Hybrid Steepest Descent Method for Variational Inequality Problem over Fixed Point Sets of
 Certain Quasi-Nonexpansive Mappings

Isao Yamada
Tokyo Institute of Technology

VIC2004 @ Wellington, Feb. 13, 2004

This talk is based on a joint work with
N. Ogura (Tokyo Institute of Technology).

We are trying to solve: in Real Hilbert Sp \mathcal{H} Variational Inequality Problem over Fix(T) For given $T: \mathcal{H} \rightarrow \mathcal{H}$ and $\Theta: \mathcal{H} \rightarrow \mathbb{R}$ (Convex func.), Find
$u^{*} \in \operatorname{Fix}(T):=\{x \in \mathcal{H} \mid T(x)=x\}$ closed convex s.t. $\left\langle u-u^{*}, \Theta^{\prime}\left(u^{*}\right)\right\rangle \geq 0, \forall u \in \operatorname{Fix}(T)$.

For T : Convex Projection \Rightarrow Gradient Projection Method (Goldstein'64/Levitin\&Polyak'66) We propose Hybrid Steepest Descent Method

- $T: \mathcal{H} \rightarrow \mathcal{H}$ Nonexpansive Mapping
(Yamada et al '96- / Deutsch \& Yamada '98 / Yamada '01) Appl: Convexly Constrained Inverse Problems
- $T: \mathcal{H} \rightarrow \mathcal{H}$ Quasi-Nonexpansive(Yamada\&Ogura'03)

Appl: Optimization of Fixed Point of Subgradient Projector

Part 1

Background / Preliminaries

Original Idea of Gradient Projection Method

Convex Projection: Basic Properties

- $\left\|P_{K}(x)-P_{K}(\boldsymbol{y})\right\| \leq\|\boldsymbol{x}-\boldsymbol{y}\|, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{H}$
- $\operatorname{Fix}\left(P_{K}\right):=\left\{\boldsymbol{x} \in \mathcal{H} \mid P_{K}(x)=x\right\}=K$
- K must be simple to compute P_{K}.

Gradient Projection Method (1964—)

$$
\begin{aligned}
u_{n+1}:= & P_{K}\left(u_{n}-\lambda_{n+1} \Theta^{\prime}\left(u_{n}\right)\right) \\
& n=0,1,2, \ldots
\end{aligned}
$$

- under certain conditions -
converges (strongly / weakly) to a solution to Smooth Convex Optimization Problem (P1)
Minimize $\quad \Theta: \mathcal{H} \rightarrow \mathbb{R}$ G-differentiable convex func. Subject to $\quad \boldsymbol{x} \in K(\subset \mathcal{H})$ closed convex set where \mathcal{H} : Real Hilbert Space
NOTE: $\quad u^{*} \in K$ is a solution of (P1)
$\Leftrightarrow u^{*} \in K$ satisfies $\left\langle u-u^{*}, \Theta^{\prime}\left(u^{*}\right)\right\rangle \geq 0, \forall u \in K$.

Part 2

Hybrid Steepest Descent Method From Projection to
Nonexpansive Mapping / Quasi-Nonexpansive Mapping
$T: \mathcal{H} \rightarrow \mathcal{H}$ is called κ-Lipschitzian if $\exists \kappa>0$ s.t.

$$
\|T(x)-T(y)\| \leq \kappa\|x-y\| \text { for all } x, y \in \mathcal{H}
$$

$$
\text { If } \kappa=1
$$

- $T: \mathcal{H} \rightarrow \mathcal{H}$ is Nonexpansive mapping.
- $\operatorname{Fix}(T):=\{x \in \mathcal{H} \mid T(x)=x\}$ is closed convex.

\Downarrow

- Generalization $\kappa<1 \Rightarrow \kappa<1$ or $\kappa=1$ broadens Fixed Point Theory significantly.
- Many choices of T s.t. $\operatorname{Fix}(T)=K$, e.g.,

$$
\operatorname{Fix}\left(\sum_{i=1}^{m} w_{i} T_{i}\right)=\bigcap_{i=1}^{m} F i x\left(T_{i}\right) \text { if } \bigcap_{i=1}^{m} F i x\left(T_{i}\right) \neq \emptyset
$$

