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ABSTRACT 

In this paper, the hybrid synchronization is investigated for n-scroll chaotic Chua 
circuit (Wallace et al. (2001)) using adaptive backstepping control design based on 
recursive feedback control. Our theorems on hybrid synchronization for n-scroll 
chaotic Chua circuits are established using Lyapunov stability theory. The adaptive 
backstepping control links the choice of Lyapunov function with the design of a 

controller and guarantees global stability performance of strict-feedback chaotic 
systems. The adaptive backstepping control maintains the parameter vector at a 
predetermined desired value. The adaptive backstepping control method is effective 
and convenient to synchronize and estimate the parameters of the chaotic systems. 
Mainly, this technique gives the flexibility to construct a control law and estimate the 
parameter values. Numerical simulations are also given to illustrate and validate the 
synchronization results derived in this paper. 
 

Keywords: Chaos, hybrid synchronization, adaptive backstepping control, n-scroll 
chaotic chua circuit. 

 

 

1. INTRODUCTION 

Dynamics systems described by nonlinear differential equations can 
be strongly sensitive to initial conditions. This phenomenon is known as 

deterministic chaos, which means that the mathematical description of the 

system is deterministic but behavior of the system is unpredictable. Chaos 
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refers to one type of complex dynamical behaviors that possess extreme 
sensitivity to tiny variations of initial conditions, bounded trajectories in 

phase space and fractional topological dimensions. The fundamental 

characteristic of a chaotic system is its sensitivity to the initial state. That is 
to say, chaotic systems starting off from very similar initial states can 

develop into radically divergent ways. Such sensitive dependence is often 

referred to as the Butterfly effect. In general, synchronization research has 

been focused on two areas. The first one works with the state observers, 
where the main applications pertain to the synchronization of nonlinear 

oscillators. The second one is the use of control laws, which allows 

achieving the synchronization between nonlinear oscillators, with different 
structures and orders. 

 

 The synchronization of chaotic system was first researched by 

Yamada and Fujisaka (Fujisaka and Yamada (1983)) with subsequent work 
by Pecora and Carroll (Pecora and Carroll (1990), Pecora and Carroll, 

(1991)). The synchronization of chaos is one way of explaining sensitive 

dependence on initial conditions (Alligood et al. (1997), Edward (2002)). It 
has been established that the synchronization of two chaotic systems, that 

identify the tendency of two or more systems are coupled together to 

undergo closely related motions. The problem of chaos synchronization is 
to design a coupling between the two systems such that the chaotic time 

evaluation becomes ideal. The output of the response system asymptotically 

follows the output of the drive system i.e. the output of the drive system 

controls the response system.  
 

The synchronization for chaotic systems has been widespread to the 

scope, such as generalized synchronization (Wang and Zhu (2006)), phase 
synchronization (Ge and Chen (2004)), lag synchronization, projective 

synchronization (Qiang (2007)), generalized projective synchronization 

(Jian-Ping and Chang-Pin (2006), Li et al. (2007), Sundarapandian and 
Sarasu (2012), Sarasu and Sundarapandian (2012)) and even anti-

synchronization. The property of anti-synchronization establishes a 

predominating phenomenon in symmetrical oscillators, in which the state 

vectors have the same absolute values but opposite signs. When 
synchronization and anti synchronization coexist, simultaneously, in chaotic 

systems, the synchronization is called hybrid synchronization (Li (2008), 

Sundarapandian and Suresh (2012), Sundarapandian and Sivaperumal 
(2012)). A variety of schemes for ensuring the control and synchronization 

of such systems have been demonstrated based on their potential 

applications in various fields including chaos generator design, secure 
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communication (Murali and Laksmanan (2003a), Yang and Chua (1999)), 
physical systems (Murali and Laksmanan (1996)), chemical reaction (Han 

et al. (1995)), ecological systems (Blasius et al. (1999)), information 

science (Kocarev and Parlitz (1995)), energy resource systems (Zuolei 
Wang (2010)), ghostburster neurons (Jiang Wang (2009)), bi-axial magnet 

models (Moukam Kakmeni et al. (2006)), neuronal models (Hindmarsh and 

Rose (1984) and Yan-Qiu Che et al. (2010)), IR epidemic models with 

impulsive vaccination (Guang Zhao Zeng et al. (2005)) and predicting the  
influence of solar wind to celestial bodies (Junxa Wang et al. (2006)), etc. 

