
Hybrid Systems in Automotive Electronics Design

Andrea Balluchi§ Luca Benvenuti¶ Alberto L. Sangiovanni-Vincentelli§†

Abstract

Automotive is certainly one of the most attractive and promising application domains for
hybrid system techniques. Some successful hybrid system applications to model development
and control algorithm design have already been reported in the literature. On the other hand,
despite the significant advances achieved in the past few years, hybrid methods are in general still
not mature enough for their effective introduction in the automotive industry design processes
at large. In this paper, we take a broad view of the development process for embedded control
systems in the automotive industry with the purpose of identifying challenges and opportunities
for hybrid systems in the design flow. We identify critical steps in the design flow and extract
a number of open problems where, in our opinion, hybrid system technology could play an
important role.

1 Introduction

The design of electronic control systems in the automotive industry is particularly challenging due
to a number of factors.

A first factor of difficulty is the high complexity of the subsystems that compose the car and have
to be operated and monitored by the control system: e.g. the engine, the electrical motor/generator
in hybrid vehicles, the driveline, the vehicle body, the suspensions, the brakes, the exhaust gas
treatment system, etc. Such subsystems often exhibit very complex behaviors and interact tightly
one another. Furthermore, the design of next–generation x–by–wire applications (driving, steering,
braking) requires accurate management of the involved interactions between the control system
and the driver.

Secondly, the design of electronic control systems is subject to ever increasing demands imposed
by the market in terms of vehicle performances, passengers’ comfort and safety, and fuel consump-
tion. Such demanding specifications have to be achieved in compliance with legal requirements
related to emissions and safety. In particular, very stringent requirements are imposed on the dy-
namical behaviors of the engine and the vehicle during both fast transients and switching between
operation modes.

Further challenges of the design regard the requirements for the hardware and software im-
plementation of the control system. In fact, the implementation has to cope with very critical

§ PARADES, Via di S.Pantaleo, 66, 00186 Roma, Italy. Tel: +39 06 6880-7923; Fax: +39 06 6880-7926; Email: {balluchi,
alberto}@parades.rm.cnr.it.

¶ Dipartimento Informatica e Sistemistica, Università di Roma “La Sapienza”, Via Eudossiana 18, 00184 Roma, Italy Tel:
+39 06 44585-973; Fax: +39 06 44585-367; Email: luca.benvenuti@uniroma1.it.

† Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720,
USA. Tel: +1 510 642-1792; Fax: +1 510 643-5052; Email: alberto@eecs.berkeley.edu.

1

constraints on cost and reliability (safety and correctness) and constraints on power consumption,
weight and position.

Finally, the overall development process in the automotive industry is subject to extremely
critical time–to–market limitations, which derive by the necessity of delivering every two–three
years new generations of products characterized by high contents of innovation [14, 4].

In today cars, the electronic control system is a networked system with an embedded controller
dedicated to each subsystem: e.g. engine control unit, gear–box controller, ABS (Anti–lock Braking
System), dashboard controller, and VDC (Vehicle Dynamic Control). The embedded controllers
interact each other by communicating over a network.

However, due to the lack of an overall understanding of the interplay of sub–systems and of
the difficulties encountered in integrating very complex parts, system integration has become a
nightmare in the automotive industry. Jurgen Hubbert, in charge of the Mercedes-Benz passenger
car division, publicly stated in 2003: “The industry is fighting to solve problems that are coming
from electronics and companies that introduce new technologies face additional risks. We have
experienced blackouts on our cockpit management and navigation command system and there have
been problems with telephone connections and seat heating”. We believe that this state is the rule,
not the exception, for the leading Original Equipment Manufacturers (OEMs) in today environment.
The source of these problems is clearly the increased complexity of the embedded controllers but
also the difficulty of the OEMs in managing the integration and maintenance process with embedded
controllers that come from different suppliers who use different design methods, different software
architecture, different hardware platforms, different (and often proprietary) Real-Time Operating
Systems (RTOS). In fact, most of the OEMs outsource the design and production of embedded
controllers to suppliers (so–called Tier–1 companies), which in turn buy IC components and other
devices by third parties (so–called Tier–2 companies). As a consequence, embedded controllers are
often developed by different Tier–1 companies and are requested to operate in coordination on a
same model of a car. Moreover, it is often the case that Tier–1 companies have to integrate some
IPs (Intellectual Properties) provided by the OEM at different levels of details (algorithms, legacy
code) and, in the near future, possibly by third parties.

Whereas on the one hand the need for standards in the software and hardware domains that
will allow plug–and–play of embedded controllers is essential, on the other hand the design process
for embedded controllers has to be significantly improved. The first point is the declared objective
of the AUTOSAR initiative [25, 3], promoted by leading European OEMs and Tier–1 suppliers: to
establish an open standard for automotive electric/electronic architectures.

Hybrid systems techniques can have an important role with respect to the second point. Suc-
cessful approaches to design of control algorithms using hybrid system methodologies had been
presented in the literature, e.g. cut-off control [12], intake throttle valve control [13], actual en-
gaged gear identification [9], adaptive cruise control [30]. However, despite the significant advances
of the past few years, hybrid system methodologies are not mature yet for an effective introduction
in the automotive industry. On the other hand, hybrid system techniques may have an important
impact on several critical open problems in the overall design flow that go beyond the classical con-
troller synthesis step. In particular, system design is a very critical step in the today development
process, which could be significantly improved by using hybrid system techniques. In this funda-
mental design step, system specifications are mapped into an architecture of control algorithms and
their requirements.

In this paper, we analyze the design flow for embedded controllers in the automotive industry,

2

system
specification

functional
deployment

control
design

hw/sw
design

components
implementation

hw/sw
testing

control
validation

functional
integration

system
testing

Figure 1: Design and integration flow.

with the purpose of identifying challenges and opportunities for hybrid system technologies. In
Section 2, an overview of the typical design flow for embedded controllers adopted by the automotive
industry is presented with particular emphasis on the Tier–1 supplier problems. In Section 3, for
each design step, we identify critical phases and bottle-neck problems and we extract relevant open
problems that hybrid system technologies may contribute to solve. Some conclusion remarks are
given in Section 4.

2 Design scenario and design flow

In today cars, the electronic control system is a networked system with a dedicated Electronic
Control Unit (ECU) for each subsystem: e.g. engine control unit, gear–box controller, ABS (Anti–
lock Braking System), dashboard controller, and VDC (Vehicle Dynamic Control). The ECUs
interact by asynchronous communication over a communication network specifically designed for
automotive applications, such as CAN. Typically, an ECU implements a multirate control system
composed of nested control loops, with frequency and phase drifts between fixed sampling–time
actions and event driven actions. It may have more than one hundred I/O signals, may implement
up to three hundreds control algorithms and share with the other related ECUs approximately one
hundred signals (as for example, the engine control unit).

The complexity of the design of automotive ECUs is further increased by additional very critical
constraints on reliability, cost and time–to–market and constraints on power consumption, weight
and position.

As a consequence, a successful design, in which costly and time consuming re–design cycles are
avoided, can only be achieved using efficient design methodologies that allow for component reuse
and for evaluation of platform requirements at the early stages of the design flow (see [24]).

The standard design flow of automotive ECUs adopted by Tier–1 companies (subsystem suppliers)

3

is represented by the so–called V-diagram shown in Figure 1. The top–down left branch represents
the synthesis flow. The bottom–up right branch is the integration and testing flow.

In particular, the synthesis flow is articulated in the following steps:

1. System specification. This step includes: the formalization of system level customer require-
ments; the completion of under–specified requirements; the abstraction at the system level
of customer requirements regarding lower layers (e.g. either a control algorithm or a piece of
software to be integrated in the design).

2. Functional deployment. In functional deployment, the system is decomposed into a collection
of interacting subsystems and the specifications for each subsystem are defined. Moreover,
for each subsystem, the architecture of control algorithms and their specifications are defined
in order to meet the given system specifications.

3. Control system. This design step regards the synthesis of each control algorithm, according
to the specification defined in the previous step, and its validation.

4. HW/SW components. The specifications for the implementation of the control algorithms are
defined and the hardware and software architectures are designed.

The synthesis flow terminates with the development of the hardware, the software and possibly
some electromechanical components. The right branch of the V-diagram describes the integration
and testing flow whose purpose is the complete testing of the realization of the ECU and the
verification of the compliance with the customer requirements. The steps of the integration and
testing flow are:

• HW/SW testing. The correct realization of the hardware and software architectures are
verified. This step includes testing of real–time implementation requirements, electrical power
drivers, communication, etc.

• Control validation. The correct implementation of each control algorithm with respect to the
given functional description is assessed by testing either its input–output response or the its
behavior in closed–loop.

• Functional integration. The correct interaction of the implemented control algorithms is tested
considering an increasing number of algorithms together, to verify that their composition
exhibit the behavior defined during functional deployment.

• System testing. The entire ECU is tested against system specification and the compliance
with customer requirements is verified.