Is It Possible to Extend from

 Gradient Projection Method$$
v_{n+1}:=P_{K}\left(v_{n}-\lambda_{n+1} \Theta^{\prime}\left(v_{n}\right)\right)
$$

to

$$
v_{n+1}:=T\left(v_{n}-\lambda_{n+1} \Theta^{\prime}\left(v_{n}\right)\right)
$$

where $T: \mathcal{H} \rightarrow \mathcal{H}$: Nonexpansive Mapping
for Minimizing
over $F i x(T) ?$

To Answer to the Question, we introduce

Hybrid Steepest Descent Method (Yamada et al, 1996-)

$$
u_{n+1}:=T\left(u_{n}\right)-\lambda_{n+1} \Theta^{\prime}\left(T\left(u_{n}\right)\right)
$$ where $T: \mathcal{H} \rightarrow \mathcal{H}$: Nonexpansive Mapping

This is because

- $v_{n}:=T\left(u_{n}\right)$ is generated by

$$
\frac{v_{n+1}:=T\left(v_{n}-\lambda_{n+1} \Theta^{\prime}\left(v_{n}\right)\right)}{\text { and }}
$$

- If s- $\lim _{n \rightarrow \infty} u_{n}=u^{*} \in \operatorname{Fix}(T)$

$$
\Rightarrow \mathrm{s}^{-} \lim _{n \rightarrow \infty} v_{n}=u^{*} \in \operatorname{Fix}(T)
$$

In short,
Hybrid Steepest Descent Method (Yamada2001):

$$
u_{n+1}:=T\left(u_{n}\right)-\lambda_{n+1} \Theta^{\prime}\left(T\left(u_{n}\right)\right)
$$

can minimize Θ over Fix (T),
where
$T: \mathcal{H} \rightarrow \mathcal{H}:$ nonexpansive, and $\left(\lambda_{n}\right)_{n=1}^{\infty} \subset \mathbb{R}^{+}$: slowly decreasing.

Sequence Generation by

Hybrid Steepest Descent Method

Hybrid Steepest Descent Method(Yamada 2001)

Suppose that

(a) $T: \mathcal{H} \rightarrow \mathcal{H}$: Nonexp. mapping,
(b) $\Theta: \mathcal{H} \rightarrow \mathbb{R}:$ Convex function,
(c) Θ^{\prime} : Lipschitzian \& Strongly monotone over $T(\mathcal{H})$,
(d) $\left(\lambda_{n}\right)_{n \geq 1} \subset[0, \infty)$ satisfies
(i) $\lim _{n \rightarrow \infty} \lambda_{n}=0$, (ii) $\sum_{n \geq 1} \lambda_{n}=\infty$, (iii) $\sum_{n \geq 1}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty$.
$u_{n+1}:=T\left(u_{n}\right)-\lambda_{n+1}^{\Downarrow} \Theta^{\prime}\left(T\left(u_{n}\right)\right)$ satisfies

$$
\text { s- } \lim _{n \rightarrow \infty} u_{n}=u^{*} \in \arg \inf _{x \in \operatorname{Fix}(T)} \Theta(x) . \text { (Unique) }
$$

If we specially choose $\Theta(x):=\frac{1}{2}\|x-a\|^{2}$ in the Hybrid Steepest Descent Method,

$$
\Downarrow
$$

$[$ Halpern ('67), P.L.Lions ('77), Wittmann ('92)

$$
u_{n+1}:=\lambda_{n+1} a+\left(1-\lambda_{n+1}\right) T\left(u_{n}\right)
$$

converges strongly to $P_{\text {Fix }(T)}(a)$, where
$T: \mathcal{H} \rightarrow \mathcal{H}$: nonexpansive, and
$\left(\lambda_{n}\right)_{n=1}^{\infty} \subset \mathbb{R}^{+}$: slowly decreasing.
More general cyclic versions were given by
P.L. Lions (1977) and H.H. Bauschke (1996)

Generalization of Θ

Θ^{\prime} : Lipschitzian \& Paramonotone (Ogura, Yamada 2002)

Robust Hybrid Steepest Descent Method

(Yamada, Ogura, Shirakawa 2002)

$$
\frac{u_{n+1}:=T_{(n)}\left(u_{n}\right)-\lambda_{n+1} \Theta^{\prime}\left(T_{(n)}\left(u_{n}\right)\right)}{\text { where } T_{(n)}:=\left(1-t_{n+1}\right) I+t_{n+1} T}
$$

is gifted with notable numerical robustness.
For detail, see
Contemporary Mathematics 313 (2002)

