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Abstract

The Finite-Difference Time-Domain (FD-TD) method is the most commonly used
time-domain method for solving the Maxwell equations. The FD-TD method pio-
neered by K.S. Yee 1966 is an explicit finite-difference scheme using central differ-
ences on a staggered Cartesian grid (Yee grid) and is second-order accurate in both
space and time. It has been attractive for industrial users since the early 1980s be-
cause the basic method is relatively simple to program and the geometry handling
is fairly straightforward. The main drawback of the FD-TD method is its inability
to accurately model curved objects and small geometrical features. The Cartesian
FD-TD grid leads to a staircase approximation of the geometry and parts smaller
than an FD-TD cell might be neglected by the grid generator. We present three
different methodologies to minimize this drawback of FD-TD but still benefit from
its advantages. They are parallelization, hybridization with unstructured grids, and
subcell models for thin wires.

Parallel computers can solve very large FD-TD problems. This is illustrated
by a lightning problem for a real aircraft where more than one billion FD-TD cells
are used. The cell size is one inch which gives a very fine grained grid. This type
of simulation is important for electromagnetic compatibility problems where the
complexity of the geometry requires small cells to give accurate results.

The idea behind our hybridization method is to use unstructured boundary fit-
ted grids to resolve the geometrical features and Yee grid elsewhere. In this way we
avoid the staircasing problems, and small parts can be resolved but still keep the
efficiency of FD-TD. In two dimensions, our hybrid methods are second-order accu-
rate and stable. This is demonstrated by extensive numerical experiments. In three
dimensions, our hybrid methods have been successfully used on realistic geometries
such as a generic aircraft model. The methods show super-linear convergence for a
vacuum test case and almost second-order convergence for a perfect electric sphere.
However, they are not second-order accurate. This is shown to be caused by the
interpolation needed when sending values from the Yee grid to the unstructured
grid. Stability issues are also discussed.

The cross-section of thin wires are smaller than the Yee cells and hence subcell
models for thin wires have been developed for FD-TD. We present a new model
for arbitrarily oriented thin wires. Previously published models for FD-TD require
the wire to be oriented along the edges of the grid and hence a staircasing error is
introduced. The new model avoids these errors. Results are presented illustrating
the superiority of the new thin-wire subcell model.
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Chapter 1

Introduction

1.1 Computational Electromagnetics

The Maxwell equations were formulated in 1873 by James Clerk Maxwell [66] and
describe electromagnetic wave phenomena. Electromagnetic waves are frequently
used for many purposes, for example radio waves, micro waves and radar waves.
During the last few decades applications for electronic devises have found their way
into many different disciplines such as medicine, telecommunication, transportation
systems and consumer electronics. In many of these cases a thorough understanding
of the electromagnetic behavior is fundamental and hence there has been a lot of
effort put into solving the Maxwell equations. There is only a few rare cases when
the Maxwell equations can be solved exactly. Therefore approximate mathemati-
cal methods and measurement techniques have been developed. When computers
became available a third class of methods started to evolve; numerical methods.

Development and analysis of numerical methods for solving the Maxwell equa-
tions are today a very active field of research. This might seem strange because the
equations are in fact quite simple. Furthermore, boundary conditions and inter-
face conditions are also simple to formulate. But the combination of the equations
and the boundary/interface conditions, together with the oscillatory nature of the
electromagnetic fields, constitute big challenges.

Numerical methods for the Maxwell equations, or computational electromag-
netics (CEM), becomes more and more recognized in industry and some important
applications for CEM include:

• Antenna problems

• Electromagnetic compatibility

• Microwave systems

• Dosimetry

• Radar cross section predictions

3



4 Chapter 1. Introduction

1.2 Overview and main results

This section gives an overview of the chapters in this thesis. Chapters 1–4 contain
known material but forms a necessary foundation for Chapters 5–9 where new
material is presented.

Chapter 1, Introduction

A short introduction to the topic of the thesis is given in this Chapter. A summary
and main results are also given here. The research and development described
in this thesis have been conducted in the GEMS project within the Parallel and
Scientific Computing Institute (PSCI). GEMS stand for General Electromagnetic
Solvers and the project is briefly put into its context in Section 1.3.

The thesis is partly based on a number of papers which are listed on Page 10.
My contribution to the collaborative parts of the work presented is described in
Section 1.5.

Chapter 2, A Popular Introduction in Swedish

In Chapter 2 a popular introduction to electromagnetic wave problems is given.
It is focused on applications rather than methods but a short presentation of the
Finite-Difference Time-Domain method (FD-TD) is given. The drawbacks of the
FD-TD method are illuminated and the need for hybrid methods is indicated. This
Chapter is written in Swedish and intended for the general public.

Chapter 3, The Maxwell equations

The Maxwell equations given in (3.1) are general but for certain classes of problems
the equations can, or must, be simplified.

Let us define the electric size as the relation between geometric length scales
and wavelengths (see Figure 1.1). For a problem where the interesting wavelengths
are several orders of magnitude longer that the geometric length scale, the object
is said to be electrically small. On the other hand, an object with a geometric
size that is several orders of magnitude larger than the interesting wavelengths is
regarded as electrically large.

Electrically large objectMedium sized objectElectrically small object

Figure 1.1. The relation between wavelength and object size defines the electric
size of an object.
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For electrically small problems the wave nature of the Maxwell equations is
generally dominated by electric or magnetic conductive currents. In these cases the
time derivative of the fields are small and the governing equations becomes elliptic
in character. The finite-element method have in these cases been prosperously used
for many years

For electrically large objects, we can solve the Maxwell equations asymptot-
ically for certain canonical geometries. In 1962 Keller [53] showed how these
asymptotic solutions, for certain canonical geometries, can be combined to find
solutions for more complex geometries. The method is called geometrical theory of
diffraction (GTD) and there are several refined methods developed, for example the
uniform theory of diffraction (UTD) [55]. This kind of approximations are neces-
sary because solving the full Maxwell equations requires a discretization of several
points per wavelength. Hence, an electrically large problem cannot be sufficiently
discretized using the computers of today.

We will restrict ourselves to problems of medium electric size. These problems
are often solved in either the frequency domain (FD) or the time domain (TD).
In FD we solve the problem for a fix frequency and in TD we follow the evolution
of wave pulses using a timestepping mechanism. Numerical methods for medium
electric sized problems can be applied either directly on the Maxwell equations to
yield a volumetric problem or applied to boundary integral formulations to give a
problem restricted to surfaces. In this thesis we present methods for solving the
Maxwell equations in time domain using volumetric methods.

Chapter 4, FD-TD

The Finite-Difference Time-Domain (FD-TD) method is the most commonly used
time-domain method for solving the Maxwell equations. It was introduced by Yee
in 1966 [110] and is often referred to as the Yee scheme. The FD-TD method is an
explicit finite-difference scheme using central differences on a staggered Cartesian
grid (both space and time), i.e. it is a leap-frog scheme. It is second-order accurate
in both space and time. One cell of a 3D FD-TD grid is given in Figure 1.2 where the
staggering of the six components is shown. The electromagnetic variables located
on the other edges/surfaces belong to neighboring cells and are not included in the
figure.

Several books have been published dealing with the FD-TD scheme [56, 98, 99,
52, 97]. The survey paper by Shlager and Schneider that appeared in [99] illustrates
the rapid growth in the use of FD-TD. Two papers were published during the 1960s
and the growth rate has been roughly tenfold per decade since the first publications.

The FD-TD method has been attractive for industrial users since the early
1980s because the basic method is relatively simple to program and the geometry
handling is fairly straightforward. The method can also be efficiently implemented
on vector computers which made it feasible to solve complex problems on the early
supercomputers. As an example, in 1987 SAAB performed lightning analysis on
the Swedish fighter aircraft Gripen on a grid with approximately 60× 30× 30 cells.
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Figure 1.2. Positions of the electric and magnetic field vector components in a unit
Yee cell.

Chapter 5, Large Scale FD-TD — A Billion Cells

In this Chapter, Paper 6 listed on Page 10 is reprinted. The paper demonstrates the
possibility to solve enormously large FD-TD problems by using parallel computing.
It also shows that it is possible to achieve perfect scale-up on a parallel computer
with reasonably fast communication, e.g. an IBM SP, for industrially relevant FD-
TD simulations

In the paper a lightning simulation on the SAAB 2000 aircraft is presented
where more than one billion cells were used. This was run on 125 nodes of an IBM
SP. The performance of the code was 20–25 Gflop/s which is very good considered
that the peak performance of the nodes was 80 Gflop/s

The billion cell simulation was performed during the summer of 1998. It was
presented at SuperComputing-98, October 1998 in Orlando USA, as an invited
demonstration at the IBM booth.

To our knowledge this was the first FD-TD simulation published using more
than a billion cells and the paper was also acknowledged by Miller in [67].

Today there are many industries, national agencies and academic sites that
can make a billion cell FD-TD simulation. If the largest computer of today,
”ASCI White”, could be allocated for a similar FD-TD computation a hundred
times larger simulation could be performed.

Chapters 6 and 7, Hybrid methods in 2D and 3D

The main drawback of the FD-TD method is its inability to accurately model
curved objects and small geometrical features. The Cartesian FD-TD grid leads to
a staircase approximation of the geometry and parts smaller than an FD-TD cell
might be neglected by the grid generator.

There are several suggested remedies to circumvent the effects of the errors in-
troduced by the staircase approximations. They include Cartesian subgridding [79],
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conformal modeling [21], multiblock body fitted structured grids [92], unstructured
grids [59] and overlapping grids [111].

Another approach to avoid staircasing is to use unstructured grids near curved
objects and around small geometrical details but revert to structured grids as
quickly as possible for the rest of the computational domain. This combines
the efficiency of structured grids with the flexibility of unstructured grids. Wu
and Itoh [108] were first to present a combination of the FD-TD method and
an implicit finite-element method (FE). They have been followed by several oth-
ers [71, 54, 90, 112]. A combination of explicit finite volumes (FV) and FD-TD
have been proposed by Riley and Turner [84].

In Chapters 6 and 7 we present new techniques to hybridize structured FD-TD
solvers and unstructured solvers. The optimal choice of method on the unstructured
grid depends on the cell sizes. An implicit method is preferable for grids with small
cells while an explicit method is preferable for grids where the cell sizes are of the
same order as in the Cartesian grid. Hence, our approach is to implement both
an explicit FV solver and an implicit FE solver and couple these solvers with the
FD-TD solver.

The hybridization is performed over a transition layer of cells that coexists in
both the structured grid and the unstructured grid. Rectangles or rectangular
parallelepipeds (2D or 3D) constitute the structured cells in the transition layer
whereas triangles and tetrahedra form the unstructured cells in the transition layer.

In Chapter 6 we demonstrate that staircasing of a circular cylinder destroys the
second-order accuracy of FD-TD and that second-order accuracy is recovered when
using our hybrid methods. This is shown for a perfect electric conducting cylinder,
a perfect magnetic conducting cylinder, a dielectric cylinder and diamagnetic cylin-
der. A vacuum problem is also investigated in order to examine reflections from the
transition layer and these errors are also of second-order accuracy. The accuracy
is further demonstrated for a 45 degrees inclined perfect magnetic conducting wall
where our hybrid technique outperforms two contour path modeling schemes.

