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Hybrid State-Space Fuzzy Model-Based
Controller with Dual-Rate Sampling for

Digital Control of Chaotic Systems
Young-Hoon Joo, Leang-San Shieh,Senior Member, IEEE, and Guanrong Chen,Fellow, IEEE

Abstract—In this paper, we develop a hybrid state-space fuzzy
model-based controller with dual-rate sampling for digital control
of chaotic systems. Takagi–Sugeno (TS) fuzzy model is used to
model the chaotic dynamic system and the extended parallel-
distributed compensation technique is proposed and formulated
for designing the fuzzy model-based controller under stability
conditions. The optimal regional-pole assignment technique is
also adopted in the design of the local feedback controllers
for the multiple TS linear state-space models. The proposed
design procedure is as follows: an equivalent fast-rate discrete-
time state-space model of the continuous-time system is first
constructed by using fuzzy inference systems. To obtain the
continuous-time optimal state-feedback gains, the constructed
discrete-time fuzzy system is then converted into a continuous-
time system. The developed optimal continuous-time control law
is finally converted into an equivalent slow-rate digital control law
using the proposed intelligent digital redesign method. The main
contribution of this paper is the development of a systematic and
effective framework for fuzzy model-based controller design with
dual-rate sampling for digital control of complex such as chaotic
systems. The effectiveness and the feasibility of the proposed
controller design method is demonstrated through numerical
simulations on the chaotic Chua circuit.

Index Terms—Chaotic Chua’s circuit, digital redesign, dual-
rate sampling, fuzzy control, optimal control, pole placement.

I. INTRODUCTION

RECENTLY, increasing attention has been focused on
developing techniques for the control of chaotic dynam-

ical systems [1]. Chaos is a main characteristic of complex
dynamical systems. It is usually difficult to predict a long-
term future behavior of a chaotic system [1]. Because of
its unpredictability and irregularity, chaos could lead systems
to undesirable performance-degraded situations. Therefore, in
many cases, chaos should be avoided or purposely controlled
[16].

On the other hand, we have also witnessed rapidly growing
interest in making control systems more intelligent. Among
various artificial intelligent approaches, fuzzy control has en-
joyed remarkable success in many applications [2]. Moreover,
recent advances in fuzzy control have laid a solid foundation
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for intelligent control of different types of nonlinear processes,
including chaotic systems. For example, Chen [1], [17] ap-
plied fuzzy inference systems to identify and control chaotic
systems with success. Wanget al. [2], [18] introduced fuzzy
modeling for chaotic systems and used a parallel-distributed
compensation (PDC) for control. Lately, they addressed the
issues of regulation as well as model-following chaos control
[12]. In this paper, we continue these efforts to develop a
new hybrid state-space fuzzy model-based control technique
for digital control of continuous-time chaotic systems.

Most real dynamic systems are described by continuous-
time models. The rapid advances in digital control theory and
the availability of high-performance low-cost microprocessors
have demanded the development of digital controllers for
analog systems. Since the design of a continuous-time system
using a digital controller is usually not closely matched with
the continuous counterpart in a real environment, it is desirable
to develop a hybrid control scheme [3].

In the past, adaptive control concepts [3]–[7], [10] have been
extended to combine the continuous-time control theory with a
discrete-time adaptive mechanism (for updating the controller
parameters) for self-tuning control of hybrid systems. In
particular, Karwick [5] developed a state-space self-tuning
method for pole assignments of continuous-time systems and
Helliot [6] proposed a discrete adaptation technique for the
control of continuous-time processes.

For practical realizations of such well-developed, advanced
control algorithms for highly nonlinear systems, it becomes
necessary to utilize dual-rate sampling schemes. A fast-rate
sampling scheme is used to perform parameter identification
and fast-rate controller design, while a slow-rate sampling
scheme is employed to establish a slow-rate controller that
takes into account the performance of the analog controller
and the computational delays in the identification and control
processes. It has long been experienced that the conven-
tional digital redesign schemes can hardly control complex
continuous-time nonlinear systems such as chaotic systems
consisting of multiple state-space systems.