So far a variety of impressive approaches have been proposed for the 

synchronization of the chaotic systems such as the OGY method (Ott 
(1990)), sampled feedback synchronization method (Murali and Laksmanan 

(2003b)), time delay feedback method (Park and Kwon (2003)), adaptive 

design method (Lu et al. (2004), Park et al. (2003), Park (2008)), sliding 

mode control method (Yau (2004), Sundarapandian (2011)), active control 
method (Sundarapandian and Suresh (2010a); Sundarapandian and Suresh 

(2010b)) and backstepping control design (Wu and Li (2003), Yu and 

Zhang (2006),  Suresh and Sundarapandian (2012a, 2012b, 2013)) etc. 
 

Adaptive control design is a direct aggregation of a control 

methodology with some form of a recursive system identification and the 
system identification could be aimed to determining the system to be 

controlled is linear or nonlinear systems. The system identification is only 

the parameters of a fixed type of model that need to be determined and 

limiting the parametric system identification and parametric adaptive 
control. Adaptive control design is studied and analyzed in theory of 

unknown but fixed parameter systems. In this paper, Adaptive control 

design with feedback input approach is proposed. This approach is a 
systematic design approach and guarantees global stability of the n-scroll 

Chua chaotic circuit (Wallace et al. (2001)). Based on the Lyapunov 

function, the adaptive update control is determined to tune the controller 
gain based on the precalculated feedback control inputs. We organize this 

paper as follows. In Section 2, we present the methodology of hybrid chaos 

synchronization by adaptive control method. In Section 3, we give a 

description of the chaotic systems discussed in this paper. In Section 4, we 
demonstrate the hybrid synchronization of identical n–scroll chaotic Chua 

circuits.  In Section 5, we summarize the results obtained in this paper. 
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2. PROBLEM STATEMENT AND METHODOLOGY 

In general, the two dynamic systems in synchronization are called 

the master and slave system respectively. A well designed controller will 

make the trajectory of the slave system track the trajectory of the master 
system, which are the two systems will be synchronous. 

 

Consider the master system described by the dynamics 
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where ( ) nx t R∈  is a state vectors of the system and iα  are positive 

unknown parameters, � iα  are estimates of the parameters iα . 

 

Consider the slave system with the controller , 1, 2,3...iu i n=  

described by the dynamics 
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where , 1,2,3...iu i n=  is the input to the system with parameter estimator 

� ,  i = 1, 2, 3...niα , ( ) ny t R∈  is state vectors of the system including the 

controller and identifier. i i,  G ,  i = 1, 2, 3...nF  are linear and nonlinear 

functions with inputs from system (2) and (1). 
 

 iF  Equals to iG , then the systems states are identical chaotic 

hybrid synchronization otherwise the systems states are non identical 
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chaotic hybrid synchronization. The chaotic systems (1) and (2) depend not 
only on state variables but also on time t and the parameters. 

 

The hybrid synchronization error is defined as 

 if  is odd
                

 if  is even

i i

i

i i

y x i
e

y x i

−
= 

+
                        (3) 

 

Then the error dynamics is obtained as 
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where  , 1,2,3...iu i n=  are controllers to the system with parameter 

estimator � .iα  
 

The parameter estimation error is defined as 

� ,  i = 1, 2, 3...n
i

iieα α α= −               (5) 

The synchronization error systems control a controlled chaotic 

system with control input  , 1,2,3...iu i n=   with adaptive update law � iα  as a 

function of the parameter estimator error states 
1 2 3
,  ,  ... .

n
e e e eα α α α That 

means the systematic adaptive feedback so as to stabilize the error 

dynamics (4) converge to zero as time t → ∞ . This implies that the 

controller , 1,2,3...iu i n=  and adaptive update law � iα  should be designed so 

that the two chaotic systems can be synchronized. In mathematically  

 

lim ( )  = 0
t

e t
→∞

              (6) 

 