Numerical stability experiments are presented where it is found that the FD-FV
hybrid is stable as long as a CFL condition is not violated. We do encounter stability
problems for the FD-FE hybrid for some grids when the Crank-Nicholson scheme is
used for time discretization. However, using the backward differentiation formula
(BDF-2) as timestepping scheme regains stability. Making the Crank-Nicholson
scheme slightly more implicit does also regain stability without affecting accuracy
significally.

In Chapter 7 the 3D hybrid technique is presented. Results are supplied showing
that industrial relevant scattering problems can be successfully solved.

The order of accuracy is studied for a PEC sphere and a vacuum problem. For
the PEC sphere almost second-order accuracy is obtained for the discretizations
used but for the vacuum problem the order of accuracy is only superlinear. This
is caused by an interpolation procedure necessary in the transition layer. However,
the accuracy is demonstrated for the NASA almond model problem where the
errors from the transition layer are small compared to the signal levels of the PEC
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reflections. Good results are also obtained for the generic aircraft RUND indicating
that errors emanating from the transition layer are not ruining the solution.

The implicit FE-TD solver is unconditionally stable as a stand alone solver [60].
The explicit FV-TD solver, as a stand alone solver, is stable on orthogonal grids as
long as the time step is chosen properly. On general grids a node filter is applied
to suppress the amplitude of the highest frequency components. In practice, for
scattering problems, this filter improves the stability without loosing accuracy in the
solution. However, in terms of stability, cavity problems are in general much more
demanding than scattering problems due to longer simulations that could require
millions of timesteps. Methods to improve the stability of the FV-TD solver for
resonant cavities are currently under investigation.

We demonstrate in Chapter 7 that our hybrid solvers produces good results for
scattering problems but for highly resonant cavities our hybrid solvers eventually
become unstable. This happens even if the unstructured grid is orthogonal in which
case all stand alone solvers are stable. Hence, these instabilities are caused by the
hybridization.

The use of pyramidal cells in the transition layer described in [88] is currently
investigated in order to restore the stability for the FD-FE hybrid.

In Chapter 7 we also describe how to incorporate plane wave excitation in the
FE solver. This functionality makes it possible to include port excitation, a very
important feature for the industrial partners within the GEMS project.

Chapter 8, Thin-Wire Subcell Models

In this Chapter we present a new and accurate method to deals with the problem of
how to include thin wires into the FD-TD method. Thin wires are often important
parts in electromagnetic compatibility problems and antenna problems. The most
straightforward technique to include wires into the FD-TD method would of course
be to model the wire as a perfect electric conductor, and hence set all tangential
electric components on the wire surface equal to zero. But this strategy requires
a very fine discretization in order to resolve the cross-section of the wire which is
clearly out of question in most practical cases.

In this Chapter a thin-wire model for FD-TD is extended to allow for an arbi-
trary orientation of the wire. This is important in order to treat wires that cannot
be aligned with the Cartesian grid, for example circular loop antennas and tilted
straight wires.

There are other techniques to solve problems including thin wires than using
subcell models in FD-TD. These are discussed in Section 8.1. But for volumetric
time-domain solvers there are basically two subcell models developed, the model
of Umashankar et al. [103] and the model of Holland et al. [49]. These models are
both limited to treat wires oriented along the Cartesian grid directions and to
our knowledge there are no published papers describing how to include arbitrarily
oriented thin wires into an FD-TD simulation.
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In this Chapter we present an extension to the subcell model of Holland et al. [49]
that gives very good results for circular loop antennas and tilted straight wires.
The extension utilizes an innovative interpolation technique based on tri-linear
interpolations of the surrounding tangential electric field to several points on a
circular shell around the wire. The field on the shell is then averaged to yield the
electric field driving the wire equations. The coupling from the wire equations back
to the surrounding 3D field utilizes a reversed process.

Results are presented which clearly illustrate the success of the new model.
Without the new model, staircasing is the only alternative to discretize arbitrarily
oriented thin wires in FD-TD. In some cases the staircasing gives errors of several
tens of percent whereas the results for the circular loop antennas and tilted straight
wires are confined within one percent deviation.

Chapter 9, Color Electromagnetics

This Chapter discuss scientific visualization of results from computational electro-
magnetics. It points out some fundamental elements of visualization to enhance the
perception of 3D data and 3D geometries. Six pages of color images are included
to underline the importance of taking these elements into account when producing
color plots.

1.3 The PSCI project GEMS

The research and developement described in this thesis have been conducted in
the GEMS project within PSCI. The Parallel and Scientific Computing Institute,
PSCI [81], was created 1995 to improve the interaction between academia and indus-
try and strengthen Swedish efforts in industrial applications of high performance
computing. PSCI is a center of excellence funded by an industrial consortium,
NUTEK [78], KTH and Uppsala University. The industrial partners involved in-
clude large Swedish companies as well as smaller enterprises.

The GEMS project is one of the larger projects within PSCI. GEMS stands for
General ElectroMagnetic Solvers and is a code development project started 1998
and ending spring 2001. The main objective of the GEMS project is to develop a
software suite for the Maxwell equations. This software suite aims to be state of
the art of the international level and form a platform for future development by
Swedish industry and academia.

The core of the software suite is two hybrid codes, one for the time domain
(TD) and one for the frequency domain (FD). The TD code is a multi-block and
out of core solver based on Finite Differences on structured grids, explicit Finite
Volumes and implicit Finite Elements on unstructured grids. The FD hybrid code
is based on the Method of Moments, Physical Optics and Geometrical Theory of
Diffraction. The coupling between the different FD solvers is taken into account by
using iterative techniques and the linear system of equations are solved by iterative
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solvers. A Fast Multipole method is also developed to boost the performance of
the FD code.

The industrial partners in GEMS are Ericsson Microwave Systems, Saab Eric-
sson Space and Ericsson Saab Avionics. Code developers are PSCI, the Swedish
Institute of Applied Mathematics and the Swedish Defense Research Establishment.
Project funding is provided not only by the participants but also to large extent by
the National Aeronautical Research Program (NFFP) and the total project work
load is more than 400 man months where PSCI conducts approximately 300 man
months. Typical projects in the PSCI research programs are joint undertakings
where application experts from the industrial partners, graduate students and se-
nior scientists contribute. The criteria for a project include motivation by industrial
needs, and theoretical development suitable for PhD thesis work. A direct result of
the GEMS project is this thesis which to a large extent is influenced by the joint
work between industry and academia.

1.4 List of papers

This thesis is partly based on material from the following papers:

1. Gunnar Ledfelt, Fredrik Edelvik, Lasse Eriksson, and Ulf Andersson. Hybrid
time domain solver for the Maxwell equations. In Jan Olov Gustafsson, editor,
RadioVetenskap och Kommunikation 99, pages 70–74, 371 79 Karlskrona,
Sweden, June 1999. SNRV, NUTEK, Högskolan i Karlskrona/Ronneby.

2. E. Abenius, U. Andersson, F. Edelvik, L. Eriksson, and G. Ledfelt. Hybrid
time domain solvers for the Maxwell equations in 2D. Technical Report 00:01,
PSCI, Parallel and Scientific Computing Institute, KTH, SE-100 44 Stock-
holm, Sweden, February 2000. Available at http://www.psci.kth.se/Activities/Report

3. Fredrik Edelvik, Gunnar Ledfelt. Explicit Hybrid Time Domain Solver for
the Maxwell Equations in 3D. J. Sci. Comput., vol 15, nr 1, 2000.

4. Gunnar Ledfelt, Fredrik Edelvik and Ulf Andersson. Hybrid Time Domain
Solver for the 3D Maxwell Equations. In U. Zander, editor, ANTENN 00
– Nordic Antenna Symposium, pages 57–62, Lund, Sweden, September 2000.
FMV, SNRV.

5. Gunnar Ledfelt. A thin wire sub cell model for arbitrary oriented wires for
the FD-TD method. In G. Kristensson, editor, EMB 98 – Electromagnetic
Computations for analysis and design of complex systems, pages 148–155.
SNRV, November 1998.

6. Ulf Andersson and Gunnar Ledfelt. Large scale FD-TD—A billion cells. In
15th Annual Review of Progress in Applied Computational Electromagnetics,
volume 1, pages 572–577, Monterey, CA, March 1999.

http://www.psci.kth.se/Activities/Reports/List.html
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1.5 Division of work

• The material in Chapters 1 and 2 is completely my own.

• Chapters 3 and 4 were written with Ulf Andersson. They also appear in his
Ph.D. thesis [5].

• Chapter 5 is identical to Paper 6 in the list in Section 1.4 where Ulf Andersson
was responsible for the parallelization of the FD-TD solver as well as the
performance evaluation, and I was responsible for the geometry manipulation
and the visualization.

• The work presented in Chapter 6 is a collaborative effort. It is based on
Papers 1 and 2 in the list in Section 1.4. The contributions of each author
were: Erik Abenius was responsible for the 2D FD-TD implementation, Ulf
Andersson was responsible for the design and realization of the numerical
evaluation, Fredrik Edelvik designed and implemented the FV-TD solver,
Lasse Eriksson designed and implemented the FE-TD solver, and I designed
and implemented the hybridization strategy. I was also co-developer regarding
the unstructured solvers and the numerical evaluation. Chapter 6 is also part
of Ulf Andersson’s Ph.D. thesis [5].

• Chapter 7 also describes a joint effort, partly based on Papers 3 and 4 in the
list in Section 1.4. The contribution of the authors were: Ulf Andersson was
responsible for the 3D FD-TD implementation, Fredrik Edelvik designed and
implemented the FV-TD solver, Lasse Eriksson designed and implemented the
FE-TD solver, and I designed and implemented the hybridization strategy. I
was also co-developer regarding the three separate solvers. The design and
realization of the numerical evaluations were shared between Ulf Andersson,
Fredrik Edelvik and myself.

• The material in Chapters 8 and 9 is completely my own, with the exception
of Figures 9.7 and 9.8 which were produced by Jonas Gustafsson at Ericsson
Saab Avionics.
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Chapter 2

A Popular Description in

Swedish

2.1 Att lösa Maxwells ekvationer numeriskt

‘I begynnelsen skapade Gud himmel och jord. Jorden var öde och tom, djupet
täcktes av mörker och en gudsvind svepte över vattnet. Gud sade “ljus, bli till!”
Och ljuset blev till. Gud s̊ag att ljuset var gott, och han skiljde ljuset fr̊an mörkret.
Gud kallade ljuset dag, och mörkret kallade han natt. Det blev kväll och det blev
morgon. Det var den första dagen.’ (Första Moseboken 1:1-5)

Orden, som är hämtade ur första kapitlet i Bibeln, ger oss en uppfattning om
ljusets betydelse i tillvaron. Ljuset är en typ av elektromagnetisk str̊alning, precis
som radiov̊agor och värmestr̊alning. Flera viktiga egenskaper hos ljuset har varit
kända under mycket l̊ang tid. Även magnetism och elektricitet har varit känt i
tusentals år. Redan under antiken kände man till begreppen. Ordet magnet härrör
fr̊an ett omr̊ade i Thessalien i Grekland som heter Magnesia. Där hittade man ett
mineral, som nu kallas Magnetit, som attraherar järnförem̊al. Det grekiska ordet
för bärnsten, elektron, har gett namn åt de fenomen som uppträder om man gnider
bärnsten mot tyg. Lätta str̊an och papper dras mot bärnstenen och sm̊a sprakande
urladdningar i form av gnistor kan observeras. Men det var först under 1700- och
1800-talet som man systematiskt började undersöka och beskriva elektriciteten och
magnetismen.