In order to resolve this problem, in this paper, we present
a hybrid state-space fuzzy model-based controller with dual-
rate sampling for digital control of complex such as chaotic
systems. Takagi–Sugeno (TS) fuzzy model is first used to
model the chaotic dynamic system and then the extended
parallel-distributed compensation (EPDC) technique is pro-
posed and formulated for the design of a fuzzy model-
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based digital controller. The optimal regional-pole assignment
technique is also adopted (together with stability conditions)
for the design of multiple local linear state-space models.
Using these techniques, once the fuzzy model representation
of a dynamic system is obtained, we can further develop
some new fuzzy controller design methods to the digital
control of the complex system. More precisely, an equivalent
fast-rate discrete-time state-space model of the continuous-
time system is first constructed by using the identified fuzzy
inference systems. To obtain the continuous-time optimal state-
feedback gains under slow-rate sampling, the constructed
fast-rate discrete-time fuzzy system is then converted into a
continuous-time fuzzy system with slow-rate sampling. The
developed optimal continuous-time control law is finally con-
verted into an equivalent slow-rate digital control law using
the proposed intelligent digital redesign method to find the
optimal controller. The basic idea here is to design stable local
feedback controllers based on local dynamic models using the
optimal pole-assignment technique and then construct a stable
global controller from these multiple optimal local controllers.
The stability of the resulting controller is guaranteed by some
new stability conditions developed based on the rigorous Lya-
punov stability theory. This overall proposed design procedure
presents a systematic and effective framework for integration
of modeling and digital control of complex dynamic systems
such as chaotic systems.

This paper is organized as follows. Section II describes
the TS fuzzy model with PDC as a controller and the fuzzy
modeling of the chaotic Chua circuit, which is used as an illus-
trative example. The digital redesign method in hybrid state-
space fuzzy model-based controller is developed in Section III.
In Section IV, hybrid state-space fuzzy model-based control
scheme is described with stability conditions. In Section V,
the chaotic Chua circuit modeled in Section II is used as a
testbed for evaluation and demonstration of the new control
method. Finally, conclusions are drawn in Section VI with
some discussions.

II. FUZZY SYSTEM MODELING

This section first reviews two representative fuzzy model
structures, namely the TS fuzzy model proposed in [11], [29]
and its closed-loop version with a controller as well as the
state-space partition model studied in [24]–[28]. The main
characteristic of a TS fuzzy model is to express the local
dynamics of each fuzzy rule by a linear system model and
the overall fuzzy model of the system is obtained by fuzzy
blending of all the local linear system models [2]. To be
specific, we will discuss the fuzzy modeling of the chaotic
Chua circuit in this section, which will also be used as an
example for the controller design later in the paper.

A. Two Representative Fuzzy Model Structures

Consider a nonlinear dynamic system in the canonical form

(1)

where is the state vector, the scalar
is the output state variable of interest, andis the system

control input. In (1), is a known nonlinear continuous
function of and the control gain is a known nonlinear
continuous invertible function of. This nonlinear system can
be approximated by the TS fuzzy model, as discussed in [11],
[29].

A TS fuzzy system is described by a set of fuzzy IF-THEN
rules, where each rule locally represents a linear input–output
realization of the system over a certain region of the state-
space. The overall system is then an aggregation of all such
local linear models. More specifically, a TS fuzzy system in
the continuous-time case is formulated in the following form:

Rule IF is and and is

THEN

(2)

while the consequent part in the discrete-time case is repre-
sented by in (2).

Here, is the fuzzy set, is the number
of rules, is the state vector, is the
input vector, and ,
are the premise variables (which are the system states) and

in the continuous-time case and in discrete-
time case denote theth local model of the fuzzy system,
respectively. Subscripts ‘’ and ‘ ’ represent continuous-time
and discrete-time case, respectively. Using the center of grav-
ity defuzzification, product inference, and single fuzzifier, the
final output of the overall fuzzy system is given by

(3)

where

Note that system (2) can be viewed as a piecewise linearization
of the original nonlinear system (1) about some nominal
operating points.

