
Hybrid Systems and Quantum Automata:

Preliminary Announcement

R. L. Grossman∗

University of Illinois at Chicago

M. Sweedler†

Cornell University

May, 1995

This is a draft of a paper which later appeared in the proceedings

Hybrid Systems II, P. Antsaklis, W. Kohn, A. Nerode, S. Sastry,

editors, Springer Lecture Notes in Computer Science, Volume 999,

pages 191-201, 1995.

Abstract

Let H denote an algebra of input symbols or events. If X is the state

space for a system, then one can form the space R of observations of X.

Under suitable conditions, both X and R are H-modules. Loosely speak-

ing, the formal systems studied in this paper consists of a bialgebra H

describing the input symbols and two H-modules describing the states

and observations of the system. Finite automata and input-output sys-

tems are concerned with commutative R, while quantum systems, such as

quantum automata, are concerned with non-commutative R arising from

Hermitian operators on the state space. Of special interest are those sys-

tems consisting of interacting networks of classical systems and automata.

These types of systems have become known as hybrid systems and are ex-

amples of formal systems with commutative R. In this paper, we present a

number of examples of hybrid systems and quantum automata and point

out some relationships between them. This is a preliminary announce-

ment: a detailed exposition, including proofs, will appear elsewhere.

∗This research was supported in part by NASA grant NAG2-513, DOE grant DE-FG02-

92ER25133, and NSF grants IRI 9224605 and CDA 9303433. Part of the work was done

while visiting the Design Research Institute and Computer Science Department at Cornell

University.
†Sponsored in part by Army Research Office contract DAAL03-91-C-002.

1



1 Introduction

Loosely speaking, by a formal system we mean a system which accepts discrete
input symbols, updates its state by flowing in a state space, and which is ob-
served through outputs. A hybrid system as viewed in [7] is a formal system in
which the observations have the structure of an algebra. A quantum automa-
ton as viewed in [9] is a formal system in which the observations are Hermitian
operators on the state space.

Automata, like other systems, have external and internal descriptions. The
external description is given by the map from inputs to outputs, while the
internal description views the system as a flow on suitable state space. In
the latter description, the inputs determine the flow, while the outputs are a
function of the flow. A realization of a system takes an external input-output
description and produces an internal description involving a state space.

The purpose of this paper is to give some interesting examples of formal sys-
tems and their realizations and to point out some relationships between quantum
automata and hybrid systems.

This work grew out of [6] and [7] whose goal was to use algebraic methods
to study physical and engineering systems. Both systems modeling physical
processes, such as a mechanical device, and engineering processes, such as the
evolution of a computer program, can be understood using the basic concepts of
inputs, outputs and states. Since we are concerned with the algebraic structure
of such systems rather than the analytic structure, we speak of formal systems.
For example, with the latter, attention would be paid to the convergence of
series; with the former, it is sufficient whether the series are defined.

Formal Systems. Let k denote a field of characteristic zero. Let Ω denote the
space of input symbols or input events, which we call the input alphabet. Let
Ω∗ denote the monoid of words formed from the alphabet Ω. The product in
Ω∗ is concatenation. Let H = kΩ∗ be the algebra over k formed by taking finite
formal sums of words. The product in H arises from the product in Ω∗. H is a
bialgebra, which gives the dual an algebra structure.

If X is the state space for a system, then one can form the space R of
observations of X. Under suitable conditions, both X and R are H-modules.
Loosely speaking, a formal system consists of a bialgebra H describing the
input symbols and two H-modules describing the states and observations of the
system. Classical systems, such as those studied in [6] and [7], are concerned
with commutative R, while quantum systems, such as quantum automata, are
concerned with non-commutative R arising from Hermitian operators on the
state space.

Of special interest are those systems consisting of interacting networks of
classical systems and automata. These types of systems have become known as
hybrid systems [5]. It turns out that hybrid systems can also be viewed as formal
systems [7] and that the observation space of a hybrid system has a natural
noncommutative structure, so that hybrid systems are naturally associated with
quantum automata [8]. This suggests that a better understanding of quantum

2



automaton would lead to a better understanding of hybrid systems, which is
one of the motivations for this present work.

