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Hybrid-state free precession in nuclear magnetic
resonance
Jakob Assländer 1,2, Dmitry S. Novikov 1,2, Riccardo Lattanzi 1,2,3, Daniel K. Sodickson 1,2,3 &

Martijn A. Cloos 1,2,3

The dynamics of large spin-1/2 ensembles are commonly described by the Bloch equation,

which is characterized by the magnetization’s non-linear response to the driving magnetic

field. Consequently, most magnetic field variations result in non-intuitive spin dynamics,

which are sensitive to small calibration errors. Although simplistic field variations result in

robust spin dynamics, they do not explore the richness of the system’s phase space. Here, we

identify adiabaticity conditions that span a large experiment design space with tractable

dynamics. All dynamics are trapped in a one-dimensional subspace, namely in the magne-

tization’s absolute value, which is in a transient state, while its direction adiabatically follows

the steady state. In this hybrid state, the polar angle is the effective drive of the spin

dynamics. As an example, we optimize this drive for robust and efficient quantification of spin

relaxation times and utilize it for magnetic resonance imaging of the human brain.
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F
or many nuclei, the spin gives rise to a magnetic moment,
whose dynamics can be exploited, among other things, for
quantum computing1, to study the chemical structure of

molecules, as done in nuclear magnetic resonance2 (NMR)
spectroscopy, or to analyze the composition of biological tissue, as
used for clinical diagnosis in magnetic resonance imaging3 (MRI).
Modeling spin–lattice and spin–spin interactions as random
magnetic field fluctuations4 allows for capturing their macro-
scopic effect by the relaxation times T1 and T2, respectively. This
facilitates the description of large spin-1/2 ensembles with the
classical Bloch equation5, formally akin to the time-dependent
Schrödinger equation in a 4D-space:
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Here, ∂t denotes the partial derivative with respect to time, x, y, z
are the spatial components of the magnetization, and 1 is the
normalized z-magnetization at thermal equilibrium. The Rabi
frequencies2 ωx and ωy (induced by radio frequency (RF) pulses),
together with the Larmor frequency ωz, are the external drive of
the spin dynamics.

While the Bloch equation is very general, it provides little
intuition to help design robust and efficient experiments. This
lack of intuition has biased experimental design towards ele-
mentary drives for which analytic solutions make the effect of
spin relaxation and experimental imperfections evident. For
example, the workhorses of clinical MRI weight the signal
intensity either by T1 or T2 effects by exploiting the simplest spin
dynamics, most notably exponential relaxation6–8 and steady
states9–11. These basic drives span small subspaces like the steady-
state ellipse9,12–14, which entail relatively trivial spin dynamics
compared to the richness found outside. More recent approaches
strive to break away from such traditional experimental designs in
search for an improved signal-to-noise efficiency15. However, the
non-intuitive nature of the Bloch equation has limited the
exploration of this vast experiment design space to heuristic
guesses15–20.

The rationale for this improved encoding efficiency can be
understood intuitively: Variations of the driving fields result in a
transient state, which enables one to exploit the entire Bloch
sphere in search for the optimal encoding of characteristic
parameters such as spin relaxation times. However, there is a risk
associated with the transient state: Small magnetic field deviations
can produce substantial differences in spin trajectories, which can
bias the estimation of characteristic parameters. This is particu-
larly problematic in biological tissues, where inhomogeneous
broadening and diffusion narrowing are inevitable and are non-
trivial to model19,21,22.

Here, we formulate conditions under which the sensitivity to
magnetic field deviations and inhomogeneous broadening is
greatly mitigated and reveal a large subspace of drives in which
the Bloch equation is tractable. Our analysis shows that, under
these conditions, the direction of the magnetization adiabatically
follows the one of steady states, while the absolute value of the
magnetization can be in a transient state. In this hybrid state, the
spin dynamics thus live in a one-dimensional subspace and can
be described by a 2 × 2 Hamiltonian:
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where r is the magnetization along the radial direction, i.e. its
magnitude (refer to the section “Methods” for the derivation).

This notation identifies the polar angle ϑ(t), which is the angle
between the z-axis and the magnetization, as the relevant degree
of freedom, which describes the joint effect of the drives ωx(t),
ωy(t), and ωz(t) on the spin dynamics. As an example, we show
that this hybrid-state equation and its solution provide intuition
for the encoding processes of spin-relaxation times and are an
excellent basis for numerical optimizations of a T1 and T2 map-
ping experiment that combines the robustness of the steady state
with the encoding efficiency of the transient state.

Hybrid state boundary conditions
An eigendecomposition of the Bloch–Hamiltonian points out the
source of the sensitivity to magnetic field inhomogeneities. As the
magnetization described by Eq. (1) is real-valued, we can con-
clude that the eigenvalues of the Hamiltonian must either be real-
valued or occur in complex conjugate pairs. One eigenvalue is
zero and describes the steady-state magnetization. Therefore,
another eigenvalue must be real-valued. As such, it describes an
exponential decay of the corresponding transient-state compo-
nent, while the remaining complex eigenvalues describe oscilla-
tory decays. Ganter pointed out that the complex phase makes the
latter components very sensitive to deviations in the magnetic
field and, in particular, to inhomogeneous broadening23. Figure 1
provides some intuition for this sensitivity: As the complex phase
accumulates during the experiment, the spin trajectory becomes
very sensitive to deviations in the magnetic fields. Considering
that the measured signal is invariably given by the integral over
some distribution of Larmor frequencies21, or more generally,
over the Brownian paths in a magnetically heterogeneous envir-
onment22, contributions of the complex eigenvalues will lead to a
bias in the estimated relaxation parameters19.

Conversely, if we design our MR experiment such that the
cumbersome complex-valued eigenstates are not populated, we
achieve robustness to magnetic field deviations and inhomoge-
neous broadening. If we simultaneously populate the real-valued
transient eigenstate, we liberate the magnetization from the
steady-state ellipse and gain access to the entire Bloch sphere
(Fig. 1).

In general, variations of the driving fields rotate the eigenvec-
tors and populate all transient eigenstates. A Taylor expansion of
this eigenbasis rotation (see the section “Methods”) reveals that
this population is dominated by the gaps between the eigenvalue
and the rest of the Hamiltonian’s spectrum, similar to the
quantum mechanical adiabatic theorem24. If we assume T1= T2
as an illustrative example, the Hamiltonian has the eigenvalues λ1
= 0, λ2=−1/T1,2, and λ3,4=−1/T1,2 ± i|ω| with ω= (ωx, ωy, ωz).
This illustrates that the separation of the real-valued eigenvalue
from the steady-state relies on relaxation, while the spin-ensem-
ble’s frequency adds to the separation of the complex-conjugate
eigenvalues. It is this structure of the Hamiltonian’s spectrum that
enables the hybrid state.

For pulsed experiments6, which dominate modern MR, a
thorough derivation (see the section “Methods”) results in the
steady-state adiabatic condition

maxfjΔαj; jΔϕjg � TR=T1ð Þ2: ð3Þ
Here, the driving fields are parameterized by the flip angle α and
the accumulated phase ϕ= ωzTR, and Δα and Δϕ denote the
change of these parameters in consecutive repetitions. For bio-
logical tissue, rapid imaging protocols usually use TR≪ T1, which
makes Eq. (3) a very restrictive bound.