Adaptive backstepping control design is systematic and guarantees 

global stabilities performance of strict–feedback chaotic systems. By using 

the adaptive backstepping control design, the chaotic system is stabilized 
with respect to Lyapunov function. The Lyapunov stability approach 
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consists in finding an update law. The Lyapunov stability function 
technique as our methodology, the controller design can be divided into two 

steps. The first one need the derivation of control Lyapunov function and 

the second step involves using an existing control Lyapunov function to be 
synchronizing the chaotic systems 

 

We consider the stability of the system 

 

1 1 1 2 1 1 2 1( , ,... , ) ( , ,... , )n i n ie G y y y F x x x uα α= − +ɺ              (7) 

 

where ( ) ,nx t R∈ ( ) ny t R∈  are state variables and ,  i = 1, 2, 3...niα  are 

positive unknown parameters, � ,  i = 1, 2, 3...niα  are estimates of the 

parameter  ,  i = 1, 2, 3...n.iα  1u  is control as long as this feedback stabilize 

the system (7) converges to zero as ,t → ∞  where 2 1 1( )e eα=  is regarded as 

an virtual controller.  

 
We consider the Lyapunov function defined by 
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where 1 1 and P Q  are positive matrices. 

 

Let us define the parameter estimation error as 

 

� ,  i = 1, 2, 3...k
i

iieα α α= −               (9) 

 

Differentiating equation (8) along the trajectories (7) and using 
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where 1R  and 1S  are positive definite matrices. 
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Then 1Vɺ  is a negative definite function on .nR Thus by Lyapunov stability 

theory (Che et al. (2010)) the error dynamics (7) is asymptotically stable. 

The virtual control is 2 1 1( )e eα=  and the state feedback input 1u  makes the 

system (7) asymptotically stable. 

 

 The function 1 1( )eα  is estimative when 2e  considered as 

controller. The error between 2e and 1 1( )eα  is  

 

2 2 1 1( )w e eα= −                          (11) 

 

Consider the 1 2( , )e w  subsystem given by 
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Let 3e be a virtual controller in system (12). Assume when  

 

3 2 1 2( , )e e wα=  

 
the system (12) is made asymptotically stable. 

 
Consider the Lyapunov function defined by 
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where 2 2 and P Q  are positive matrices. 
 

Let us define the parameter estimation error as 

 

 � ,  i = k+1, 2, 3...m
i

iieα α α= −            (14) 

 

Differentiating equation (13) along the trajectories (12) and using 
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Suppose the derivative of  2 1 2( , )V e w  is  
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where  1 2 1 2, , ,R R S S  are positive definite matrices. 

 

 Then 2Vɺ  is a negative definite function on .nR  

 

Thus by Lyapunov stability theory (Hahn (1967)) the error 

dynamics (12) is globally asymptotically stable. For the n th state of the 

error dynamics, define the error variable nw  as 
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Consider the 1 2 3( , , ... )ne w w w  subsystem given by 
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Consider the Lyapunov function defined by  
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where  and n nP Q  are positive matrices. 

 

Let us define the parameter estimation error as 
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Differentiating equation (19) along the trajectories (18) and using 
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where  1 2 3 1 2 3, , ... , , , ...n nR R R R S S S S  are positive definite matrices. 

 

Then  nVɺ  is a negative definite function on .nR  

 

Thus by Lyapunov stability theory (Hahn (1967)) the error dynamics (14)  

is asymptotically stable. The virtual control is 
 

1 1 2 3 1( , , ... )n n ne e w w wα − −=  

 

and the state feedback input nu  make the system (18) globally 

asymptotically stable. 
 

 Thus by Lyapunov stability theory (Hahn (1967)), the error 

dynamics (4) is globally asymptotically stable for all initial condition 

(0) .ne R∈  Hence, the states of master and slave systems are globally and 

asymptotically hybrid synchronized and the adaptive control law is given by  
 

  ( )
ii iG e k eαα = +

⌢
            (23) 

 

where  ik  is positive constant, 
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 is the error vector, 

and : n nG →ℝ ℝ  is a continuous vector function with the error as its 

arguments. 

