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We are trying to solve: in Real Hilbert Sp H

— Variational Inequality Problem over Fix(T) —
For given T : H — H and © : ' H — R (Convex func.),

s Find ~
u* € Fix(T) . ={x € H|T(x) = x} closed convex

s.t. (u—u*, 0 (u*)) >0, Yu € Fix(T).

N J
N J

For T': Convex Projection = Gradient Projection Method
(Goldstein'64 /Levitin&Polyak’'66)
—~— We propose Hybrid Steepest Descent Method —

T . 'H — "H Nonexpansive Mapping
(Yamada et al '96— / Deutsch & Yamada '98 / Yamada '01)

Appl: Convexly Constrained Inverse Problems

T . H — H Quasi-Nonexpansive(Yamada&Ogura'03)

\Appl: Optimization of Fixed Point of Subgradient Projector
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Part 1

Background / Preliminaries

Original Idea of
Gradient Projection Method




> (X)

D ]
P v)

—— Convex Projection: Basic Properties ——

N

" |Px(z) — Px(y)| < ||z —yl|, Ve, y € H

" Fix(Pg) ={zeH| Pg(z)==z}= K

" K must be simple to compute PK.)
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— Gradient Projection Method (1964—) —

unt1 1= Pg (un — Apyg-19"(un))
n=20,1,2,...

— under certain conditions —

converges (strongly / weakly) to a solution to
— Smooth Convex Optimization Problem (P1) —

Minimize © :H — R G-differentiable convex func|
Subject to x € K(C 'H) closed convex set

where H : Real Hilbert Space

- J

NOTE: u*é€ K is a solution of (P1)
& u* € K satisfies (u — u*, ©'(u*)) > 0, Vu € K.
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Part 2
Hybrid Steepest Descent Method

4 R

From Projection to

Nonexpansive Mapping /
Quasi-Nonexpansive Mapping

o /




T : H — H is called s-Lipschitzian if d« > 0 s.t.
|T(x) —T(y)| < ~kllz—y| forall z,y € H.
f If K — 1 N

o I':'H— "H is Nonexpansive mapping.

o iz (T) :={x e H|T(x) =z} is closed convex.
N

Y

" Generalizati_on k<1 = Kk < lork=1
broadens Fixed Point T heory significantly.

J

Many choices of T s.t. Fia;(T) = K, e.q.,
Fm;(in: w; )— M Fix(T;) if ﬂ Fix(T;) & 0.
1=1 —
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Is It Possible to Extend from
Gradient Projection Method

V41 . — PK (fvn — )\n_|_1@/(vn)>
to

V41 =T (fvn — )\n_|_1@/(vn)>

where T : ' H — ‘H: Nonexpansive Mapping

-

for Minimizing ©
over Fix(T) 7




To Answer to the Question, we introduce

~ Hybrid Steepest Descent Method (Yamada et al, 1996—)~

up4-1 = T(un) — Ap4-1©" (T'(un))

where 1':’H — H: Nonexpansive Mapping

- This IS because N
v, = T'(un ) is generated by

V41 =T (’vn — )\n_|_]_@/(vn)>
and
If s-lim w,y, = u € FZZB(T)

nN—00

—> S—n”—>moo o = o € FZCC(T)




In short,

Hybrid Steepest Descent Method (vyamada2001):
N /
Unp+1 -— T'(un) — )‘n—l—le (T'(un))

can minimize © over Fix(T),

where

T :'H — H: nonexpansive, and
(An)S2 1 C RT: slowly decreasing.
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Sequence Generation by
Hybrid Steepest Descent Method

|
Fix(T) e‘é D

Un+1
“An+10’ (T(un))

T(H)
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Hybrid Steepest Descent Method(vamada2001)
Suppose that
(a) T : H— H: Nonexp. mapping,
(b) © : H — R:Convex function,
(c) ©': Lipschitzian & Strongly monotone over T'(H),
(d) (An)p>1 C [0, 00) satisfies