Convexly Constrained

Generalized Inverse Problem

Let $\quad K \subset \mathcal{H}:$ a closed convex set, $\psi: \mathcal{H} \rightarrow \mathbb{R}$: the 1 st convex function,
satisfying

$$
K_{\psi}:=\arg \inf _{x \in K} \Psi(x) \neq \emptyset
$$

Then the problem is
Find a point $x^{*} \in \arg \inf _{x \in K_{\psi}} \Theta(x)=: \Gamma(\neq \emptyset)$,
where $\Theta: \mathcal{H} \rightarrow \mathbb{R}$ is the 2 nd convex function.

Suppose that $\Psi^{\prime}: \mathcal{H} \rightarrow \mathcal{H}$ (G-derivative) is γ-Lipschitzian.
\Downarrow
Apply Hybrid Steepest Descent Method

$$
\begin{gathered}
u_{n+1}:=T\left(u_{n}\right)-\lambda_{n+1} \Theta^{\prime}\left(T\left(u_{n}\right)\right) \\
{\left[T:=P_{K}\left(I-\nu \Psi^{\prime}\right), \quad \forall \nu \in(0,2 / \gamma]\right]}
\end{gathered}
$$

Solves the Problem, i.e., $\lim _{n \rightarrow \infty} d\left(u_{n}, \Gamma\right)=0$.
NOTE: Projected Landweber Iteration (Eicke 1992):

$$
v_{n+1}:=P_{K}\left(\lambda_{n+1} A^{*} b+\beta_{n}\left(I-\lambda_{n+1} A^{*} A\right) v_{n}\right)
$$

is the simplest realization for $\Theta(x):=\frac{1}{2}\|x\|^{2}$ and $\psi(x):=\frac{1}{2}\|A(x)-b\|_{o}^{2}\left(A: \mathcal{H} \rightarrow \mathcal{H}_{o}:\right.$ bdd linear $)$.

Part 3

Hybrid Steepest Descent Method

From Nonexpansive Mapping to Quasi-Nonexpansive Mapping

Quasi-Nonexpansive Mapping

$T: \mathcal{H} \rightarrow \mathcal{H}$ is called Quasi-Nonexpansive if

$$
\|T(x)-T(f)\| \leq\|x-f\|, \forall(x, f) \in \mathcal{H} \times \operatorname{Fix}(T) .
$$

In this case,
Fix $(T):=\{x \in \mathcal{H} \mid T(x)=x\}$
is closed convex set.
Quasi-nonexpansive mapping T is not necessarily continuous.

Next Example shows

The level set of continuous convex function can be expressed as
Fixed Point Set of Simple Quasi-Nonexpansive Mapping.

Example (Subgradient Projection $\left.T_{s p(\Phi)}\right)$
Subgradient Projection for Cont. convex function Φ

$$
T_{s p(\Phi)}: x \mapsto \begin{cases}x-\frac{\Phi(x)}{\|g(x)\|^{2}} g(x) & \text { if } \Phi(x)>0 \\ x & \text { if } \Phi(x) \leq 0\end{cases}
$$

where $g(x) \in \partial \Phi(x)$: subgradient of Φ at $x \in \mathcal{H}$.

\Downarrow

See for example (Bauschke \& Combettes '01)

- $T_{s p(\Phi)}:\left(\frac{1}{2}\right.$-averaged) quasi-nonexpansive,
- $\operatorname{Fix}\left(T_{s p(\Phi)}\right)=\{x \in \mathcal{H} \mid \Phi(x) \leq 0\}=: \operatorname{lev}_{\leq 0} \Phi$

Subgradient Projection : Approximation of Convex Projection

$$
\operatorname{Fix}\left(T_{s p(\Phi)}\right)=l e v_{\leq 0}(\Phi)
$$

Is It Possible to Extend from

$$
u_{n+1}:=T\left(u_{n}\right)-\lambda_{n+1} \Theta^{\prime}\left(T\left(u_{n}\right)\right)
$$ where $T: \mathcal{H} \rightarrow \mathcal{H}$: Nonexpansive to

$$
u_{n+1}:=T\left(u_{n}\right)-\lambda_{n+1} \Theta^{\prime}\left(T\left(u_{n}\right)\right)
$$

where $T: \mathcal{H} \rightarrow \mathcal{H}$: Quasi-Nonexpansive

for Minimizing Θ
 over $\operatorname{Fix}(T)$?