 

Theorem 1. The chaotic system (1) and (2) are globally exponentially 

hybrid synchronized with adaptive backstepping control with recursive 
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feedback inputs 1 2 3.... ( , , , ).n i iu u u u x y e wµ= = =  The adaptive control law 

is updated by  

( ) ,
ii i iG e k eαα = +

⌢
 where 

 if  is odd

 if  is even

i i

i

i i

y x i
e

y x i

−
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+
 is an error and 

,n nR Rµ = →  : n nG →ℝ ℝ  are continuous vector function with ,x y  and 

e as its arguments. 

 

 

3. SYSTEM DESCRIPTION 

Recently, theoretical design and hardware implementation of 

different kinds of chaotic oscillators have attracted increasing attention, 
aiming real world applications of many chaos based technologies and 

information systems. In current research interest is creating various 

complex multi scroll chaotic attractors by using simplified and generic 

electrical circuit. Here which we are interested is the n– scroll Chua circuit 
which is an improved model of chaotic system introduced by Wallace et al. 

(2001). In fact, it is now obvious that can be derived from simplified and 

generic electrical circuit. 
 

a) The n-Scroll Chua system 

Chua’s system is utilized for the investigation. The dynamical equation of  

n–scroll Chua system with sine function (Wallace et al. (2001)) is given by 
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where ,  ,  ,  and a b c d  are positive real constants. 
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The piecewise linear function is only nonlinearity in the system. A 
sine function is couched to obtain the nonlinearity needed for generating 

chaos in Chua system. For the chaotic case, the parameter values are taken 

in equations as  

= 10.814, = 14.0, a=1.3, b=0.11 and d=0α β  

 

Furthermore, if we choose 1,2,3 and 5c = , then we obtain 2-scroll, 3-scroll, 

4-scroll and 6-scroll attractors respectively, as depicted in Figure 1(a)–(d). 

A maximum of six scrolls can be observed. 
  

 
Figure 1(a): 2- Scroll chaotic attractor 

 
 Figure 1(b): 3- Scroll chaotic attractor 

 
Figure 1(c): 4- Scroll chaotic attractor 
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Figure 1(d): 6- Scroll chaotic attractor 

 

 

4. HYBRID SYNCHRONIZATION OF IDENTICAL N-

SCROLL CHUA SYSTEMS USING ADAPTIVE 

BACKSTEPPING CONTROL DESIGN BASED ON 

RECURSIVE FEEDBACK CONTROL 

In this section we apply the adaptive backstepping method is 

applied for the hybrid synchronization of two identical n-scroll chaotic 

Chua circuits (Wallace et al. (2001)) when the parameter values are 

unknown. Thus, the master system is described by the n-scroll chaotic Chua 
circuit dynamics 
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1 2 3, ,x x x  are state variables and , , , ,a b cα β  are positive unknown 

parameters, ˆˆˆ ˆ ˆ, , , ,a b cα β  are estimates of the parameters , , , ,a b cα β . 
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The slave system is also described by the n- scroll chaotic Chua 
circuit dynamics 

1 2 1 1

2 1 2 3 2

3 2 3

( ( ))y y f y u

y y y y u

y y u

α

β

= − +

= − + +

= − +

ɺ

ɺ

ɺ

                         (28) 
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1 2 3, ,y y y  are state variables and 1 2 3, ,u u u  are the backstepping controller to 

be designed. 
 

The synchronization error is defined by 

 

1 1 1 2 2 2 3 3 3; ;e y x e y x e y x= − = + = −            (30) 

 

The error dynamics is obtained as  
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a)  When 1 1 1 1[ ( ) ( )] 2  and [ ( ) ( )] 2f y f x ac f y f x ac− ≥ − ≤ −    

The objective is to find the control law and adaptive update law, so the that 
the system (21) is asymptotically stabilized at the origin and estimates the 

unknown parameters , , , ,a b cα β .We introduce the backstepping procedure 

to design the controller 1 2 3, ,u u u , where 1 2 3, ,u u u  are recursive control 

feedback, as long as these recursive feedback stabilize system (21) 

converge to zero as the time t → ∞ . 
 

 

 



Suresh Rasappan & Sundarapandian Vaidyanathan 

 

232                                         Malaysian Journal of Mathematical Sciences 

 

First we consider the stability of the system 
 

 3 2 2 3e y x uβ β= − + +ɺ               (32) 

 

where 2e  is regarded as virtual controller. 
 