(i) lim A =0, (i) > A =o0, (iii) Y [An—Apr1] < oo

n— 00
n>1 n>1

Upt1 = T (un) — Ay 109" (T'(up)) satisfies

s- lim = u* € ar inf  ©(x). (Unique
noo n — U ngFi:c(T) (z). ( que)
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If we specially choose ©(x) := 3|z — a|?
in the Hybrid Steepest Descent Method,

Y

— Halpern ('67), P.L.Lions ("77), Wittmann ('92) —
Up+1 = Ap410 (1 - )\n—|—1)T(Un),

converges strongly to PFix(T)(CL)r where

T :'H — H: nonexpansive, and

()\n) >, C RT: slowly decreasing.

More general cyclic versions were given by

P.L. Lions (1977) and H.H. Bauschke (1996)
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Generalization of ©
©’: Lipschitzian & Paramonotone (Ogura,Yamada 2002)

Robust Hybrid Steepest Descent Method

—— (Yamada, Ogura, Shirakawa 2002) ——

tn41 = Ty (un) = Ay 10 (T (un))
where Ty 1= (1 =ty 1)+t T

kis gifted with notable numerical robustness.)

For detail, see

Contemporary Mathematics 313 (2002)
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- Convexly Constrained
Generalized Inverse Problem

et K C 'H: a closed convex set,

WV :'H — R: the 1st convex function,

satisfying

\\UJ g “KI LIJ (CC) # @
I hen the ,OIOD/GIH IS

Find a point =* € arg inf ©(z) =: (& 0),
re Ky

\Where © :'H— R is the 2nd convex function.
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Suppose that V' : 'H — H (G-derivative) is ~-Lipschitzian.

Y

— Apply Hybrid Steepest Descent Method ——

Upt1 "= T(un) — )\n_|_1@/ (T(Un))r
T :=Px(I—vV¥'), Wve(0,2/9]

Solves the Problem, i.e., lim d(up,) = O.

n—aoo
N J

NOTE: Projected Landweber Iteration (Eicke 1992):

Un+41 L= PK ()\n_|_1A*b —I— ﬁn(l — )\n_l_lA*A)Un)

is the simplest realization for ©(x) := %||m||2 and
W(x) = %HA(QE) —b[|2 (A:H — Ho: bdd linear).
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Part 3
Hybrid Steepest Descent Method

From Nonexpansive Mapping to
Quasi-Nonexpansive Mapping




Quasi-Nonexpansive Mapping

T :'H — H iIs called Quasi-Nonexpansive if

IT(2) = T(H)I| < ll= — £]l, Y(z, £) € H x Fix(T).

- In this case, ~

Fix(T) :={z e H|T(x) =z}
_Is closed convex set.

Quasi-nonexpansive mapping 7' is
not necessarily continuous.

18



Convex Projection

irmly Nonexpansive
Attracting Nonexpansi

Nonexpansive

~ — __ Quasi-Nonexpansive _--~

—_—  _ —

Next Example shows

The level set of continuous convex function
can be expressed as

Fixed Point Set of
Simple Quasi-Nonexpansive Mapping.
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—— EXample (Subgradient Projection Ty,(4)) —

Subgradient Projection for Cont. convex function &

( d(x) ,
Top(ap) - T — L ||g(m)||2.g(aj) it CID(x) >0

77 if &(x) <0,
vahere g(x) € 0P (x) : subgradient of ® at = € H.

Y

- See for example (Bauschke & Combettes '01) ~

" Top(o) (%-averaged) quasi-nonexpansive,

" Fix(TSp(q))) ={rxeH|P(x) <0} =: |€V§OCD

N J
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Subgradient Projection :
Approximation of Convex Projection

Faix (Tsp(cb)) = levgo(cb)
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Is It Possible to Extend from

-

-

up4-1 = T(un) — Ap4-1©" (T'(un))

where T : 'H — H: Nonexpansive

~

to

-

up4-1 := T'(un) — Ap419" (T'(un))

i where T : 'H — H: Quasi-Nonexpansive

J

for Minimizing ©
over Fix(T) 7
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—— Quasi-shrinking (yamada & Ogura '03) ———
Let T :'H — 'H . quasi-nonexpansive with
Fix(T)NC #£= () for AC(C ‘H): closed convex set.