Det skulle dröja ända till 1864 innan James Clerk Maxwell kunde beskriva
elektromagnetisk str̊alning ordentligt. P̊a basis av Faradays beskrivning av det
elektriska fältet kunde Maxwell formulera den uppsättning ekvationer som idag bär
hans namn. 1873 publicerades Maxwells teori som beskriver ljuset som en elektro-
magnetisk v̊agrörelse, där elektriska och magnetiska fältstyrkan periodiskt varierar
i plan som är vinkelräta mot fortplantningsriktningen. Teorin angav dessutom att

13
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fortplantningshastigheten skulle vara 300 000 km/s. Den blev dock allmänt accep-
terad först när Hertz 1888 kunde visa att str̊alningen fr̊an en resonant elektrisk
krets hade samma utbredningshastighet som ljuset och dessutom uppvisade andra
karaktäristiska ljusegenskaper.

Betydelsen av att kunna först̊a och lösa Maxwells ekvationer är idag viktigare än
n̊agonsin. I v̊art samhälle är vi omgivna av maskiner och apparater som p̊a ett eller
annat sätt utnyttjar de fenomen som beskrivs av teorin som Maxwell formulerade
för drygt hundra år sedan. Vi ser p̊a TV, lyssnar p̊a radio och pratar i mobiltelefon
dagligen. Vi åker bil, t̊ag och flyg utan att ägna Maxwell en tanke.
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Det finns m̊anga olika tillämpningsomr̊aden för elektromagnetisk analys. Ett
problemomr̊ade är EMC, electromagnetic compatibility. EMC handlar om att en
apparat skall fungera i den elektriska miljö den befinner sig i och den skall heller
inte sända ut oönskade elektromagnetiska v̊agor eftersom dessa kan störa andra ap-
parater. EMC-omr̊adet blir mer allt viktigare ju snabbare, mindre och strömsn̊alare
de elektroniska apparaterna blir. Exempel p̊a EMC-tillämpningar är sjukhuselekt-
ronik och fordonselektronik som inte f̊ar störas av blixtar, mobiltelefoner och annan
elektronik.

Figur 2.1. P̊a m̊anga sjukhus är
det förbjudet att använda mobil-
telefoner eftersom elektromagne-
tiska v̊agor kan äventyra livsvik-
tig sjukhusutrustning.

Figur 2.2. Personlig elektro-
nisk utrustning f̊ar inte användas
under start och landning när
man flyger eftersom det finns risk
att flygplanselektroniken störs.

Figur 2.3. Elektroniken i mo-
derna bilar m̊aste skyddas s̊a att
inte krockkudden löser ut när
mobiltelefonen används.

Figur 2.4. Om en b̊at med
stark radar passerar ett t̊ag p̊a
en bro f̊ar inte t̊agets elektronik
sl̊as ut.

Figur 2.5. Det händer att blix-
ten sl̊ar ner i flygplan och d̊a
m̊aste flygelektroniken t̊ala de
kraftiga störningar som uppst̊ar.
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Ett annat viktig problemomr̊ade är naturligtvis antenner. En antenn har till
uppgift att ta emot och sända ut elektromagnetiska v̊agor. Antenner ser olika ut
beroende p̊a vilka egenskaper de skall ha. En mobiltelefonantenn f̊ar exempelvis inte
vara allt för komplicerad att tillverka eftersom de skall produceras i stora mängder
medan satellitantenner tillverkas i sm̊a serier med mycket höga krav p̊a prestanda
och l̊ag vikt.

Figur 2.6. Mobiltelefonanvän-
dare är i dubbel bemärkelse i
vägen för telefonens radiosig-
naler. Dels kan sändarkvalitén
försämras av att huvudet ab-
sorberar radiov̊agor, dessutom
m̊aste absorptionen h̊allas ne-
re för att begränsa eventuella
hälsorisker för användaren.

Figur 2.7. Man kan bygga
mindre och lättare TV-satelliter
om man kan buckla parabol-
antennerna s̊a att sändningarna
bara n̊ar de omr̊aden man vill
täcka.

Figur 2.8. I en v̊agledarantenn
förs antennsignalen in genom en
kabel och utbreder sig i v̊agled-
aren. Genom att skära upp slit-
sar p̊a lämpliga ställen kan man
f̊a antennsignalen att str̊ala ut
till omgivningen p̊a ett bra sätt.

Figur 2.9. Antenner p̊a flyg-
plan m̊aste placeras med omsorg
s̊a att de fungerar optimalt. De
f̊ar exempelvis inte störa varand-
ra.



2.1. Att lösa Maxwells ekvationer numeriskt 17

Det finns en mängd olika tillämpningsomr̊aden för elektromagnetisk analys
förutom EMC och antenner. Exempel p̊a andra tillämpningsomr̊aden är mikro-
v̊agsugnar, inversa problem, smygflygplan och mikrov̊agskomponenter.

Figur 2.10. Mikrov̊agsugnar
m̊aste byggas s̊a att man f̊ar
en jämn fördelning av effekten
i ugnen. Tinar man exempelvis
mat vill man inte att ena halvan
av maten blir överhettad medan
andra halvan fortfarande är fru-
sen.

Figur 2.11. I m̊anga situatio-
ner känner man till vilka geo-
metriska objekt som p̊averkar
lösningen, och det är själva fältet
man söker. Det finns dock en
klass av problem där man känner
lösningen, men inte geometrin.
Dessa kallas inversa problem och
ett exempel är när man mäter
upp fältet ovanför en kabel, för
att räkna ut var den ligger ner-
grävd.

Figur 2.12. Smygflygplan är
designade för att vara sv̊ar-
upptäckta med radar. Att byg-
ga flygplan med denna egen-
skap vore omöjligt utan en god
först̊aelse av elektromagnetisk
v̊agutbredning.

Figur 2.13. Denna mikrov̊ags-
komponent fördelar inkommande
mikrov̊agor till de olika grenarna.
Utformningen avgör effektfördel-
ningen.

En förutsättning för att den elektromagnetiska utvecklingen skall kunna fort-
sätta är att vi kan lösa sv̊arare och mer komplexa elektromagnetiska problem. För
att studera elektromagnetiska fr̊ageställningar finns det olika hjälpmedel att tillg̊a.
Den hittills mest betydelsefulla är experiment där man genom mätningar kan först̊a
och analysera de problem som studeras. Men behovet av prototyper för experiment,
och det faktum att man inte alltid kommer åt att mäta, har gjort att datorsimule-
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ringar i allt större utsträckning kommit att användas. Om man exempelvis redan
p̊a konstruktionsstadiet kan beräkna en antenns prestanda slipper man kostsamma
mätningar och tidsödande omkonstruktioner. Simuleringar kräver dock i allmänhet
att man har tillg̊ang till goda datorresurser och avancerade beräkningsprogram.

Datorresurserna har sedan ett halvt sekel förbättrats i en oerhörd takt och det
finns ingen anledning att tro att utvecklingen kommer upphöra. Men kraftfullare
datorer räcker inte för att kunna göra mer sofistikerade simuleringar. Beräknings-
programmen m̊aste ocks̊a förbättras och det är i detta sammanhang min avhandling
bidrar till den elektromagnetiska utvecklingen.

Denna avhandling beskriver metoder för att lösa Maxwells ekvationer numeriskt.
Ordet numeriskt kan tolkas som att fysiken omformuleras för att kunna program-
meras och lösas med hjälp av datorer. De fysikaliska lagar Maxwell formulerade
är beskrivna med matematiska begrepp, men för att kunna lösa dessa matematiska
ekvationer konstruerar vi numeriska metoder. En mycket fundamental egenskap hos
numeriska metoder är att de är konsistenta, vilket innebär att numeriken verkligen
beskriver samma fenomen som matematiken.

De numeriska metoder som behandlas i denna avhandling har det gemensamt
att man delar upp beräkningsrummet i sm̊a celler, exempelvis sm̊a kuber. I varje
cell förenklar man den matematiska formuleringen tillräckligt mycket för att en
dator skall kunna tolka problemet. Denna process kallas att diskretisera problemet.
En viktig egenskap är att den diskreta lösningen blir bättre och bättre ju finare
man diskretiserar.

Med en konvergent numerisk metod skulle man kunna lösa ett problem med i
princip hur litet fel som helst under förutsättning att man diskretiserade mycket
fint. Men ju finare celler man använder desto fler blir de, om man har ett givet
objekt att studera. Med fler celler ökar minnesbehovet samt kraven p̊a datorns
beräkningshastighet. Denna konflikt mellan önskan att ha fina celler för att minska
felen och önskan att använda f̊a celler för att datorkraven skall vara m̊attliga kräver
en noggrant val diskretisering.

I ovanst̊ande konflikt finner vi motiveringen till den numeriska analysen som
akademiskt ämne. Kan vi utveckla gamla metoder och hitta p̊a nya metoder som
minskar diskretiseringsfelen vore mycket vunnet under förutsättning att metoderna
inte ökar behovet av datorresurser allt för mycket. Om behovet av datorresurser
dessutom minskar med nya metoder kan vi kosta p̊a oss finare diskretiseringar och
f̊a mycket mindre fel än tidigare.

Denna avhandling inneh̊aller nio kapitel. Första kapitlet och detta kapitel ger
en introduktion till elektromagnetiska beräkningar och i tredje kapitlet beskrivs
Maxwells ekvationer som allts̊a utgör den matematiska grunden för avhandlingen.
Maxwells ekvationer beskriver hur elektriska och magnetiska fälten är relaterade
till varandra i rum och tid. I princip säger ekvationerna tv̊a saker, elektriska fältets
förändring i tiden bestäms av magnetiska fältets variation i rummet, samt omvänt,
magnetiska fältets förändring i tiden ges av elektriska fältets variation i rummet.

I kapitel fyra ges en delvis detaljerad beskrivning av FD-TD metoden (Finita
Differenser i TidsDomänen) som är en standardmetod för att lösa Maxwells ekvatio-
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ner numeriskt. Metoden g̊ar ut p̊a att ersätta de matematiska relationerna mellan
förändringar i tiden och variationer i rummet hos det elektromagnetiska fältet med
differenser.

Diskretiseringen best̊ar i att ersätta fälten, som ju finns överallt och vid alla tid-
punkter, med fält som bara definierats i skärningspunkterna i ett rutmönster, samt
vid vissa jämnt fördelade tidpunkter. Man kan allts̊a ersätta förändringar eller vari-
ationer med differenser enligt följande beskrivning. Antag att vi känner till b̊ade det
elektriska och magnetiska fältet vid en viss tidpunkt. D̊a kan vi beräkna variationen
i rummet genom att samla ihop de angränsande cellernas värden och ta skillnaden
mellan dem. Nu har vi f̊att variationen i rummet hos fälten och det är dags att ta
ett tidssteg. Förändringen i tiden kan approximeras med skillnaden mellan ett nytt
och ett gammalt värde. Eftersom variationen i rummet redan är beräknat, och det
gamla värdet är känt, är det enkelt att f̊a det nya värdet. Matematiskt kan vi skriva
detta som nya värdet = gamla värdet + rumsvariationen*tidssteget. Även
om denna beskrivning är kraftigt förenklad beskriver den principen för FD-TD me-
toden. När vi nu vet att variationerna/förändringarna ersätts av differenser (sm̊a
celler o korta tidssteg krävs) och att man stegar sig fram i tiden blir begreppet
Finita Differenser i Tidsdomänen begripligt.