The zero-input system of (3) in the continuous-time case is

(4)

The defuzzification procedure is used to smoothly connect
the neighboring local models together, so as to build up a
global fuzzy model of the underlying system. To avoid a
complicated defuzzification process, the premise variables are
assumed to be independent of the input vector . Since
at any instant, the nonlinear system is represented by a linear
model [described by (3)], it is clear that linear feedback control
methods can be used to design a locally linear controller for
the system.
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In [23]–[25], Tanakaet al. apply the PDC procedure to
design a fuzzy logic controller (FLC) for the above-described
TS fuzzy model, where each control rule is individually
designed from the corresponding set of rules of the fuzzy
model. The designed controller shares the same premise parts
with the fuzzy model and has linear state-feedback laws in the
consequent parts. The PDC fuzzy controller in the continuous-
time model has the following rule structure:

Rule IF is and and is

THEN

(5)

where is the feedback gain in theth subspace. The final
fuzzy controller is then represented by

(6)

Assume that the number of rules that fire at all times is
less than or equal to, . The control gain can be
determined by modern linear system theory and is explained in
detail in the subsequent sections. The final closed-loop system
is

(7)

As shown in (5), the consequent part of a PDC fuzzy controller
represents the control law for zero-reference input. In general,
inputs are represented by , where

is the feedforward gain matrix in theth subspace and
is a constant or time-varying reference input. In order to

better handle this nonzero reference tracking control problem,
we propose an EPDC technique in this paper, which will be
further discussed later.

B. Fuzzy Modeling of Chua’s Circuit

The chaoticChua circuit, as shown in Fig. 1, is a simple
electronic system that consists of one inductor (), two capaci-
tors ( ), one linear resistor (), and one piecewise-linear
resistor ( ). Chua’s circuit has been shown to possess very
rich nonlinear dynamics such as bifurcations and chaos [15].
Because of its simplicity and universality, Chua’s circuit has
attracted much attention and has become a prototype for the
investigation of chaos [1].

The dynamic equations of Chua’s circuit is described by

(8a)

(8b)

(8c)

where the voltages and current , , and are the state
variables, is a constant, denotes the nonlinear resistor,
which is a function of the voltage across the two terminals
of .

Fig. 1. Diagram of Chua’s circuit.

Fig. 2. Resistor characteristic in the case of a piecewise-linear function.

We consider two types of characteristics of the nonlinear
resistor : one is the original piecewise-linear function
and the other is a cubic function. We only provide the resulting
fuzzy models of the circuit here (for more details, see [18]).

2) Case 1: is a piecewise-linear function

(9)

where is a constant voltage and and are negative,
as shown in Fig. 2, which can also be represented by the
three-segment piecewise-linear function

(10)

We want to obtain a fuzzy model in the open-loop form
(4) for Chua’s circuit with characteristic (9). Assuming

, , the following bounds for are ob-
tained:

(11a)

(11b)

where Chua’s circuit becomes a
linear system if and are the same. When , the
trapezoidal membership functions shown in Fig. 3 are used to
model the circuit.

Denote . In order to build the intended
fuzzy model, the parametermust be chosen properly. Chua’s
circuit with piecewise-linear characteristic for
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Fig. 3. Membership functions in the case of piecewise-linearg(vc1).

can be exactly represented by the following fuzzy rules:

Rule IF is near

THEN

Rule IF is near

THEN

where

and

2) Case 2: is a cubic function (as shown in Fig. 4)

(12)

Similarly to Case 1, assuming , , the
following bounds for are obtained:

(13a)

(13b)

The membership functions used here are [18]

(14)

(15)

The fuzzy rules for this model are

Rule IF is near

THEN

Rule IF is near

THEN

Fig. 4. Resistor characteristic for Case 2.

where

and

III. OPTIMAL CONTROL AND INTELLIGENT

DIGITAL REDESIGN FORHYBRID SYSTEMS

In this section, we formulate an optimal regional pole
assignment scheme for the design of multiple fuzzy mod-
els and develop an intelligent digital redesign method by
state matching in a hybrid state-space setting. The process
of converting a continuous-time controller to an equivalent
discrete-time controller is calleddigital redesign. The digital
redesign technique can also be regarded as digital simulation,
where the digital equivalence of a continuous-time system has
to be found [21]. In digital control of continuous-time systems,
the continuous-time state-space equations first need to be
converted to discrete-time state-space equations. The feedback
controller is then found by optimal pole-placement method
in the continuous-time system and the state-matching method
is finally introduced to convert the obtained continuous-time
controller into a digital controller with slow-rate sampling.