The platform-based design methodology proposed in [35] nicely fits the design flow described
by the V-diagram and provides concepts and techniques to achieve an efficient design, aimed to
maximize reuse in each design step and to obtain evaluations of platform requirements at the early
stages of the design flow (see also [26]). In this context, a platform is a layer of abstraction that
hides the unnecessary details of the underlying implementation and yet carries enough information
about the layers below to prevent design iterations. The choice of the layers of abstraction and of
the corresponding parameters are essential in the quality of the final solution of the design problem.

The basic tenets of the platform-based design methodology are:

4

• Regarding design as a “meeting-in-the-middle process” where successive refinements of spec-
ifications meet with abstractions of potential implementations;

• The identification of precisely defined layers where the refinement and abstraction process
take place.

The layers then support designs built upon them isolating from lower-level details but letting
enough information transpire about lower levels of abstraction to allow design space exploration
with a fairly accurate prediction of the properties of the final implementation. The information
should be incorporated in appropriate parameters that annotate design choices at the present layer
of abstraction. These layers of abstraction are called Platforms.

In [2], the application of the platform-based design methodology to the design of powertrain
control systems has been described. The top-down, constraint-driven design approach proposed in
the paper is articulated in five levels of abstraction: system level, function level; operation level;
architecture level and component level.

Since in the automotive industry, embedded control system design is highly dominated by
the need of implementing an efficient reuse to meet increasing constraints on cost and time–to–
market, then a derivative design approach is commonly adopted (see e.g. [28, 29]). According
to this approach, every two–three years a new generation of products is conceived. The design
of the generation is intended to accommodate the specifications of all customers for the next
years, so that for each commitment the control algorithms as well as the electrical and mechanical
components are obtained by derivation from the current product generation. In the definition
of the product generation, the architecture of control algorithms should be conceived is such a
way to maximize future re–use, by choosing the correct granularity of partitioning for instance.
The resulting ECUs are then variants of a same originating design and ideally share the highest
number of parts (algorithms, software modules, hardware parts, mechanical components, etc). The
derivative design approach impact all the design steps in the top–down design flow of the V-diagram
and possibly the lowest part of the integration and testing flow.

Finally, there is an increasing interest in the automotive industry towards model-based design
methodologies. In model-based design, specifications, functional architectures, algorithms, and im-
plementation architectures are represented formally by models thus allowing, at least in principle,
formal analysis and automatic synthesis. Using block diagram–based modeling tools, control al-
gorithms are designed and initial validation in off–line simulation is performed. Then, models of
the control algorithms are the basis for all subsequent development stages. The advantages are
obvious:

• sharing models reduces the risk of mistakes and shortens the development cycles;

• design choices can be explored and evaluated much faster and more reliably;

• the result of a model–based development process is an optimized and fully tested system.

However, today there is an incomplete implementation of the model-based design approach in the
development cycle of the automotive industry. In fact, model-based design is widely used for the
formal representation of control algorithms, using tools such as either Simulink/Stateflow by The
Mathworks [38] or ASCET by ETAS [22], but it is very superficially applied to control algorithm
validation. The lack of an extensive model-based validation of the control algorithms results in
major efforts in experimental validation, which is very expensive, time-consuming and achieves

5

only a bounded coverage of the system behavior. Due to the high cost of experimental validation,
the OEMs will provide less support to Tier-1 companies for it in the future.

The partial implementation of model-based design in the automotive industry is due to:

• Insufficient investments in design process innovation. In many cases, the reduced efforts
devoted to plant modeling prevent accurate model-based validation.

• Lack of methodologies suitable to address critical steps in the design flow, which are currently
handled relying on the experience of the designers. A significant example in this respect is
functional deployment for which there is nearly no methodological support. The low quality
of today functional deployment is witnessed by the results of corresponding step in the testing
flow, i.e. functional integration. In this step the large majority of the malfunctioning and
noncompliance with the specification are detected, the recovering of which involves often
multiple redesign cycles.

• Poor integration of the design tool chain, which is composed by different tools developed inde-
pendently by different tool makers. Such tools are often connected by file transfer. However,
this way of integrating tools defeats the very purpose of model–based design, introducing a
high potential of errors in the transformation from one format to another and preventing
formal analysis of the properties of the design.

In the rest of the paper, the synthesis flow will be analyzed in details enlightening design steps
for which today there is a with weak support of methodologies and tools. As it will be observed,
in many cases hybrid system techniques many significantly contribute to provide a more efficient
approach to such design steps.

Regarding tool chain integration, in [5] a formal transformation across different tools is illus-
trated and an example of the proposed approach is reported referring to two tools that are widely
used in the automotive domain: Simulink and ASCET. The proposed approach is based on the use
of a common formal model, namely the synchronous reactive model of computation, which is used
as the common ground to interpret system specifications given with different underlying models.

3 Synthesis flow

In this section, we describe the synthesis part of the automotive design flow covering the levels of
system specification, functional deployment, control system and HW/SW components. Emphasis
will be placed on the aspects which we believe hybrid system techniques may have relevant impact
on, while details of the design with no relation to hybrid systems will be slightly mentioned.

The importance of developing efficient design approaches for the top layers of the design flow
is due to the fact that most of the critical design choices are taken in the early stages of the design
flow and missteps in these stages produce costly and time consuming re-design cycles. Efficient
re–use of components is essential to meet the tight constraints on development time and cost and
should be fostered at all levels of the design flow.

To support re–use at the functional layer according to the derivative design approach, it is
necessary to develop methodologies and tools that allow evaluation of “off the shelf” control algo-
rithms, available from previous product developments and included in the product generation, with
respect to the customer requirements for the design at hand. Often, if direct re–use is not possible,
requirements can be met with minor re–designs.

6

3.1 System specification

System specifications, issued by the OEM, define the desired behavior of the vehicle that should
be achieved by the design of the control system. The specifications regard

• performance and driveability - dynamic behavior of the vehicle, driver assistance, detection
and suppression of critical dynamic vehicle states, comfort;

• fuel consumption;

• legal requirements - environment and safety.

The specifications are defined in terms of a number of operation modes characterized by different
controlled variables and regard both discrete and continuous behaviors: in fact system specifications
define switching conditions between operation modes as well as the desired continuous behavior for
each mode.

Discrete specifications are often given in natural language and only sometimes formalized in
some discrete modeling framework. Continuous specifications are given following classical method-
ologies in terms of steady-state/transient response, frequency domain, robustness and parameter
sensibility, disturbance rejection, control effort, cost functions, and constraints.

Often, for both discrete and continuous specifications, requirements are given by specifying
requested behaviors on hybrid input/output evolutions. In addition, critical maneuvers for which
the behavior requested by the specifications should be guaranteed (possibly up to some allowed
degradation) are also identified.

The degree of detail given by the OEMs in describing system specifications is not uniform.
Depending on the importance placed by the OEM on each single behavior, functionality or con-
straint, a different degree of accuracy in describing the requirement itself is used. In particular,
some behaviors may result only vaguely specified: in this case, under-specified system requirements
are completed by the Tier–1 supplier on the basis of its own experience while trying to maximize
reusability for future developments. On the other hand, there are also behaviors that are very
detailed in the customer requirements to the the point that the OEM imposes not only a system
level requirement but also a particular solution to satisfy it, resulting in an undesirable (at least
from an ideal point of view) over-specification.

Since these constraints are often the result of decisions based on insufficient analysis, the feasible
design space may be empty thus causing unnecessary design cycles. We do believe that care must
be exercised when constraint are entered at abstraction levels that are non appropriate with respect
to the role of the company that specifies them.

The previous discussion shows that, since system specification regards both discrete and con-
tinuous behaviors, then:

• tools for system specifications, requirements management and system design, validation and
verification must be developed to deal with hybrid models.

Moreover, since OEM requirements contain details regarding several levels of the design flow, then
to achieve a complete representation of the system at system specification level,

• abstraction techniques that deal with hybrid systems for projecting lower–levels specifications
back to upper–levels must be developed;

Finally, hybrid techniques and supporting tools to perform coherence and feasibility analysis at
system specification level have to be developed as well.

7

Ignition

Combustion

Exhaust Gas
Treatment

Motion
Generation

Communication

Mixture
Composition

Air

Fuel

Management

Management

Figure 2: Functional decomposition.

3.2 Functional deployment

In a first stage of the design, the system is decomposed into a collection of interacting components.
The decomposition, based on the understanding of the physical process of interest, is clearly a key
step towards a good quality design, since it leads to a design process that can be carried out as
independently as possible for each component (see [2] for more details). A typical decomposition
for engine control is shown in Figure 2. The objectives and constraints that define the system
specification are distributed among the components by the functional deployment process so that
the composition of the behaviors of the components is guaranteed to meet the constraints and the
objectives required for the overall controlled system.