Kapitel fem beskriver en stor FD-TD simulering där en miljard celler använts.
En miljard celler är oerhört m̊anga celler. Med en miljard gatstenar skulle man
kunna stensätta hela Södermalm och Gamla stan. Skulle man istället lägga alla
gatstenar p̊a rad skulle de räcka tv̊a och ett halvt varv runt jorden.

FD-TD metoden är en mycket effektiv metod men har en allvarlig brist. Ef-
tersom cellerna är kubiska kan man inte diskretisera krökta objekt p̊a ett bra sätt.
Man är hänvisad till LEGO-approximationer av geometrier, vilket ibland introduce-
rar stora fel. En lösning p̊a detta problem ges i kapitel sex och sju där hybridmetoder
presenteras. Hybridmetoderna utnyttjar ostrukturerade nät med celler av triang-
lar eller tetraedrar. Dessa ger inte upphov till LEGO-approximationer utan kan
med fördel användas för att diskretisera geometrier. De ostrukturerade metodernas
stora nackdel är att de är avsevärt mindre effektiva än FD-TD metoden. Hybridme-
toderna kombinerar den noggrannare geometridiskretiseringen hos ostrukturerade
metoder med effektiviteten hos FD-TD metoden för celler omkring och mellan geo-
metrier.

Kapitel åtta beskriver en ny metod för att räkna p̊a problem med tunna kablar
med FD-TD metoden p̊a ett noggrant sätt. Problem där tunna kablar förekommer
är exempelvis EMC-problem där man vill undvika att elektromagnetiska störningar
inducerar skadliga strömmar i eventuella kablar. Tidigare metoder har krävt att
kablarna följt cellkanterna vilket inneburit att diskretiseringsfelen blivit stora för
kablar som löpt snett genom beräkningsomr̊adet. Med den nya metoden till̊ats
kablar vara godtyckligt orienterade

Slutligen, i kapitel nio diskuteras hur man kan visualisera elektomagnetiska si-
muleringsresultat. En samling färgbilder illustrerar n̊agra visualiseringsmetoder och
visar samtidigt en del av de geometrier och fr̊ageställningar som avhandlingen be-
handlar.
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Chapter 3

The Maxwell Equations

3.1 The equations

This thesis deals with numerical approximations of electromagnetic phenomena.
These are described by the Maxwell equations, see for instance page 323 in Cheng [18],

∇ · D = ρ , (Gauss′ law)

∇ · B = 0 , (Gauss′ law)

∂B
∂t = −∇× E , (Faraday′s law)

∂D
∂t = ∇× H − Je , (Ampere′s law)

(3.1)

where E(x, t) is the electric field [V/m], D(x, t) is the electric flux density [C/m2],
H(x, t) is the magnetic field [A/m], B(x, t) is the magnetic flux density [Wb/m2],
Je(x, t) is the electric current density [A/m2] and ρ(x, t) is the charge density [C/m3].
The Maxwell equations are complemented by the equation of continuity,

∂ρ

∂t
= −∇ · Je . (3.2)

The two Gauss’ laws can be derived from Ampère’s law, Faraday’s law and the
equation of continuity by taking the divergence on Ampère’s and Faraday’s laws.

For linear, isotropic and non-dispersive materials we have

B = µH and D = ǫE . (3.3)

Furthermore we allow for materials with isotropic, non-dispersive electric losses
that attenuate E fields via conversion to heat energy. This yields

Je = σE . (3.4)

21
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Materials for which σ = 0 are referred to as lossless. Inserting these three relations
in (3.1) yields

∇ · (ǫE) = ρ , (Gauss′ law)

∇ · (µH) = 0 , (Gauss′ law)

µ∂H
∂t = −∇× E , (Faraday′s law)

ǫ∂E
∂t = ∇× H − σE , (Ampere′s law)

(3.5)

where E = (Ex, Ey, Ez) is the electric field [V/m], H = (Hx,Hy,Hz) is the mag-
netic field [A/m], ǫ(x) is the electric permittivity [F/m], µ(x) is the magnetic
permeability [H/m] and σ(x) is the electric conductivity [S/m]. Writing them
component by component, we get







ǫ∂Ex

∂t = ∂Hz

∂y − ∂Hy

∂z − σEx ,

ǫ
∂Ey

∂t = ∂Hx

∂z − ∂Hz

∂x − σEy ,

ǫ∂Ez

∂t =
∂Hy

∂x − ∂Hx

∂y − σEz ,

µ∂Hx

∂t =
∂Ey

∂z − ∂Ez

∂y − σ∗Hx ,

µ
∂Hy

∂t = ∂Ez

∂x − ∂Ex

∂z − σ∗Hy ,

µ∂Hz

∂t = ∂Ex

∂y − ∂Ey

∂x − σ∗Hz .

(3.6)

We have now introduced the equivalent magnetic loss σ∗(x) [Ω/m], see Chapter 3
in Taflove [98]. This increases the symmetry of the Maxwell equations though it
is not compatible with Gauss’ law for the magnetic flux density. We introduce it
because our implementation of FD-TD has the capability to include this term.

Yet another way to write (3.6) is,

ut = Aux + Buy + Cuz , (3.7)

where u = (Ex Ey Ez Hx Hy Hz)
T . All matrices ξ1A + ξ2B + ξ3C for any vector ξ

with ξ2
1 + ξ2

2 + ξ2
3 = 1 have the same six eigenvalues. They are −c, −c, 0, 0, c and

c where c = 1/
√

µǫ is the speed of propagation for the electromagnetic wave. This
means that we need exactly two boundary conditions at any given boundary.

The Maxwell equations is a hyperbolic system because all eigenvalues are real.
See [43] for the definition of hyperbolic.
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3.2 Reduction to two dimensions

In two dimensions, (3.6) reduces to two independent set of equations, usually re-
ferred to as the transverse magnetic (TM) mode and the transverse electric (TE)
mode. If we assume that there are no variations in the z-direction, we get the TMZ

mode






µ∂Hx

∂t = −∂Ez

∂y − σ∗Hx ,

µ
∂Hy

∂t = ∂Ez

∂x − σ∗Hy ,

ǫ∂Ez

∂t =
∂Hy

∂x − ∂Hx

∂y − σEz ,

(3.8)

and the TEZ mode







ǫ∂Ex

∂t = ∂Hz

∂y − σEx ,

ǫ
∂Ey

∂t = −∂Hz

∂x − σEx ,

µ∂Hz

∂t =
∂Ey

∂x − ∂Ex

∂y − σ∗Hz .

(3.9)

These two modes are decoupled, i.e. they contain no common field component.
They are completely independent for isotropic materials, and they can exist simul-
taneously with no mutual interaction.

3.3 Reduction to one dimension

If we further assume that the magnetic field in (3.8) has no variation in the y-
direction, we get







µ
∂Hy

∂t = ∂Ez

∂x − σ∗Hy ,

ǫ∂Ez

∂t =
∂Hy

∂x − σEz .

(3.10)

Similar formulas can be derived for other combinations of the fields.

3.4 Integral formulation

The Maxwell equations in (3.5) are given in a partial differential equation (PDE)
formulation. It is also possible to cast them in an integral formulation. It can
be derived from the PDE formulation: The two Gauss’ laws are integrated over
an arbitrary fixed control volume after which the divergence theorem is applied to
these integrals. Faraday’s and Ampère’s laws are integrated over a control surface,
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S, after which the Stokes theorem is applied to the integrals containing the curl
operator. We get

v

S

ǫE · dŜ = 0 , (Gauss′ law)

v

S

µH · dŜ = 0 , (Gauss′ law)

∂
∂t

∫∫

S

µH · dŜ = −
∮

C

E · dl̂ −
∫∫

S

σ∗H · dŜ , (Faraday′s law)

∂
∂t

∫∫

S

ǫE · dŜ =
∮

C

H · dl̂ −
∫∫

S

σE · dŜ , (Ampere′s law)

(3.11)

where C is the contour that bounds the surface S. The surface S in the Gauss’ laws
is not the same as the S in the Faraday’s and Ampère’s laws. In Gauss’ laws, it is the
surface of the control volume. This integral formulation of the Maxwell equations
is used to construct several of the numerical methods treated in this thesis. It is
possible to get other integral formulations of the Ampère’s and Faraday’s laws, for
instance by integrating them over a volume instead of a surface.

Formulas (3.8), (3.9) and (3.10) can also be cast in integral formulations in a
similar manner.

3.5 The wave equation

If we take the time derivative of Ampère’s law in (3.5) and assume that the material
properties are time independent, we obtain

ǫ
∂2E

∂t2
= −∇× 1

µ
∇× E − σ

∂E

∂t
. (3.12)

For lossless homogeneous materials without sources this reduces to

∂2E

∂t2
= c2∆E , (3.13)

where c = 1/
√

µǫ is the speed of propagation for the electromagnetic wave. In a
similar manner, we may show that

∂2H

∂t2
= c2∆H (3.14)

for lossless homogeneous materials without sources.
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3.6 Material properties

In (3.6) we have four parameters. For vacuum they are µ ≡ µ0 = 4π · 10−7 Vs/Am,
ǫ ≡ ǫ0 ≈ 10−9/36π ≈ 8.8541878 · 10−12 As/Vm, σ∗ = 0 Ω/m and σ = 0S/m.
The speed of light in vacuum is defined by c0 = 2.99792458 · 108 m/s ≈ 1/

√
µ0ǫ0.

For other materials it is customary to define their permeability and permittivity
relative to those of vacuum, i.e. we have ǫ = ǫrǫ0 and µ = µrµ0. The relative
permittivities for some common materials are listed in Table 3.1. The data have
been taken from Table B-3 in Cheng [18]. For most materials, ǫr and µr are
frequency dependent. Materials for which we assume that ǫr and µr are independent
of frequency are referred to as simple materials. Frequency-dependent materials will
be briefly addressed in Chapter 4.12. The values listed in Table 3.1 are average low-
frequency values at room temperature. Note that we always have ǫr ≥ 1. Most
materials where µr 6= 1 are metals with high conductivity. We treat these materials
as perfect electric conductors.

Material ǫr

Teflon 2.1
Rubber 2.3-4.0
Bakelite 5.0
Distilled Water 80

Table 3.1. Relative permittivities for some common materials.

At the interface between two lossless media (we have, see Table 7-3 on page 330
in Cheng [18])

n · (D1 − D2) = 0 ,

n × (E1 − E2) = 0 ,

n · (B1 − B2) = 0 ,

n × (H1 − H2) = 0 ,

(3.15)

where the subscripts indicate which region the field belongs to, and n is the interface
normal. Using the relations in (3.3), we get

n · (ǫ1E1 − ǫ2E2) = 0 ,

n × (E1 − E2) = 0 ,

n · (µ1H1 − µ2H2) = 0 ,

n × (H1 − H2) = 0 .

(3.16)
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For perfect electric conductors (PEC) we have (compare with Table 7-4 on
page 331 in [18])

n · ǫE = ρs ,

n × E = 0 ,

n · H = 0 ,

n × H = Js ,

(3.17)

where ρs is the surface charge density [C/m2] and Js is the surface current den-
sity [A/m]. Note that the normal n is pointing out from the PEC region. It
may seem odd that we have six boundary conditions when we should only have
two. However the first and fourth conditions are not true boundary conditions,
because ρs and Js are unknown, and the third condition can easily be shown to be
a consequence of the second condition.