The eigenvalues’ phase allows for a substantially less restrictive
bound for the complex eigenstates:

maxfjΔαj; jΔϕjg � sin2
α
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Assuming, e.g., ϕ= π, which is commonly referred to as the on-
resonance condition23,25, this bound is at the order of one. Since
the latter adiabatic condition is substantially less restrictive, the
hybrid-state theory governs a vast experiment design space, as
illustrated in Fig. 2.

Adiabaticity and the solution of the Bloch equation
Hargreaves et al. showed that the eigenvector corresponding
to the complex eigenvalue is approximately perpendicular to
the steady-state magnetization25, while the real-valued eigen-
value describes the transient-state component parallel to the
steady-state magnetization. By enforcing Eq. (4), we, thus,

effectively force the direction of the magnetization to adiaba-
tically follow that of the steady states. If we then simulta-
neously pick our driving fields to violate Eq. (3), the magnitude
of the magnetization is in a transient state, and a hybrid of two
co-existing states emerges, which we dub the hybrid state.

The adiabaticity of the magnetization’s direction effectively
decouples the components of the Bloch equation, which allows us
to formulate an analytic solution. For this purpose, we transform
the Bloch equation into spherical coordinates and provide the
solutions for the polar angle ϑ, the phase φ, and the radius r,
which we here define as the magnitude combined with a sign
(refer to the section “Methods” for the derivation). Except in the
vicinity of the stop bands, which are defined by |sin ϕ|≪ 1
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Fig. 1 Comparison of spin ensemble states. a In a fully transient state (here visualized at the example of a random pattern of radio frequency pulses), the

spin trajectories on the Bloch sphere are, in general, very sensitive to magnetic field inhomogeneities. b The hybrid state is explicitly designed to mitigate

these sensitivities, while still allowing the magnetization to visit the entire Bloch sphere. c Fully adiabatic transitions between steady states have the same

robustness to magnetic field deviations, however, they trap the magnetization on the steady-state ellipse9, 12–14, which diminishes the capability to encode

tissue properties such as relaxation times. The steady-state ellipse is described by setting the left-hand side of Eq. (2) to zero. a–c Deviations of B0, which

dictates the Larmor frequency, has strong practical implications, because local magnetic field variations in a sample in nuclear magnetic resonance (or in a

volume element in magnetic resonance imaging (MRI), also known as a voxel and here visualized as a cube) give rise to a distribution of different Larmor

frequencies. Consequently, the observed signal, given by the integral over all measured frequencies, depends on the unknown distribution of Larmor

frequencies23. Here, ϕ denotes the phase accumulated over one repetition time TR, and we define ϕ= π as the on-resonance condition. d–f Deviations of

the radio-frequency field B1, which dictates the Rabi frequencies, can lead to strong variations of the spin trajectories in the transient state. Note that in

clinical MRI, the Rabi frequency within a voxel is approximately constant
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Fig. 2 Hybrid state design space. a The well-known steady state is characterized by a negligible population of all (real-valued and complex) transient

eigenstates and its adiabaticity condition is given by Eq. (3): Both population densities are small whenever the change of the flip angle Δα is small

compared to the theoretical limit (black volume). The hybrid state described here is characterized by a population of the real-valued eigenstate while

simultaneously avoiding a population of the complex-valued eigenstate. b, c In simulation, this occurs exactly in the predicted area of the parameter space

(purple volume). In this volume, Eq. (4) is fulfilled, yet Eq. (3) is not, so that the hybrid state can occur. For the illustrative example shown here, we

assumed T1= T2, a constant Δα, and Δϕ= 0. The simulation departs from the steady-state with α= ϕ and we depict the population density after 100

repetitions, each associated with a constant increase of α by Δα
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(Supplementary Fig. 5), the polar angle can be approximated by

tan ϑ ¼ tan α
2

sin ϕ
2

ð5Þ

This equation reduces to ϑ= α/2 for ϕ= π, which we define as
the on-resonance condition. In practice, ϕ= π is assigned to the
on-resonant spin isochromat by the common phase increment of
π in consecutive RF pulses. The phase of the magnetization is
approximated by

φ ¼ tan�1 cos ϕ� E2
sin ϕ

� �
�Hfsin ϕg � π þ ϕTE

; ð6Þ

where the Heaviside function H disambiguates the four-
quadrants and ϕTE

describes the phase of the magnetization
accumulated between the RF pulse and the time the signal is
observed, i.e., the echo time TE.

The radial component r captures the entire spin dynamics,
which is described by a single first-order differential equation (Eq.
(2)). This equation is solved by

rðtÞ ¼ aðtÞ � rð0Þ þ 1
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Here, t denotes time and r(0) the initial magnetization. Alter-
natively, we can define the initial magnetization as a function of
the final magnetization, i.e. r(0)= β · r(TC), where TC denotes the
duration of a single cycle of the experiment. With this boundary
condition, the radial Bloch equation is solved by Eq. (7) with

rð0Þ ¼ β

T1

aðTCÞ
1� βaðTCÞ

Z

0

TCcos ϑðτÞ
aðτÞ dτ:

When we set β= 1, a periodic boundary condition is obtained,
which requires the magnetization at the beginning and the end of
each cycle to be equal. Similarly, β=−1 leads to an anti-periodic
boundary condition, which implies an inversion of the magneti-
zation between cycles. Such boundary conditions enable the
concatenation of multiple cycles without delays, thus, allowing for
efficient signal averaging and a flexible implementation, e.g., of
time-consuming 3D imaging experiments.

Intuitively, Eq. (7) describes a predominant T1 encoding at
small ϑ-values (close to the z-axis), and a predominant T2

encoding as ϑ approaches π/2, which corresponds to the x–y-
plane. When ϑ is constant, Eq. (7) reduces to the exponential
transition into steady state described by Schmitt et al.26 (Sup-
plementary Note 1). Supplementary Figure 5 validates the hybrid-
state model by comparing Eqs. (5–7) to Bloch simulations for the
example of anti-periodic boundary conditions.

Robustness of the hybrid state
The superior robustness of the hybrid state in comparison to the
fully transient state becomes evident when estimating spin
relaxation times from simulated and measured signals. While the
fully transient state is, in general, sensitive to deviations of both
the Rabi and the Larmor frequency, inhomogeneous broadening
makes latter much more difficult to correct. In order to demon-
strate this, we simulated the average signal obtained from a col-
lection of isochromats with a Gaussian distribution of Larmor
frequencies and added white noise to reflect thermal noise.
Because the Larmor frequency distribution in a sample is gen-
erally unknown, the obtained signals were fitted assuming a single
isochromat. Figure 3 shows that the transient state leads to
increasingly biased estimates of the relaxation times as the
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distribution of Larmor frequencies widens (full width at half
maximum (FWHM) increases). Conversely, the hybrid state is
more robust to inhomogeneous broadening. This finding is also
validated experimentally in Fig. 4.

In most clinical imaging scenarios, the signal observed from
each voxel (or volumetric pixel) is approximated well by a single
Rabi frequency, which allows for easier correction17,27. Never-
theless, experiments that operate in the transient-state regime can
be so sensitive to magnetic field variations that even small cali-
bration errors can lead to substantial errors in the estimated
relaxation times (Supplementary Note 2).

