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We are trying to solve: in Real Hilbert Sp H
Variational Inequality Problem over Fix(T )¶ ³

For given T : H → H and Θ : H → R (Convex func.),
Find¶ ³

u∗ ∈ Fix(T ) := {x ∈ H | T (x) = x} closed convex

s.t.
〈
u− u∗,Θ′(u∗)

〉 ≥ 0, ∀u ∈ Fix(T ).
µ ´

µ ´

For T : Convex Projection ⇒ Gradient Projection Method
(Goldstein’64/Levitin&Polyak’66)

We propose Hybrid Steepest Descent Method¶ ³

�T : H → H Nonexpansive Mapping

(Yamada et al ’96— / Deutsch & Yamada ’98 / Yamada ’01)

Appl: Convexly Constrained Inverse Problems

�T : H → H Quasi-Nonexpansive(Yamada&Ogura’03)

Appl: Optimization of Fixed Point of Subgradient Projector
µ ´
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Part 1

Background / Preliminaries
¶ ³

Original Idea of
Gradient Projection Method

µ ´
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K

PK(X)

PK (Y)
Y

X

Convex Projection: Basic Properties¶ ³

� ‖PK(x)− PK(y)‖ ≤ ‖x− y‖, ∀x, y ∈ H

� Fix(PK) := {x ∈ H | PK(x)= x}= K

�K must be simple to compute PK.
µ ´
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Gradient Projection Method (1964—)¶ ³

un+1 := PK

(
un − λn+1Θ

′(un)
)
,

n = 0,1,2, . . .
µ ´

— under certain conditions —

converges (strongly / weakly) to a solution to

Smooth Convex Optimization Problem (P1)¶ ³

Minimize Θ : H → R G-differentiable convex func.

Subject to x ∈ K (⊂ H) closed convex set

where H : Real Hilbert Space
µ ´

NOTE: u∗ ∈ K is a solution of (P1)

⇔ u∗ ∈ K satisfies
〈
u− u∗,Θ′(u∗)

〉
≥ 0, ∀u ∈ K.
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Part 2

Hybrid Steepest Descent Method
¶ ³

From Projection to

Nonexpansive Mapping /
Quasi-Nonexpansive Mapping

µ ´
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T : H → H is called κ-Lipschitzian if ∃κ > 0 s.t.

‖T (x)− T (y)‖ ≤ κ‖x− y‖ for all x, y ∈ H.

If κ = 1¶ ³

• T : H → H is Nonexpansive mapping.

• Fix (T ) := {x ∈ H | T (x) = x} is closed convex.
µ ´

⇓
� Generalization κ < 1 ⇒ κ < 1 or κ = 1

broadens Fixed Point Theory significantly.

� Many choices of T s.t. Fix(T ) = K, e.g.,

Fix




m∑

i=1
wiTi


 =

m⋂

i=1
Fix(Ti) if

m⋂

i=1
Fix(Ti) 6= ∅.
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Is It Possible to Extend from
Gradient Projection Method¶ ³

vn+1 := PK

(
vn − λn+1Θ

′(vn)
)

µ ´

to
¶ ³

vn+1 := T
(
vn − λn+1Θ

′(vn)
)

where T : H → H: Nonexpansive Mapping
µ ´

for Minimizing Θ
over Fix(T ) ?

8



To Answer to the Question, we introduce

Hybrid Steepest Descent Method (Yamada et al, 1996—)¶ ³

un+1 := T (un)− λn+1Θ
′ (T (un))

where T :H → H: Nonexpansive Mapping
µ ´

This is because¶ ³

� vn := T (un) is generated by

vn+1 := T
(
vn − λn+1Θ

′(vn)
)

and
� If s- lim

n→∞ un = u
∗ ∈ Fix(T )

⇒ s- lim
n→∞ vn = u

∗ ∈ Fix(T )
µ ´
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In short,

Hybrid Steepest Descent Method (Yamada2001):

un+1 := T (un)− λn+1Θ
′ (T (un))

can minimize Θ over Fix(T ),

where

T : H → H: nonexpansive, and
(λn)∞n=1 ⊂ R+: slowly decreasing.
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Sequence Generation by
Hybrid Steepest Descent Method

Θ

H
T(H)

Π

Fix(T)

un+1
 -λn+1Θ’(T(un))

T(un)
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Hybrid Steepest Descent Method(Yamada 2001)

Suppose that

(a) T : H → H: Nonexp. mapping,

(b) Θ : H → R:Convex function,

(c) Θ′: Lipschitzian & Strongly monotone over T (H),

(d) (λn)n≥1 ⊂ [0,∞) satisfies

(i) lim
n→∞λn = 0, (ii)

∑

n≥1

λn = ∞, (iii)
∑

n≥1

|λn − λn+1| < ∞.