PECs are characterized by having no tangential electric field at the surface.
This is a consequence of the term perfect conductor. If there were a tangential
electric field it would drive an infinite surface current which is clearly unphysical.
However, this does not imply that the surface current must be zero. In fact, if there
is an external field there will always be surface currents since the magnetic field
does only have tangential components at the PEC surface and the surface current
is related to the tangential magnetic field through the fourth condition in (3.17).



Chapter 4

FD-TD

This Chapter was written prior to the publication of the second edition of Taflove’s
book on FD-TD [100]. Hence all references are to the first edition [98].

4.1 Introduction to FD-TD

The most commonly used time-domain method for solving the Maxwell equations
is the Finite-Difference Time-Domain (FD-TD) method. It was introduced by Yee
in 1966 [110] and is sometimes referred to as the Yee scheme. The method was
further developed and promoted by Taflove in the 1970s, and he also coined the
acronym FD-TD.

Several books have been published dealing with the FD-TD scheme [56, 98, 99,
52, 97]. The survey paper by Shlager and Schneider that appeared in [99] illustrates
the rapid growth in the use of FD-TD.

The FD-TD method has been attractive for industrial users since the early 1980s
because the basic method is relatively simple to program and because the geometry
handling is fairly straightforward. The method can also be efficiently implemented
on vector computers which made it feasible to solve complex problems on the early
supercomputers. As an example, in 1987 SAAB performed lightning analysis on
the Swedish fighter aircraft Gripen on a grid with approximately 60× 30× 30 cells.

4.2 Discretization used in FD-TD

The FD-TD scheme is an explicit finite difference scheme using central differences
on a staggered Cartesian grid (both space and time), i.e. it is a leap-frog scheme.
It is second-order accurate in both time and space. “Staggered” here indicates that
the different electromagnetic components are not located at the same place (see
Figures 4.1 and 4.2). Furthermore, the fields are not represented on the same time
levels (see Figure 6.1).

27
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Figure 4.1. The FD-TD TM grid, with problem size Nx = 8 and Ny = 5. The
Huygens’ surfaces (dashed line) are placed in the second cell from the outer boundary.

Staggering the variables in the computational grid is a straightforward conse-
quence of the nature of the Maxwell equations and the central finite differences. If
the leap-frog scheme is applied on a grid that is not staggered, it would result in
2 ·8 uncoupled discrete equations. Time and memory are saved by only solving one
of these. (memory savings: 8, time step savings: 2 per unknown => 16)

The main drawback of the FD-TD scheme is the inability to represent curved
boundaries and small geometrical details. Curved objects must be modeled by
staircasing, i.e. they must fit into the Cartesian grid and hence look like they were
made of Lego blocks. As will be demonstrated in Chapter 6, staircasing destroys
the second-order accuracy.

Figure 4.1 shows a grid for the 2D TM equations. The dashed line indicates
the limit between the total field region and the scattered field region. Further
explanation can be found in Section 4.7.

One cell of a 3D FD-TD grid is given in Figure 4.2. The magnetic field compo-
nents are defined on the cell’s faces, and the electric field components are defined
on the cell’s edges. This choice is arbitrary and does not affect the behavior of the
scheme. For a computational domain with the number of cells (Nx, Ny, Nz), we
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Figure 4.2. Positions of the electric and magnetic field vector components in a unit
Yee cell.
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Ex|ni+1
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Ey|ni,j+1
2
,k

, i = 1, . . . , Nx + 1 , j = 1, . . . , Ny , k = 1, . . . , Nz + 1 ,

Ez|ni,j,k+1
2

, i = 1, . . . , Nx + 1 , j = 1, . . . , Ny + 1 , k = 1, . . . , Nz ,

Hx|n-
1
2

i,j+1
2
,k+1

2

, i = 1, . . . , Nx + 1 , j = 1, . . . , Ny , k = 1, . . . , Nz ,

Hy|n-
1
2
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2
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, i = 1, . . . , Nx , j = 1, . . . , Ny + 1 , k = 1, . . . , Nz ,
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1
2

i+1
2
,j+1

2
,k

, i = 1, . . . , Nx , j = 1, . . . , Ny , k = 1, . . . , Nz + 1 ,

(4.1)
where n = 0, . . . , Nt for all six components and Nt is the number of time steps
taken. Initial values are needed for H− 1

2 and E0. Note that our notation is
slightly different from that used in [98]. In our notation there is always a direct
correspondence between the indexes and the physical location of a field component.
For example,

Hx|n-
1
2

i,j+1
2
,k+1

2

is located at ((i − 1)∆x, (j − 1/2)∆y, (k − 1/2)∆z) , (4.2)

at t = (n − 1/2)∆t where ∆x, ∆y and ∆z are the spatial cell sizes and ∆t is the
time increment. The total spatial problem size is N = NxNyNz. The storage space
needed for this is approximately 24N byte for 32-bit precision and 48N byte for
64-bit precision.
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4.3 The leap-frog scheme

In homogeneous materials with σ = σ∗ = 0, the following formulas comprise the
FD-TD updating stencils for the electromagnetic field components.

Hx|n+
1
2

i,j+1
2
,k+1

2

= Hx|n-
1
2

i,j+1
2
,k+1

2

+
∆t

µ∆z

[
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2
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2
,k

]

− ∆t

µ∆y

[
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2

− Ez|ni,j,k+1
2

]

(4.3)
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2
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2
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2
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1
2
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2
,j,k+1

2
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[
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2
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(4.4)
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2
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2
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2
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2
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(4.5)
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(4.6)
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(4.7)
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(4.8)

For lossy materials the electric field update equations are modified, for exam-
ple (4.6), is replaced by
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2
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2ǫ
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2
,k
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1
2
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2
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2
,k

]

, (4.9)

where the conductivity term σEx is discretized using the average of the electric
field at time levels n and n + 1. Using only the value from time level n gives an
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unstable scheme, and using only the value from time level n+1 gives a noncentered
scheme. For highly lossy media one could take into account the rapid exponential
decrease of field strengths and introduce a scaling of the variables; this would yield
the so-called exponential timestepping scheme. However, this scheme does not give
any significant improvements [80] and is thus not further discussed.

Comparing (4.6) and (4.9) we see that one extra arithmetic operation is needed
for lossy material. For inhomogeneous materials, we replace ǫ in (4.9) with ǫi+1

2
,j,k

and similarly for σ. Note that we need an ǫ-value for each of the three electric
field component updates in a cell. These three ǫ-values will differ in the vicinity of
a material interface. Chapter 9 in the Ph. D. thesis of Ulf Andersson [5] gives a
detailed analysis of how to calculate these discrete values.

4.4 Stability conditions

Because FD-TD is an explicit scheme, there is a limit on the time step ∆t to ensure
stability. It is given by:

∆t <
1

c
√

1
(∆x)2 + 1

(∆y)2 + 1
(∆z)2

, (4.10)

where c is the wave propagation speed. We define the CFL number as

CFL = c∆t

√

1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2
, (4.11)

and may thus write the stability condition as

CFL < 1 . (4.12)

CFL stands for Courant-Friedrichs-Lewy (see page 54 in [43]).

4.5 Performance of the leap-frog update

The leap-frog update is the core of an FD-TD solver, and therefore it must be
implemented as efficiently as possible. There are two major obstacles in getting
an efficient implementation. The updating stencils of (4.3)–(4.8) consist of two
multiplications and four additions/subtractions each. Most computers today are
constructed to perform the same number of multiplications and additions in every
clock cycle. In our case, this means that we can achieve at most 75% of the peak
performance. The other main obstacle is the need for memory bandwidth. For
instance, to compute (4.3) we need to fetch five field values from memory and
store one field value to memory. Most computers cannot do this as quickly as they
perform the calculations. The constant coefficients will reside in registers and need
not be fetched from memory for every update.
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It is possible to reduce the number of multiplications in (4.3) by one by scaling
the fields with the cell size. Let Ẽz = ∆zEz, etc. We get
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1
2

i,j+1
2
,k+1

2

= H̃x|n-
1
2

i,j+1
2
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2

+
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[

Ẽy|ni,j+1
2
,k+1 − Ẽy|ni,j+1

2
,k −

Ẽz|ni,j+1,k+1
2

+ Ẽz|ni,j,k+1
2

]

. (4.13)

However, this reduction will lead to little or no gain in execution time on most mod-
ern computers because the number of additions still dominates. This is illustrated
in Table 4.1.

We will now present some illustrating performance results for the leap-frog up-
date. All tests are performed on the same “standard” problem. We set Nx =
Ny = Nz = 100 and Nt = 100. We use a point source for excitation and the Mur
first-order ABC [74] as grid terminator. Timing is performed over the timestepping
loop, i.e. we omit initialization and post processing. We also omit the first time step
from the timing (timing is performed over 99 iterations), because it might contain
initialization overhead. All calculations are performed in 64-bit precision.

Table 4.1 shows the effect on execution time of a reduction in the number of
multiplications per component update by one. On the IBM processors, there are
no gain in execution time. On the Sun there is some gain, but only about 4%. This
should be compared to the 17% (compare (4.3) and (4.13)) decrease in the number
of floating point operations.

Computer Reduced code Original code
IBM pwr3, 200 MHz 23.13 sec. 23.07 sec.
IBM pwr2, 160 MHz 22.21 sec. 22.24 sec.
Sun Ultra 1, 167 MHz 93.28 sec. 97.00 sec.

Table 4.1. Execution times for the leap-frog update for lossless homogeneous ma-
terial. These test were performed in February 2000.

For lossless materials we have 36 arithmetic operations per cell. For lossy ma-
terials we have 42 arithmetic operations per cell if both σ and σ∗ are nonzero.
Obviously, lossy inhomogeneous materials increase the execution time. This effect
is illustrated in Table 4.2. The number of floating point operations per iteration
(Flop/iteration) includes the operations performed by the first-order Mur ABC, see
Section 4.6.
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Material Lossless homogeneous Lossy inhomogeneous
Flop/cell 36 42
Flop/iteration 36 000 900 41 941 200
Performance (Mflop/s) 120.01 93.31
Percentage of peak perf. 13.6 10.6
Time (s) 29.70 44.50

Table 4.2. Performance for homogeneous and inhomogeneous materials on an
IBM pwr3 222 MHz processor. These test were performed in June 2000 and cannot
be compared to the results in Table 4.1 because different processors and compiler
versions were used.

4.6 Boundary conditions

Perfect electric conductors (PEC) are characterized by the absence of tangential
electric field at the surface, as discussed in Section 3.6. A PEC must be described
using a staircase approximation to fit into the FD-TD scheme. This staircase
procedure is a major cause of errors in FD-TD calculations.

It is possible to model PECs by changing the coefficients in (4.3)–(4.5), but a
more efficient implementation for homogeneous materials is to first update all the
electric field components using (4.6)–(4.8) and then set all E fields on the surface
of the object to zero.

Many applications involve geometries with unlimited surroundings. These sit-
uations are called open problems. In these cases it is necessary to limit the com-
putational domain by introducing an artificial outer boundary. At this boundary
we need to apply a boundary condition, and this condition should be designed to
absorb outgoing waves. Hence we refer to it as an absorbing boundary condition
(ABC). One could also think of this boundary as having the property of not re-
flecting any outgoing waves back into the computational domain and hence name
it a nonreflecting boundary condition (NRBC).