Consider the Lyapunov function defined by 

 2 2
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Let us define the parameter estimation error as  
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Assume the controller 2 1 3( ).e eα=  If  
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In equation (35), the parameters are updated by the update law 
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substituting equations (36), (37) and (38)  into equation (35), then we have 
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Which is a negative definite function on 
3

R  since 1 2,  0.k k >  
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The recursive feedback 3u  and the virtual control is 2 1 3( )e eα=  makes the 

system (32) globally asymptotically stable. Function 1 3( )eα  is an estimative 

function when 2e  is considered as a controller. 

 

The error between 2e  and 1 3( )eα  is  

 2 2 1 3( )w e eα= −            (40) 

 

Consider 3 2( , )e w  subsystem given by 

 

 
3 2 1 3 2

2 1 1 2 1 3 3 2

2

[ ( 2 ) 1] 2

e w k e e e

w e k e e x y x u

β

β

β β

β

= − −

= + − − + + + +

ɺ

ɺ
            (41) 

 

Let 1e  as a virtual controller in system (41). 

 

Assume that when 1 2 3 2( , ),e e wα=  the system (41) is made globally 

asymptotically stable. 
 

Let us define the Lyapunov function as  

2
2 3 2 1 3 2

1
( , ) = ( )

2
V e w V e w+             (42) 

The derivative of 2 3 2( , ) V e w is 

 

 

2 2
2 1 3 2 2 1 1 2

1 3 3 2

( [ ( 2 ) 1]

       2 )

V k e k e w e k e e

x y x u

β ββ β= − − + + − −

+ + + +

ɺ

             (43) 

If we choose 
 

 2 3 2 3( , )e w eα β= −              (44) 

and   
 

2 1 2 1 3 3 3 2[ ( 2 ) 1] 2u k e e x y x k wββ= − − − − − − −              (45) 

 

Then it follows 
2 2 2

2 1 3 2 3 2 ,V k e k e k wββ= − − −ɺ                         (46) 

 

which is a negative definite function on 
3

R since 1 2 3,  ,  0.k k k >  
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Thus 2Vɺ  is negative definite function and hence the system (41) is globally 

asymptotically stable.  

 

Function 2 3 2( , )e wα  is an estimative function when 1e  is 

considered as a controller.  The error between 1e  and 2 3 2( , )e wα  is  

 

   3 1 2 3 2( , )w e e wα= −                          (47) 

 

Considering 3 2 3( , , )e w w  subsystem given by 
 

3 2 1 3 2

2 3 3 3 2

3 2 2 1 2 1 3 2 1

2

( 2 )
2

e w k e e e

w w e k w

b
w y x e w k e e e u

a

β

β

β β

β

α π
α α β β β

= − −

= − −

= − − + − − +

ɺ

ɺ

ɺ

        (48) 

 

Consider the Lyapunov function defined by 
 

2
3 3 2 3 2 3 2 3

2 2 2 2

1
( , , , ) = ( , ) 

2

1 1 1 1
                               

2 2 2 2
a b c

V e w w e V e w w

e e e e

β

α

+

+ + + +

           (49) 

 
Let us define the parameter estimation error as  

 

� ɵ;  ;   ; a b ce e a a e b b e c cα α α= − = − = − = −ɵ ɵ  

 

Differentiating equation (49) along the trajectories (48) and using (50) 

� ɵ
. . . .

 ;  ;   ; .a b ce e a e b e cα α= − = − = − = −ɵ ɵɺ ɺ ɺ ɺ            (50) 
 

We find 3 3 2 3( , , , , , , )a b cV e w w e e e eα
ɺ  is as following 

 
2 2 2

3 3 2 3 1 3 2 3 2 3 2 2 2

1 2 1 3 2 1

( , , , ) = [

                               + + ( 2 ) ]
2

ˆˆ ˆ ˆ                              ( ) ( ) ( ) ( )a b c

V e w w e k e k e k w w w y x

b
e w k e e e u

a

e e a e b e c

β β

β

α

β α α

πα
β β β

α

− − − + + −

− − +

+ − + − + − + −

ɺ

ɺɺ ɺ ɺ

           (51) 
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We choose  

1 2 2 2 1 2 1 3 2

4 3

ˆ
ˆ2 ( 2 )

2

       a b c

b
u w x e e w k e e e

a

e e e k w

β

α π
α α β β β= − + − + − − −

+ + + −

       (52) 

 
In equation (51), the parameter updated by the update law 

� ɵ
. . . .