Quasī-shrinking (Yamada \& Ogura '03)

Let $T: \mathcal{H} \rightarrow \mathcal{H}:$ quasi-nonexpansive with
$\operatorname{Fix}(T) \cap C \neq \emptyset$ for $\exists C(\subset \mathcal{H})$: closed convex set. \Downarrow
$T: \mathcal{H} \rightarrow \mathcal{H}$ is called quasi-shrinking on C if

$$
\begin{aligned}
& D: r \in[0, \infty) \mapsto \\
& \qquad\left\{\begin{array}{cl}
\inf & d(u, F i x(T))-d(T(u), F i x(T)) \\
u \in \triangleright(F i x(T), r) \cap C & \text { if } \triangleright(\operatorname{Fix}(T), r) \cap C \neq \emptyset \\
\infty & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

satisfies $D(r)=0 \Leftrightarrow r=0$.
where $\triangleright(\operatorname{Fix}(T), r):=\{x \in \mathcal{H} \mid d(x, F i x(T)) \geq r\}$.

Hybrid Steepest Descent Method (Quasi-Nonexpansive)

Suppose that
(a) $T: \mathcal{H} \rightarrow \mathcal{H}$: Quasi-Nonexpansive,
(b) $\Theta^{\prime}: \kappa$-Lipschitzian\& η-Strongly monotone over $T(\mathcal{H})$,
(c) $\exists f \in \operatorname{Fix}(T)$, s.t. T is quasi-shrinking on
$C_{f}\left(u_{0}\right):=\left\{x \in \mathcal{H} \left\lvert\,\|x-f\| \leq \max \left(\left\|u_{0}-f\right\|, \frac{\|\mu \mathcal{F}(f)\|}{1-\sqrt{1-\mu\left(2 \eta-\mu \kappa^{2}\right)}}\right)\right.\right\}$
where $\mu \in\left(0, \frac{2 \eta}{k^{2}}\right)$,
\Downarrow

$$
\begin{aligned}
& \text { With }\left(\lambda_{n}\right)_{n \geq 1} \subset[0,1] \text { s.t. (i) } \lim _{n \rightarrow \infty} \lambda_{n}=0 \text {, (ii) } \sum_{n \geq 1} \lambda_{n}=\infty \text {, } \\
& \underline{u_{n+1}:=T\left(u_{n}\right)-\lambda_{n+1} \mu \Theta^{\prime}\left(T\left(u_{n}\right)\right)} \text { satisfies } \\
& \text { S- } \lim _{n \rightarrow \infty} u_{n}=u^{*} \in \arg \inf _{x \in F i x(T)} \Theta(x) \text { (Unique) }
\end{aligned}
$$

Proposition

Suppose $\Phi: \mathcal{H} \rightarrow \mathbb{R}$ (cont. convex function) satisfies

- $l^{-1} v_{\leq 0} \Phi \neq \emptyset$ and " $\partial \Phi$ bounded.

Define

$$
T_{\alpha}:=(1-\alpha) I+\alpha T_{s p(\Phi)}(\alpha \in(0,2)) .
$$

Then

(a) If $\operatorname{dim}(\mathcal{H})<\infty$, \Rightarrow
T_{α} : quasi-shrinking on any bdd closed convex C satisfying $C \cap \operatorname{lev}_{\leq 0} \Phi \neq \emptyset$.
(b) If $\Phi^{\prime} \in \partial \Phi$: Uniformly monotone over \mathcal{H}, \Rightarrow T_{α} : quasi-shrinking on any bdd closed convex C satisfying $C \cap \operatorname{lev}_{\leq 0} \Phi \neq \emptyset$.