A. Optimal Control with Pole Placement

Consider a linear controllable continuous-time subsystem
in the th subspace described by

(16)

The cost function for this subsystem is chosen to be

(17)
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Fig. 5. Region of interest in thes-plane.

where and are nonnegative definite and
positive definite and symmetric matrices, respectively. The
state-feedback control law in the th subspace (which
minimizes the cost function) is expressed as

(18)

where and are the feedback gain and the forward gain
in the th subspace, respectively, is a reference input, and

is a positive definite and symmetric matrix solution of the
Riccati equation

(19)

with being detectable. Using this solution, the overall
closed-loop system in theth subspace can be written as

(20)

where and the eigenvalues of
are located in the open left-half of the complex-plane. Our
objective is to determine , , and such that the closed-
loop system (20) has its eigenvalues lying on or within the
hatched region of Fig. 5.

Lemma 1 [14]: Let represent the given open-loop
system in (16). Also let represent the prescribed degree
of relative stability as shown in Fig. 5. Then, the eigenvalues
of the closed-loop system matrix lie to the
left of the vertical line, where the matrix is a solution
of the Riccati equation

(21)

Note that the use of the degree of relative stabilityin
(21) for finding the optimal control gain is highly
recommended since a subsystem of the TS fuzzy model is just
an approximation of the original nonlinear system within the
specific region of operation points.

Lemma 2 [14]: Suppose the given stable system matrix
in (16) have eigenvalues

lying in the open hatched sector of Fig. 5 and eigenvalues
outside that sector with .

Consider the following two Riccati equations with assigned

:

(22)

(23)

Then, the optimal closed-loop system matrix in theth
subspace

(24)

will enclose the invariant eigenvalues and
there exists at least one additional pair of complex conjugate
eigenvalues lying inside the open sector of Fig. 5 if the
constant gain in (24) satisfies

(25)

where tr , tr ,
tr , and tr[] denotes the trace of a matrix.

If , then all eigenvalues of lying in the th subspace
have been optimally placed in the desired open sector of Fig. 5.

Since the poles of the system in theth subspace lie within
the hatched sector region, the designed system has a prescribed
relative stability in the th subspace. Although these local
systems are individually stable, the global system may not
be stable. This is because a controller in theth subspace is
designed based on local performance only. We will further
discuss and solve this problem in Section IV.

B. Continuous-Time Local Controller Design Procedure

The continuous-time design procedure for a local controller
is described as follows.

Step 1: Set and let be the given system
matrices as in (16). Specify a value of and a weighting
matrix . Set and denote and
for . Solve (21) for (denoted by ) satisfying (17)
to obtain the closed-loop system matrix ,
where .

Step 2: Set and solve (22) with to find
(denoted by ). If tr , go to Step 4.

Step 3: Solve (23) with and to
determine (denoted by ) and obtain the closed-loop
system matrix , where
and is determined from (25). Go to Step 2.

Step 4: The desired optimal control law for theth subspace
is

(26)

where and are the desired state-feedback
gain and forward gain vectors in theth subspace, respectively.

Step 5: Set and go to Step 1 if , where
is the number of fuzzy rules.

For tracking a reference input the cost function in (17) is
written as

(27)
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where the weighting matrix can be chosen from the
aforementioned steps as

(28)

The desired optimal tracking control law is [14]

(29)

where , and is the solution of

(30)

with

(31)

Note that when , the feedback gain in (26) is
identical to the in (29) and the forward gain in (26)
can be chosen as the in (29).

C. Intelligent Digital Redesign by State Matching

For implementation of the digital control law, the
continuous-time control law under slow-rate sampling
obtained above is converted into an equivalent digital one
with same-rate sampling. The digital redesign method matches
the closed-loop state at with the digitally
controlled state at .

Using the closed-loop bilinear transformation method with
a slow-rate sampling time , the control law is developed as
follows.

The equivalent discrete-time control law and state equation
in the th subspace are described by

(32)

(33)

where and , where
is always well defined.

Therefore, the closed-loop discrete-time system with the
sampling time is

(34)

where and are the equivalent discrete-time state matri-
ces, and and are the equivalent discrete-time feedback
gain and forward gain in theth subspace, respectively.

Applying the block-pulse function method [14] to approxi-
mate over the interval results in

(35)

where is the block-pulse function defined as follows:

for
otherwise.

(36)

Using this block-pulse function, we obtain

(37)

where and , where
is always well defined. Assume

for . Substituting the discretized control
law in (26) into the open-loop system in (37) results in
the following approximated closed-loop system in theth
subspace:

(38)

Setting and in (38) equal to the
corresponding and in (34) gives

(39)

and

(40)

The desired digital gains in (32) can be solved from
(39) and (40) as follows:

(41)

where is the desired digitally redesigned feedback gain
vector in the th subspace. Similarly, we can determine the de-
sired digitally redesigned forward gain in the th subspace
as

(42)

We can then find the overall control law with by
defuzzifying and found in the th subspace, as shown
in (63).