The history of absorbing boundary conditions for the FD-TD scheme is carefully
covered in Chapter 7 of [98]. This chapter concludes with a description of the
perfectly matched layer (PML) introduced by Berenger [9] in 1994, which was a
tremendous breakthrough in ABC methodology. The basic idea is to surround the
computational domain with an absorbing layer. This concept had been tried before,
but there were problems with reflections in the interface between the computational
domain and the absorbing layer [50]. The key to the success of PML is that there
are no reflections at this interface, at least not for the continuous problem. This is
true for all frequencies and all angles of incidence.

One of the chapters in [99] covers the further development of PML. The original
formulation of PML is a weakly hyperbolic system [1], which might cause stability
problems. This formulation is based on splitting the six field components into two
parts each. Later formulations instead introduced a lossy anisotropic absorbing
material [38]. They are referred to as unsplit PML (U-PML).
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The U-PML formulation relies on the fact that it is possible to derive matching
conditions for lossy anisotropic (uniaxial) media, so that incident plane waves are
purely transmitted. The reflectionless conditions for the permittivity and perme-
ability in the uniaxial media are found to be:

ǫ = µ =





a 0 0
0 a 0
0 0 a−1



 . (4.14)

The parameter a is then chosen to be lossy. A natural choice in the frequency
domain is

a = 1 +
σ

jωǫ0
, (4.15)

where ω is the frequency.
The attenuation of the PML depends on the size of the lossy parameter (σ), the

depth of the absorbing layer and the angle of incidence of the wave. The value of
σ should be as large as possible to improve absorption. However, this would result
in a step discontinuity in σ in the transition between the interior region and the
absorbing layer. In the discrete space, this leads to large reflections of the fields.
The parameter σ is therefore chosen as a smoothly increasing function, starting
from zero.

A systematic way to evaluate the performance of different ABCs was given
in [72]. Their test consisted of using a point source in 2D and comparing the
results with numerical results from a larger domain. We have used this test case
on a number of different ABCs. The result is presented in Figure 4.3. All the
different ABCs are described in Chapter 7 of [98], except the U-PML scheme which
is described in [38]. The Mei Fang result presented in Figure 4.3 has been obtained
by applying the Mei Fang procedure to the second-order Mur scheme. The notation
U-PML X refers to a U-PML with a layer of X cells. The U-PML results are
equivalent to what we would have obtained using PML. It is evident from the
results in Figure 4.3 that it is possible to achieve much better absorption with U-
PML/PML than with previously developed ABCs. Figure 4.3 is the same type of
graph as Figure 5b in [72] and Figure 7.8 in [98]. Note that formula (7.46) in [98]
contains a misprint. The factor should be 1/320 not 1/32 (see [72]).

The U-PML can be extended to treat frequency dispersive materials, as shown
in Section 5.9 in [99]. With U-PML it is possible to construct an arbitrarily good
ABC by increasing the number of cells in the U-PML layer. However, there is an
increase in cost when increasing the thickness of the layer.

A perfectly matched layer must be terminated at its outer boundary, and one
possibility would be to use a classical nonreflecting boundary condition to terminate
the U-PML layer. But this is seldom done because the extra cost of implementing
and performing this is higher than simply terminating the outer boundary with a
PEC condition. This is not as bad as it first might appear. A wave propagating
from the inner of the domain will be attenuated exponentially during propagation
through the U-PML, and when the wave is reflected in the outer boundary, it will
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Figure 4.3. Comparison of different ABCs for the TM Maxwell equations.

be further attenuated on its way back to the inner domain. If this damping is not
enough, we just add another cell layer of U-PML, and the effect is still better than
using a classical nonreflecting boundary condition to terminate the U-PML layer.

The Gems time domain 3D code includes PML, U-PML for dispersive materials,
and also the first-order Mur ABC [74]. The Mur scheme is the application of the
Engquist-Majda [31] ABC to the Maxwell equations.

Other approaches to ABC are still being explored in the search for a cheaper
ABC, for example [42, 82]. We have not explored this area. One interesting ap-
proach is to use the plane wave time domain (PWTD) method [93] as ABC. This
would make it possible to put the ABC only a few cells from the scattering object.
On the other hand, this is a global ABC. Traditionally, global ABCs have been con-
sidered too computationally expensive. This obstacle may be overcome by PWTD,
but we are not quite there yet.

It is well known that it is possible to achieve very good ABCs by using integral
formulations. However, if an almost perfect ABC consumes 90% of the available
computer resources, it is better to spend some of these resources on a finer dis-
cretization.
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4.7 Sources

There are many different ways to excite the fields depending on what we want
to simulate. Excitations that we use include Huygens’ surfaces to model plane
waves, point sources to model dipoles, and current and voltage sources in thin
wires. Waveguide excitations, which are a major part of the GEMS project, are
briefly discussed in Section 7.3.1.

Incident plane waves are generated by Huygens’ surfaces. They are carefully
described in Chapter 6.5 of [98]. However, he never calls them “Huygens’ sur-
faces”. Instead he has a more mathematical viewpoint and refers to it as “Total-
Field/Scattered-Field Formulation”.

A very simple excitation is to use a point source. It can for instance be used to
model a dipole. This is done by adding a source term to one of the electric fields.
For example,

Ex|n+1is+
1
2
,js,ks

= Ex|n+1is+
1
2
,js,ks

−
∆tf(tn+1

2
)

ǫV
, (4.16)

where V = ∆x∆y∆z is the cell volume. Because the discrete time derivative of
Ex is centered around time level n + 1/2, we evaluate the source function f(t) at
t = (n + 1/2)∆t. This is necessary in order to retain the second-order convergence.

We distinguish between hard sources and soft sources. A soft point source
is characterized by adding a source term to the field equation as in (4.16). A
hard point source is characterized by setting the field to a source term and hence
overwriting the value given by the leap-frog update.

In order to avoid introducing high frequency components in the numerical so-
lution, it is important to use a smooth source. The source must be zero at t = 0
when we start our simulation (unless we combine it with suitably chosen initial
values). This introduces a discontinuity at t = 0, but this discontinuity can be kept
at machine precision level by suitable choices of parameters for the source.

4.8 Visualization as debugging and validation tool

There are several reasons to visualize results produced by electromagnetic com-
putations. We distinguish between three different purposes of visualization. The
first purpose is the most obvious which is to present research to other scientists,
funding agencies or the general public. The second purpose is perhaps the most
thrilling, which is to learn more about the features of the Maxwell equations. This
often stems from working with the results in order to present a good visualization.
The third purpose is often regarded as unglamorous, but is nevertheless important.
Given a certain expectation of the result, visualizations can be used for debugging
and validation of the code. This is a very useful technique to find out which part of
the code that is incorrect. In this section we will focus on visualization as debugging
and validation tool.
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There is an intrinsic problem in visualization of FD-TD data, which originates
from staggering the electromagnetic components. Saving Ex, Ey and Ez to file for a
given time step is straightforward, but doing visualizations based on these staggered
components can be misleading. Simply taking a Cartesian slice through the data
and plotting one component seldom poses any problem if the half-cell bias is not
important. But plotting the magnitude of the electric field requires either some
averaging to get the field at the corners of the FD-TD cell or acceptance for the
half-cell bias of the components. The latter is equivalent to a onesided interpolation
to the cell corner. The first approach blurs the effect of errors in a single component,
and the second is more difficult to combine with exact geometric representations.
However, bearing this in mind, debugging still benefits from studying the magnitude
of staggered components.

A common techniques for debugging and validation is to compare obtained
results with a reference solution pointwise, i.e. plot (ucode − uref) using slice planes
or isosurfaces. Analytic solutions are in some cases available but often numerical
results are the only option. Numerical results might come from other codes or
obtained from the code prior to the feature examined.

Another emerging technology is virtual reality, which provides tools and display
systems for an immersive exploration of data. This might be judged as only a hyped
technology that is too complicated for anyone but experts to use. The truth is that
used correctly, it enhances the possibility of sharing results with others, especially
if a complicated geometry is included.

4.9 Parallelization

The core of the FD-TD scheme is relatively straightforward to parallelize. This issue
is studied in detail in a separate chapter of the Ph. D. thesis of Ulf Andersson [5], and
we give a brief summary here. Chapter 5 in [52] is partly devoted to parallelization
of the FD-TD scheme. It also covers vectorization and other optimization issues.

Scale-up and speed-up are different measures of efficiency of a parallel code. We
define them by:

Definition 4.1 (Scale-up). The problem size, N , is increased linearly with the
number of processors.

Definition 4.2 (Speed-up). The problem size, N , is kept fixed, independent of
the number of processors.

We will discuss parallelization of the leap-frog update. Adding PEC, the first-
order Mur ABC, and a point source will not affect our discussion, but adding
Huygens’ surfaces and PML will.

On a parallel computer, it is easy to achieve perfect scale-up for the leap-frog
update. This means that the time to execute a certain number of time steps is
constant, when the number of processors (and the problem size) is increased. This
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is a rather nice result, because the need for more memory is one major reason for
using parallel computers. Many applications are such that the time to complete
them is acceptable if we can fit them into memory.

Consider the one-billion-cell computation in Appendix 5. The time to complete
this calculation was only slightly more than one hour. Here the number of time
steps was chosen so that the wave would sweep past the airplane once. If we were
to use this calculation for practical purposes, we would have to increase the number
of time steps to allow for reflections, surface waves, etc. to evolve. However, even if
we increase the number of time steps by a factor of ten, the calculation could still
be performed overnight.

Perfect speed-up is usually not possible to achieve for the Yee scheme. The main
reason for this is the low number of arithmetic operations per cell and time step. For
homogeneous materials with σ = σ∗ = 0, we only perform 36 arithmetic operations
per cell and time step. This can be compared to computational fluid dynamics,
where a Navier-Stokes solver performs thousands of arithmetic operations per cell
and time step.

The parallelization of a full FD-TD solver, including subcell models, near-to-
far-field transformation, Huygens’ surfaces, etc. is a much more complex problem.
It gets even more complicated when the hybrid schemes described in Chapters 6
and 7 are parallelized. The tricky part is how to achieve a good load balancing.
This is more or less automatic for the leap-frog update, since the same amount of
work is performed in every cell.

4.10 Subcell models

In the numerical simulation of electromagnetic wave propagation, the existence of
subgrid scale phenomena poses some difficulties. Subgrid scale phenomena refer
to geometrical features that should influence the solution on the computational
grid but have length scales shorter than the grid size. For some problems, such
as narrow slots, thin material sheets, surface impedances and thin wires there are
subcell models developed.

A thin-wire model permitting arbitrarily oriented wires is presented in Chap-
ter 8, but the other subcell models will not be further addressed in this thesis.
However, they are thoroughly described in Chapter 10 in Taflove’s book [98].

4.11 Near-to-far-field transformations

Three different near-to-far-field transformations have been implemented within the
GEMS project. The three transforms are the frequency-domain transform (FD),
the time-domain transform (TD) and the continuous-wave transform (CW). These
transforms have different applicabilities. The TD transform is suitable when the far
field is desired over a range of frequencies, but only for a small number of directions.
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For the FD transform, the opposite is true. The CW transform is a special case
of the FD transform, in which it is assumed that only one frequency is present
in the solution. The use of this transform is somewhat limited, since one of the
major reasons for using a time-domain method is the possibility of computing a
large number of frequencies simultaneously.

The FD transform is equipped with dispersion compensation. This procedure is
described in [63]. It can yield significant improvements, especially for the forward
scattering direction. The TD transform is described in [65].