Related work. In this paper, we view a hybrid system as an interacting collection
of nonlinear input-output systems, each corresponding to a different mode of the
hybrid system: the role of the automaton is to switch modes. There are several
other view points and many questions one can pose about hybrid systems. See
[5] for a collection of papers discussing some of these.

The basic idea of quantum computing was introduced by Feynmam [4]. Im-
portant foundations were provided by the papers of Benioff [1] and Deutsch
[3]. Recently, quantum computation has invaded complexity theory [2] and
algorithm design [11].

Organization of this paper. In Section 2, we introduce our approach to quantum
automata and hybrid systems with two simple examples. In Section 3, we
provide some background material. Formal systems are defined in Section 4.
Quantum automata recognizing arbitrary languages are described in Section 5
and those recognizing context free languages are defined in Section 6.

This is a preliminary announcement: a detailed version with proofs will
appear later.

2 Two Examples

In this section, we give two important motivating examples. First we define
define a quantum automaton which can recognize expressions which contain
balanced parentheses. In the second example, we will define a simple hybrid
system with two modes, each specifying a different nonlinear system in the
plane. In both cases, we will define a space of input symbols H, a state space
and an observation space.

It turns out that the following differences between these two examples are
fundamental:

• For hybrid systems, the space of observations is an algebra R as well as
an H-module, and these two structures are compatible.

• For quantum automata, the space of observations is still an H-module,
but not necessarily an algebra.

For both examples, let k denote a field of characteristic zero.

Example 1. A quantum automata recognizing parentheses expressions. In
this example, which is adapted from [9], the input alphabet Ω consists of two
symbols l and r, denoting left and right parentheses. Let Ω∗ denote the monoid
consisting of words formed from the alphabet {l, r}. Let H = kΩ∗ denote the
k-algebra whose basis consists of words w ∈ Ω∗ and whose multiplication is
induced from the multiplication in Ω∗. In this way, we have defined the algebra
of H of input symbols or input events.

3



Let X denote the vector space whose basis consist of the elements x0, x1,
x2, . . ., and let x∗

i denote the dual basis of X∗. Assume that H = kΩ∗ acts on
basis elements of X as follows:

r · xi = xi+1, i ≥ 0

l · xi = xi−1, i ≥ 1

l · x0 = 0

and is extended to act linearly on X. This defines an action of H on X which
codes the dynamics of the quantum automaton.

Define a quantum observation S : X −→ X∗ via

Sxi = x∗
0, i 6= 0

Sx0 =
∑

i≥0

x∗
i

and extend S to X so that [Sx](y) = [Sy](x), for all x, y ∈ X so that S is
Hermitian, as defined below.

It is also easy to check that the map

w ∈ Ω∗ 7→ [S(w · x0)](w · x0)

is one precisely when the word w is a balanced expression in left and right
parentheses and zero otherwise.

Let L ⊂ Ω∗ denote the language consisting of well balanced parentheses
expressions. Let p ∈ H∗ denote the characteristic series of the language L so
that p(w) is one precisely when w ∈ L. We can write the equation above

p(w) = [S(w · x0)](w · x0).

This can be interpreted as a realization. The left hand side consists of data
involving the inputs and outputs, while the right hand side consists of an action
of input symbols w on states coding the dynamics and a quantum observation
S.

To summarize, we have constructed a quantum automaton which recognizes
well balanced parentheses expressions. Recall that a finite automaton is not
capable of recognizing such expressions.