In a second stage of the functional deployment, the control algorithms architecture is defined.
In particular, the set of control algorithms to be developed for each function and the topology
of interconnection are determined. Furthermore, for each control algorithm, desired closed–loop
specifications are defined to achieve the requested behavior for each functional component. This
process is mainly guided by the experience of system engineers, with little support of methodologies
and tools. The sets of measurable and actuated quantities, which will constitute the sets of,
respectively, inputs and outputs to the ECU, are often defined by the OEM. In fact, the OEM
often defines also sensors and actuators to be used, since they have a major impact on the cost of
the control system. In addition, customer requirements may include details on the topology of the
control algorithms architecture that further constrains the functional deployment process.

The results of the functional deployment design stage are: the control algorithms architecture
and the desired closed–loop specification for each control algorithm.

As a consequence, hybrid formalisms are required to support the description of

• the functional decomposition and the desired behavior for each functional component;

• the architecture of control algorithms, sensors and actuators, for each functional component;

• the desired requirements for each control algorithm obtained from the functional deployment
process.

Moreover, the development of methodologies and tools for the synthesis of functional behaviors
from system specifications and for validation of the obtained control algorithm requirements w.r.t.
the desired functional behaviors, are necessary.

8

3.3 Control system

At the control system level, the algorithms to be implemented in the architecture defined at the
functional level are designed. All control algorithms have to meet the assigned specification, so
that their composition within a functional component exhibits the required behavior defined during
functional deployment.

In general, the design process for each control algorithm involves:

1. Plant modeling:

a) model development;

b) identification;

c) validation.

2. Controller synthesis:

a) plant and specifications analysis;

b) algorithm development;

c) controller validation.

3. Fast prototyping.

However, since according to the derivative design approach most of the algorithms are obtained from
the current product generation, then the entire three–step flow is often only partially performed.
For example, if some models of the plant interacting with the control algorithm under design are
already available from previews designs, then only some adjustments of sensitive parameters, along
with a coarse validation, could be sufficient to obtain reliable models. If not, rigorous identification
and validation has to be performed. The complete plant modeling phase is obviously necessary
either for the refinement of unsatisfactory existing models, when major changes in the plant have
been made or for the development of new functionalities. The plant modeling step is discussed in
details in Section 3.3.2

In the plant model and specifications analysis stage, it is first analyzed whether an available
algorithm can meet the specification or a new design is needed. If the algorithm is obtained from
the current product generation, then the algorithm development stage may involve some minor
changes to the re–used algorithm in order to completely cover the new specification. In these cases,
the controller validation stage is the most important step to ensure that re–use was successful (see
Section 3.3.1). Design of new control algorithms, necessary either when re–use cannot be applied
due to major changes in the specification or when new functionalities have to be developed, requires
the performance of the entire three-step flow for controller synthesis. Section 3.3.3 reports a detailed
illustration of the controller synthesis step.

Fast prototyping is adopted when either control algorithms are designed for new functionalities
or major redesigned has occurred to meet more stringent specifications.

Before going through the details of the plant modeling and controller synthesis steps, we report
below a methodology to implement derivative design.

9

wu Plant

Controller v

d y

Figure 3: General scheme for control algorithm validation.

3.3.1 Derivative design

The derivative design approach to be effective in the industry development process has to be sup-
ported by methodologies and tools that allow evaluation of “off the shelf” control algorithms,
available from the current product generation, with respect to the requested closed–loop perfor-
mances for the design at hand. An approach based on hybrid modeling and randomized algorithms
has been proposed in [1].

The problem of validating a control algorithm extracted from the current product generation
with respect to the closed–loop specification established during functional deployment can be for-
malized similarly to a robust control problem. Consider the general closed–loop scheme depicted in
Figure 3. The controller represents the control algorithm obtained from the current product gener-
ation to be evaluated, while the plant models in an abstract way the remaining part of the system
interacting in closed–loop with it: i.e. a part of the physical plant, sensors, actuators and possibly
other control algorithms. Furthermore, d models measurable and unmeasurable disturbances to be
rejected, v denotes reference signals and commands, w stands for feedforward and feedback signals,
u represents the control inputs and y denotes the system outputs. Due to the different nature of the
signals and components in the closed–loop scheme, a hybrid modeling approach has to be adopted
to be able to represent the closed–loop behavior.

Let the desired specification defined during functional deployment be formalized in terms of a
number N of inequalities of the type:

J̄i (Ji{y}|x∈Xi) ≤ 0 for i = 1 . . . N (1)

where:

• x denotes an evolution of the system state and Xi is the family of system evolutions of
interest1;

• y denotes an evolution of the system outputs on which the functional is applied and Yi is the
family of output evolutions;

• Ji : Yi → R is a functional measuring the performance of the controlled system on a particular
evolution x ∈ Xi and the operator J̄i(·) collects the overall performances in Xi.

1Which may depend on uncertain and time-varying parameters, as well as initial and final conditions.

10

−0.4 −0.3 −0.2 −0.1 0 0.1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

lim_down

lim
_u

p

Good points area
Good points
Bad point
Bad points area

Figure 4: Set of control parameters that achieve desired functional requirements.

The set of inequalities (1) may be related to different operating modes of the system and may
specify different requirements in each operating mode.

In context of platform-based design [35], the controller synthesis design step can be view as a
refinement of the functional deployment into a set of control algorithms that implements the given
functional requirements. Assume that the current product generation contains a set of candidate
control strategies that have to be evaluated against the functional requirements (1). These strategies
may correspond to different choices of physical variables in d, u, w and v, and different control
algorithms. The exploration of the candidate solutions is described by

• a number R of different controller structures;

• a set Xr
C of control parameters for each controller structure r ∈ {1, . . . , R}.

A particular control strategy, resulting from the mapping of given functional requirements into a
control platform, is identified by selecting a controller structure and an admissible value for the
control parameters. Let ỹ and x̃ respectively denote the representation in the given model of the
physical variables y and x. The functional specification (1) is guaranteed for a control structure r,
control parameters c, and a given plant model if

J̄i (Ji{y}|x∈Xi) ≤ J̄i (Ji{ỹ(r, c)}|x̃∈Xi) ≡ Ji(r, c) ≤ 0 for i = 1 . . . N . (2)

Note that, while Ji{·} is a functional that is applied to the system outputs, Ji : {1, . . . , R}×Xr
C → R

is a function of the controller structures and control parameters. Furthermore, it is worthwhile to
notice that, to guarantee the functional requirements (1), the model that produces ỹ(r, c) has be
conservative with respect to the functionals Ji{·}.

In [1] a methodology and a tool that support design space exploration and validation of control
strategies extracted from the current product generation are presented. In the proposed approach,
performance criteria are tested for the control algorithms over parameters spaces both via random-
ized algorithms, i.e. letting the parameters vary according to a given probability distributions, and
stochastic algorithms, i.e. letting the parameters evolve in time according to a random coefficient

11

stochastic differential equation. The results of the analysis are given in the parameter spaces. If
the computation returns an empty control parameter set, then the corresponding control strategy
extracted from the current product generation is not suitable for the design at hand since it does
not achieve the desired functional requirements (1). If the returned set in the control parameter
space is large, then the corresponding algorithm easily satisfies the functional requirements and it
is easy to calibrate. The selection of the control strategies among those that meet the functional
requirements (1) is done comparing their implementation costs, as discussed in Section 3.4.

Figure 4 reports the results obtained using the tool described in [1] to evaluate the feasible values
for the lower and upper bounds of a saturation block employed in an air–to–fuel control algorithm
for spark ignition engine control. The desired specification is to keep the mean–value of the air–
to–fuel ratio close to the stoichiometric value. The plant model used in the validation scheme of
Figure 3 represents, in an abstract and yet conservative way, the behavior of the fuel injection
controlled system. The model is hybrid and contains uncertainties to achieve conservativeness.

3.3.2 Plant modeling

In this section, the three steps of the plant modeling phase, namely model development, identifica-
tion, and validation, are illustrated. Aspects relevant to the introduction of hybrid system modeling
techniques in automotive applications are outlined.

a) Model development

Traditionally, control engineers adopt mean–value models to represent the behavior of automotive
subsystems. However, the need for hybrid system formalisms to model the behavior of subsystems
in automotive applications is apparent in many cases.

Let us consider for instance the nature of input and output signals for the internal combustion
engine, and the fuel injection and spark ignition subsystems. As described in Table 1, such signals
can be classified in four different classes, by considering either their discrete or continuous nature
in the time and value domains.

Often models of automotive subsystems are highly nonlinear. In engine modeling for instance,
nonlinearities arise from fluid–dynamics and thermodynamics phenomena (e.g. volumetric effi-
ciency, engine torque, emissions). Such nonlinearities are usually represented by piece–wise affine
maps, identified by steady state measurements. In addition, since the mechanical and electro-
mechanical components used in the automotive industry are characterized by a high production
diversity and are greatly affected by aging, then controller design and validation has to be based on
uncertain models of the plant that capture the main effects of variability in the plant. Uncertain-
ties can be represented as: bounded either constant or time-varying perturbations of parameters,
bounded signals and cross-coupling dynamics.