Y

T :'H— 'H is called quasi-shrinking on C' if

D:re[0,0)—

¥ TNy T
wer( Py g S (1)) = d(T(w), Fiz(T))

< if > (Fix(T),r)NC £E=0

o0 otherwise

\

Ksatisfies. D(r) =0« r=0.
where >(Fix(T),r) :={xz e H |d(z, Fix(T)) > r}.
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Hybrid Steepest Descent Method (Quasi-Nonexpansive)

Suppose that

(a)T : H — H: Quasi-Nonexpansive,

(b)®’: k-Lipschitzian& n-Strongly monotone over T'(H),
(c)df € Fix(T), s.t. T is quasi-shrinking on

| F (O
Ci(ug) ;= gz € H |||z — f|| < max | |lug — fl,
o { ( ° 1\/1u(277w-’»2))}

where p € (O,%), U,

-
With (An)p>1 C [0,1] s.t. (i) lim Ay =0, (i) Y An = oo,
n>1

Upt1 =T (un) — Apr1p©" (T'(up)) satisfies

s- lim =u* € ar inf © Unigue
n—voo M U gazEFix(T} () ( que)
N J
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- Proposition ~

Suppose @ : ' H — R (cont. convex function) satisfies
leveo® # 0 and " 0% bounded.

Define
{ To = (1 — )] + Ty (a € (0,2)). J
s T hen ~

(@) If dim(H) < co, =
To : quasi-shrinking on any bdd closed convex
C satisfying C' N lev<g® #= 0.

(b) If ®' € 8P: Uniformly monotone over H,—>
T~ : quasi-shrinking on any bdd closed convex
C satisfying C' N lev<g® #= 0.

\ J
N J
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Hybrid Steepest Descent Method (for T,,4))

Suppose that
(a)® : H — R:Cont. Convex,lev<o® # () & 9P: bdd,

Let T ;= (1 — )l + aTsp(CD) (a € (0,2)).
(b)®’: k-Lipschitzian& n-Strongly monotone over To(H),

J
With (An)n>1 C [0,00) s.t. (i) lim A, =0, (ii) Y An = oo,

n>1

Upt1 = Ta(un) — Ayt 19" (Ta(un)) satisfies

lim —u* € ar inf © Unique
n—:00 i S J xEIev<O<b (CB) ( 9 )
\_ - J
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Hybrid Steepest Descent Method (for T, 4)over K)

Suppose that
(a)® : ' H — R: Cont. Convex with 0¢: bdd,

(b) K: bdd closed convex set s.t. leveg® N K # 0,
(c)®’: Lipschitzian& Paramonotone over K,

Y
s When dim(H) < oo
With ()‘n)n21 C [0,00) s.t. (i) nli—>moo An = 0, (ii) Z A, = 00,

n>1
Up+1 = PgTo(un) — X119 (PrTa(un))
satisfies
lim d(un,") = 0,

n—aoo

here [ = ar inf © .
W J Kﬁ||eV§OCD (ZB) # @

N
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For related results to this talk,
See for example :
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T hank you very much !!
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What i1s Subgradient ?

- Subgradient of ¢ at = N
Let & :'H — R : Cont. Convex Function.
J
OP(z) ={seH:(y—=x,8) +P(x) <P(y),Vy € H }
= (.

ys c 00(x) is called Subgradient of ® at z.
" 0€0P(z) & P(x) = MIiNy D(y).

" 0P (x) = {VP(x)} if ©:G-differentiable at x.
= generalization of Gradient.
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Subgradient:
a generalization of Gradient

Gradient

Subgradient

\/
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