⇓
un+1 := T (un)− λn+1Θ

′ (T (un)) satisfies

s- lim
n→∞un = u∗ ∈ arg inf

x∈Fix(T )
Θ(x). (Unique)
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If we specially choose Θ(x) := 1
2‖x− a‖2

in the Hybrid Steepest Descent Method,

⇓
Halpern (’67), P.L.Lions (’77), Wittmann (’92)¶ ³

un+1 := λn+1a + (1− λn+1)T (un),

converges strongly to PFix(T )(a), where

T : H → H: nonexpansive, and

(λn)∞n=1 ⊂ R+: slowly decreasing.
µ ´

More general cyclic versions were given by

P.L. Lions (1977) and H.H. Bauschke (1996)
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Generalization of Θ
Θ′: Lipschitzian & Paramonotone (Ogura,Yamada 2002)

Robust Hybrid Steepest Descent Method

(Yamada, Ogura, Shirakawa 2002)¶ ³

un+1 := T(n)(un)− λn+1Θ
′ (

T(n)(un)
)

where T(n) := (1− tn+1)I + tn+1T

is gifted with notable numerical robustness.
µ ´

For detail, see
Contemporary Mathematics 313 (2002)
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Convexly Constrained¶ ³

Generalized Inverse Problem

Let K ⊂ H: a closed convex set,

Ψ : H → R: the 1st convex function,

satisfying

KΨ := arg inf
x∈K

Ψ(x) 6= ∅.

Then the problem is

Find a point x∗ ∈ arg inf
x∈KΨ

Θ(x) =: Γ( 6= ∅),

where Θ : H → R is the 2nd convex function.
µ ´
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Suppose that Ψ′ : H → H (G-derivative) is γ-Lipschitzian.

⇓
Apply Hybrid Steepest Descent Method¶ ³

un+1 := T (un)− λn+1Θ
′ (T (un)),

[
T := PK(I − νΨ′), ∀ν ∈ (0,2/γ]

]

Solves the Problem, i.e., lim
n→∞ d(un,Γ) = 0.

µ ´

NOTE: Projected Landweber Iteration (Eicke 1992):

vn+1 := PK

(
λn+1A∗b + βn(I − λn+1A∗A)vn

)

is the simplest realization for Θ(x) := 1
2‖x‖2 and

Ψ(x) := 1
2‖A(x)− b‖2o (A : H → Ho: bdd linear).
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Part 3

Hybrid Steepest Descent Method
¶ ³

From Nonexpansive Mapping to
Quasi-Nonexpansive Mapping

µ ´
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Quasi-Nonexpansive Mapping

T : H → H is called Quasi-Nonexpansive if

‖T (x)− T (f)‖ ≤ ‖x− f‖, ∀(x, f) ∈ H× Fix(T ).

In this case,¶ ³

Fix (T ) := {x ∈ H | T (x) = x}
is closed convex set.

µ ´

Quasi-nonexpansive mapping T is
not necessarily continuous.
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Firmly Nonexpansive
Attracting Nonexpansive

Nonexpansive

Convex Projection

Quasi-Nonexpansive

Next Example shows

The level set of continuous convex function
can be expressed as

Fixed Point Set of

Simple Quasi-Nonexpansive Mapping.
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Example (Subgradient Projection Tsp(Φ))¶ ³

Subgradient Projection for Cont. convex function Φ

Tsp(Φ) : x 7→





x− Φ(x)
‖g(x)‖2g(x) if Φ(x) > 0

x if Φ(x) ≤ 0,

where g(x) ∈ ∂Φ(x) : subgradient of Φ at x ∈ H.
µ ´⇓

See for example (Bauschke & Combettes ’01)¶ ³

� Tsp(Φ) : (12-averaged) quasi-nonexpansive,

� Fix(Tsp(Φ)) = {x ∈ H | Φ(x) ≤ 0} =: lev≤0Φ
µ ´
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Subgradient Projection :
Approximation of Convex Projection

lev
Tsp(  )

x

<=

Φ (x)

0 Φ

Fix
(
Tsp(Φ)

)
= lev≤0(Φ)

21



Is It Possible to Extend from
¶ ³

un+1 := T (un)− λn+1Θ
′ (T (un))

where T : H → H: Nonexpansive
µ ´

to
¶ ³

un+1 := T (un)− λn+1Θ
′ (T (un))

where T : H → H: Quasi-Nonexpansive
µ ´

for Minimizing Θ
over Fix(T ) ?
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Quasi-shrinking (Yamada & Ogura ’03)¶ ³

Let T : H → H : quasi-nonexpansive with

Fix(T ) ∩ C 6= ∅ for ∃C(⊂ H): closed convex set.

