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• Brief introduction of communication avoiding methods

• Lightweight scheduling for already optimized dense linear

algebra (communication avoiding)

• Experiments on a 48 cores AMD Opteron machine

• Conclusions and future work



3

Motivation for Communication Avoiding Algorithms

• Time to move data >> time per flop

   Running time =

      #flops               * time_per_flop +

      #words_moved / bandwidth +

      #messages      * latency

• Gap steadily and exponentially growing over time
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Previous work on reducing communication

• Tuning
• Overlap communication and computation, at most a factor of 2 speedup

• Ghosting
• Store redundantly data from neighboring processors for future computations

• Scheduling
• Cache oblivious algorithms for linear

      algebra

• Gustavson 97, Toledo 97, Frens and

      Wise 03, Ahmed and Pingali 00

• Block algorithms for linear algebra

• ScaLAPACK, Blackford et al 97

Courtesy of M. Jacquelin
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Algorithms and lower bounds on communication

• Goals for algorithms in dense linear algebra

• Minimize #words_moved = Ω (#flops/ M1/2 ) = Ω ( n2 / P1/2 )

• Minimize #messages       = Ω (#flops/ M3/2 ) = Ω ( P1/2 )

• Allow redundant computations (preferably as a low order term)

• LAPACK and ScaLAPACK

• Mostly suboptimal

• Recursive cache oblivious algorithms

• Minimize bandwidth, not latency, sometimes more flops (3x for QR)

• CA algorithms for dense linear algebra

• Minimize both bandwidth and latency

• Optimal CAQR, CALU introduced in 2008  by Demmel, Hoemmen, LG,

Langou, Xiang

• General bounds proven in 2011 by Ballard, Demmel, Holtz, Schwartz
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LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a P = Pr x Pc grid of processors

For i = 1 to n-1 step b

     A(ib)  = A(ib:n, ib:n)

 (1) Compute panel factorization (pdgetf2)

        - find pivot in each column, swap rows

 (2) Apply all row permutations (pdlaswp)

        - swap rows at left and right

(3) Compute block row of U (pdtrsm)

         - broadcast right diagonal block of L of current panel

 (4) Update trailing matrix (pdgemm)

        - broadcast right block column of L

        - broadcast down block row of U
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Factorizations that require pivoting

• Known pivoting techniques that minimize communication lead
to unstable factorizations

• Requires new tournament pivoting scheme (LU, RRQR)

• Consider a block algorithm that factors an n-by-n matrix A.

                                   , where

• At each iteration
• Preprocess W to find at low communication cost good pivots for the LU

factorization of W.

• Permute the pivots to top.

• Compute LU with no pivoting of W, update trailing matrix.
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Tournament pivoting for a tall skinny matrix
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Stability of CALU (experimental results)

Summer School Lecture 4 9

• Results show ||PA-LU||/||A||, normwise and componentwise backward

errors, for random matrices and special ones

• See [LG, Demmel, Xiang, 2011, SIMAX] for details

• BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU
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CALU and its task dependency graph

• The matrix is partitioned into blocks of size T x b.

• The computation of each block is associated with a task.
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Scheduling CALU’s Task Dependency Graph

• Static scheduling
+   Good locality of data              -    Ignores OS jitter
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Scheduling CALU’s Task Dependency Graph

• Static scheduling
+   Good locality of data              -    Ignores OS jitter

• Dynamic scheduling
+   Keeps cores busy                  -    Poor usage of data locality

                                                    -    Can lead to large overhead
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Profiling: CALU with dynamic scheduling

L2, L3 Cache misses on IBM Power 7.

m=n=5000, b=150, P = 4 x 2

0.47%Fetch task time

15ML3 cache misses

25ML2 cache misses

L2, L3 Cache misses on IBM Power 7.

m=n=5000, b=150, P = 4 x 2

2.3%Fetch task time

  3.5ML3 cache misses

12.5ML2 cache misses

Dynamic scheduling Dynamic scheduling with data locality
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Lightweight scheduling

• Emerging complexities of multi- and mani-core processors suggest a
need for self-adaptive strategies

• One example is work stealing

• Goal:

• Design a tunable strategy that is able to provide a good trade-off between
load balance, data locality, and low dequeue overhead.

• Provide performance consistency

• Approach: combine static and dynamic scheduling

• Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

√Column Major Layout (CM)

√√√2-level Block Layout (2l-BL)

√√√Block Cyclic Layout (BCL)

Static/(%dynamic)DynamicStaticData layout/scheduling

Design space
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Lightweight scheduling: hybrid static/dynamic approach

• Part of the DAG is scheduled statically

• Using a 2D block cyclic distribution of data (tasks) to threads

• A thread executes in priority its statically assigned tasks

• When no task is ready, a thread picks a ready task from the dynamic part
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Impact of data layout

Data layouts:

•  CM   : Column major order

•  BCL  : Each thread stores its

           data using CM

•  2l-BL : Each thread stores its

           data in blocks

Four socket, twelve cores machine based on AMD Opteron processor (U. of Tennessee).
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Improvement with respect to

static and dynamic scheduling

Four socket, twelve cores machine based on AMD Opteron processor (U. of Tennessee).
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Performance variations for 250 runs

•   Using 10% dynamic for our single node tests, we not only get high-performance,
but  also performance consistency

•   Our solution addresses the noise amplification problem, where localized noise
can amplify and create large bottlenecks at 10000+ nodes
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Best performance of CALU on multicore architectures

•   CALU 10% dynamic achieves up to 60% of the peak performance

•   Reported performance for PLASMA uses LU with incremental pivoting

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling
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Performance model: first results

• Find the breakpoint at which static scheduling induces load

imbalance

• Consider the parameters

• f
s
 is the fraction of static scheduling

• δ
i
 is the excess work on core i

• δ
total  

is the sum of excess work across all cores

• T
P is the time for computation to be done on P cores

• Assuming no overhead to the parallel time (eg communication), the

static scheduling induces no load imbalance as long as

fs "1#
$ total

TP



21

Performance model: first results

• Given δ
total

 constant

• For a given number of processor P and increasing matrix size, the static

fraction can be increased, thus avoiding scheduling overhead

• For strong scalability, the dynamic fraction needs to be increased

• Predictions of the amplification of noise at large scale suggests

that the fraction of the dynamic part will be increasing

fs "1#
$ total

TP
fd "

# total

TP
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Conclusions

• Highly efficient dense linear algebra routine

• Based on a tunable scheduling strategy

• Performance of CALU on 48 cores Opteron is as good as the performance

reported in literature for the QR factorization (using complex reduction trees)

• Future work

• Demonstrate the feasibility of the lightweight scheduling for other operations

• Develop a detailed theoretical analysis to guide the choice of the percentage

dynamic in the scheduler

• Apply the theoretical analysis of lightweight scheduling  time complexity to

CALU, CAQR