Efficiency of the hybrid state
The simulations in Fig. 3 visualize numerically optimized
experiments. Thus, we can also use them to demonstrate the
superior signal-to-noise ratio (SNR) efficiency of the hybrid state
in comparison to the steady state. As anticipated, the estimates
retrieved from the hybrid-state experiment exhibit substantially
less noise compared to the steady state. The hybrid state, thus,
unites superior encoding capabilities similar to the transient state,
and robustness to deviations of the magnetic fields and to inho-
mogeneous broadening, similar to the steady state. This finding is
also validated experimentally in Fig. 4.

For a more comprehensive analysis of the noise properties of
different experiment design spaces, we examine the sum of the
relative Cramér–Rao bound (rCRB) for T1-encoding and T2-
encoding. The rCRB provides a lower limit for the noise in the
estimated parameters, normalized by the input noise variance, by
the square of the respective relaxation time and by TC/TR (Eqs.
(39) and (40)). It can be understood as a lower bound for the
squared inverse SNR efficiency per unit time, and Fig. 3 shows
that the simulated noise comes close to this theoretical limit. We
numerically searched the parameter space of possible drive
functions for the lowest combined rCRB. Due to the nature of the
steady state, its rCRB does not depend on TC, so that the
experiment’s duration can be chosen freely to meet the experi-
mental needs. Hybrid-state experiments with anti-periodic
boundary conditions provide a similar flexibility, since multiple
cycles can be concatenated without gaps. Comparing these two
experiments, one finds that the hybrid state allows for a sub-
stantially more efficient measurement than the steady state
(Fig. 5).

The performance of exponential relaxation curves is here
demonstrated using the example of the inversion-recovery
balanced steady-state-free precession (IR-bSSFP) experiment,
which is known to have a high SNR efficiency26,28. (Despite the
name, this is actually not a steady-state experiment. Instead, one
measures the magnetization as it exponentially approaches the
steady state.) In contrast to the previously discussed experiments,
the magnetization departs here from thermal equilibrium. This
requires a long waiting time (Δt≫ T1) before the measurement
can be repeated. For TC≲ 25 s, exponential experiments have a
lower rCRB compared to steady-state experiments, and for TC≲
5 s it is even lower compared to anti-periodic hybrid-state
experiments (Fig. 5). An optimization of exponential experiments
is essentially the search for the optimal line from the southern
half of the Bloch sphere to the steady-state ellipse (Supplementary
Fig. 4g). If we take the IR-bSSFP experiment and allow ϑ(t) to
vary over time, we can exploit the full experiment design space
spanned by the hybrid state, and we find an improved SNR-
efficiency at all TC values, with the most dramatic improvement
in the case of long experiments. In analogy to the acronym IR-
bSSFP, we use the term inversion-recovery balanced hybrid-state-
free precession (IR-bHSFP) for hybrid-state experiments that
start from thermal equilibrium by the application of an inversion

pulse. We focus this analysis on experiments with balanced gra-
dient moments because of their superior SNR properties.

In this section, we analyzed the noise properties at a single T1
and T2 value. Supplementary Note 3 demonstrates that the con-
clusions drawn here remain valid throughout large areas in T1–
T2-space, and also in the presence of deviations of the Larmor and
Rabi frequencies.

Spin dynamics in the hybrid state
Optimizing the driving functions ϑ(t) results in spin trajectories
with reproducible features (Fig. 6). For example, all optimizations
resulted in comparatively smooth functions ϑ(t). Note that the
optimizations assume a hybrid state, but otherwise do not enforce
smoothness, which indicates that the adiabaticity condition (Eq.
(4)) does not impair the T1,2-encoding efficiency. In some seg-
ments, the optimization exploits the design limits 0 ≤ ϑ ≤ π/4,
which are imposed for practical reasons. These extreme values
help to achieve a large dr/dT1 while minimizing dr/dT2 and vice
versa. However, directly after crossing the origin (turquoise seg-
ment), the product of dr/dT1 and dr/dT2 has a different sign
compared to the remainder of the sequence, which makes this
segment valuable for decorrelating those two derivatives. As a
consequence, the magnetization follows a trajectory with ϑ > 0.
During a segment of ϑ ≈ 0 (yellow segment), dr/dT2 approaches
zero. Thereafter, the optimized driving function ϑ increases again,
resulting in non-zero signal and disentangled encoding of r and
dr/dT1. Further, the optimized trajectories do not spend a sig-
nificant amount of time on the steady-state ellipse. On the con-
trary, crossing the ellipse triggers a fast change of ϑ, as highlighted
by the magnifications in Fig. 6.

Described hybrid-state spin trajectories result from non-convex
optimizations and we can only speculate about their optimality.
However, the simple and reproducible structures, together with
the simple form of the governing Eq. (2) provide an excellent
basis for a more detailed analysis.
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In vivo experiment
Figure 7 shows an example application of the hybrid state. The
T1-map and T2-map in a sagittal slice through a human brain
were acquired with an anti-periodic bHSFP experiment and
demonstrate the feasibility of the hybrid state for in vivo imaging.
Similar to the case of steady-state imaging, the robustness of the
hybrid-state spin dynamics with respect to magnetic field varia-
tions allows us to approximate the inhomogeneously broadened
spin ensemble in each voxel by a single spin isochromat with a
well-defined Larmor frequency (Figs. 3 and 4). The benign
response of the spin dynamics to B0 and B1 inhomogeneities—
evident from the fact that Eqs. (5)–(7) are smooth functions of α
and ϕ outside of the stop-band—further mitigates the propaga-
tion of unavoidable errors in estimates of those field variations,
allowing for a robust correction17,27. Figure 7 also serves as a
validation of the hybrid-state model: Fitting the data with the full
Bloch model and the hybrid-state model resulted in virtually the
same T1-map and T2-map, apart from regions with extremely
long relaxation times (arrows in Fig. 7). This good agreement is
also confirmed by the values within a region of interest comprised
by white brain matter (bottom left corner in Fig. 7). All slices of
this 3D acquisition can be found in Supplementary Note 4, where
we also show an additional knee scan that demonstrates the
robustness of hybrid-state acquisitions and alludes to their
versatility.

Scope of the hybrid-state model
Adiabatic passages are frequently used in NMR, MRI, as well as
quantum computing for robust spin excitation, inversion, and
refocusing in the presence of magnetic field inhomogeneities29,30.
These passages are achieved by using continuous, slowly varying
driving fields, for which the well-established adiabaticity condi-
tion jdωx;y;z=dtj � ω2

x þ ω2
y þ ω2

z exploits the same structure of
the Hamiltonian’s spectrum as the hybrid-state condition (Eq.
(4)). Further, adiabatic pulses commonly violate the

corresponding steady-state condition jdωx;y;z=dtj � 1=T2
1 . From

this point of view, we can consider the hybrid state as a gen-
eralization of adiabatic passages to pulsed experiments, which
allows us to exploit their robustness throughout the entire
experiment. The flexible and efficient access to relaxation
mechanisms, combined with the robustness of adiabatic passages
constitutes the core of the hybrid-state framework.