To conclude this brief discussion, we mention the increasing importance of human factors in
automotive control design. Since the closed–loop system is a man–in–the–loop system, to design and
validate correctly control algorithms that interact with the driver, it is necessary to understand
and model the behavior of the driver. The need of modeling the human operator will become
increasingly important with the expansion of x–by–wire applications (driving, steering, braking)
that will require careful design of man–machine interfaces. The models of the driver must include
perception (regarding also passengers as far as comfort is concerned), actuation, open-loop and
closed-loop control actions. Moreover, since performance and driveability of the car are assessed

12

Internal Combustion Engine Hybrid Model
discrete time continuous time

discrete value continuous value discrete value continuous value

inputs spark ignition
injected fuel
air charge

exhaust gas conc.
engine speed

outputs crankshaft events air-to-fuel ratio
engine torque

engine temperature
engine exhaust gas

Direct Injection Fuel System Hybrid Model
discrete time continuous time

discrete value continuous value discrete value continuous value
inputs pressure valve cmd injection signal

outputs injected fuel rail pressure
fuel temperature

Spark Ignition Hybrid Model
discrete time continuous time

discrete value continuous value discrete value continuous value
inputs spark command ignition coil cmd
outputs spark ignition

Table 1: Time domain and value domain classification of signals for internal combustion engine
modeling.

by experienced test drivers that quote on a scale from 1 to 10 the driving feeling, then driver’s
models can be used to obtain analytical and repeatable specifications for driveability controllers
design. The development of models for car driveability perception requires intensive study of human
perception and assessment criteria, different vehicles and different drivers, driver interviews (during
and after driving), data recording and analysis.

In conclusion, plant models development requires extensive use of hybrid modeling techniques:

• hybrid deterministic and stochastic formalisms, including FSM, DES, DT, CT, PDA, for
representing interacting behaviors of different nature are essential;

• such hybrid formalisms should be supported by appropriate tools for hybrid model description
and simulation.

Finally, to illustrate the relevance of hybrid modeling in automotive applications, we briefly
describes a hybrid model for spark ignition engine and an automotive driveline.

Spark ignition 4-stroke engine. An accurate model of a spark ignition 4-stroke engine has a
natural hybrid representation because the cylinders have four modes of operation corresponding to
the stroke they are in, while driveline and air dynamics are continuous-time processes. In addition,
these processes interact tightly. In fact, the timing of the transitions between two phases of the
cylinders is determined by the continuous motion of the driveline, which, in turn, depends on the
torque produced by each piston.

13

More in detail, consider the hybrid model of the torque generation process and the driveline
presented in [6]. For a given gear selection and clutch position, the driveline is described by a
continuous time system whose state includes the driveline torsion angle, the crankshaft revolution
speed, and the wheel revolution speed. The inputs of the model are the torque T produced by the
engine and the wheel torque Tw.

The engine torque T is given by ΣN
i=1T

i, where T i is the torque generated by each piston at
each cycle. The profile of T i is determined by the phases of the cylinder, the piston position, the
mass of air and the mass of fuel loaded in the cylinder during the intake phase, and on the spark
ignition timing.

The 4-stroke engine cycle can be modeled by means of a finite state machine (FSM) capturing
the sequential nature of the behavior of the cylinders. In fact, each cylinder cycles through the
following four phases:

• intake (I): the piston goes down from the Top Dead Center (TDC) to the (Bottom Dead
Center (BDC)) loading the air–fuel mix present in the intake manifold;

• compression (C): the trapped mix is compressed by the piston during its upward movement
from the BDC to the TDC;

• expansion (E): the combustion takes place pushing down the piston from the TDC to the
BDC;

• exhaust (H):during its upward movement, from the BDC to the TDC, the piston expels
combustion exhaust gases.

However, for spark ignition engines, the torque generated by each piston is related not only to
the phase of the cylinder and the air and fuel charge, but also to the spark generation process.
Intuitively, spark ignition should occur exactly when the piston reaches the TDC of the compression
stroke. Since the combustion process takes non-zero time to complete, then the pressure in the
cylinder reaches its maximum some time after spark ignition. As a consequence, in order to achieve
maximum fuel efficiency, it is convenient to produce the spark before the piston completes the
compression stroke (positive spark advance). On the other hand, producing a spark after the piston
has completed the compression phase and is in the expansion stroke (negative spark advance) may
be used to reduce drastically (and much faster than using only the throttle valve) the value of
the torque generated during the expansion run. Since spark ignition may occur either during the
compression stroke or during the expansion stroke, a six state FSM is needed to model the possible
behaviors of the cylinder. The cylinder FSM is shown in Figure 5. The FSM state takes one of the
following values

• I, denoting Intake;

• BS, denoting Before Spark: the piston is in the compression stroke and no spark has been
ignited yet;

• PA, denoting Positive Advance: the piston is in the compression stroke and the spark has
been ignited;

• NA, denoting Negative Advance: the piston is in the expansion stroke and the spark has not
been ignited yet;

14

�

�

I

NA

PA

BS

AS

sp
a
rk

i
�
B
S
�
P
A

sp
a
rk

i
�
N
A
�
A
S

DC i� BS�NA

DC i� PA�AS

D
C
i �
H
�I

D
C

i�
I�B
S

C E

H

sp
ar
k�
D
C
i �

B
S�
A
S

D
C

i�
A
S�H

Figure 5: FSM describing the behavior of the i–th cylinder.

• AS, denoting After Spark: the piston is in the expansion stroke and the spark has been
ignited;

• H, denoting Exhaust.

The cylinder FSM changes state either when a spark is given or when a dead center is reached. This
last event depends on the continuous motion of the driveline and more precisely on the crankshaft
angle, which defines the position of the piston. In turn, the crankshaft revolution speed depends
on the torque T produced by the engine.

Finally, the torque produced by the cylinder depends on the air-fuel mixture loaded during the
intake stroke. Since the air-fuel mixture is loaded in the cylinder during the intake stroke while
the torque generation starts after the spark is ignited, then there is a delay between the time at
which the mixture is loaded and the time at which the corresponding active torque is generated.
This delay can be modeled by means of a DES synchronized with the FSM transitions. The overall
model of the torque generation process for a single cylinder consists then of four communicating
sub–models:

• an FSM, modeling the 4-stroke engine cycle and the spark generation process,

• a DES, modeling the discrete delay on the active torque generation, and

• two continuous time systems, modeling respectively the air intake process and the profile of
the generated torque.

Driveline. A second very interesting automotive subsystem rich of discrete–continuous interac-
tions is the driveline (see [8]). An accurate model of the driveline has a natural hybrid representation

15

LOCKED SLIPPING UNLOCKED

Pc > 0

Pc = 0T > ¹ s Pc

!e=!c

and

T < ¹ s Pc

Figure 6: The hybrid model of the clutch.

because of the discontinuities due to clutch and the gear on the continuous motion of the drive-
line. In fact, the clutch can be modeled as a hybrid system with three discrete states: Locked,
Slipping, and Unlocked. In Figure 6 the FSM of the hybrid model of the clutch is depicted. When
the clutch is Locked the clutch plate and the flywheel are rigidly connected by static friction, so
that their inertias are collected in a single first–order dynamics. The highest coupling torque Tmax

before incurring in clutch slipping corresponds to the maximum static friction torque, which is a
function of the pressure Pc between the clutch plate and the flywheel , i.e. Tmax = µsPc. When the
transmitted torque T exceeds Tmax, the system enters the state Slipping: the clutch plate and the
flywheel are no longer strictly connected but they slip one on the other. In this case the coupling
torque is due to dynamical friction and it is a function of the sliding speed. If the transmitted
torque decreases, then the clutch returns in the state Locked, while if Pc = 0 the clutch enters the
state Unlocked and Tc = 0. In the state Unlocked the crankshaft is completely decoupled from the
rest of the driveline and the two systems follow independent dynamics.

For some applications, e.g. actual engaged gear identification [9], it is useful to collect in a single
state the clutch Unlocked and Slipping states. In such cases, the overall system can be described
by a hybrid system with 7 discrete states and four continuous state variables. The FSM describing
the discrete dynamics of the model is depicted in Figure 7. The discrete state qi, for i = 1, . . . , 5,
correspond to i–th gear engaged and clutch locked; location qRG models reverse gear engaged;
location qN represents either driveline open (idle gear and/or clutch open) or clutch slipping. The
continuous state variables are: the driveline torsion angle α, the crankshaft revolution speed ωe,
the clutch plate revolution speed ωc, and the wheel revolution speed ωw. When the clutch is locked,
then ωe = ωc so that the continuous behavior of the driveline can be described by a third order
linear system with parameters depending on the selected gear.

The hybrid model has as inputs the position of the gear lever lever ∈ {1, 2, 3, 4, 5, RG,N} and
the torque generated by the engine while the connection pressure of the clutch plates Pc and the
load wheel torque Tw are considered as disturbances. A more detailed driveline hybrid model, with
6048 discrete state combinations and 12 continuous state variables, is presented in [8]. In addition
to the clutch and the gear, the proposed hybrid model describes the discontinuities in the driveline
due to engine suspension, elastic torsional characteristic, tires, frictions and backlashes. This very
detailed driveline hybrid model exhibits a behavior very close to the physical driveline and has been
developed to be used for control algorithm validation.