3 2 5 3 6 1 3 7 3 8 = w e +k e ;  w +k e ;   e w +k e ;  w +k e
2

a b ca b c
a

α

απ
α = = =ɵ ɵ     (53) 

 

Substituting equation (52)  and (53) into equation (51), then we have 

 
2 2 2 2 2 2

3 1 2 3 1 3 2 3 2 4 3 5 6

2 2
7 8

( , , , ) =     a

b c

V e w w e k e k e k w k w k e k e

k e k e

β β α− − − − − −

− −

ɺ

        (54) 

 

Which is a negative definite function on 
3

R since 

1 2 3 4 5 6 7 8,  ,  , , , , , 0.k k k k k k k k > and hence the system (48) is globally 

asymptotically stable. 
 

Thus by a Lyapunov stability theory (Hahn (1967)), the error 

dynamics (31) is globally asymptotically hybrid synchronized. 

 

Theorem 2.  The n-scroll chaotic Chua circuit (26) and (28) are globally 
asymptotically hybrid synchronized for any initial conditions with the 

recursive controller 1 2 3, ,u u u  defined by  

1 2 2 2 1 2 1 3 2

4 3

2 1 2 1 3 3 3 2

3 2 2

ˆ
ˆ2 ( 2 )

2

       

[ ( 2 ) 1] 2

ˆ2 2

a b c

b
u w x e e w k e e e

a

e e e k w

u k e e x y x k w

u x e

β

β

α π
α α β β β

β

β β

= − + − + − − −

+ + + −

= − − − − − − −

= − +

 

 

and the parameter updated by the update law 

� �

ɵ

. .

3 2 5 2 3 2

. . .

3 6 1 3 7 3 8

 = w e +k e ;   =  2 e +k e

w +k e ;   e w +k e ;   w +k e
2

a b c

e

a b c
a

α βα β

απ

−

= = =ɵ ɵ
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b) When 1 12 [ ( ) ( )] 2ac f y f x ac− ≤ − ≤    

 

The objective is to find the control law and adaptive update law, so the that 
the system (31) is asymptotically stabilized at the origin and estimates the 

unknown parameters , , , , .a b cα β  We introduce the back stepping procedure 

to design the controller 1 2 3, , ,u u u where 1 2 3, ,u u u  are recursive control 

feedback, as long as these recursive feedback stabilize system (31) 

converge to zero as the time t → ∞ . 
 

First we consider the stability of the system 
 

3 2 2 3e y x uβ β= − + +ɺ                             (55) 
 

where 2e  is regarded as virtual controller. 

 
Consider the Lyapunov function defined by 
 

 2 2
1 1 1

1 1
( , ) = 

2 2
V e e e eβ β+               (56) 

 

Let us define the parameter estimation error as  
 

�eβ β β= −                         (57) 

 

Differentiating equation (56) along the trajectories (55) and using (58) 

    �
.

 eβ β= −ɺ               (58) 

 

The derivative of  1 3( , )V e eβ
ɺ  is  

�
.

1 3 2 2 3 = ( ) ( )V e y x u eββ β β− + + + −ɺ             (59) 

 

Assume the controller 2 1 3( ).e eα=  
 

If  we choose  

1 3 1 3( )e k eα = −               (60) 

and 

3 2 2
ˆ2 2u x eβ β= − +              (61) 
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In equation (59), the parameters are updated by the update law 

  �
.

2 3 2 =  2 e +k ee ββ −              (62) 

 

Substituting equation (60), (61) and (62) into equation (59), then we have 
 

 
2 2

1 1 3 2V = k e k eββ− −ɺ              (63) 

Which is a negative definite function, since 1 2 3,  ,  0.k k k >  

 

Hence the system (55) is globally asymptotically stable. 