The robustness of the measured signal to magnetic field
deviations, including inhomogeneous broadening, is reflected by
the hybrid-state equations of motion (Eqs. (5–7)) being smooth
functions of the Larmor and Rabi frequencies, which are here
parameterized by ϕ and α, respectively. This property is a direct
consequence of the constrained population of the complex
eigenstates and is particularly important when the line shape is
unknown, e.g., when measuring biological tissue with balanced-
HSFP experiments21. The estimation of the distribution is less
problematic in unbalanced experiments, such as the fast imaging
with steady-state precession11 (FISP) experiment, or the reversed
PSIF experiment. In these experiments, one places crusher gra-
dient pulses directly before or after the RF pulses, which essen-
tially average the signal over ϕ∈ [−2π, 2π] and desensitize the
signal to inhomogeneous broadening at the cost of SNR.
Assuming ϕ= 0 as a worst-case scenario, the hybrid-state model
holds true for these experiments, and the crusher gradients can be
incorporated by setting ϕTE

¼ 0 or ϕTE
¼ ϕ in Eq. (6) for FISP

and PSIF, respectively.
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Fig. 7 In vivo validation of the hybrid-state model. A single sagittal slice of a

3D magnetic resonance imaging experiment of a human brain is depicted.

a, c The data were acquired with an anti-periodic hybrid-state experiment

and were fitted with the Bloch model (Eq. (1)), and b, d with the hybrid-

state model (Eqs. (5–7)). The parameter maps have a resolution of 1 mm ×

1 mm× 2mm and spatial encoding was performed with a 3D stack-of-stars

k-space trajectory62. The red box indicates a region of interest used for

extracting the T1 and T2 values denoted in the corner of the images. The

arrows indicate a region with very long relaxation times in which slight

deviations between the models can be observed. Note the logarithmic scale

of the color coding
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For complex molecules, as well as for complex biological tis-
sues, the Bloch equation is an oversimplified model. This can be
observed in Fig. 7, where the measured relaxation times are
subject to systematic deviations, which are most likely caused by
magnetization transfer31–33. Magnetization transfer, as well as
diffusion34 and chemical exchange35, are captured neither by the
Bloch equation, nor by the hybrid-state model in their basic
forms. However, these effects can be modeled by extensions to the
hybrid-state model similarly to the established extensions of the
Bloch equation34,35. Such extended hybrid-state models can
provide a more intuitive understanding of these effects, and pave
the road towards more efficient experiment designs to
measure them.

Methods
Derivation of the hybrid state adiabaticity conditions. The evolution matrix: In
order to describe pulsed MR experiments, we analyze the spin evolution matrix
U∈ℝ4×4, which is generated by the Hamiltonian. The matrix U can, e.g., be
derived by taking the matrix exponential of the Hamiltonian and is not unitary due
to the relaxation terms (Eq. (1)). Note that an analysis of the evolution matrix is
largely equivalent to an analysis based on the Hamiltonian itself. For pulsed
experiments, where we assume one hard, i.e. infinitesimally short, RF pulse sur-
rounded by Larmor precession and relaxation, the evolution matrix is given by

U ¼ E � Rz � Ry � Rz � E; ð8Þ

where

E ¼

ffiffiffiffiffi
E2

p
0 0 0

0
ffiffiffiffiffi
E2

p
0 0

0 0
ffiffiffiffiffi
E1

p
1� ffiffiffiffiffi

E1
p

0 0 0 1

0
BBB@

1
CCCA

describes the relaxation of the magnetization with E1,2= exp(−TR/T1,2). The
rotation matrices

Ry ¼

cos α 0 � sin α 0

0 1 0 0

sin α 0 cos α 0

0 0 0 1

0
BBB@

1
CCCA

and

Rz ¼

cos ϕ2 � sin ϕ
2 0 0

sin ϕ
2 cos ϕ2 0 0

0 0 1 0

0 0 0 1

0
BBBB@

1
CCCCA

describe the rotations caused by the RF pulse and free precession, respectively.
Equation (8) assumes a symmetric experiment, as it is used, e.g. in balanced-

SSFP experiments, where one usually measures the magnetization in the middle
between two RF pulses (TE= TR/2)36. In the case of unbalanced-SSFP experiments,
one would usually acquire the magnetization right after each RF pulse and would
place a so-called crusher gradient after the signal acquisition in order to create a net
gradient moment. In such a FISP11 experiment, the evolution matrix would, thus,
be given by UFISP=Ry · Rz · E2 with the appropriate choice of ϕ, and the reversed
PSIF experiment with the crusher gradient prior to the readout would be described
by UPSIF= E2 · Rz · Ry. Note that derivations for FISP and PSIF lead to the same
result as the one presented here.

For future reference, we also define the derivative of U with respect to α, which
is given by U′ ¼ ERzR

′

yRzE with

R′

y ¼

� sin α 0 � cos α 0

0 0 0 0

cos α 0 � sin α 0

0 0 0 0

0
BBB@

1
CCCA; ð9Þ

and the derivative of U with respect to ϕ, which is given by U′ ¼ ER′

zRyRzEþ
ERzRyR

′

zE with

R′

z ¼
1

2

� sin ϕ
2 � cos ϕ2 0 0

cos ϕ2 � sin ϕ
2 0 0

0 0 0 0

0 0 0 0

0
BBBB@

1
CCCCA
: ð10Þ

Eigendecomposition of the evolution matrix: The eigendecomposition of the
evolution matrix is given by

U ¼ VΛV�1; ð11Þ

where V∈ℂ4×4 is composed of the right-eigenvectors vd∈ℂ4×1 defined by Uvd=
λdvd, and Λ∈ℂ4×4 is a diagonal matrix with the eigenvalues λd∈ℂ on the
diagonal. The magnetization in MR experiments never grows arbitrarily, so that |
λd| ≤ 1 must be fulfilled for all eigenvalues. Further, if the experiment described by
U has a non-zero steady-state magnetization, at least one eigenvalue must fulfill |
λd|= 1.

For the explicit definition of the evolution matrix in Eq. (8), which describes
one RF pulse surrounded by free precession and relaxation, one eigenvalue is given
by

λS ¼ 1 ð12Þ

and the corresponding eigenvector describes the steady-state magnetization. As
shown by Ganter23, the remaining eigenvalues are approximated by

λk ¼
1

η2
cos2

α

2
sin2

ϕ

2
E1 þ sin2

α

2
E2

� �
ð13Þ

λ
ð�Þ
? ¼ e± iΩ

2η2
sin2

α

2
E1 þ η2 þ cos2

α

2
sin2

ϕ

2

� �
E2

� �
ð14Þ

with

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2

α

2
sin2

ϕ

2
þ sin2

α

2

r
ð15Þ

e± iΩ ¼ 1� 2η2 ± 2ηi cos
α

2
cos

ϕ

2
: ð16Þ

These eigenvalues are a first-order approximation of the parameter δ= (E1− E2)/
(E1+ E2), which is small for TR≪ {T1, T2} in most biological tissues23. The
eigenvalues have an absolute value smaller than one and describe the transient
state. The eigenvalue λk is real-valued and the corresponding eigenvector is

approximately parallel to the steady-state magnetization in the three spatial

dimensions23. The other two eigenvalues λ
ð�Þ
? are in general complex and complex

conjugate of each other, as indicated by the star. This results in the well-known
oscillatory behavior of the transient state of bSSFP experiments25. As shown by
Ganter23, the corresponding eigenvectors are approximately perpendicular to the
steady-state eigenvector.