16

q1 qRG

qN

lever=N

or

Pc=0

or

T > ¹ s Pc

… … .
!e=!c

and

T < ¹ s Pc

and

lever=1

| |

!e=!c

and

T < ¹ s Pc

and

lever=RG

lever=N

or

Pc=0

or

T > ¹ s Pc

Figure 7: The hybrid model of the driveline.

b) Identification

In current practice, parameter identification is mostly based on steady–state measurements, ob-
tained using either manually defined set–points or automatic on–line screening. Dynamic param-
eters are often either obtained analytically or from step responses. However, step response and
other classical identification methods can be used to identify models representing standard con-
tinuous evolutions only, such as those exhibited by mean–value models. When applied to hybrid
models, classical techniques can only be used to identify the plant model separately in each discrete
mode. They hardly succeed in identifying parameters related to switching conditions and cannot
be applied to black–box hybrid model identification.

The availability of hybrid system identification techniques using transient data, including mode
switching, would allow to increase identification accuracy, reduce the amount of experimental data
needed and identify all parameters in hybrid models. Efficient identification techniques for hy-
brid systems will also give the opportunity for modeling more complex hybrid behaviors that are
currently abstracted due to the difficulties in the identification process.

Moreover, efficient hybrid techniques for the representation and identification of nonlinearities,
as either piece–wise affine functions (see [16]) or piece–wise polynomial functions, would produce
major impacts in the design:

• domain partition could be optimized (possibly not grid-based), achieving increased accuracy
and reducing model complexity;

• parameter identification accuracy could be improved;

• high dimension nonlinearities Rp → R with p ≥ 3, which are today represented as product of
R,R2 → R functions, could be represented and identified.

c) Validation

Model validation is the converse to identification: given a system model, the objective is to assess
whether the model is consistent with experimental observations. No assumptions are made about
the nature of the physical system, but the compliance of the model with the actual behavior of
the system is evaluated using experimental data. As discussed above, plant models often include

17

unknown, bounded perturbations and unknown, bounded input signals to take into account the high
uncertainty in the behavior of the components. The validation of uncertain models is a very critical
task that has been studied in the literature in the case of continuous time systems, see [37, 33, 36].
Techniques have been proposed for explicit calculation of whether sufficient data for invalidation of
the model has been obtained. These techniques can be used in automotive applications to assess
the richness of validation patterns for the continuous evolutions of the plant.

However, established methodologies to address model validation for hybrid systems are not
available yet. A critical issue is the selection of rich enough test patterns for hybrid model validation.
This topic is further discussed in Section 3.3.3.c, where automatic test pattern generation for
controller validation is analyzed. Some open problems related to validation of hybrid models are:

• automatic generation of validation patterns;

• assessment of the richness of validation patterns. This problem can be formalized in the
framework of reachability analysis for hybrid systems. Interesting approaches have been
proposed using the concepts of structural coverage and data coverage.

3.3.3 Controller synthesis

In this section, the activities related to controller synthesis are presented by discussing the three
steps of: plant and specifications analysis, algorithm development, and controller validation.

a) Plant and specifications analysis

Typically, before proceeding to the actual design of a control algorithm for a new application, some
experimental data on a prototype of the system to be controlled are obtained using either open–
loop control or some very elementary closed–loop algorithm. Open loop simulation of the plant
model is also very useful in this phase. The plant model often represents a partially controlled
plant and contains the effect of some inner-loop controllers. Open loop simulation of hybrid models
requires the definition of discrete time, event-based and continuous time input actions, represent-
ing either hybrid inputs and references or perturbations. The assessment of classical structural
properties, such as reachability [27], controllability [31], observability [23], stabilizability [21, 32],
passivity [15], etc., on the plant model is of interest in this phase. In addition, quantitative analysis
is very useful to understand the easy and the critical objectives of the design. It is interesting to
obtain by performance and perturbations/uncertainties analysis an evaluation of quantities such as
stability margins, most critical perturbations/uncertainties, robust stability margins, reachability
and observability measures in the state space. Unfortunately, hybrid system theory is not mature
enough for model analysis:

• some fundamental properties have not been formally defined yet;

• tests are often not available for verifying most of the properties;

• efficient implementation of tests will be necessary for automatic evaluation, since manual
testing of hybrid system properties is often prohibitively complex;

• analysis tools have be integrated with standard system engineering tools, so to be able to
process directly the models.

18

b) Algorithm development

Control algorithms are often characterized by many operation modes, that are conceived to cover
the entire life–time of the product: starting from in–factory operations before car installation,
configuration, first power–on, power–on, functioning, power–off, connection to diagnostic tools,
and so on. During normal functioning, control strategies can be either in one of the nominal
operation modes or in some recovery mode. A significant number of algorithms are dedicated to
the computation of switching conditions between modes and controller initializations.

A short and by no–means exhaustive list of control actions for which hybrid system design
is particularly interesting is as follows: fuel injection, spark ignition, throttle valve control (es-
pecially with stepper motor), electromechanical intake/exhaust valve control, engine start-up and
stroke detection, crankshaft sensor management, VGT and EGR actuation (hysteresis manage-
ment), emission control (cold start-up, lambda on/off sensor feedback), longitudinal oscillations
control (backlash and elasticity discontinuities), gear–box control (servo-actuation in traditional
gear shift systems), cruise control and adaptive cruise control, diagnosis algorithms (signals and
functionalities on-line monitoring), algorithms for fault-tolerance, safety and recovery (degraded
mode activation).

Diagnostic algorithms represent a large part of the strategies implemented in automotive ECUs.
For engine control, the implementation of diagnosis algorithms is enforced by legislation: OBDII
(On Board Diagnosis II) in USA and EOBD (European On Board Diagnosis) in EU. In general,
these requirements specify that every fault, malfunction or simple component degradation that
leads to pollutant emissions over given thresholds should be diagnosed and signaled to the driver.
This requirement has a significant impact on ECU design, since it implies the development of many
on–line diagnostic algorithms [20].

Both specifications and accurate models of the plant are often hybrid in automotive applica-
tions but the methodology currently adopted for algorithm development is rather crude and can
be summarized as follows. The continuous functionalities to be implemented in the controller are
designed based on mean–value models of the plant, with some ad hoc solutions to manage hybrid
system issues (such as synchronization with event–based behaviors); if the resulting behavior is
not satisfactory under some specific conditions, then the controller is modified to detect critical
behaviors and operate consequently (introducing further control switching). The discrete func-
tionalities of the controller are designed by direct implementation of non–formalized specifications.
Design methodologies and corresponding tools for the synthesis of discrete event systems are usu-
ally not employed. The discrete behavior of the controller is not obtained by automatic synthesis
of a formalized specification, as for instance it is done in hardware design. If the algorithm is not
designed from scratch, but is obtained by elaborating existing solutions, as it is the case in the
derivative design approach, then additional operation modes may be introduced to comply with
the new specification. This results in a non–optimized controller structure. Structured approaches
to the integrated design of the controller that allow to satisfy hybrid specifications considering
hybrid models of the plant are not adopted as yet even though they have obvious advantages over
the heuristics that permeate the present approaches.

Hybrid system techniques can significantly contribute to the improvement of control algorithm
design in automotive applications. The introduction of hybrid synthesis techniques should be aimed
at:

• shortening the algorithm development time;

19

• reducing testing effort;

• reducing calibration parameters and provide automatic calibration techniques;

• improving closed–loop performances;

• guaranteeing correct closed–loop behavior and reliability;

• achieving and guaranteeing desired robustness;

• reducing implementation cost.

Most of the analytical approaches proposed so far for controller design using hybrid system tech-
niques are quite complex. Usually, the application of these techniques requires designers that have a
deep understanding of hybrid systems and necessitates long development times. As a consequence,
the introduction in the automotive industry of hybrid system design methodologies often results too
much expensive. Hence, to overcome this problem and make them profitable for the industry it is
essential that the methodologies be supported by efficient tools that allow fast and easy application
of hybrid design. Hybrid model predictive control is a good example in hybrid system research
where the development of a design methodology was supported by successful efforts in design tool
development [17].

We conclude this section by presenting the hybrid design of two algorithms for engine control.

Cut-off control. A quite critical driveability objective is the control of longitudinal oscillations
of the car when fast engine torque variations are requested by the driver (tip-in and tip-out).
Roughly speaking, the control consists of active damping of powertrain oscillations. The problem
is particularly challenging when the engine is not equipped with electronic throttle valve, since in
this case only fuel injection and spark ignition controls can be used for engine torque modulation
to achieve the desired damping of the oscillations. Most of the proposed approaches are based
on mean–value continuous-time models of the torque generation. As a consequence, since the
torque generation process has a discrete behavior, the implementation of such control strategies on
a real engine may result in very poor closed–loop performance and may give rise to unpredicted
unpleasant behaviors. On the contrary, a design based on a hybrid model of the engine allows to
develop control laws for which closed–loop performances are guaranteed.