 

Function 1 3( )eα  is an estimative function when 2e  is considered as a 

controller. 

 

The error between 2e  and 1 3( )eα  is  

2 2 1 3( )w e eα= −                          (64) 
 

Consider 1 2( , )e w  subsystem given by 

 

3 2 1 3 2

2 1 1 2 1 3 3 2

2

[ ( 2 ) 1] 2

e w k e e e

w e k e e x y x u

β

β

β β

β

= − −

= + − − + + + +

ɺ

ɺ
           (65) 

 

Let 1e  be a virtual controller in system (65). 

Assume that when 1 2 3 2( , ),e e wα= the system (65) is made globally 

asymptotically stable. 

 
Let us define the Lyapunov function as  

 2
2 3 2 1 3 2

1
( , ) = ( )

2
V e w V e w+             (66) 

The derivative of  2 3 2( , ) V e w  is 

 
2 2

2 1 3 2 2 1 1 2

1 3 3 2

( [ ( 2 ) 1]

      2 )

V k e k e w e k e e

x y x u

β ββ β= − − + + − −

+ + + +

ɺ

                        (67) 

 

We choose  

 2 3 2 3( , )e w eα β= −               (68) 
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and    

2 1 2 1 3 3 3 2[ ( 2 ) 1] 2u k e e x y x k wββ= − − − − − − −                 (69) 

 

Then it follows that  
2 2 2

2 1 3 2 3 2 .V k e k e k wββ= − − −ɺ             (70) 

 

Thus 2Vɺ  is a negative definite function, since 1 2 3,  ,  0,k k k >  and hence (65) 

is globally asymptotically stable. 
 

Function 2 3 2( , )e wα  is an estimative function when 1e  is considered as a 

controller. 
 

The error between 1e  and 2 3 2( , )e wα  is  

 

 3 1 2 3 2( , )w e e wα= −              (71) 

 

Consider 3 2 3( , , )e w w  subsystem given by 

 

3 2 1 3 2

2 3 3 3 2

1
3 2 2

1
2 1 3 2 1

2

sin( )
2

        sin( ) ( 2 )
2

e w k e e e

w w e k w

y
w y x b d

a

x
b d w k e e e u

a

β

β

β β

β

π
α α α

π
α β β β

= − −

= − −

= − + +

− + + − − +

ɺ

ɺ

ɺ            (72) 

 

Consider the Lyapunov function defined by 
 

3 3 2 3 2 3 2

2 2 2 2 2
3

( , , , ) = ( , ) 

1 1 1 1 1
                         

2 2 2 2 2
a b c

V e w w e V e w

w e e e e

β

α+ + + + +
           (73) 

 

Let us define the parameter estimation error as  
 

 � ɵ;  ;   ; a b ce e a a e b b e c cα α α= − = − = − = −ɵ ɵ                (74) 
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Differentiating equation (73) along the trajectories (72) and using (75), 
 

� ɵ
. . . .

 ;  ;   ; a b ce e a e b e cα α= − = − = − = −ɵ ɵɺ ɺ ɺ ɺ            (75) 
 

The derivative of  3 3 2 3( , , , , , , )a b cV e w w e e e eα
ɺ  is  

 
2 2 2

3 3 2 3 1 3 2 3 2 3 2 2 2

1 1

2 1 3 2 1

( , , , ) = [

                                + sin( ) sin( )
2 2

                                + ( 2 ) ]

                               

V e w w e k e k e k w w w y x

y x
b d b d

a a

w k e e e u

β β

β

β α α

π π
α α

β β β

− − − + + −

+ − +

− − +

ɺ

ˆˆ ˆ ˆ( ) ( ) ( ) ( )a b ce e a e b e cα α+ − + − + − + −
ɺɺ ɺ ɺ

           (76) 

 

We choose  

1 2 2 2 1

1 1

2 1 3 2 4 3

ˆ
ˆ2

2

       sin( ) sin( )
2 2

       ( 2 ) a b c

b
u w x e e

a

y x
b d b d

a a

w k e e e e e e k wβ

α π
α α

π π
α α

β β β

= − + − +

− + + +

− − − + + + −

                  (77) 

 

In equation (49), the parameter updated by the update law 
 

  
� ɵ
. .