IV. HYBRID STATE-SPACE FUZZY

MODEL-BASED CONTROL SCHEME

In digital control of continuous-time systems, the
continuous-time state-space equations need to be converted
into discrete-time state-space equations. In conventional TS
fuzzy model-based controllers, sampling intervals for fuzzy
modeling and controller design are often assumed to be
the same. However, for practical realization of TS fuzzy
model-based controllers, it is required to utilize a dual-rate
sampling scheme; that is, the TS fuzzy model of a nonlinear
system is first obtained with a fast sampling period (off-line
or on-line). Then, a fast-rate sampling model has to be
converted to a slow-rate sampling model. In this section, a
model conversion method and stability conditions for the
designed controller are formulated and the developed hybrid
state-space fuzzy model-based control method is applied to
the chaotic Chua circuit as an example of application.
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A. Model Conversion

To implement the obtained digital control law in (32), we
need to convert a fast-rate sampling model into a slow-rate
sampling model. For accurate fuzzy modeling and control,
an appropriately small sampling period is chosen. In the
dual-rate sampling method, this small sampling periodis
used as a fast-rate sampling period. Since the development of
the above fuzzy control technique requires a slightly longer
computational time in comparatively slow digital applications,
it is necessary to choose an appropriate and relatively long
sampling period . This long sampling period (or slow-rate
sampling period) is times the fast-rate sampling period,
where is an integer.

Let the integer be the ratio between the slow sampling
period and the fast sampling period. There are many ways
[19], [20] to convert to such as
the Taylor series expansion method, direct truncation method,
and matrix continued-fraction method, where and are
fast-rate discrete-time model in theth subspace to be defined
later.

The commonly used matrix continued-fraction method [19]
for converting to is as follows:

(43)

where and . The
matrix in the th subspace can be found as

(44)

where in which is
always well defined.

It is remarked that for a piecewise-constant input, the
stability of the converted analog and digital systems are
invariant via the bilinear transform (which maps the left-half
complex plane into the unit disk, preserving the stability).

Now, a fast-rate sampling model has to be converted into a
slow-rate sampling model. The conversion can be carried out
as follows:

(45)

and

(46)

B. Stability Analysis of the Designed Controller
and Controlled System

The controller design problem is first to select and
in (29) such that the local stability of the designed control
system is satisfied (see Section III-A). As mentioned before,
although these local systems are individually stable, we still
need to ensure the globally controlled system be stable.

A well-known stability condition for the fuzzy system (3)
is given as follows:

Theorem 1 [18]: The equilibrium of fuzzy system (3) is
asymptotically stable in the large if there exists a common
positive definite matrix such that

(47)

Theorem 2 [18]: The equilibrium of fuzzy control system
(7) is asymptotically stable in the large if there exits a
common positive definite matrix such that the following
two inequalities are satisfied:

(48)

(49)

where

(50)

for all and , except the pairs that satisfy
.
The above-mentioned stability condition of PDC design

has drawbacks that stability analysis is not conducted for the
original underlying nonlinear system (1) but for the simplified
TS fuzzy model (2) instead and that thetracking problemis
not explicitly addressed (at least in its earlier approach).

In order to solve these problems, we modify the controller
rule of PDC with the same premise in (2) as follows, which
is called an EPDC:

Controller Rule IF is and and is

THEN

(51)

where and are feedback gain and feedforward gain in
the th subspace, respectively, and is the reference input.

Equation (51) can be analytically represented by

(52)

The overall closed-loop system is then obtained from the
feedback interconnection of the nonlinear system (1) and the
controller (52), resulting in the following equation:

(53)

where and
.

The following theorem is our main stability result for the
equilibrium state of both the regulating and reference-tracking
problems of the overall designed controller:
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Fig. 6. Block diagram for intelligent digital redesign procedure.

Theorem 3: Consider the following nonlinear system:

(54)

where is a given reference signal and and are
control gain matrices with parameter , which can also
be functions of and in general. If and are
designed such that:

(i) the matrix is stable uniformly for all ;
(ii) ; or
(iii)

with

where is the Euclidean norm, then the controlled system
(54) is stable in the sense of Lyapunov.