⇓
T : H → H is called quasi-shrinking on C if

D : r ∈ [0,∞) 7→



inf
u∈.(Fix(T ),r)∩C

d(u, F ix(T ))− d(T (u), F ix(T ))

if . (Fix(T ), r) ∩ C 6= ∅
∞ otherwise

satisfies D(r) = 0 ⇔ r = 0.
µ ´

where .(Fix(T ), r) := {x ∈ H | d(x, F ix(T )) ≥ r}.
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Hybrid Steepest Descent Method (Quasi-Nonexpansive)

Suppose that
(a)T : H → H: Quasi-Nonexpansive,
(b)Θ′: κ-Lipschitzian& η-Strongly monotone over T (H),
(c)∃f ∈ Fix(T ), s.t. T is quasi-shrinking on

Cf(u0) :=





x ∈ H | ‖x− f‖ ≤ max


‖u0 − f‖, ‖µF(f)‖

1−
√

1− µ(2η − µκ2)








where µ ∈ (0, 2η
κ2), ⇓

¶ ³

With (λn)n≥1 ⊂ [0,1] s.t. (i) lim
n→∞λn = 0, (ii)

∑

n≥1

λn = ∞,

un+1 := T (un)− λn+1µΘ′ (T (un)) satisfies

s- lim
n→∞un = u∗ ∈ arg inf

x∈Fix(T )
Θ(x) (Unique)

µ ´
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Proposition¶ ³

Suppose Φ : H → R (cont. convex function) satisfies

� lev≤0Φ 6= ∅ and � ∂Φ bounded.

Define¶ ³

Tα := (1− α)I + αTsp(Φ) (α ∈ (0,2)).
µ ´

Then¶ ³

(a) If dim(H) < ∞,⇒
Tα : quasi-shrinking on any bdd closed convex
C satisfying C ∩ lev≤0Φ 6= ∅.

(b) If Φ′ ∈ ∂Φ: Uniformly monotone over H,⇒
Tα : quasi-shrinking on any bdd closed convex
C satisfying C ∩ lev≤0Φ 6= ∅.

µ ´
µ ´
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Hybrid Steepest Descent Method (for Tsp(Φ))

Suppose that

(a)Φ : H → R:Cont. Convex,lev≤0Φ 6= ∅ & ∂Φ: bdd,

Let Tα := (1− α)I + αTsp(Φ) (α ∈ (0,2)).

(b)Θ′: κ-Lipschitzian& η-Strongly monotone over Tα(H),

⇓
When dim(H) < ∞¶ ³

With (λn)n≥1 ⊂ [0,∞) s.t. (i) lim
n→∞λn = 0, (ii)

∑

n≥1

λn = ∞,

un+1 := Tα(un)− λn+1Θ
′ (Tα(un)) satisfies

lim
n→∞un = u∗ ∈ arg inf

x∈lev≤0Φ
Θ(x) (Unique)

µ ´
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Hybrid Steepest Descent Method (for Tsp(Φ)over K)

Suppose that
(a)Φ : H → R: Cont. Convex with ∂Φ: bdd,
(b) K: bdd closed convex set s.t. lev≤0Φ ∩K 6= ∅,
(c)Θ′: Lipschitzian& Paramonotone over K,

⇓
When dim(H) < ∞¶ ³

With (λn)n≥1 ⊂ [0,∞) s.t. (i) lim
n→∞λn = 0, (ii)

∑

n≥1

λn = ∞,

un+1 := PKTα(un)− λn+1Θ
′ (PKTα(un))

satisfies

lim
n→∞ d(un,Γ) = 0,

where Γ := arg inf
K∩lev≤0Φ

Θ(x) 6= ∅ .

µ ´
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For related results to this talk,

See for example :
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Thank you very much !!
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What is Subgradient ?

Subgradient of Φ at x¶ ³

Let Φ : H → R : Cont. Convex Function.

⇓

∂Φ(x) := {s ∈ H : 〈y − x, s〉+ Φ(x) ≤ Φ(y), ∀y ∈ H }
6= ∅.

∀s ∈ ∂Θ(x) is called Subgradient of Φ at x.
µ ´

� 0 ∈ ∂Φ(x) ⇔ Φ(x) = miny∈HΦ(y).

� ∂Φ(x) = {∇Φ(x)} if Φ:G-differentiable at x.

⇒ generalization of Gradient.
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Subgradient:
a generalization of Gradient

Subgradient

Gradient
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