The perturbation matrix: A sequence of N identical and equidistant RF pulses is
simply given by UN=VΛNV−1 and describes the transition into the steady
state23,25. The description of an experiment with varying driving fields, as required
to avoid the steady state, is slightly more complicated. To approach this problem,
we denote the evolution matrix of the nth repetition by Un and the spin dynamics
in two consecutive repetitions is described by
UnUn�1 ¼ VnΛnV

�1
n Vn�1Λn�1V

�1
n�1 ¼ VnΛnPnΛn�1V

�1
n�1 . Here, the perturbation

matrix

Pn ¼ V�1
n Vn�1 ð17Þ

describes the transformation from the eigenspace of Un−1 to the eigenspace of Un.
Expanding the perturbation matrix: Since an explicit notation of the

perturbation matrix is not very enlightening, we approximate its elements by a
Taylor expansion Un�1 ¼ Uðκn�1Þ ¼ UðκnÞ � ΔκnU

′ðκnÞ þ OðΔκ2nÞ, where
U′ðκnÞ ¼ dU=dκjκ¼κn

denotes the derivative evaluated at κn. Assuming that U(κn)

is not degenerate, i.e. all eigenvalues are distinct, we can utilize the Taylor series
described by Eq. (10.2) in Chapter 2 of ref. 37 to expand the perturbation matrix
(Eq. (17)). The diagonal elements are then given by Pd→d= 1 and the off-diagonal
elements by

Pd!f≠dðκn;ΔκnÞ � �
Δκn uHf ðκnÞU′ðκnÞvdðκnÞ

ðλdðκnÞ � λf ðκnÞÞuHf ðκnÞvf ðκnÞ
; ð18Þ

where the left-eigenvectors are defined by uHf ðκnÞUðκnÞ ¼ λf ðκnÞuHf ðκnÞ and the

right-eigenvectors by U(κn)vf(κn)= λf(κn)vf(κn). The superscript H indicates the
complex conjugate transpose. Equation (18) has some similarities to the quantum
mechanical adiabatic theorem24. In both cases, the matrix elements strongly
depend on the gap between the eigenvalues. Like in the quantum mechanical case,
λS− λk is purely determined by the absolute value of the eigenvalues, since they

both are real-valued and positive. This is fundamentally different in the case of

λS � λ
ð�Þ
? , where the gap is dominated by the complex phase of λ

ð�Þ
? . In the

following, we will show that this key difference opens the door for the hybrid state
to emerge.

The population of the transient eigenstates: In order to analyze the cumulative
population transfer during N repetitions, we describe the corresponding spin
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dynamics by

YN

n¼1

UN�n ¼ VN�1

YN�1

n¼1

ΛN�nPN�n

 !
Λ0V

�1
0 : ð19Þ

The goal of this section is to extract the essential elements of this matrix product
and to derive boundary conditions for avoiding a population of the individual
eigenstates that describe the transient state magnetization. For this purpose, we will
first show that only the population transfer from the steady state is of relevance.

The steady-state left-eigenvector becomes evident to be uHS ¼ ð0; 0; 0; 1Þ by
multiplying it from the left to U (Eq. (8)). For either parameter variation, we obtain
uHS U

′ ¼ ð0; 0; 0; 0Þ since the last rows of R′

y and R′

z contain only zeros (Eqs. (9) and

(10)). With Eq. (18), it follows that Pd→S= 0∀d ≠ S, resulting in the following
structure of the perturbation matrix:

Pn �

1 0 0 0

PS!kðκn;ΔκnÞ þ OðΔκ2nÞ 1 OðΔκnÞ OðΔκnÞ
PS!?ðκn;ΔκnÞ þ OðΔκ2nÞ OðΔκnÞ 1 OðΔκnÞ
P�
S!?ðκn;ΔκnÞ þ OðΔκ2nÞ OðΔκnÞ OðΔκnÞ 1

0
BBB@

1
CCCA

Here, only the essential elements are denoted explicitly. The central part of Eq. (19)
describes the combined effect of N RF pulses with varying parameters onto the
eigenvectors and is given by

QN�1

n¼0
ΛN�nPN�n

�

1 0 0 0
PN
n¼1

PS!kðκn;ΔκnÞ
QN

k¼n

λkðκkÞ þ OðΔκ2nÞ OðλN Þ OðΔκ � λN Þ OðΔκ � λN Þ

PN
n¼1

PS!?ðκn;ΔκnÞ
QN

k¼n

λ?ðκkÞ þ OðΔκ2nÞ OðΔκ � λN Þ OðλN Þ OðΔκ � λN Þ

PN
n¼1

P�
S!?ðκn;ΔκnÞ

QN

k¼n

λ�?ðκkÞ þ OðΔκ2nÞ OðΔκ � λN Þ OðΔκ � λN Þ OðλN Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

:

ð20Þ

For the leading order error term, the differences between the three different λ
ð�Þ
k;?

and the dependency on the experimental parameters are neglected, and the product
of any combination of eigenvalues is denoted by λN. Equation (20) shows that all

matrix elements except the first column approach zero for large N since jλð�Þk;?j<1.
This reveals that the population transfer between the individual transient
eigenstates are negligible, and we are left with the population transfer from the
steady eigenstate to the transient eigenstates, as described by the first column. Its
entries describe the counteraction of populating the transient eigenstates, denoted
by PS→f(κn, Δκn) with f 2 fk;?;??g, and the relaxation of the transient
eigenstates in the time span between their population and the time of observation

after N repetitions, denoted by
QN

k¼n

λf ðκkÞ.

Our goal here is to understand how slowly we should drive the system to
maintain negligible population transfer from the steady to the transient eigenstates.
In order to assess how many terms in Eq. (20) are relevant, we calculate the
following limit:

YN

k¼n

λf ðκkÞ
�����

����� � max
k

λf ðκkÞ
���

���
N�n

≲ð1� ϵÞN�n; ð21Þ

with

ϵ ¼ 1� E2 �
TR

T2

: ð22Þ

Therefore, we can neglect all summands that fulfill

N � n � ϵ�1: ð23Þ

Assuming that we change experimental parameters slowly over this time span, we
can use the Taylor expansion

