
Hybrid static/dynamic scheduling

for already optimized

dense matrix factorization

Simplice Donfack,  Laura Grigori,     Bill Gropp,  Vivek Kale

INRIA, France                             UIUC, USA

Joint Laboratory for Petascale Computing, INRIA-UIUC



2

Plan

• Brief introduction of communication avoiding methods

• Lightweight scheduling for already optimized dense linear

algebra (communication avoiding)

• Experiments on a 48 cores AMD Opteron machine

• Conclusions and future work



3

Motivation for Communication Avoiding Algorithms

• Time to move data >> time per flop

   Running time =

      #flops               * time_per_flop +

      #words_moved / bandwidth +

      #messages      * latency

• Gap steadily and exponentially growing over time

Improvements per year

DRAM Network

23%

5% 15%

26%

DRAM

Cache

CPU

registers

DRAM

Cache

CPU

registers



4

Previous work on reducing communication

• Tuning
• Overlap communication and computation, at most a factor of 2 speedup

• Ghosting
• Store redundantly data from neighboring processors for future computations

• Scheduling
• Cache oblivious algorithms for linear

      algebra

• Gustavson 97, Toledo 97, Frens and

      Wise 03, Ahmed and Pingali 00

• Block algorithms for linear algebra

• ScaLAPACK, Blackford et al 97

Courtesy of M. Jacquelin



5

Algorithms and lower bounds on communication

• Goals for algorithms in dense linear algebra

• Minimize #words_moved = Ω (#flops/ M1/2 ) = Ω ( n2 / P1/2 )

• Minimize #messages       = Ω (#flops/ M3/2 ) = Ω ( P1/2 )

• Allow redundant computations (preferably as a low order term)

• LAPACK and ScaLAPACK

• Mostly suboptimal

• Recursive cache oblivious algorithms

• Minimize bandwidth, not latency, sometimes more flops (3x for QR)

• CA algorithms for dense linear algebra

• Minimize both bandwidth and latency

• Optimal CAQR, CALU introduced in 2008  by Demmel, Hoemmen, LG,

Langou, Xiang

• General bounds proven in 2011 by Ballard, Demmel, Holtz, Schwartz



6

LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a P = Pr x Pc grid of processors

For i = 1 to n-1 step b

     A(ib)  = A(ib:n, ib:n)

 (1) Compute panel factorization (pdgetf2)

        - find pivot in each column, swap rows

 (2) Apply all row permutations (pdlaswp)

        - swap rows at left and right

(3) Compute block row of U (pdtrsm)

         - broadcast right diagonal block of L of current panel

 (4) Update trailing matrix (pdgemm)

        - broadcast right block column of L

        - broadcast down block row of U

L

U

A(ib)

L

U

A(ib+b)

L

U

A(ib)

L

U

A(ib)

)log( 2 r
PnO

)log/( 2 c
PbnO

))log(log/( 22 rc
PPbnO +

))log(log/( 22 rc
PPbnO +



7

Factorizations that require pivoting

• Known pivoting techniques that minimize communication lead
to unstable factorizations

• Requires new tournament pivoting scheme (LU, RRQR)

• Consider a block algorithm that factors an n-by-n matrix A.

                                   , where

• At each iteration
• Preprocess W to find at low communication cost good pivots for the LU

factorization of W.

• Permute the pivots to top.

• Compute LU with no pivoting of W, update trailing matrix.

W =
A
11

A
21

" 

# 
$ 

% 

& 
' A =

A
11

A
12

A
21

A
22

" 

# 
$ 

% 

& 
' 
}
}

b

n " b

  

b n " b
} }

PA =
L
11

L
21

I
n"b

# 

$ 
% 

& 

' 
( 
U
11

U
12

A
22
" L

21
U
12

# 

$ 
% 

& 

' 
( 



8

Tournament pivoting for a tall skinny matrix

time

P0

P1

P2

P3

2 4

0 1

2 0

1 2

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=(
0
L
0
U
0

2 0

0 0

4 1

1 0

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=(
1
L
1
U
1

0 1

1 4

0 0

0 2

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=(
2
L
2
U
2

2 1

0 2

1 0

4 2

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=(
3
L
3
U
3

2 4

2 0

" 

# 
$ 

% 

& 
' 

4 1

2 0

" 

# 
$ 

% 

& 
' 

1 4

0 2

" 

# 
$ 

% 

& 
' 

4 2

0 2

" 

# 
$ 

% 

& 
' 

2 4

2 0

4 1

2 0

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=(0L
0
U
0

1 4

0 2

4 2

0 2

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=(2L2U 2

4 1

2 4

" 

# 
$ 

% 

& 
' 

4 2

1 4

" 