Example 2. A two mode hybrid system, switching between planar control sys-

tems. In this example, which is adapted from [7]. we are given two nonlinear
control systems on k2

ẋ<β>(t) = (u1(t)E
<β>
1 + u2(t)E

<β>
2 )x(t), β = 1, 2

and an automaton which switches between them. Here E
<β>
k for β = 1, 2 and

k = 1, 2 are vector fields in the plane; that is derivations of some ring Rj of

4



functions on the plane k2, and t 7→ uk(t) are controls. For example, one can take
the ring of polynomials Rj = k[x1, x2] or formal power series Rj = k[[x1, x2]],
for j = 1, 2.

The goal is to describe the structure of the entire ensemble consisting of
the two nonlinear systems and the automaton switching between them. We
begin by describing the space of observations of the systems. Since the space of
observations of the nonlinear system for mode j is simply Rj , it is natural to
take the space R of observations for the entire hybrid system to be R = R1⊕R2,
[6].

The space of input events Ω for the automaton consists of two symbols β1,
which we interpret as “move to mode 1” and β2, which we interpret as “move
to mode 2.”

In this example, the algebra of input events for each of the nonlinear input-
output systems is the free associative algebra k<ξ1, ξ2, β1, β2> in the indeter-
minates ξ1, ξ2, β1, and β2.

We specify the action of ξ1 and ξ2 on R by specifying its actions on Ri, for
i = 1, 2: on R1

ξ1 acts as E<1>
1

ξ2 acts as E<1>
2

on R2

ξ1 acts as E<2>
1

ξ2 acts as E<2>
2

We next specify the action of β1 and β2 on R:

β1(f ⊕ g) = f ⊕ f

β2(f ⊕ g) = g ⊕ g.

Intuitively, β1 maps all states into State 1, and β2 maps all states into State 2.
The action of β1 on R is the transpose of this map. For the element

(u1ξ1 + u2ξ2)β2(v1ξ1 + v2ξ2) ∈ H,

and state i, this is to be interpreted as flowing along v1E
<i>
1 + v2E

<i>
2 , making

a transition to State 2, and then flowing along u1E
<2>
1 + u2E

<2>
2 .

To summarize, the space of input events for this two mode hybrid system is
the algebra

H = k<ξ1, ξ2, β1, β2>,

while the algebra of observations is

R = R1 ⊕ R2.

5



We have showed how R has an H-module structure. It turns out that the algebra
structure of R is compatible with the H-module structure so that R has the
structure of what is called an H-module algebra. Note that R is commutative.
The space of observation functions R captures the state space of the hybrid
system, while the action of H on R captures the dynamics. Any element f ∈ R

can be thought of as an observation of the hybrid system. For more details,
including a description of the realization of this system, see [7].

3 Preliminary Material

To describe more complicated examples requires some preparation, which is
the subject of this section. This section is adapted from [9], which provides
additional background material. Let k denote a field with conjugation. Let X

denote a vector space over k and X∗ its k-linear dual.

Hermitian forms and operators. A linear operator

S : X −→ X∗

naturally defines an inner product on X

<x, y>S = [S(x)](y), , x, y ∈ X.

Conversely, for any inner product <<x, y>>, we can define a linear operator
T : X −→ X∗ via the formula

[T (x)](y) = <<x, y>>.

The operator S is called Hermitian in case

[S(x)](y) = [S(y)](x), x, y ∈ X.

This is equivalent to <·, ·>S being a Hermitian inner product.

Bialgebras. In this section, which is adapted from [7], we briefly cover some
facts about bialgebras and H-modules, which we require in order to a give a
careful definition of formal systems. This information is repeated here to make
this paper self-contained. For more details, see [12].

An algebra A over the field k is a k-vector space A equipped with a mul-
tiplication A ⊗ A −→ A mapping a ⊗ b 7→ ab and a unit k −→ A mapping
1 ∈ k 7→ 1 ∈ A. The algebra is called augmented if there is an algebra homo-
morphism A −→ k.

A coalgebra C over the field k is a k-vector space C equipped with a comulti-
plication C −→ C ⊗C and a counit C −→ k. A bialgebra H over the field k is a
k-vector space H which has both an algebra and a coalgebra structure such that
the comultiplication and the counit maps are algebra homomorphisms, or equiv-
alently, such that the multiplication and unit maps are coalgebra morphisms.