λf ðκnÞ � λf ðκNÞ � ðN � nÞΔκN
∂λf ðκN Þ
∂κN

ð24Þ

with

∂λf ðκN Þ
∂κN

����
���� � 1: ð25Þ

Equation (25) becomes evident from Eqs. (13) and (14). Equation (18)
approximates the elements of the perturbation matrix to the first order of Δκn. In

this approximation, PS→f(κn, Δκn) is constant and we can approximate

PN

n¼ 1
PS!f ðκn;ΔκnÞ

QN

k¼ n

λf ðκkÞ � PS!f ðκN ;ΔκN Þ

PN
n¼ 1

λNþ1�n
N þ λN�n

N
ΔκN
2 ðN � nÞðN þ 1� nÞ ∂λf ðκN Þ

∂κN

� �

� PS!f ðκN ;ΔκN Þ
1�λf ðκN Þ 1þ 3ΔκNλN

ð1�λN Þ2
∂λf ðκN Þ
∂κN

� �
ð26Þ

by employing the geometric series.
In order to derive a limit under which we can neglect the individual transient

eigenstates, we compare the corresponding elements of the first column in Eq. (20)
to the element corresponding to the steady-state eigenstate, which is unity.
Examining Eq. (26), we find that we can neglect the last term in the brackets as
long as

jΔκN j � j1� λN j2 : ð27Þ
By doing so, we find the condition

max
n

PS!f ðκn;ΔκnÞ
���

���

1� λf ðκnÞ
���

���
� 1; ð28Þ

which ensures that the corresponding eigenstate is not populated.
It will turn out (see the section “The hybrid state adiabaticity condition”) that

the Condition (27) is equivalent to the Condition (28), being the necessary
adiabaticity condition to remain in the hybrid state. We also note that accounting
for the higher-order Taylor expansion terms ((Δκn)m with m= 2, 3,…) in Eqs. (26)
and (28), does not qualitatively change our adiabaticity bound (Eq. (27)). Indeed,
after the summation, such higher-order terms result in the contributions where
each extra power of Δκn in the denominator (from the higher order
approximations of the perturbation matrix elements, Eq. (11.3) in Chapter 2 of
ref. 37), is compensated by the extra power of order |1− λf(κn)| in the denominator

(arising from the corresponding sums such as
P
n
nλn � 1=ð1� λÞ2 and so on).

Hence, as long as |Δκn|≪ |1− λf(κn)|, which is automatically satisfied due to
Condition (27) from the leading-order term, taking into account the higher-order
terms in the Taylor expansion would exceed the accuracy for our approximation.
Thus, Eq. (28) is the most stringent bound.

The hybrid state adiabaticity condition: In this section, we will use the Taylor
expansion in Eq. (18) to solve Eq. (28) for the cases of the perpendicular
eigenstates, i.e. for f=⊥(*). Note that PS→⊥ and P�

S!? , as defined by Eq. (18), are
complex conjugate of each other.

Assuming that the eigenvectors are normalized to have a unit ‘2-norm, we can
bound the numerator of Eq. (18) by

juHf ðκnÞU′ðκnÞvdðκnÞj � U′
�� ��

2
� 1: ð29Þ

The here employed subordinate matrix norm is given by the square root of the
largest eigenvalue of (U′)HU′ and is smaller than one since the U′ consists only of
rotations and relaxation terms (Eq. (53.5), Chapter 1 and Eq. (8.4), Chapter 2 of
ref. 37).

The first term of the denominator in Eq. (18), 1� λ
ð�Þ
? , describes the gap of the

eigenvalues. We can assume jλð�Þ? j ¼ 1 as a worst case scenario and bound this gap
by the complex phase Ω. This gap can only be small when Ω approaches zero (Eqs.
(14–16)), so that we can use a Taylor expansion of Eq. (16)

Imf~λð�Þ? g2 � 4Ω2 ¼ 4 sin2
α

2
þ sin2

ϕ

2

� �
ð30Þ

to derive the limit

j1� λ
ð�Þ
? j 	 2Ω ð31Þ

The last term in Eq. (18) that requires our attention is uH?v? . In order to assess
the scenarios under which this product is small, we can approximate the evolution
matrix by U � Rþ ϵ

2DþOðϵ2Þ, which describes it as a small perturbation of the
unitary rotation matrix R= RzRyRz. The perturbation is of the order ϵ (Eq. (22)),
and D= {R, C} is the anti-commutator of the rotation matrix and

C ¼

�1 0 0 0

0 �1 0 0

0 0 �1 1

0 0 0 0

0
BBB@

1
CCCA;

which approximates the relaxation matrix by E � 1þ ϵ
2C when assuming δ≪ 1. In

this perturbation picture, the product of left-eigenvector and right-eigenvector
uHf vf of the evolution matrix is approximated by

uHf vf � 1þ ϵ2

4

X

d≠f

ðevHd Devf ÞðevHf DevdÞ
ð~λf � ~λdÞ2

; ð32Þ

where the tilde indicates the eigenvalues and vectors of R (Eq. (18) or Eq. (10.2) in
Chapter 2 of ref. 37). The first term results from the property euHf evf ¼ 1 of the

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-019-0174-0

8 COMMUNICATIONS PHYSICS |            (2019) 2:73 | https://doi.org/10.1038/s42005-019-0174-0 | www.nature.com/commsphys

www.nature.com/commsphys


eigenvectors of R. Due to the orthornormality of the eigenspace of R, we further
eliminated the terms that are linear in ϵ. With the bound ||D||2 ≤ 1 and the
normalization of the eigenvectors, we obtain jevHd Devf j � 1. Further, we can derive

the eigenvalues of R from Eqs. (13) and (14) by setting E1= E2= 1 and find
~λS ¼ ~λk ¼ 1 and ~λ

ð�Þ
? ¼ e ± iΩ .

We adopt the bound in Eq. (31) for d 2 fS; kg and for d ¼ ?� we find

j~λ? � ~λ�?j
2 	 8Ω2 . This bound neglects the scenario in which λ

ð�Þ
? both approach

negative one, which is the case when j cos α2 j � 1 or j cos ϕ2 j � 1. Note that this
leads to a breakdown of the approximations made for deriving Eq. (14). Since both
eigenvalues have the same complex phase, we can treat those two components
jointly and without proof we state that both scenarios result in

jjPð1Þ
S!?v

ð1Þ
? þ P

ð2Þ
S!?v

ð2Þ
? jj2 � 1, where the superscript indicates the two formally

complex conjugate components. In other words, when the eigenvalues λ
ð�Þ
?

approach negative one, the perpendicular eigenstates are not populated.
By summing over all three terms, we arrive at

juH?v?j 	 1� 9

32

ϵ2

Ω2 : ð33Þ

A hybrid state only occurs if ϵ≪Ω. Therefore, we can neglect the second term
when deriving the hybrid-state condition. Inserting the bounds of the individual
terms of the perturbation matrix (Eqs. (29), (31), and (33)) into Eq. (18), we find

P
ð�Þ
S!?ðαn;ϕn;ΔκnÞ

���
��� � Δκn

2Ω
: ð34Þ

This bound describes how much magnetization is at most transfered from the
steady state to the orthogonal eigenstates by varying α or ϕ between two
consecutive repetitions.

Further, inserting Eq. (34) into Eq. (28) in order to account for the cumulative
population, and utilizing Eq. (31), we arrive at the limit

max
n

jΔκnj � 8 sin2
αn
2
þ sin2

ϕn
2

� �
: ð4aÞ

When this adiabaticity condition is fulfilled, we can neglect the perpendicular
transient eigenstates. For simplicity, we can drop the factor of 8 in Eq. (4).

The steady-state adiabaticity condition: In order to do the same analysis for the
parallel transient eigenstate, we have to rely on the absolute value of λk , since it is

real-valued and positive. Note that uHk vk cannot be bound in the same way as done

in Eq. (33), since the eigenvalues ~λS ¼ ~λk are degenerate. Since the steady-state

adiabaticity condition is not essential for this work, we skip the degenerate
perturbation theory and assume uHk vk � 1. With the bound λk ≤ E1, which results

from Eq. (13), and with Eqs. (28) and (29), we arrive at the adiabaticity condition

jΔκnj � ð1� E1Þ2 � ðTR=T1Þ2; ð3aÞ
which ensures that the parallel transient state is negligible.