A hybrid approach to the design of a longitudinal oscillation damping control during tip–out was
presented in [12]. The control problem arises when the driver, by releasing the fuel pedal, requests
no torque to the engine. In this case, an obvious strategy to minimize fuel consumption and
emissions is to shut fuel injection, an operation called cut–off. However, cutting off fuel injection as
soon as the gas pedal is released, causes a sudden torque reduction that may result in unpleasant
oscillations compromising driving comfort. A more complex control action involves modulating
the engine torque from the present value to the value corresponding to cut–off in an attempt to
prevent oscillations. This control policy is implemented by slowing down air flow decay and, when
air quantity is below a threshold, reducing fuel injection gradually to zero. As it is often the case,
heuristic rule–based controls need extensive tuning, yield satisfactory solutions only in a limited
range of operations and are hardly optimal with respect to the emissions and fuel consumption. In
particular, if air reduction is too slow, when the driver releases the gas pedal and presses the clutch
pedal to change gear, engine speed raises for a while, thus causing a definite reduction in passengers’
comfort. Moreover, if air and/or fuel reduction is too fast, oscillations take place anyway.

20

x̂2

-20 0 20-40 40

-20

0

20

-40

40

ωc(t)

a(t)
ã(t)

j(t)

0.2 0.4 0.6 0.80 1

2050

2100

2150

2200

2000

2250

0.2 0.4 0.6 0.80 1

-1.5

-1

-0.5

0

0.5

1

-2

1.5

0.2 0.4 0.6 0.80 1

-0.5

0

0.5

1

1.5

-1

2

x̂1

x̂2

-20 0 20-40 40

-20

0

20

-40

40

ωc(t)

a(t)
ã(t)

j(t)

0.2 0.4 0.6 0.80 1

2400

2500

2600

2300

2700

0.2 0.4 0.6 0.80 1

-0.5

0

0.5

1

-1

1.5

0.2 0.4 0.6 0.80 1

-0.5

0

0.5

1

1.5

-1

2

x̂1

Figure 8: Evolutions of the oscillating modes to the target set Bρ̂ (left) and engine speed, acceler-
ations and injection signal profiles (right), in an uncontrolled cut-off (top) and with the proposed
hybrid control strategy (bottom).

The hybrid control algorithm presented in [12] is able to steer the evolution of the system to the
fuel cut–off condition, minimizing the amplitude of the undesired oscillations. Since a hybrid model
of the engine has been considered during the design, the algorithm acts on fuel injection and spark
ignition once per engine cycle for each cylinder taking into account synchronization and actuators’
delay. The hybrid approach adopted for synthesis of the cut–off control algorithm guarantees the
correctness of the behavior when applied to the real plant. The proposed cut–off control strategy
was tested at Magneti-Marelli Engine Control Division on a commercial car, a 16 valve 1400 cc
engine car. The experiment was carried out driving the car in the test ring and measuring the
important parameters and variables that determine the performance of the control strategy. In
Figures 8 the performance achieved by the proposed hybrid cut-off strategy are compared with an
instantaneous uncontrolled cut-off operation. On the left the evolution of the oscillating modes x̂
are reported along with the switching curve that defines the regions where fuel is injected and it is
shut off. The effectiveness of the proposed controller is apparent from the evolution of the vehicle
acceleration and engine speed reported on the right.

Actual engaged gear identification. As a second example, consider the problem of on–line
identification of the actual engaged gear. Engine control strategies achieving high performance and
efficient emissions control depend critically on such identification algorithm. In fact, the knowledge
of the actual engaged gear is necessary in engine torque control to compensate the equivalent inertia
of the vehicle on the crankshaft and, for Diesel engines, it is very important to improve emissions

21

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20
0

20

40

R
es

id
ua

ls

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

E
st

im
at

ed
E

ng
ag

ed
 G

ea
r

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

A
ct

ua
l

E
ng

ag
ed

 G
ea

r

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

time (sec)

E
ng

ag
ed

 G
ea

r
Id

en
tif

ic
at

io
n

E
rr

or

Figure 9: Gear identification with experimental data: the maneuver starts with car at rest, clutch
open and first gear engaged (q = qN = 0). After a clutch slipping phase (q = qN = 0), the clutch is
locked (q = q1 = 1); later, second gear (q = q2 = 2) and then third gear (q = q3 = 3) are engaged,
passing through idle and slipping (q = qN = 0).

control. In cars equipped with manual gear shift, this information is not directly available and, at
present, it is deduced by comparing the revolution speed of the wheels with the revolution speed of
the crankshaft. However, since both of them are affected by oscillations due to the elasticity of the
driveline and the tires, then this approach implies large time delays in the identification and may
produce significant identification errors.

The identification algorithm presented in [9] is based on a hybrid model of the driveline (see the
driveline model presented in Section 3.3.2.a) where the engaged gear and connection clutch state
are represented as discrete states. The design problem is then formulated as the identification of the
discrete state of the driveline hybrid model and an on-line identification algorithm is obtained by
applying the methodology for hybrid observer design proposed in [7]. The algorithm is able to detect
a change in the continuous time dynamics and identify the discrete state of the driveline hybrid
model by processing the crankshaft and wheel revolution speed measurements and an estimate of the
engine torque mean–value. The on–line identification is achieved by the generation of appropriate
residual signals, one for each gear, which vanish when the corresponding gear is engaged and the
clutch is locked. Figure 9 reports the results on actual engaged gear identification obtained in
Magneti Marelli Powertrain using an Opel Astra equipped with a Diesel engine and a robotized
gearbox SeleSpeed. For the validation of the identification algorithm, the estimated engaged gear is
compared to the signal on actual engaged gear provided by the control unit of the robotized gearbox.
The algorithm was tested on several maneuvers for a total of 250 gear engagements and it was able

22

to identify correctly the actual engaged gear within 250 msec, as requested by specification. It
proved to be remarkably robust with respect to parameter uncertainties (e.g. vehicle inertia) and
time-varying unknown disturbances (e.g. wheel torque and road slope).

c) Controller validation

In the automotive industry, control algorithms are validated by extensive and time-consuming —
hence expensive — simulations of the closed–loop models. The designers, based on their experi-
ence, devise critical trajectories to test the behavior of the closed–loop system in the perceived
worst–case conditions, in addition to the tests on the critical maneuvers that may be provided by
customer requirements. Furthermore, a rough investigation on the robustness properties of control
algorithms is obtained by screening the most critical parameters and uncertainties and applying
critical perturbations. In the current design flow, there is no automatic approach to the validation
of performance specifications. Some approaches for automatic test patterns generation are under
investigation. To the best of our knowledge, there is no tool available in the market for performance
analysis, robust stability, and formal verification for both continuous and discrete specification.

Due to complexity of the plant–controller interactions, the non–negligible effects of the imple-
mentation, the large uncertainties in the plant given by product diversity and aging, validation
of control algorithms is one of the hottest topics in automotive industry. Today, the quality of
the validation step is not satisfactory and important improvements in validation will be necessary
to cope with the safety issues that will be raised by next generation x–by–wire systems. Ideally,
validation and formal verification should be completely automatic. Hybrid system techniques can
contribute significantly to the improvement of the validation process:

• Validation has to be supported by tools for

– efficient simulations of hybrid closed–loop models;

– stability and performance analysis;

– robust stability and robust performance analysis;

– invariant set and robust invariant set computations.

• Methodologies and tools should be developed for

– automatic validation against formalized hybrid performance specifications;

– automatic validation of safety relevant conditions;

– automatic optimized test patterns generation reaching specified level of coverage.

• Interesting validation problems are related to the computation of conservative approximations
for the largest sets of

– parameter uncertainties,

– calibration parameters,

– implementation parameters (e.g. sampling–period, latency, jitter, computation preci-
sion, etc.),

for which the desired performances are achieved.

23

• Some classes of algorithms that require intensive and complex validation are

– diagnosis algorithms;

– safety critical algorithms;

– algorithms preventing the system to stall (e.g. idle speed control).

3.4 Hardware/Software components

The design of the HW/SW implementation of ECUs in the automotive industry is achieved using
the most advanced methodologies for hardware and software development. An accurate design
is necessary to be able to meet the strict requirements imposed on the implementation of safety
critical real–time systems and achieve at the same time the very tight cost targets. HW/SW
implementation of the control algorithms may offer an interesting and little explored application
of hybrid formalisms as a more rigorous design approach is advocated for reducing implementation
errors. In particular, hybrid methodologies could be exploited for the formalization and definition
of the specification for HW/SW implementation of control algorithms. In fact, currently available
methodologies and tools in the control domain and the HW and SW implementation domains are
often not well integrated; this situation is a frequent cause of design errors. The specification for
the HW/SW implementation must include all details necessary for a correct implementation of the
algorithms, that is it must provide:

• complete description of the algorithm;

• specification of the computation accuracy;

– in the value domain: precision for each computation chain (for fixed–point arithmetic
implementation), threshold detection bounds, etc.;

– in the time domain: bounds for latency, jitter, delay in event detection, etc.