6



Coproduct Notation. If H is a coalgebra, it is convenient to write the comulti-
plication H −→ H ⊗H as the map h 7→

∑
(h) h(1) ⊗ h(2). This notation will be

used throughout the remainder of the paper.

Here are two examples of bialgebras which occur in hybrid systems. Let G

be a semigroup with unit. Then the semi-group algebra kG consisting of all
formal finite linear combinations of elements of G with comultiplication defined
by g 7→ g ⊗ g and counit defined by g 7→ 1 for g ∈ G, is a bialgebra. In
this paper, this case arises when we have an input alphabet Ω and form the
semigroup Ω∗ of all words by concatenating input symbols from Ω. As another
example, let L be a Lie algebra. Then the universal enveloping algebra U(L)
with comultiplication defined by x 7→ 1⊗x+x⊗ 1 and counit defined by x 7→ 0
for x ∈ L, is a bialgebra. In this paper, this example arises by viewing the free
associative algebra k<ξ1, ξ2, . . . , ξn> as the universal enveloping algebra on the
free Lie algebra generated by the symbols ξj and the Lie bracket defined by the
commutator [ξi, ξj ] = ξiξj − ξjξi.

Let H be a bialgebra. A vector space X is called an H-module in case there
is an action of H on X denoted h · x, for h ∈ H and ∈ X, which is k-linear and
which satisfies (h2h1) · x = h2 · (h1 · x), where h2, h1 ∈ H and x ∈ X. In this
paper, the action of a H-module codes the dynamics of a formal system.

An algebra R with augmentation ǫ : R −→ k is called a left H-module algebra

in case R is a left H-module and

h · (ab) =
∑

(h)

(h(1) · a)(h(2) · b),

and
h · 1 = ǫ(h) · 1

for all a, b ∈ R, h ∈ H.

4 Formal Systems

After this preparatory material, we can now give definitions of formal systems,
hybrid systems, and quantum automata.

A formal system over a field k with involution α 7→ ᾱ consists of

1. a bialgebra H containing elements which we interpret as input symbols or
events and the words formed from them;

2. an H-module O, which we interpret as the space of observables.

A hybrid system is the special case in which the observables also form an
algebra, while a quantum automaton is the special case in which the observables
can be identified with Hermetian operators on an inner product space.

Here are two very basic examples. Let X denote a state space and assume
there is an action of H on X, coding the dynamics. A hybrid system arises by
taking classical state space observations

O = {f : X −→ k}.

7



A quantum automaton arises by taking Hermetian observations

O = {Hermetian S : X −→ X∗}.

In both cases, the action of H on X induces an action of H on O.

5 Quantum automata and languages

Algebra of input events. Consider a language defined over an input alphabet
Ω. As usual, let Ω∗ denote the monoid of words formed by concatenating input
symbols and let H = kΩ∗ denote the corresponding k-algebra formed from the
vector space whose basis is the set of words w ∈ Ω∗. In this way, we define a
bialgebra of input events H.

State space. Let X = ˆkΩ∗ denote infinite formal linear combinations over k

of elements of Ω∗. This is the algebra of formal noncommutative power series
in the alphabet Ω over the field k and turns out to be the state space of the
quantum automaton. There is a conjugation, denoted x 7→ x̄, defined on X

which for each power series, conjugates the coefficients and replaces words by
its palindrome.

Suffix action. We now define an action of H on X, called the suffix action,
which codes the dynamics For each word v ∈ Ω∗, the suffix action, denoted v ⇁

is a linear map from H to H. For w a word in Ω∗, thought of a lying in X,

v ⇁ w = u, uv = w

0, otherwise

Here u is a word in Ω∗. The action v ⇁ extends to all of X by linearity. Also,
by linearity the action h ⇁ extends to all h ∈ H.