The Bloch equation in spherical coordinates. Under the derived adiabaticity
condition, the hybrid state emerges, and we observe transient-state behavior only
along the direction of the steady-state magnetization. Transforming the Bloch
equation into spherical coordinates isolates the transient-state behavior in a single
dimension, and the components of the Bloch equation uncouple into first-order
differential equations that can be solved.

Spherical coordinates are here defined by x= r sin ϑ cos φ, y= r sin ϑ sin φ and
z= r cos ϑ, where r is the radius, ϑ the polar angle or the angle between the
magnetization and the z-axis and φ is the azimuth or the angle between the x-axis
and the projection of the magnetization onto the x–y plane. For practical reasons,
we use the limits −1 ≤ r ≤ 1, 0 ≤ ϑ ≤ π/2, and 0 ≤ φ < 2π to uniquely identify the
polar coordinates. Thermal equilibrium is given by r0= 1, ϑ0= 0, and φ0= 0,
where the latter can be chosen freely.

Since the azimuth, or phase, adiabatically follows the steady state, we can
transform the known Cartesian steady-state solutions (Eqs. (6) and (7) in ref. 12) to
spherical coordinates, which results in Eq. (6). The polar angle can be derived from
Eqs. (9)–(11) in ref. 12 and is given by

tan ϑ ¼
ffiffiffiffiffi
E2

p
sin α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2E2 cos ϕþ E2

2

p

Gþ ffiffiffiffiffi
E1

p ðE2ðE2 � cos ϕÞ þ ð1� E2 cos ϕÞ cos αÞ
ð35Þ

with

G ¼ ð1�E1 cos αÞð1�E2 cos ϕÞ�ðE1�cos αÞðE2�cos ϕÞE2
1þ

ffiffiffiffi
E1

p :

With a Taylor expansion at E2= 1, the polar angle is described by

sin2 ϑ ¼ sin2α2
sin2

ϕ
2�cos2α2þsin2α2

þ ð1� E2Þ � ξ þOðð1� E2Þ2Þ ð36Þ

with

ξ ¼ 4ðcos α� 1Þ2ð ffiffiffiffiffi
E1

p � 1Þ
ð ffiffiffiffiffi

E1
p þ 1Þðcos αþ cos ϕþ cos α cos ϕ� 3Þ2

:

The factor ξ is only large, if cos ϕ ≈ (3− cos α)/(cos α+ 1), which is only the case, if
|1− cos α|≪ 1 and |1− cos ϕ|≪ 1 are simultaneously fulfilled, i.e. for small flip
angles in the vicinity of the stop-band. Consequently, for standard imaging
scenarios with TR≪ T2 the polar angle can be approximated by Eq. (5) apart from
the vicinity of the stop band.

The spherical coordinate r captures the transient-state spin dynamics, and we
can derive Eq. (2) simply by transforming the Bloch equation into spherical
coordinates14,38.

B1-inhomogeneities: One can describe the effect of B1-inhomogeneities on the
spins by α ¼ B1=B

nom:
1 αnom:, where Bnom:

1 and αnom. describe the nominal B1-field
and flip angle, respectively. The effect on the polar angle is described by inserting
this relation into Eq. (5) and successively into Eq. (7).

In order to implement anti-periodic boundary conditions, the magnetization
must be inverted between successive cycles (r(0)=−r(TC)), while changes of ϑ and
ϕ are required to remain within limits in order not to violate the adiabaticity
condition posed in Eq. (4a). Applying a π-pulse with an inhomogeneous B1-field
would lead to severe fluctuations of ϑ, causing a violation of the adiabaticity
condition. In order to mitigate these fluctuations, we surround the inversion pulse
by crusher gradients. As shown in refs. 39,40, the transversal magnetization M⊥

refocuses after inversion pulse with crusher gradients to an echo of the size
Mþ

? ¼ sin2ðπ=2 � B1=B
nom:
1 ÞM�

? , where the superscript + and − indicate the
magnetization before and after the RF pulse, respectively. The longitudinal
magnetization, on the other hand, is given by Mþ

z ¼ cosðπB1=B
nom:
1 ÞM�

z . In
spherical coordinates, this leads to

tan ϑþ ¼
sin2 π

2
B1

Bnom:
1

� �

cos π B1

Bnom:
1

� � tan ϑ�: ð37Þ

In the human brain at 3T, one usually observes variations in the range of
B1=B

nom:
1 2 ½0:8; 1:2
41. Within this range, the resulting effect is bound by |ϑ+/ϑ−

− 1| < 0.12 and will be neglected in the following.
In return, the crusher gradients manipulate r, which is accounted for by setting

β ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 ϑ� � sin4 πB1

2Bnom:
1

þ cos2 ϑ� � cos2 πB1

Bnom:
1

s
ð38Þ

in Eq. (7). Repeating the inversion pulses with the same spoiling gradients can
potentially result in higher order spin echoes and stimulated echoes, impairing the
derived description of the spin physics. However, when using TC≫ T2, we can
assume that those contributions are negligible.

Numerical optimizations. Cramér–Rao bound: The Cramér–Rao bound42,43

provides a universal limit for the noise variance of a measured parameter, given
that the reconstruction algorithm is an unbiased estimator. This very general and
established metric has been utilized for optimizing MR parameter mapping
experiments in refs. 44–46 amongst others, and to MRF in ref. 47. In discretized
notation, the Cramér–Rao bound is defined by the inverse of the Fisher infor-

mation matrix F with the entries Fij ¼ bTi bj=σ
2 given by

b1 ¼ dx=dM0

b2 ¼ dx=dT1

b3 ¼ dx=dT2:

Here x 2 RNt is a vector describing the measured signal or, equivalently, the
transversal magnetization at Nt discrete time points, and σ2 is the input variance.
Each element of the vector is given by xn=M0r(tn)·sin ϑ(tn). The vectors bi
describe the derivatives of the signal evolution with respect to all considered
parameters. For the optimizations, we normalize the proton density to M0= 1, so
that b1= x.

In this work, we focused on quantifying relaxation times, since a measured M0,
as defined in this work, is modulated by the receive coil sensitivity and provides
only a relative measure. We can define the dimensionless rCRB to be

rCRBðT1Þ ¼
1

σ2T2
1

TC

TR

ðF�1Þ2;2 ð39Þ

rCRBðT2Þ ¼
1

σ2T2
2

TC

TR

ðF�1Þ3;3: ð40Þ

The normalization by the variances cancels out the variance in the definition of the
Fisher information matrix, and the normalization by the relaxation time is done to
best reflect the T1,2-to-noise ratio (defined as T1;2=σT1;2

). Further, the multiplication

with TC/TR normalizes the rCRB by duration of the experiment such that it can be
understood as the squared inverse SNR efficiency per unit time, given a fixed TR.

Optimal control: The polar angle ϑ is here treated as the control parameter for
spin dynamics along the radial direction as by Eq. (2). Thus, we can employ the
rich optimal control literature48,49 for numerical optimization of ϑ(t). We used a
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm50 with rCRB(T1)+ rCRB
(T2) as an objective function. To further improve convergence, the BFGS algorithm
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is embedded in a scatter search algorithm which tried 1000 starting points51. The
numerical optimization was based on ϑ(Δt · n) with a discrete step size of Δt= 4.5
ms and the evaluation points n∈ {1, 2, …, TC/Δt}. The gradient of the objective
function with respect to T1, T2, and each ϑ(Δt · n) was explicitly calculated.