Proof: See Appendix A.
Corollary 1: In the nonlinear control system (1) with a

fuzzy controller (52), namely

(55)

where

if the TS fuzzy model

(56)

is designed such that it can uniformly approximate the given
uncontrolled system (55), namely

can be arbitrary small [13] and if the control gains
and are designed such that the two conditions (i)

and (ii) [or (ii) ] of Theorem 3 are satisfied, then the fuzzy
control system (55) is stable in the sense of Lyapunov.

Proof: See Appendix B.
By Theorem 3 and Corollary 1, stability conditions of the

tracking problem with reference input is as follows. For each
fuzzy controller rule in the th subspace, a local controller
is first designed based on consideration of local performance.
Then, an linear matrix inequality (LMI) based stability analysis
[23] is carried out to check whether the stability conditions
(48) and (49) are satisfied and to find the common positive
definite matrix . Finally, we test whether the condition (ii)
or (ii) in Theorem 3 is satisfied.

The two controller gains and are designed to satisfy all
these conditions. If the globally designed controller does not
satisfy the stability conditions (i) and (ii) or (ii)in Theorem
3, the controller and in (26) will be redesigned by
changing the prescribed degree of relative stabilityas shown
in Fig. 5. Note that the above stability is guaranteed not only
for the TS fuzzy model (2), but also for the original underlying
nonlinear system (1) due to Corollary 1.

C. Hybrid State-Space Fuzzy Model-Based Control Procedure

The above-described digital redesign methodology was first
considered by Kuo [21] for a simple case. A digital state-
matching method was then proposed in [21] to solve the static
digital redesign problem for linear systems and successfully
applied to a simplified one-axis sky-lab satellite system. Shieh
[4], [8], [9], [14] further improved the digital redesign method
and investigated various types of (sub)optimal digital redesign
methods. In this section, as an alternative of the approach
suggested in [22], the digital redesign method and fuzzy
inference system technique are combined for the control of
complex such as chaotic systems. This new approach is called
the intelligent digital redesign method.

Fig. 6 illustrates the entire intelligent digital redesign
method, which uses the hybrid state-space fuzzy model-based
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control method to determine a control law. In this figure,
ZOH is zero-order hold, is the slow-rate sampling period,

is the fast-rate sampling period, andis the number of
fuzzy rules used. The procedure of the continuous-time fuzzy
modeling of Chua’s circuit has been discussed in Section II.
In order to find the overall control gains and , the
fuzzy inference rules for the control law are defuzzified by
the center-average method.

Here, as an application example, we study digital control of
the chaotic Chua circuit with control inputs produced by the
digital redesign method developed in this paper.

ConsiderChua’s circuit with control inputs:

(57a)

(57b)

(57c)

The design procedure for the overall hybrid state-space
fuzzy model-based controller with dual-rate sampling as
shown in Fig. 6 is described as follows.

Step 1: Choose appropriate dual-rate sampling periods
and ( , is an integer) for fuzzy system modeling
and model conversion for development of the control law in
(18) and digital gains in (41) and (42). Specify a scalarand a
positive definite and symmetric matrix (Section III-
A). Given a pair of the original continuous
nonlinear system, find the fast-rate systems in (58)
below for each fuzzy rule at time ( ). In
this example, the identified fuzzy model of the continuous-
time Chua circuit is converted to a discrete-time state-space
system with the fast-rate sampling period using (45) and
(46). The resultant fast-rate sampling fuzzy model is as fol-
lows:

Rule IF is

THEN

(58)

Step 2: Convert these fast-rate sampling fuzzy models
into continuous-time models in (16)

and discrete-time slow-rate models in (33) for each
fuzzy rule, using (43)–(46) at time . In this step,
we can use the fuzzy models identified in Section II. The
resultant continuous-time state-space models and discrete-time
state-space model are as follows.