• execution order and synchronization;

• priorities in case of resource sharing (CPU, communication, etc);

• communication specifications;

• data storage requirements (e.g. variables to be stored in EEPROM).

In addition, the specification for the HW/SW implementation should be derived from executable
models, according to the model–based design approach. These models should also be integrated
with tools for automatic code generation [18]. Finally, the specification for the HW/SW implemen-
tation should ideally provide executable acceptance tests that can guarantee that the computation
accuracy obtained in the HW/SW implementation is compliant with the requirements. In partic-
ular,

• Tools suitable for the description of the implementation requirements of the algorithms have
to:

– support the specification of the algorithm behavior, the computation accuracy and the
other implementation requirements and constraints mentioned above;

24

– support description of implementation acceptance tests;

– be efficiently integrated with software and hardware development tools and tools for
automatic code generation.

• Methodologies and tools for defining and validating implementation constraints should be
developed:

– the degradation of the execution of control algorithms due to the implementation on
bounded resource platforms has to be exported and modeled at the control system level
to obtain constraints for the implementation;

– these constraints should be formally specified in the HW/SW implementation require-
ments along with executable acceptance tests;

– tools should support the validation of the HW/SW implementation by running the ac-
ceptance tests.

It is in the analysis of the effects of implementation on the behavior of the control algorithms, in the
construction of abstract models of the implementation platform and in the constraint propagation
that we see great value in hybrid technology.

An integrated control-implementation design methodology has been presented in [10] to bridge
the gap between functional design and implementation of embedded control systems. According to
the proposed methodology, the designer evaluates how closed–loop performance and robustness of a
given control algorithm are affected by the implementation, which is represented in an abstract form.
The proposed design methodology is based on the principles of platform-based design described
in [35] and applied to the design of automotive control systems in [2]. The application of the
methodology presented in [10] to the design of an engine control unit (ECU) for motorcycles was
first described in [11]. Such approach is further refined in [1], where a prototype tool that supports
exploration of possible candidate implementation is also presented.

The essential issue for representing implementation platforms in an abstract way is to deter-
mine the effect of implementation platforms on the controlled system performances. Accuracy of
measurements and actuations, and how to represent the fact that computation and communication
take time and may be affected by errors are important issues in this respect. Promising approaches
regarding management of time domain perturbations due to the implementation, such as latency
and jitter, have been presented in [34, 19]. The main effects of a particular implementation on the
behavior of the controlled system must be carefully classified and characterized.

The approach presented below is an integration of the methodology supporting derivative design
described in Section 3.3.1. Schematically, they can be represented in terms of perturbations on the
controller input/output channels, as illustrated in Fig. 10. Disturbances nu, nw, nr and blocks ∆u,
∆w, ∆r represent, respectively, value and time domains perturbations due to the implementation
and acting on the control inputs u, feedback outputs w and reference signals v. Depending on the
selected platform, these perturbations can be represented by different models and characterized
by abstract parameters p. A set of implementation platforms with the corresponding exported
parameters is defined by:

• a number S of different platform structures;

• a set of parameters Xs
P for each platform structure s ∈ {1, . . . , S};

25

wu Plant

vController+

+

+

yd

n

n

w

v

nu

w

v

u

∆

∆
∆

Figure 10: Abstract representation of the effects of implementation non–idealities.

• a set of platform constraints2

Jv(s, p) ≤ 0, for v = 1 . . . V . (3)

For a given platform structure s ∈ {1, . . . , S}, elements p ∈ Xs
P are referred to as the platform

parameters. In the control parameters and platform parameters product space, feasible mappings
are given by the set

U = {(r, c, s, p) | r ∈ {1, . . . R}, c ∈ Xr
C ,

s ∈ {1, . . . S}, p ∈ Xs
P , such that

Ji(r, c, s, p) ≤ 0, for i = 1 . . . N + V } (4)

where Ji include both conservative expressions for (2), including the effects of the implementation
platform modeled by (s, r), and the platform constraints (3).

The best implementation platform, among those described by parameters inside the set U
in (4), can be selected by introducing a suitable objective function, representing an estimation of
the implementation cost to be minimized. It is often the case that the cost model depends only on
a subset of the parameters. The parameters belonging to the orthogonal space can be abstracted
away. A very powerful method for the abstraction of non–relevant parameters is the use of formulas
with existence and universal quantifiers.

As an example, consider a PI controller with gains KP and KI designed to control the crankshaft
speed in engine control, with nominal inertia J and inertial uncertainty δJ . Parameters KP , KI ,
J, and δJ can be abstracted using the following formula:

∀J ∃ KP ,KI ∀ δJ (ĉ, J,KP ,KI , δJ , p̂) ∈ U , (5)

where ĉ and p̂ are the control and platform parameters interesting for the exploration of the possible
implementation platforms. Then, by applying quantifier elimination to (5), the exploration is
reduced to the cost parameter subspace (ĉ, p̂).

The exploration of the parameter space is performed by using randomized algorithms and hybrid
system techniques. More precisely, performance criteria are tested for the control algorithms over
parameters spaces both via randomized algorithms, i.e. letting the parameters vary according to

2Typically, the schedulability and latency constraints are added.

26

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Latency

S
am

pl
in

g
T

im
e

Good points area
Good points
Bad point
Bad points area

0

0.01

0.02

0.03

0.04

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

sampling time T

Flexibility function

alpha

Figure 11: Implementation parameters projection (left). The flexibility function (right).

a given probability distributions, and stochastic algorithms, i.e. letting the parameters evolve in
time according to a random coefficient stochastic differential equation.

By performing a random screening of the parameter space, each sample is labeled either good
or bad, according to fulfillment of the closed-loop specification. Then, the convex polyhedra Pgood
and Pbad are produced by computing the convex hull of the subsets of good and bad samples,
respectively. The subset of parameter values for which the specification is assumed to hold is given
by the (non–convex, in general) polyhedron Pgood \ Pbad. See e.g. Figure 11. Subsequently, the
cost parameter subspaces of all control algorithms to be implemented in the electronic control unit
are composed and the set Pecu is defined by composing the sets Pgood \ Pbad obtained for each
control algorithm.

Hence, a cost model H(ĉ, p̂) is defined in the overall cost parameter space. In [10], the use of
flexibility functions as cost models was proposed. The underlining idea is to guide the exploration
towards parameters that can be easily achieved by platforms at lower levels of abstraction. In
this way, the risk of expensive design cycles that span several platforms is minimized and a better
platform choice is offered while approaching the implementation level. In some sense, the flexibility
function is an auxiliary function that serves the purpose of a more efficient search of the design
space. While the macro aspects of this function are easy to establish and can be generalized, the
actual choice of flexibility functions is the result of the experience of the designer and can be refined
during re-design to reflect more accurately the difficulty of achieving the platform parameters.
Consequently, there is no a priori best form of the flexibility function. For example, the flexibility
function of a discrete-time platform can be an increasing function of the sampling time and the
latency as depicted in Figure 11. In fact, the higher the sampling time, the easier is to find a
platform that can support that sampling time. Note that the function has typically a steep part,
where relaxing the sampling time has a great effect in enlarging the design space, and a flat one
where relaxing the requirements does not pay off as much. The point corresponding to the minimum
cost, according to the cost model H(ĉ, p̂) in the set Pecu is obtained by an optimization algorithm.
Finally, optimal values – maximizing robustness – for the remaining parameters of each control

27

algorithm abstracted away by the quantifier elimination are selected.

4 Conclusions

In this paper, we analyzed in details the design flow for electronic control systems in the automotive
industry, with the purpose of identifying bottle–neck problems that either cause inefficiency in the
development process or limit the design. We pointed out that the development and application of
hybrid system techniques could be very profitable for the solution of some of these problems and
could significantly contribute to the improvement of the design quality.

The most obvious applications for hybrid system techniques regard plant modeling and control
algorithm design. But the potential impacts of hybrid systems should not be considered limited to
these domains. For instance, they can successfully be applied to address problems at the boundary
between control algorithm design and hw/sw implementation, since they allow the designer to
capture the effects of limited resources and physical constraints on the performance of the controlled
system and check the correctness of the design. An additional promising application of hybrid
system techniques is in system design, today an extremely critical step. Hybrid formalisms can be
applied to represent system specifications and deploy them in an architecture of control algorithms
and requirements.

However, hybrid system techniques at the current state–of–the–art present clear limitations for
their efficient introduction in the automotive industry design flow. A coherent set of methodologies,
supported by efficient tools, is not available yet, the proposed approaches are not integrated within
the overall development flow and, apart from few exceptions in some companies, control engineers
are not trained in hybrid system techniques.