Hybrid Steepest Descent Method (for $T_{s p(\phi)}$)

Suppose that

(a) $\Phi: \mathcal{H} \rightarrow \mathbb{R}$:Cont. Convex, $\operatorname{lev}_{\leq 0} \Phi \neq \emptyset \& \partial \Phi$: bdd,

$$
\text { Let } T_{\alpha}:=(1-\alpha) I+\alpha T_{s p(\phi)}(\alpha \in(0,2)) \text {. }
$$

(b) $\Theta^{\prime}: \kappa$-Lipschitzian \& η-Strongly monotone over $T_{\alpha}(\mathcal{H})$,

\Downarrow

When $\operatorname{dim}(\mathcal{H})<\infty$

$$
\begin{aligned}
& \text { With }\left(\lambda_{n}\right)_{n \geq 1} \subset[0, \infty) \text { s.t. (i) } \lim _{n \rightarrow \infty} \lambda_{n}=0 \text {, (ii) } \sum_{n \geq 1} \lambda_{n}=\infty, \\
& u_{n+1}:=T_{\alpha}\left(u_{n}\right)-\lambda_{n+1} \Theta^{\prime}\left(T_{\alpha}\left(u_{n}\right)\right) \text { satisfies } \\
& \lim _{n \rightarrow \infty} u_{n}=u^{*} \in \arg \inf _{x \in \operatorname{lev} \leq 0^{\infty}} \Theta(x) \text { (Unique) }
\end{aligned}
$$

Hybrid Steepest Descent Method (for $T_{s p(\Phi)}$ over K)

Suppose that
(a) $\Phi: \mathcal{H} \rightarrow \mathbb{R}$: Cont. Convex with $\partial \Phi$: bdd,
(b) K : bdd closed convex set s.t. $\operatorname{lev}_{\leq 0} \Phi \cap K \neq \emptyset$,
(c) Θ^{\prime} : Lipschitzian\& Paramonotone over K,

\Downarrow

When $\operatorname{dim}(\mathcal{H})<\infty$

$$
\begin{aligned}
& \text { With }\left(\lambda_{n}\right)_{n \geq 1} \subset[0, \infty) \text { s.t. (i) } \lim _{n \rightarrow \infty} \lambda_{n}=0 \text {, (ii) } \sum_{n \geq 1} \lambda_{n}=\infty, \\
& \underline{u_{n+1}}:=P_{K} T_{\alpha}\left(u_{n}\right)-\lambda_{n+1} \Theta^{\prime}\left(P_{K} T_{\alpha}\left(u_{n}\right)\right)
\end{aligned}
$$

satisfies

$$
\lim _{n \rightarrow \infty} d\left(u_{n},\ulcorner)=0\right.
$$

where $\Gamma:=\arg \inf _{K \cap \operatorname{lev}_{\leq 0} \Phi} \Theta(x) \neq \emptyset$.

For related results to this talk, See for example :

Hybrid Steepest Descent Method and Its Applications

1. I. Yamada: "The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings," pp.473-504, in Inherently Parallel Algorithm for Feasibility and Optimization and Their Applications, Elsevier 2001.
2. I. Yamada, N. Ogura and N. Shirakawa: " A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems," pp.269-305, in Inverse Problems, Image Analysis, and Medical Imaging, Contemporary Mathematics, 313, Amer. Math. Soc., 2002.
3. K. Slavakis, I. Yamada and K. Sakaniwa: "Computation of symmetric positive definite Toeplitz matrices by the Hybrid Steepest Descent Method," Signal Processing, vol.83, pp.1135-1140, 2003.
4. H.K. Xu and T.H. Kim: "Convergence of hybrid steepest descent methods for variational inequalities," Journal of Optimization Theory and Applications, vol. 119, no. 1, pp.185-201, 2003.
5. I. Yamada and N. Ogura: "Two Generalizations of the Projected Gradient Method for Convexly Constrained Inverse Problems - Hybrid steepest descent method, Adaptive projected subgradient method," Proceedings of NANIT'03, RIMS, Kyoto, Dec., 2003.

Thank you very much !!

What is Subgradient ?

Subgradient of Φ at x

Let $\Phi: \mathcal{H} \rightarrow \mathbb{R}$: Cont. Convex Function.

$\partial \Phi(x):=\{s \in \mathcal{H}:\langle y-x, s\rangle+\Phi(x) \leq \Phi(y), \forall y \in \mathcal{H}\}$ $\neq \emptyset$.
$\forall s \in \partial \Theta(x)$ is called Subgradient of Φ at x.

- $0 \in \partial \Phi(x) \Leftrightarrow \Phi(x)=\min _{y \in \mathcal{H}} \Phi(y)$.
- $\partial \Phi(x)=\{\nabla \Phi(x)\}$ if Φ :G-differentiable at x.
\Rightarrow generalization of Gradient.

Subgradient: a generalization of Gradient