All transforms probe the fields on a surface. The FD transform performs a dis-
crete Fourier transform (DFT) on surface currents enclosing the object during the
timestepping. After the timestepping the field is transformed to far field. For the
CW transform, the DFT is only performed during the final period of the compu-
tation. The TD transform performs a near-to-far-field transformation in the time
domain during each time step. After timestepping a fast Fourier transform (FFT)
is performed at each far field direction. This gives us the far field for a broad
spectrum of frequencies.

4.12 Frequency-dispersive materials

The Yee scheme is constructed from a non-dispersive formulation of the Maxwell
equations and hence cannot be used for computation on frequency-dependent ma-
terials. However, it is possible to extend the Yee scheme to handle these materials
(see Chapter 9 in [99]). This thesis will not treat dispersive materials.

4.13 Divergence-free nature

If σ = ρ = 0 in (3.5), the divergence of E and H should be zero. A very nice
property of the FD-TD method is that it preserves the divergence; i.e., if it is zero
initially, it will stay zero. A proof of this is given in Section 3.6.9 of [98]. The
proof is presented for free space, but it is also valid for inhomogeneous materials.
It is actually valid independent of how the discrete ǫ-values are chosen due to
cancellation of terms in the proof.

Divergence is a continuous property. The proof is of course applied to a discrete
approximation of the divergence. However, this approximation is the most natural
way to approximate the divergence.
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Chapter 5

Large Scale FD-TD —

A Billion Cells
This chapter is a reprint of Paper 6 in the list on Page 10.

Abstract

We describe an FD-TD simulation of a SAAB 2000 aircraft using more than
one billion cells. This was performed on 125 nodes of an IBM SP.
We also give a speed-up result for the IBM SP and discuss the

possibilities for visualization of FD-TD solutions in a VR-CAVE.

5.1 Introduction

The Swedish center of excellence Parallel and Scientific Computing Institute -
(PSCI) [81] conducts a research project within its CEM program called “Large Scale
FD-TD”. Within this project a 3D FD-TD code, pscyee, has been implemented us-
ing Fortran 90.

The capabilities of the sequential version of pscyee includes Huygens’ surfaces,
PML according to Berenger [9] as absorbing boundary condition (ABC), a gen-
eralized thin-wire subcell model (Paper 5 on Page 10) based on the approach of
Holland-Simpson [49] and PEC surfaces. Excitation may also be performed with
current/voltage sources in the thin-wire model and with point sources. The first-
order Mur ABC is available for calculations where the accuracy demand on the ABC

is not so high.
Implementation of models for frequency dispersive materials is ongoing. It has

already been implemented in a 2D version of the code. pscyee will be used as a
component in a hybrid time domain solver which will combine the FD-TD scheme
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with an implicit Finite-Element Time-Domain (FE-TD) scheme and an explicit
Finite-Volume Time-Domain (FV-TD) scheme for unstructured meshes. This will
be performed within the GEMS project which is a collaborative code development
project between Swedish industry and academia involving PSCI, Ericsson Saab
Avionics, Ericsson Microwave System, Saab Ericsson Space, the Swedish Institute
of Applied Mathematics and the Swedish Defense Research Establishment.

5.2 Parallel implementation

The parallel implementation of pscyee uses the Message Passing Interface (MPI)
standard. This was chosen to guarantee portability of the code.

Figure 5.1 illustrates our parallelization strategy in 1D with six cells on two
nodes. When node two calculates the Ex4-value it needs to know the value of Hz3.5

which is stored in node one. Similarly, when node one calculates the Hz3.5-value it
needs to know the value of Ex4 which is stored in node two. This means that during
each time step two messages have to be sent, one in each direction. In 3D two of
the six electromagnetic variables must be sent across processor interfaces. We have
implemented this strategy with several syntactically different MPI implementations.
They are described in detail in [4].
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Figure 5.1. Illustration of our parallelization strategy. A 1D Yee grid with six cells
(n=6) and ∆y = 0.5 distributed on two nodes.

On a parallel computer with reasonably fast communication, e.g. an IBM SP, it
is possible to achieve perfect scalability. With perfect scalability we mean that when
the problem size is increased linearly with the number of processors the execution
time is constant. On the other hand, it is usually not possible to achieve ideal
speed-up. An exception occurs when cache effects makes smaller problem sizes
faster than larger ones. With speed-up we mean that the problem size is kept fixed
independently of the number of processors. Figure 5.2 displays speed-up results for
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an IBM SP. A point source was used for excitation and the first-order Mur scheme
was used as ABC. The nonblocking communication of MPI (MPI ISEND) was used.
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Figure 5.2. Speed-up of pscyeeon an IBMSP with 160MHz RS/6000 processors.
The problem size is 252 × 252 × 127. The solid line represents ideal speed-up.

Portability has been demonstrated by executing the code on several different
parallel computers, including an IBM SP, a Fujitsu VX, a CRAY J932 and a cluster
of Digital Alpha servers. The performance was satisfactory on all these computers.

A more detailed descriptions of our parallelization strategy can be found in
[3, 4]. A nice review of parallelization of FD-TD is given by Professor Gedney in
Chapter 5 of [52].

5.3 One billion cells

For homogeneous materials we need only six floating point values per cell, the three
electric and the three magnetic field components. Using 32-bit precision (four bytes)
means that we need 4 ∗ 6 ∗ 109 = 22.4 Gbyte memory for one billion cells. Clearly,
only a parallel computer can supply this. We used 125 nodes with 160MHz RS/6000
processors of the IBM SP at PDC, KTH. These nodes have 256 Mbyte memory each
making a total of 31.25 Gbyte. Actually, a few of them have more than 256 Mbyte,
but we do not want to use it since that would destroy the load balancing.

It is not possible to use all the physical memory on a node since some of the
memory is used by the operating system. Using too much memory will result in
swapping which must be avoided since it has a drastic effect on the performance.
Tests indicated that it was safe to use up to 200 Mbyte on each node and that one
usually could use up to 220 Mbyte.

The object chosen for this calculation was a SAAB 2000 aircraft. A Cartesian
description of this aircraft was created from a CAD description using CADfix. This
was performed by Ericsson Saab Avionics (ESB). The file delivered from ESB only
contained one half of the airplane so we had to create the entire airplane by mir-
roring. Hence, we got an absolutely symmetric airplane. The resolution was 2.5 cm
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Figure 5.3. The surface currents after 1500 time steps on the SAAB 2000 aircraft.
Also the magnitude of the H-field is shown on a cutting plane across the wings
perpendicular to the fuselage. (A color version is displayed on Page 172.)

in all three dimensions which was a factor two per space dimension smaller than
the resolution previously used at ESB. We used a problem size of 1260×1260×635
equaling 1 008 126 000 cells in total. The computational domain was split in 5×5×5
blocks each with a size of 252 × 252 × 127 cells.

The total number of E-fields on the surface of the SAAB 2000 was almost two
millions and the number of surface quads was almost one million. The memory
needed to store this information varied from node to node and was at most nine
Mbytes.

The input file containing the PEC information for one half of the SAAB 2000
contained almost one million lines. Since all nodes read this it was very inefficient
to use the standard file system, afs, which only gave a CPU activity of 2–3% while
reading the file. Instead we used the parallel file system, pfs, which gave a CPU

activity of about 20%. A more efficient strategy would probably be to let one node
read the data, analyze it and then distribute it to the other nodes.

The performance of the core of the code is almost 25 Gflop/s. This figure
excludes output. When the surface currents and two cutting planes were written
every 20th time step this performance dropped to about 20 Gflop/s. In this case,
the time to complete one time step was about 1.8 seconds. A total of 2500 time
steps were taken and the total execution time, including initializations, was 86
minutes.

The first-order Mur ABC was used and excitation was performed with a point
source in front of the airplane. The MPI SENDRECV facility was used for the
communication.
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5.4 Visualization of large FD-TD data

Figure 5.4. The interior of the SAAB 2000 aircraft. Surface currents are shown at
the same time as in Figure 5.3. (A color version is displayed on Page 172.)

Running large FD-TD simulations do not only require powerful computers. It
also put high demands on the post processors. For small and medium size problems
you can save the whole electromagnetic field at each time step (or every n:th time
step) if you have sufficiently large discs. After the simulation you can go through
the data and visualize the features you are looking for and also find unexpected
properties of your solution. This is not the case when you are solving large prob-
lems. Not only the disc space is limited but the I/O bandwidth is also an effective
bottleneck. You have to decide a priori what field values you want to post process
and save only them. Furthermore, you need a high end graphical system to visualize
the multitude of polygons that constitute the objects in your simulation.

A new technique has emerged during the last few years which is believed to
make the understanding of scientific computing results easier. The concept is usu-
ally called “CAVE”, CAVE Automated Virtual Environment, and consist of back-
projection of images onto semitransparent surfaces. If several surfaces are put
together you get a room where you are surrounded by the images. By adding a
tracking system where your head position is tracked, stereo images can be produced
and highly realistic 3D environments are perceived. With a tracking system for a
hand held device you can also interact with this virtual reality.

This technique has obvious benefits: it is easy for several people to be in the
room simultaneously and therefore see images together. The users can thus interact
with the virtual reality together and focus on interesting areas. Also, because users
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see their own hands and feet, for example, as part of the virtual world, they get a
heightened sense of being inside that world.

Various CAVE-like environments exist all over the world today. Most of these
have up to four projection surfaces; images are usually projected on three walls and
the floor. Adding projection on the ceiling gives a fuller sense of being enclosed in
the virtual world.

Projection on all six surfaces of a room allows users to turn around and look in all
directions. Thus, their perception and experience are not limited, which is necessary
for full immersion. Such a six-surface-system has recently been inaugurated at PDC,
KTH and several projects on visualizing CEM solutions have been started where the
users will be able to navigate, for example inside an aircraft while lightning strikes.
In this case one will directly see the field penetrating the openings of the fuselage
and detect “hotspots” to avoid in the context of EMC.

However, the CAVE technology does not ease the urge of effective handling of
the output from FD-TD solvers. Even though the computers serving CAVE en-
vironments often are high end graphical systems you still have to limit the data
saved for post processing. In Figure 5.3 the surface currents are displayed on each
2.5 × 2.5 cm2 square constituting the surface of the FD-TD object. Approximately
one million quads are put to the visual system and clearly, most of them are not
visible in the picture. Furthermore, perhaps one could utilize the concept “level of
details” where smaller parts in the background are combined to fewer objects and
thus lower the number of polygons to be rendered. For volumetric data semitrans-
parent 3D texture mapping can be utilized. This volume rendering technique can
be used to show the field inside the aircraft.
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5.5 Conclusions

We have demonstrated that by using a large parallel computer it is possible to do
an FD-TD calculation with more than one billion cells. We showed this by using
125 nodes of an IBM SP.

The parallel implementations of PML and the subcell model for arbitrarily ori-
ented thin wires (Paper 5 on Page 10) are in progress. When they are completed we
plan to repeat the one billion cells calculation using these features. Excitation will
be performed using the thin-wire model. The parallelization approach is illustrated
in Figure 5.5, where models for frequency dispersive materials are also included.
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Figure 5.5. The load balancing for a full problem, including PML, frequency
dispersive materials and an arbitrarily oriented thin-wire subcell model.
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Chapter 6

Hybrid Methods in 2D

6.1 Introduction

In this section we present a detailed description and a thorough performance anal-
ysis of our hybrid methods in 2D. We consider the TM equations given in (3.8)
with σ = σ∗ = 0. We demonstrate that staircasing of a circular cylinder destroys
the second-order accuracy of FD-TD and that second-order accuracy is recovered
when using our hybrid methods. We also present numerical stability experiments.

