note that ourM(R) curves are consistent with the con-
straint obtained from measurements of red shifts of iron absorp-
tion lines in the low-mass X-ray binary EXO 0748�676 (Cottam
et al. 2002). If that constraint were plotted in our Figure 3, it would
intersect our c ¼ 0:3 curve at M � 1:7 M�.

This naturally raises two related questions: What sort of
mass or radius observation would provide evidence against the
presence of quark matter in neutron stars? And what sort of ob-
servation would provide evidence for the presence of color-
superconducting quark matter in particular?

Obviously a mass measurement above 2 M� would give a
reason for doubting the presence of quark matter. Other than
that, it seems difficult to diagnose the presence of quark matter
viaM(R) measurements. The regions ofM(R) space that can be
reached by hybrid quark-nuclear stars are the same as those that
can be reached by hadronic matter stars, once moderately exotic
phenomena such as kaon condensation or hyperon production
are allowed (Lattimer & Prakash 2001; Haensel 2003). Obser-
vation of an object with a small radius (R � 7 10 km at M �
1:4 M�) would rule out simple nucleonic matter but would not
favor quark matter over the exotic forms of hadronic matter. There
are regions of parameter space (very small M and R, for exam-
ple) that can only be reached by pure quark matter objects, which
only exist if quark matter is absolutely stable (�c ¼ 0). Other

regions of the parameter space are inconsistent with both ha-
dronic and quark matter.

Demonstrating the presence of color-superconducting quark
matter via M(R) measurements appears to us to be very diffi-
cult. However, this is not for the naive reason that ‘‘the color
superconductivity contribution to the pressure is suppressed by
O(�2/�2).’’ As previously noted (Lugones & Horvath 2002;
Alford & Reddy 2003), the leading �4 contribution is mostly
canceled by the bag constant, so the subleading�2�2 term is po-
tentially important. However, in practice it is not detectable. First,
the bag model equation of state depends on the color supercon-
ducting gap� via the linear combination m2

s � 4�2, so an accu-
rate determination ofms at high density would be needed to expose
the presence of a nonzero �. Second, the dependence of the
M(R) relation onm2

s � 4�2 is not particularly strong (see Fig. 7)
when a physical parameter �c is assumed known, rather than the
bag constant.

If color-superconducting quark matter is to be found in
compact stars, it seems more likely that it will be detected via
its effects on transport properties. Color superconductivity dras-
tically alters these, and possible signatures are being actively
investigated. These include cooling (sensitive to heat capacity
and neutrino emissivity and opacity; Reddy et al. [2003]; Jaikumar
et al. [2002]; Kundu & Reddy [2004]), r-mode spindown (sen-
sitive to bulk and shear viscosity; Madsen [2000]; Manuel et al.
[2004]; Drago et al. [2003]; Zheng et al. [2003]), and glitches
(sensitive to superfluidity and rigid structures; Alford et al. [2001a]).
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