One can check that the suffix action makes X an H-module in that (uv) ⇁

w = u ⇁ (v ⇁ w), for .

Hermetian observable. We now define a Hermitian form on the state space X:
Let λ ∈ Ω∗ denote the empty word. Define

<x, y> = χλ(xȳ), x, y ∈ X

where χλ : kΩ∗ −→ k is defined by

χλ(w) = 1, w = λ

0, otherwise.

Here w ∈ Ω∗ and the map is extended to all of X by linearity.
Of course, we can view this as a Hermitian operator

S : X −→ X∗

via [S(x)](y) = <x, y>.

8



Realizations of an arbitrary language. Given a language L ⊂ Ω∗, let p ∈ H∗

denote the characteristic series of the language, where

p(w) = 1 w ∈ L

0 otherwise

We also define the element
xL =

∑

l∈L

l ∈ X.

Note that this makes sense even if the language is infinite since X contains
infinite sums.

For consistency with the notation above, think of x0 = xL, which we view
as an initial condition. One verifies directly [9] that

p(h) =
∑

h

<h(1) ⇁ x0, h(2) ⇁ x0>.

Note that this equation uses the coalgebra structure of H. In the case that
h ∈ kΩ∗ is a word in Ω∗, this simplifies to

p(h) = <h · x0, h · x0> = 1 h ∈ L

0 otherwise.

Summary. To summarize, given a language with input alphabet Ω, we defined a
bialgebra of input symbols H = kΩ∗, a state space X = ˆkΩ∗, and an action (the
suffix action) of H on X. We also defined a Hermitian observable S : X −→ X∗

and wrote down a quantum recognizer for the language. In other words, given
an arbitrary language, we constructed a quantum automaton which recognizes
it.

6 Quantum automata and context free languages

In this section, we consider quantum automata which recognize context free
languages. Classically, these are recognized by push down automaton. This
is related to the fact that a realization of a context free language satisfies a
finiteness condition, which we describe in this section. This is analogous to
the fact that a natural equivalence relation on words in Ω∗ has finite index for
regular automata [10]. This is also analogous to the notion of finite Lie rank
defined in [6] for formal series associated to nonlinear input-output systems. See
[7].

We proceed as above: given an input alphabet Ω, we define the bialgebra
H = kΩ∗ and the state space X = ˆkΩ∗.

9



Finiteness Condition. For an integer n > 0, and define the ring of noncom-
muting polynomials in the indeterminates Z1, . . ., Zn with coefficients from
H

Rn = H{Z1, . . . , Zn}.

It is important to note that the Zj do not commute with the coefficients in H.
We can also write this as

Rn = k(Ω∗ ∪ {Z1, . . . , Zn})
∗.

Let A denote a ring containing a homomorphic image of H. We need to define
what it means for an element a ∈ A to be algebraic over H.

Equations. A PDA equation in Rn is an expression of the form

Zj − αj(Z1, Z2, . . . , Zn) = 0,

where αj ∈ Rn and αj does not contain the empty word λ nor the
single term Zi, for any i. Of course αj can contain a term of the
form wZi, where w ∈ Ω∗ and w 6= λ.

Algebraic elements. An element a ∈ A is algebraic over H in the
sense of formal languages in case there exists n > 0 and elements a1

. . ., an and equations Z1 − α1, . . ., Zn − αn ∈ Rn such that

1. ai = αi(a1, . . . , an)

2. a lies in the subalgebra of A generated by a1, . . . , an and (the
homomorphic image of) H.

Algebraic elements of X. Recall that X is the algebra of formal
power series in the noncommuting variables in the alphabet Ω. Note
that there is a subalgebra, which is a copy of H ∈ X consisting of
those power series which are only finite sums, and hence noncom-
muting polynomials. Having of H in X gives an action of H on X

by left multiplication, but it is important to note that this does not
give the suffix action. However, having H as a subalgebra of X, we
can speak of elements of X as being algebraic over H.