Since the rCRB intrinsically compares a signal evolution to its surrounding in
the parameter space, only a single set of relaxation times is necessary for the
optimization. Here, we used the relaxation times T1= 781 ms and T2= 65 ms,
corresponding to the values measured for white matter as reported in ref. 16. All
optimizations were initialized with the pattern provided in the pseudo-SSFP
paper19 and the optimizations were performed with the constraint 0 ≤ ϑ ≤ π/4,
which limits the flip angle to α ≤ π/2, ensuring consistent slice profiles by virtue of
the linearity in the small tip-angle approximation52, and aiding compliance with
safety considerations by avoiding high power large flip-angle pulses.

Phantom simulations. In order to visualize the noise properties of the transient-
state, the hybrid-state, and the steady-state, as well as the systematic errors arising
from inhomogeneous broadening, we simulated the signal generated by a spin
ensemble with a Gaussian distribution of Larmor frequencies, added Gaussian
noise and performed a non-linear least-square fit.

The hybrid-state is exemplified by the optimized sequence with anti-periodic
boundary conditions (Fig. 6d–f), the transient-state by the original MRF-pattern15

(Supplementary Fig. 4a–d) modified to have the same constant TR= 4.5 ms as the
other two sequences, and the steady-state by the Cramér–Rao-bound optimized
sequence depicted in Supplementary Fig. 4m–o. Note that the optimization
resulted in one distinct flip angle for the spoiled gradient-recalled echo (SPGR)
segment and two distinct flip angles for the bSSFP segment. We use this
pattern in order to provide an upper bound of the steady-state’s SNR
performance even though it is sensitive to T�

2 -decay in the SPGR segment. For
this reason, we performed simulations that neglect and account for T�

2 -decay,
respectively. Note that the experiment can be desensitized to T�

2 -decay by using
two SPGR segments with distinct flip angles, which comes, however, at the cost of
SNR efficiency53.

Phantom experiments. In order to experimentally demonstrate the benefits of the
hybrid state, we measured relaxation times in a homogeneous, spherical, table-
tennis ball-sized phantom filled with doped water on a clinical 3T Prisma scanner
(Siemens, Erlangen, Germany). We used a commercial transmit-receive knee RF-
coil for excitation and one of its 15 elements for signal reception.

For reference, we measured T1 with inversion recovery spin-echo experiments
with different inversion times and fitting an exponential function. Similarly, we
performed multiple spin-echo experiments with different echo times in order to
measure a T2 reference.

With each of the three considered excitation patterns (see the section
“Phantom simulations”), we performed experiments without any spatial
encoding. At the beginning of the transient-state MRF sequence, a secant
inversion pulse with a duration of 10.24 ms was applied followed by a spoiler
gradient. Thereafter, the sequence consists only of RF pulses alternating with
signal reception. The RF pulses were implemented as 1000 μs long rectangular
pulses following the flip angle schemes shown in Supplementary Fig. 4b and
using TR= 4.5 ms. Since this sequence starts from thermal equilibrium,
consecutive repetitions were separated by a 10 s pause. The anti-periodic
boundary conditions used for the hybrid-state experiment allows for
consecutive repetitions were acquired without any gaps. We use a rectangular π-
pulse surrounded by crusher gradients for inverting the magnetization between
consecutive repetitions. The steady-state experiments require a transition phase
in order to reach the steady-state. Thereafter, all repetitions for each segment
were acquired without gaps.

Each repetition was fitted with a non-linear least-square fit. The fitted function
accounts for the finite pulse duration by approximating the pulse by 10 hard pulses
at a 100 μs interval. In the case of the transient-state experiment, the approximation
was incorporated in the Bloch simulation in a straightforward manner. In case of
the hybrid-state model, the RF-pulse was implemented as a linear ramp of ϑ. In
case of the the steady-state sequence, the finite pulse correction prohibits the use of
the standard steady-state equations. Therefore, we used the hybrid state framework
and simulated the signal with a constant ϑ and used the signal after 1000
repetitions as the steady-state signal.

Mean and standard deviation were calculated. Due to the high input SNR in this
non-imaging experiment, the standard deviation was multiplied a factor of 10 for
easier depiction in Fig. 4. This set of experiments was repeated while manipulating
one linear component of the shim coils in order to increase the width of the
Larmor-frequency distribution.

In vivo experiments. An asymptomatic volunteer’s brain was imaged
following written informed consent and according to a protocol approved by
our institutional review board. A measurement was performed with the anti-
periodic bHSFP experiment on a 3T Prisma scanner (Siemens, Erlangen, Ger-
many). The manufacturer’s 20 channel head/neck coil was used for signal
reception.

Spatial encoding was performed with a sagittally oriented 3D stack-of-stars
trajectory, which starts at the outer k-space and acquires for one TC data while
incrementing the angle of the k-space spoke by twice the golden angle increment54.
These large gaps were filled by repeating this procedure one time with the entire k-
space trajectory rotated by the golden angle. Thereafter, the next 3D phase
encoding step was performed in the exact same way, while adhering to the
Nyquist–Shannon theorem along the slice direction. The acquired resolution of the
maps is 1 mm × 1mm × 2mm at a FOV of 512 mm × 512 mm × 192 mm. The
readout dwell time was set to 2.1 μs. We used a TR= 4.5 ms and the readout was
skipped in segments with a polar angle close to zero (gray areas in Supplementary
Fig. 5), so that 601 spokes were acquired during one TC. The total scan time was
~12.24 min.

Along the fully sampled phase encoding direction, a Fourier transformation
was performed and, thereafter, each slice was treated separately. Image
reconstruction was performed with the low rank alternating direction method of
multipliers (ADMM) approach proposed in ref. 55, which includes parallel
imaging56–58 and avoids undersampling errors typical for MRF59,60. The data
consistency step of the ADMM algorithm was performed with 100 conjugate
gradient steps. In order to prevent non-linear effects from impairing the noise
assessment, only a single ADMM iteration was performed and no spatial
regularization was applied.

The low rank approximation was calculated based on a coarse dictionary that
covers the range between 100 ms and 6 s in steps of 10% and T2 between 10 ms
and 3 s also in steps of 10%. The dictionary further discretized ϕ ∈ [0, π] into 15
bins and B1=B

nom:
1 2 ½0:7; 1:2
 into 40 bins. For consistency, we calculated a

dictionary with Bloch simulations and used it to calculate a rank 6
approximation of the data with a singular value decomposition of the dictionary
matrix61.

Represented in this low rank approximation, we fitted each voxel of the data
with a non-linear least-square fit while accounting for the finite RF-pulse duration.
We fixed ϕ and B1=B

nom:
1 for each voxel to the values that resulted from separate

scans27. The ϕ map was acquired with a double-echo SPGR experiment and the B1
map with a turboFLASH experiment, as described in ref. 41.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed during the current study are available from the
corresponding author on reasonable request.

Code availability
The source code used for the current study is available from the corresponding author on
reasonable request.
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