3 2 5 3 6

. .

3 7 3 8

 = + ;     + ,

+ ;         + .

a

b c

w e k e a w k e

b w k e c w k e

αα =

= =ɵ ɵ

                                      (78) 

 

Substituting equation (77) and (78) into equation (76), then we have 
 

2 2 2 2 2
3 1 2 3 1 1 2 3 4 5

2 2 2
6 2 7 3 8

( , , , ) =   

                              .

a b cV e w w e k e k e k e k e k e

k w k w k e

β α

β

− − − − −

− − −

ɺ

           (79) 

 

Thus 3Vɺ  is a negative definite function, since 1 2 3 4 5 6 7 8,  ,  , , , , , 0k k k k k k k k > , 

and hence the system (72) is globally asymptotically stable.  
 

Thus by a Lyapunov stability theory (Hahn (1967)), the error dynamics (31) 

is globally asymptotically hybrid synchronized.  
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Theorem 3. The n-scroll chaotic Chua circuit (26) and (28) are globally 
asymptotically hybrid synchronized for any initial conditions with the 

recursive controller 1 2 3, ,u u u  defined by  

1 2 2 2 1

1 1

2 1 3 2 4 3

2 1 2 1 3 3 3 2

3 2 2

ˆ
ˆ2

2

       sin( ) sin( )
2 2

       ( 2 )

[ ( 2 ) 1] 2

ˆ2 2

a b c

b
u w x e e

a

y x
b d b d

a a

w k e e e e e e k w

u k e e x y x k w

u x e

β

β

α π
α α

π π
α α

β β β

β

β β

= − + − +

− + + +

− − − + + + −

= − − − − − − −

= − +

 

 

and the parameter updated by the update law 

� �

ɵ

. .

3 2 5 2 3 2

. . .

3 6 3 7 3 8

 = + ;   =  2 +

+ ;   + ;   + .a b c

w e k e e e k e

a w k e b w k e c w k e

α βα β −

= = =ɵ ɵ

 

 

 

5. NUMERICAL SIMULATION 

For the numerical simulations, the fourth order Runge-Kutta 

method is used to solve the system of differential equations (26) and (28) 

with the feedback controls 1 2 3, ,u u u .  
 

The parameters (Wallace et al (2001), Suyken et al (1997)) of the 

systems (26) and (28) are taken in the case of chaotic case as 
 

10.814,  14.0,  1.3,  0.11,  3,  0a b c dα β= = = = = =  

 

The initial values of the master system (26) are chosen as 

 

1 2 3(0) 0.125, (0) 0.625, (0) 0.941x x x= = =  

 

The initial values of the slave system (28) are chosen as 
 

1 2 3(0) 0.321 (0) 0.487, (0) 0.965y y y= = =  
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The initial values of the estimated parameters are 
 

ˆˆˆ ˆ ˆ(0) 2 (0) 0.3, (0) 6, (0) 8, 10a b cα β= = = = =  

 

We take the parameters 1 2 3 4 5 6 7 8= = 2k k k k k k k k= = = = = = .  

 
Figure 2 (a), (b) and (c) depict the hybrid synchronization of identical n-

scroll Chua’s circuit (26) and (28). 

 

 
 Figure 2(a): Hybrid Synchronization of n-scroll chaotic attractor 

 

 
Figure 2(b): Error plot for n-scroll chaotic attractor 
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Figure 2(c): Parameter Estimation of n- scroll chaotic attractor 

 
 

6. CONCLUSION 

In this paper, adaptive backstepping control method has been 

applied to estimate the fixed but unknown parameter and achieve hybrid 
synchronization for a family of n-scroll chaotic Chua circuit. The advantage 

of this method is a recursive procedure for synchronizing chaotic system 

and there is no derivative in controller. The adaptive backstepping control 
design has been demonstrated to family of n-scroll chaotic Chua circuit. 

Numerical simulations have been given to illustrate and validate the 

effectiveness of the proposed synchronization schemes of the chaotic 

circuit. The adaptive backstepping control design is very effective and 
convenient to achieve global chaos hybrid synchronization. 
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