In this approach to recognizing languages using quantum recognizers, there
is a finiteness condition characterizing context free languages which is based
upon the notion of algebraic elements. We have

Theorem 1 Fix an alphabet Ω, the monoid of words Ω∗ and the corresponding

bialgebra of input events H = kΩ∗. Define the state space X = ˆkΩ∗. With the

notation above, a language L ⊂ Ω∗ with characteristic series p ∈ H∗ is context

free iff there is a x0 ∈ X giving the quantum automata recognizer

p(h) =
∑

h

<h(1) ⇁ x0, h(2) ⇁ x0>,

where the element x0 ∈ X is algebraic over H.

See [9] for a proof.

10



7 Conclusion

In this paper, we have defined formal systems and considered two cases: hybrid
systems and quantum automata. We have also given several examples of formal
systems and their realizations.

We view a hybrid system as an interacting collection of nonlinear input-
output systems, each corresponding to a different mode, and an automaton
which switches between them. As the example of the hybrid system in Sec-
tion 2 illustrates, a hybrid system may be given by defining an algebra of input
events H containing variables corresponding to both the continuous and discrete
components of the hybrid system. An important advantage of our approach is
that by viewing the space of observations O as fundamental, the variables corre-
sponding to the discrete and continuous components of the hybrid system may
be treated symmetrically. Each induces an action on the observation space O
coding the dynamics. Variables corresponding to continuous components act as
derivations; those corresponding to discrete components act as homomorphisms.
The reason for viewing H as bialgebra and O as an H-module is to to treat these
two actions symmetrically.

Finite automata recognize regular languages and correspond to formal sys-
tems in which the H-module O of observations is a commutative algebra. Push
down automata recognize context free languages and correspond to formal sys-
tems in which the H-module O of observations consists of Hermetian operators.
We identified the finiteness condition associated with quantum automata which
recognize context free languages.

This illustrates the power of the fundamental idea of understanding dynamics
by focusing on the action induced on observations rather than on the underlying
state space itself.

References

[1] P. Benioff, “Quantum mechanical Hamiltonian models of Turing machines,”
Journal of Statistical Physics, Volume 29, pp. 515–546, 1982.

[2] A. Berthiaume and G. Brassard, “The quantum challenge to structural
complexity theory,” Proceedings of the Seventh IEEE Conference on Struc-

ture in Complexity Theory, IEEE, pp. 132–137, 1992.

[3] D. Deutsch, “Quantum theory, the Church-Turing principle and the univer-
sal quantum computer,” Proceedings of the Royal Society, Volume A425,
pp. 73–90, 1985.

[4] R. P. Feynman, “Simulating physics with computers,” International Jour-

nal of Theoretical Physics, Voluem 21, pp. 467–488, 1982.

[5] R. L. Grossman, A. Nerode, A. Ravn, and H. Rischel, editors, “Hybrid
Systems”, Springer Lecture Notes in Computer Science, Springer-Verlag,
Bonn, 1993.

11



[6] R. Grossman and R. G. Larson, “The realization of input-output maps
using bialgebras,” Forum Mathematicum, Volume 4, pp. 109–121, 1992.

[7] R. L. Grossman and R. G. Larson, “An algebraic approach to hybrid sys-
tems,” Journal of Theoretical Computer Science, Volume 138, pp. 101–112,
1995.

[8] R. L. Grossman, A. Nerode, and M. Sweedler, “A hilbert space approach
to hybrid systems using formal dynamical systems,” submitted for publi-
cation.

[9] R. L. Grossman and M. Sweedler, “Quantum automata and their realiza-
tions,” submitted for publication.

[10] J. E. Hopcroft and J. D. Ullman, Formal Languages and their Relation to

Automata, Addison-Wesley, Reading, 1969.

[11] P. W. Shor, “Algorithms for the quantum computation: Discrete log and
factoring,” submitted for publication.

[12] M. E. Sweedler, Hopf algebras, W. A. Benjamin, New York, 1969.

12