Continuous-Time State-Space Models

Rule IF is

THEN

(59)

Discrete-Time State-Space Models

Rule IF is

THEN

(60)

Step 3: Find the continuous-time state-feedback gain
and forward gain in (18) for each fuzzy rule

using continuous-time design procedure at time
(Section III-B). Stability analysis is then carried out to check
whether the stability conditions defined by Theorem 3 are
satisfied. In the case that some stability conditions are not
satisfied, the controller and in (18) can be redesigned
by incrementing by , i.e., . The resultant
continuous-time controller rules under the slow-rate sampling
are as follows:

Rule IF is

THEN

(61)

Step 4: Find the digital constant state-feedback gain matrix
and forward gain matrix in (32), using (41) and (42),

from the available continuous-time state-feedback gains
and forward gains in (18) for each fuzzy rule at time

. The resultant discrete-time controller rules with
the slow-rate sampling are as follows:

Rule IF is

THEN

(62)

The center-average method is then used as the defuzzifier to
find the overall feedback gain and feedforward gain at
time as follows:

(63)

where is the weight of the fuzzy set andis the number
of the fuzzy rules.

Step 5: Find the digital control laws in (32) using
the gains in (63) at time . Go to Step 1 and repeat the
process until control objective is achieved.

V. COMPUTER SIMULATIONS

In this section, we present two simulation examples dis-
cussed in Section II-B to demonstrate the effectiveness of the
proposed hybrid state-space fuzzy model-based control scheme
for digital control of the chaotic Chua circuit. Simulations are
performed using three control objectives: 1) to guide a chaotic
or oscillatory trajectory to the origin; 2) to guide its trajectory
to a constant reference; and 3) to guide its trajectory to a
square wave reference, respectively.
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Fig. 7. Response of Chua’s circuit with zero reference (Case 1).

Fig. 8. Phase-plane trajectory of Chua’s circuit with zero reference (Case 1).

Case 1: is a piecewise-linear function.
Choose the chaotic parameters as follows:

Let the fast-rate sampling period be 0.05 s and the slow-
rate sampling period be 0.25 s. The
fuzzy model for the circuit is modeled with s and
the fuzzy controller is designed with s. The initial
value of the prescribed degree of relative stability is
and is 0.1.

According to Section III-B, the feedback and feedforward
gain matrices , and the designed parameter are

obtained as follows:

In checking the stability of the fuzzy control system, we found
the common positive definite matrix to be

The other conditions are also satisfied. Therefore, the overall
continuous-time control system is stable in the sense of
Lyapunov due to Corollary 1.

By the digital redesign formulas (41) and (42), the feedback
and feedforward gain matrices and are obtained as
follows:

Therefore, the fuzzy rules for the control input are:

Rule IF is

THEN

Rule IF is

THEN

The overall feedback and feedforward gains and are
calculated using (63).

Figs. 7–12 show the simulation results in this case. Fig. 7
shows the response of the circuit. The initial condition is [0
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Fig. 9. Response of Chua’s circuit with constant reference (Case 1).

Fig. 10. Phase-plane trajectory of Chua’s circuit with constant reference
(Case 1).

1 0] and the control is activated at for comparison
purpose. Before the control mode is activated, the trajectory of
the circuit is chaotic. However, after the controller is activated,
the circuit trajectory is quickly directed to the origin. Fig. 8
shows the phase-plane trajectory of the same simulation result.
The phase-plane trajectory starts with (0,1) and . Before

, it is clear that the trajectory does not approach the
target in any way. After , the trajectory goes to the
origin.

The response of the Chua circuit with a constant reference
is shown in Fig. 9. Before the control mode is

activated, the trajectory is chaotic and highly oscillatory. But
after the control mode is activated, the chaotic trajectory is
quickly converged to the constant . Fig. 10 shows
the phase-plane trajectory for the same simulation. The phase-

Fig. 11. Response of Chua’s circuit with square wave reference (Case 1)
dashed line: reference; solid line: output.

plane trajectory goes from initial point (0, 1) to reference point
(2, 2).

Fig. 11 shows the result of the tracking control of following
the square wave. According to the change of the reference
input, the trajectory follows quite fastly. Fig. 12 shows the
control input used for the square-wave tracking.

Case 2: is a cubic function.
Choose the chaotic parameters as follows:

Let the fast-rate sampling period be 0.05 s and the slow-
rate sampling period be 0.25 s. The
fuzzy model for the circuit is modeled with s and
the fuzzy controller is designed with s. The initial
value of the prescribed degree of relative stability is
and is 0.1.

Similar to Case 1, the feedback and feedforward gain
matrices , , and the designed parameter h are obtained
as follows:
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Fig. 12. Control signal of Chua’s circuit for square wave tracking (Case 1).

A common positive definite matrix that satisfies stability
condition defined by Theorem 3 is found to be

Therefore, the overall continuous-time control system is stable
in the sense of Lyapunov due to Corollary 1.