5 Acknowledgments

We wish to thank Alberto Ferrari and Pierpaolo Murrieri from PARADES; Gabriele Serra, Giacomo
Gentile and Walter Nesci, from Magneti Marelli Powertrain (Bologna, I); Paolo Ferracin from CNH
(Modena, I); Gilberto Burgio from Ford Research Center (Aachen, G) for the many discussions on
the topic. This work has been partially supported by the CC (Control and Computation) E.U.
Project (grant FP5-IST-2001-33520) and the HYCON E.U. Network of Excellence (grant FP6-IST-
511368).

References

[1] A. Agostini, A. Balluchi, A. Bicchi, B. Piccoli, A. L. Sangiovanni-Vincentelli, and
K. Zadarnowska. Randomized algorithms for platform–based design. Submitted to 44th IEEE
Conference on Decision and Control, 2005.

[2] M. Antoniotti, A. Balluchi, L. Benvenuti, A. Ferrari, C. Pinello, A. L. Sangiovanni-Vincentelli,
R. Flora, W. Nesci, C. Rossi, G. Serra, and M. Tabaro. A top-down constraints-driven design
methodology for powertrain control system. In Proc. GPC98, Global Powertrain Congress,
volume Emissions, Testing and Controls, pages 74–84, Detroit, Michigan, USA, October 1998.

[3] AUTOSAR. www.autosar.org.

28

[4] E.-H. Azibi and J.-C. Sardas. Computer-aided process engineering and transformation of
the process design activity in automotive industry. In Proc. of the 2002 IEEE International
Conference on Systems, Man and Cybernetics, October 2002.

[5] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, U. Freund, E. Schlenker, and
H.-J. Wolff. Correct-by-construction transformations across design environments for model-
based embedded software development. In Proc. of the Design Automation and Test in Europe
Conference, pages 1044–1049, March 2005.

[6] A. Balluchi, L. Benvenuti, M. D. Di Benedetto, C. Pinello, and A. L. Sangiovanni-Vincentelli.
Automotive engine control and hybrid systems: Challenges and opportunities. Proceedings of
the IEEE, 88, ”Special Issue on Hybrid Systems” (invited paper)(7):888–912, July 2000.

[7] A. Balluchi, L. Benvenuti, M. D. Di Benedetto, and A. L. Sangiovanni-Vincentelli. Design of
observers for hybrid systems. In C.J. Tomlin and J.R. Greenstreet, editors, Hybrid Systems:
Computation and Control, volume 2289 of Lecture Notes in Computer Science, pages 76–89.
Springer-Verlag, Stanford, CA, 2002.

[8] A. Balluchi, L. Benvenuti, C. Lemma, P. Murrieri, and A. L. Sangiovanni-Vincentelli. Hybrid
models of an automotive driveline. Tech. rep., PARADES, Rome, I, December 2004.

[9] A. Balluchi, L. Benvenuti, C. Lemma, A. L. Sangiovanni-Vincentelli, and G. Serra. Actual
engaged gear identification: a hybrid observer approach. In to be presented at 16th IFAC
World Congress, Prague (CZ), July 2005.

[10] A. Balluchi, L. Berardi, M. D. Di Benedetto, A. Ferrari, G. Girasole, and A. L. Sangiovanni-
Vincentelli. Integrated control–implementation design. In Proc. 41st IEEE Conference on
Decision and Control, Las Vegas, NV, USA, December 2002.

[11] A. Balluchi, M. D. Di Benedetto, A. Ferrari, G. Gaviani, G. Girasole, C. Grossi, W. Nesci,
M. Pennese, and A. L. Sangiovanni-Vincentelli. Design of a motorcycle engine control unit using
an integrated control-implementation approach. In Proc. 1st IFAC Workshop on ”Advances
in Automatic Control”, pages 218–225, Salerno, Italy, April 2004.

[12] A. Balluchi, M. D. Di Benedetto, C. Pinello, C. Rossi, and A. L. Sangiovanni-Vincentelli.
Hybrid control in automotive applications: the cut-off control. Automatica, 35, Special Issue
on Hybrid Systems:519–535, March 1999.

[13] M. Baotic, M. Vasak, M. Morari, and N. Peric. Hybrid theory based optimal control of
electronic throttle. In Proc. of the IEEE American Control Conference, ACC 2003, pages
5209–5214, Denver, Colorado, USA, June 2003.

[14] M.B. Barron and W.F. Powers. The role of electronic controls for future automotive mecha-
tronic systems. IEEE/ASME Transactions on Mechatronics, 1(1):80–88, March 1996.

[15] A. Bemporad, G. Bianchini, F. Brogi, and F. Barbagli. Passivity analysis and passification of
discrete-time hybrid systems. 2005. Submitted.

[16] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino. A bounded-error approach to piecewise
affine system identification. IEEE Trans. Automatic Control, 2004. Accepted for publication
as a regular paper.

29

[17] A. Bemporad, M. Morari, and N. L. Ricker. Model Predictive Con-
trol Toolbox for Matlab – User’s Guide. The Mathworks, Inc., 2004.
http://www.mathworks.com/access/helpdesk/help/toolbox/mpc/.

[18] K.R. Butts. An application of integrated casexacsd to automotive powertrain systems. In
Proc. of the 1996 IEEE International Symposium on Computer-Aided Control System Design,
pages 339–345, Dearborn, MI, September 1996.

[19] A. Cervin, J. Eker D. Henriksson, B. Lincoln, and K. E. Årzén. How does control timing affect
performance? Analysis and simulation of timing using Jitterbug and TrueTime. IEEE Control
Systems Magazine, 23(3):16–30, June 2003.

[20] J. Chen and R.J. Patton. Robust Model-Based Fault Diagnosis for Dynamic Systems. Number 3
in Series on Asian Studies in Computer and Information Science. Kluwer International, 1999.

[21] R.A. Decarlo, M.S. Branicky, S. Pettersson, and B. Lennartson. Perspectives and results on
the stability and stabilizability of hybrid systems. Proceedings of the IEEE, 88(7):1069–82,
July 2000.

[22] ETAS. ASCET. http://www.etas.de.

[23] Jelel Ezzine and A.H. Haddad. Controllability and observability of hybrid systems. In Pro-
ceedings of the 1988 American Control Conference, pages 41–6, 1988.

[24] B.S. Heck, L.M. Wills, and G.J. Vachtsevanos. Software technology for implementing reusable,
distributed control systems. IEEE Control Systems Magazine, pages 21–35, February 2003.

[25] H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Leflour, J.-L. Mat/’e,
K. Nishikawa, and T. Scharnhorst. Automotive open system architecture - an industry-wide
initiative to manage the complexity of emerging automotive e/e-architectures. In Proc. of
Convergence 2004, number 2004-21-0042, Detroit, MI, October 2004.

[26] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A.L. Sangiovanni-Vincentelli. System level
design: Orthogonalization of concerns and platform–based design. IEEE Transactions on
Computer-Aided Design, 2000.

[27] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability specifications for hybrid
systems. Automatica, 35(3), March 1999.

[28] G. Martin. The future of high-level modelling and system level design: Some possible methodol-
ogy scenarios. In Proc. of 9th IEEE/DATC Electronic Design Processes Workshop (EDP2002),
Monterey, CA, April 2002.

[29] G. Martin. Guest editor’s introduction: The reuse of complex architectures. IEEE Design and
Test of Computers, 19(6):4–5, November/December 2002.

[30] R. Mobus, M. Baotic, and M. Morari. Multi-object adaptive cruise control. In O. Maler and
Eds. A. Pnueli, editors, Hybrid Systems: Computation and Control, HSCC 2003, volume 2623
of Lecture Notes in Computer Science, pages 359–374. Springer Verlag, 2003.

30

[31] A. Nerode and W. Kohn. Models for hybrid systems: Automata, topologies, controllability,
observability. In Hybrid Systems, Lecture Notes in Computer Science 736, pages 317–356.
Springer-Verlag, 1993.

[32] S. Pettersson and B. Lennartson. Lmi for stability and robustness of hybrid systems. In
Proceedings of 16th American Control Conference, volume 3, pages 1714–18, Albuquerque,
NM, USA, June 1997.

[33] K. Poolla, P. Khargonekar, A. Tikku, J. Krause, , and K. Nagpal. A time-domain approach
to model validation. In Proc. of the IEEE American Control Conference (ACC1992), pages
313–317, 1992.

[34] K. E. Årzén, A. Cervin, J. Eker, and L. Sha. An introduction to control and scheduling
co-design. In Proceedings of the 39th IEEE Conference on Decision and Control, Sydney,
Australia, December 2000.

[35] A. Sangiovanni-Vincentelli. Defining platform-based design. EEdesign, February 2002.
http://www.eedesign.com/.

[36] R. Smith and G.E. Dullerud. Continuous-time control model validation using finite experi-
mental data. IEEE Trans. on Automatic Control, 41(8):1094–1105, August 1996.

[37] R.S. Smith and J.C. Doyle. Model validation: A connection between robust control and
identification. IEEE Trans. on Automatic Control, 1992.

[38] The MathWorks. Matlab, Simulink, Stateflow. http://www.mathworks.com.

31