# 
$ 

% 

& 
' 

4 1

2 4

4 2

1 4

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=(
0
L
0
U
0

4 1

1 4

" 

# 
$ 

% 

& 
' 

W
0 "

0

T
W

0
W

0 "0

T

W 0
W

0 "
0

T

W
0

W
1 "

1

T
W
1

W
2

"
2

T
W

2
W

2

"2

T

W 2

W
3 "

3

T
W

3

Good pivots for

factorizing W



9

Stability of CALU (experimental results)

Summer School Lecture 4 9

• Results show ||PA-LU||/||A||, normwise and componentwise backward

errors, for random matrices and special ones

• See [LG, Demmel, Xiang, 2011, SIMAX] for details

• BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU



10

CALU and its task dependency graph

• The matrix is partitioned into blocks of size T x b.

• The computation of each block is associated with a task.



11

Scheduling CALU’s Task Dependency Graph

• Static scheduling
+   Good locality of data              -    Ignores OS jitter



12

Scheduling CALU’s Task Dependency Graph

• Static scheduling
+   Good locality of data              -    Ignores OS jitter

• Dynamic scheduling
+   Keeps cores busy                  -    Poor usage of data locality

                                                    -    Can lead to large overhead



13

Profiling: CALU with dynamic scheduling

L2, L3 Cache misses on IBM Power 7.

m=n=5000, b=150, P = 4 x 2

0.47%Fetch task time

15ML3 cache misses

25ML2 cache misses

L2, L3 Cache misses on IBM Power 7.

m=n=5000, b=150, P = 4 x 2

2.3%Fetch task time

  3.5ML3 cache misses

12.5ML2 cache misses

Dynamic scheduling Dynamic scheduling with data locality



14

Lightweight scheduling

• Emerging complexities of multi- and mani-core processors suggest a
need for self-adaptive strategies

• One example is work stealing

• Goal:

• Design a tunable strategy that is able to provide a good trade-off between
load balance, data locality, and low dequeue overhead.

• Provide performance consistency

• Approach: combine static and dynamic scheduling

• Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

√Column Major Layout (CM)

√√√2-level Block Layout (2l-BL)

√√√Block Cyclic Layout (BCL)

Static/(%dynamic)DynamicStaticData layout/scheduling

Design space



15

Lightweight scheduling: hybrid static/dynamic approach

• Part of the DAG is scheduled statically

• Using a 2D block cyclic distribution of data (tasks) to threads

• A thread executes in priority its statically assigned tasks

• When no task is ready, a thread picks a ready task from the dynamic part



16

Impact of data layout

Data layouts:

•  CM   : Column major order

•  BCL  : Each thread stores its

           data using CM

•  2l-BL : Each thread stores its

           data in blocks

Four socket, twelve cores machine based on AMD Opteron processor (U. of Tennessee).



17

Improvement with respect to

static and dynamic scheduling

Four socket, twelve cores machine based on AMD Opteron processor (U. of Tennessee).



18

Performance variations for 250 runs

•   Using 10% dynamic for our single node tests, we not only get high-performance,
but  also performance consistency

•   Our solution addresses the noise amplification problem, where localized noise
can amplify and create large bottlenecks at 10000+ nodes



19

Best performance of CALU on multicore architectures

•   CALU 10% dynamic achieves up to 60% of the peak performance

•   Reported performance for PLASMA uses LU with incremental pivoting

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling



20

Performance model: first results

• Find the breakpoint at which static scheduling induces load

imbalance

• Consider the parameters

• f
s
 is the fraction of static scheduling

• δ
i
 is the excess work on core i

• δ
total  

is the sum of excess work across all cores

• T
P is the time for computation to be done on P cores

• Assuming no overhead to the parallel time (eg communication), the

static scheduling induces no load imbalance as long as

fs "1#
$ total

TP



21

Performance model: first results

• Given δ
total

 constant

• For a given number of processor P and increasing matrix size, the static

fraction can be increased, thus avoiding scheduling overhead

• For strong scalability, the dynamic fraction needs to be increased

• Predictions of the amplification of noise at large scale suggests

that the fraction of the dynamic part will be increasing

fs "1#
$ total

TP
fd "

# total

TP



22

Conclusions

• Highly efficient dense linear algebra routine

• Based on a tunable scheduling strategy

• Performance of CALU on 48 cores Opteron is as good as the performance

reported in literature for the QR factorization (using complex reduction trees)

• Future work

• Demonstrate the feasibility of the lightweight scheduling for other operations

• Develop a detailed theoretical analysis to guide the choice of the percentage

dynamic in the scheduler

• Apply the theoretical analysis of lightweight scheduling  time complexity to

CALU, CAQR