The discrete-time feedback and feedforward gain matrices
are obtained as follows:

The overall feedback and feedforward gains and are
calculated by using (63).

Figs. 13–18 show the simulation results in this case. Fig. 13
shows the response of the circuit. The initial condition is
[0 1 0] and the control is activated at . Similarly
to Case 1, before the control mode is activated,
the trajectory is chaotic and highly oscillatory. But after the
control mode is activated, the trajectory is quickly guided to
the origin. Fig. 14 illustrates the phase-plane trajectory of the
circuit. The phase-plane trajectory starts with (0, 1) and .
Before , it is clear that the trajectory does not approach

Fig. 13. Response of Chua’s circuit with zero reference (Case 2).

the target in any way. After , the trajectory goes to
the origin.

The response of the circuit with constant reference
is shown in Fig. 15. Before the control mode is activated,
the trajectory is also chaotic and highly oscillatory. But after
the control mode is activated, the trajectory is directed to the
constant reference . Fig. 16 shows the phase-plane
trajectory for the same simulation.

The result of the tracking control to the square wave
reference is presented in Fig. 17. According to the change
of the reference input, the trajectory follows quite quickly.
Fig. 18 shows the control signal for the square-wave tracking.

As seen in all these simulation results, the proposed digital
control scheme is successful for digital control of the chaotic
Chua circuit. Moreover, it is important to emphasize that under
the given sufficient conditions, the stability is guaranteed not
only for the TS fuzzy model but also for the original chaotic
system.

VI. CONCLUSIONS

In this paper, we have presented a hybrid state-space fuzzy
model-based controller design methodology with dual-rate
sampling for digital control of complex such as chaotic sys-
tems. TS fuzzy model is first used to model the dynamic
system and then the extended parallel distributed compensation
technique is proposed and formulated for the design of a fuzzy
model-based controller. The optimal regional-pole assignment
technique is also extended and adopted together with some
new stability conditions to construct multiple local linear state-
space models. In this design procedure, once the fuzzy model
representation of the dynamic system is obtained we can apply
the newly developed fuzzy control technique to design the
digital controller for the dynamic system. It is emphasized
that stability conditions are given not only for the TS fuzzy
model but also for the underlying original dynamic system.
This proposed technique presents a systematic and effective
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Fig. 14. Phase-plane trajectory of the Chua’s circuit with zero reference
(Case 2).

Fig. 15. Response of Chua’s circuit with constant reference (Case 2).

framework for integration of modeling and digital control
design for complex systems including chaotic systems. In
order to demonstrate the effectiveness and feasibility of the
proposed design method, we have simulated the chaotic Chua
circuit that exhibits a wide variety of complicated dynamical
phenomena such as bifurcations and chaos. Simulation results
have shown that the new method can effectively control the
chaotic circuit with a satisfactory performance. This hybrid
state-space fuzzy model-based control scheme can also be
applied to other complex nonlinear dynamical systems.

APPENDIX A
PROOF OF THEOREM 3

Let be the fundamental matrix of the linear system

Fig. 16. Phase-plane trajectory of the Chua’s circuit with constant reference
(Case 2).

Fig. 17. Response of Chua’s circuit with square-wave reference (Case 2)
dashed line: reference; solid line: output.

Then, the general solution of system (54) is given by

Under condition (i) in Theorem 3, for all
, so that by condition (ii) in Theorem 3, we have

Therefore, all solutions of system (54) are bounded. Under
condition (ii) , the boundedness follows from the Gronwall
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Fig. 18. Control signal of Chua’s circuit for square-wave tracking (Case 2).

inequality [30] as follows:

Next, we can show that system (54) is stable in the sense
of Lyapunov if and only if all the solutions of the system are
bounded.

Indeed, if all solutions of the system are bounded, then
there exists a constant such that for all
, . Thus, for any , implies

which means that the system is stable in the sense of Lyapunov.
Conversely, if the system is stable in the sense of Lyapunov,

then for any , there exists a such that
implies

Pick , where is at the th
component. Then

where is the th column of . Therefore,
, implying

namely, all solutions of the system are bounded.

APPENDIX B
PROOF OF COROLLARY 1

It suffices to note that when the TS model (56) is used
to uniformly approximate the given nonlinear fuzzy control
system (55), we have

so that by Theorem 3, for any we have
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