This Chapter is based on Paper 2 in the list in Chapter 1. Results for dis-
continuous µ and ǫ have been added. There has also been some improvements
in the notation, especially in the Finite-volume section. The description of the
Finite-volume method is based on the the Licentiate thesis of Fredrik Edelvik [29].

6.2 Finite-difference method

The FD-TD method is described in Chapter 4. The TM grid is illustrated in
Figure 4.1. Here we give a brief additional description. We recall that the fields
are staggered both in time and space. This means that when the electric field Ez is
known on a time-level, the magnetic field components Hx and Hy can be explicitly
calculated on the next half time-level using only the previous Hx and Hy values
and the latest Ez values, see Figure 6.1. We use the U-PML method described in
Section 4.6 and the profile for σ is the one suggested in [38], i.e.

σ(ρ) =
1

3πd
(
ρ

d
)4 (6.1)

where d is the thickness of the PML layer, ρ is the distance to the interface between
PML and the computational domain.
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Figure 6.1. The timestepping mechanism for the FD-TD method: only Hy and Ez

are considered here.

6.3 Finite-element method

6.3.1 FE-TD formulation

The FE-TD formulation is based on the second-order differential equation obtained
by eliminating either the H- or E-field in the Maxwell equations. In the 2D TM
case with σ = σ∗ = 0 the E-field is eliminated to yield

µ
∂2H

∂t2
+ ∇× 1

ǫ
∇× H = 0 . (6.2)

Together with initial values and boundary conditions this defines the problem to
solve. As boundary conditions (BC) we use:

n × (∇× H) = 0 on Γe (PEC) , (6.3)

n × H = 0 on Γh (PMC) , (6.4)

n × H = n × Hfdtd(t) on Γt . (6.5)

In the TM case the first type of BC (PEC) becomes a Neumann boundary condition.
The second type models a PMC and becomes a Dirichlet boundary condition. The
third type is also a Dirichlet boundary condition, but it is time dependent, and is
used at the interface to the FD-TD domain.

For the hybridization we also integrate Ez in the transition layer between the
FE-TD domain and FD-TD domain by using Ampère’s law. These Ez compo-
nents are required by the FD-TD scheme as boundary values, see Section 6.6. For
visualization purposes Ez is actually integrated in the whole domain.
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6.3.2 Spatial discretization

The weak form, or the Galerkin form, of our problem can be stated as: find H ∈ W ,
where W = H(curl, Ω) =

{
v : v ∈ L2(Ω),∇× v ∈ L2(Ω)

}
, such that

∫

Ω

(

µ
∂2H

∂t2
· w +

1

ǫ
∇× H · ∇ × w

)

dΩ =

−
∫

Γ

1

ǫ
n ×∇× H · w ds ,

(6.6)

for all w ∈ W . As trial and test functions we have chosen “edge” or “Whitney”
elements [76]. These elements constitute the natural FEM analogue to the Yee
scheme in that they essentially yield the same scheme on a Yee grid [69]. They
give a “physical” approximation in the sense that only tangential continuity across
element edges is enforced, and not normal continuity. This is in agreement with
the interface condition given in (3.16). A comparison between edge elements and
standard node elements have been presented in [68]. The edge elements have the
advantage that the Gauss’ laws are better fulfilled by the approximations, and it is
easy to implement essential boundary condition.

To define these linear edge elements which are second-order accurate, consider
the standard linear basis functions Φi for nodal-based finite elements, constructed
such that Φi = 1 in node number i and Φi = 0 in all other nodes. Take edge e to
be the edge on a triangular element joining node i and node j. The basis function
for edge e is

ϕe = Φi∇Φj − Φj∇Φi , (6.7)

and is illustrated in Figure 6.2.

edge e

ϕ

Figure 6.2. The basis function ϕe for edge e plotted over a triangle.

The basis function for edge e has the following properties:

• ∇ · ϕe = 0 .

• ϕe has constant tangential component ( = 1/length ) along edge e, which
means that the tangential component is continuous around edge e. The nor-
mal component is discontinuous.

• ϕe has zero tangential component along the other edges.
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The approximation Hh ∈ Wh of H ∈ W can then be written as
Hh =

∑

e αeϕe, where αe is an approximation of the H component tangential
to edge e, multiplied by the length of edge e. The edge element method applied
to (6.6) then becomes: solve the system of ordinary differential equations

M
d2α

dt2
+ Sα = fA , (6.8)

where the vector α contains the unknown αe:s. The matrix elements coupling edge
k and edge l is:

(M)kl =

∫

Ω

µϕk · ϕl dΩ , (6.9)

(S)kl =

∫

Ω

1

ǫ
(∇× ϕk) · (∇× ϕl) dΩ , (6.10)

and the right-hand side fA contains the contributions from the boundary condi-
tions, i.e. we have fA = fD + fN . The general form of the contributions from a
time dependent Dirichlet boundary Γt is

(f)
D
k = −

∑

l∈Γt

(

(M)kl

∂2αl

∂t2
+ (S)kl αl

)

. (6.11)

The PMC BC is just a simple special case of this, where these terms become zero.
In the hybrid code the “boundary values” from the FD-TD domain will enter the
FE-TD domain in this way. At a Neumann boundary Γe, n × ∇ × H is to be
specified, see (6.3). If this expression is a known function on the boundary then

(f)
N
k = −

∫

Γe

1

ǫ
n ×∇× H · ϕk ds , (6.12)

has to be computed.
When formulating the local mass and stiffness matrices it is convenient to in-

troduce the following notation. Define

li = (xi−1 − xi+1, yi−1 − yi+1)
T , (6.13)

as the vector along edge i, with direction counterclockwise (see Figure 6.3). The
index i in (6.13) assumes the values 1, 2 and 3 cyclically, so that if i = 3 then
i + 1 = 1. Furthermore, let the the vector d be given by

d = (d1, d2, d3)
T , (6.14)

where di = 1 if the local direction of edge vector li is the same as the globally
defined direction, otherwise di = −1. Expressed in this notation the local three by
three geometrical stiffness matrix sg becomes

sg = ddT /A , (6.15)
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l1
l2

(x    , y   )33

(x    , y   )2 211(x   , y   )
21

3l

3

Figure 6.3. Triangular element with nodes and vectors along edges.

where A is the area of the triangular element, and the geometrical mass matrix mg

has the elements

mg
ii = (lTi+1li+1 + lTi−1li−1 − lTi+1li−1)/(24A) ,

mg
ij = −(lTk lk + lTi lj)/(24A · didj), i 6= j, j 6= k, k 6= i ,

(6.16)

where the indexes i, j, k are cyclically defined as explained above. The material
properties µ and ǫ are assumed to be constant within each triangle. The matrices
m and s are thus given by scalars times geometric mass/stiffness matrices, i.e.

m = µ · mg , (6.17)

s =
1

ǫ
· sg . (6.18)

6.3.3 Time discretization

A major drawback of the edge element method is that it is difficult to obtain an
explicit scheme on a general unstructured grid. For the first-order formulation of
the Maxwell equations, it has been shown that masslumping can be justified only
if all the triangles are acute [70]. However, the FE solver is meant to be used to
resolve fine geometrical features and in that case an explicit time integrator cannot
be used anyway due to the small time step required. Using (6.11) the system (6.8)
may be written as







(M MD)





d2α
dt2

d2αD

dt2



+ (S SD)

(
α

αD

)

= f ,

α(0) = α0 ,

dα(0)
dt = v0 ,

(6.19)

where M and MD are mass matrices, S and SD are stiffness matrices from the
discretization of the double-curl operator and α is the magnetic field vector, which
we will solve for. The vector αD contains the given magnetic field at the Dirichlet
boundary and the matrices with index D describe the influence from this boundary.
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Note that the right-hand side now is f = fN . To get a first-order system we
introduce v as the time derivative of α and rewrite the system as











dα
dt

dαD

dt



 =

(
v

vD

)

,

(M MD)





dv

dt

dvD

dt



+ (S SD)

(
α

αD

)

= f .

(6.20)

For the time-discretization of this system we have implemented two methods, the
two stage backward difference formula (BDF-2) and the θ-method. The θ-method
yields

αn+1 − αn

∆t
= θvn+1 + (1 − θ)vn , (6.21)

M
vn+1 − vn

∆t
+ S(θαn+1 + (1 − θ)αn) =

θfn+1 + (1 − θ)fn − MD
vn+1

D − vn
D

∆t
− SD(θαn+1

D + (1 − θ)αn
D) , (6.22)

where

vn+1
D =

(

−(1 − θ)vn
D +

αn+1
D − αn

D

∆t

)

/θ , (6.23)

and αn corresponds to α(tn), ∆t = tn+1 − tn and 0 < θ ≤ 1. Note that we use the
θ-method not only for the time-integration but also for approximating the time-
derivative vn+1

D on the right-hand side of (6.22). The solution process in each time
step begins by applying (6.23) to compute vn+1

D given the boundary condition αn+1
D

and then solve the system (6.22), which is rewritten as
[

I/∆t −θI

θS M/∆t

][
δα

δv

]

= −
[

resα

resv

]

, (6.24)

where
δα = αn+1 − αn ,

δv = vn+1 − vn ,
(6.25)

and the residuals on the right hand side are

resα = −vn ,

resv = Sαn − θfn+1 − (1 − θ)fn

+ MD
v

n+1

D
−v

n
D

∆t + SD(θαn+1
D + (1 − θ)αn

D) ,

(6.26)
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The solution of (6.24) utilizes the following block LU factorization of the Jacobian
of the system

[
I/∆t −θI

θS M/∆t

]

=

[
I/∆t 0

θS J

][
I −∆tθI

0 I

]

, (6.27)

where the Schur complement matrix J is given by

J = M/∆t + ∆tθ2S . (6.28)

The solution can then be divided into the three steps

δαp = −∆tresα ,

Jδv = −resv − ∆tθSδαp ,

δα = δαp + ∆tθδv .

(6.29)

The first two steps are the forward substitution in the block LU factorization while
the third step is the back substitution.

This scheme is unconditionally stable for 1/2 ≤ θ ≤ 1. With θ = 1/2 we obtain
the only second-order θ-method, the midpoint or Crank-Nicholson method. Note
that this method is equivalent to the method used by Hwang and Wu [51] on the
second-order system. As an alternative we have implemented the BDF-2 method,
which also is second-order accurate and unconditionally stable. Applied to

dx

dt
= f(x) , (6.30)

the BDF-2 method, with constant time step, becomes

3xn+1 − 4xn + xn−1

2∆t
= f(xn+1) . (6.31)

The BDF-2 method has an error constant which is four times larger than the
error constant of the Crank-Nicholson method, but it has shown better stability
properties than the Crank-Nicholson method when used in the hybrid code. We
note that the time-integration requires initial values for the “velocities”. This is
similar to the requirement of initial data in the Yee scheme, and we simply set
an initial state where all fields and their time derivatives are zero. Also note that
BDF-2 requires values at two previous time steps, which for the initial values is
equivalent to knowing also the initial “accelerations”. This would normally require
some special treatment to start the integration, but since we assume zero initial
values for the “accelerations” this poses no problem.
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6.3.4 Workload and memory requirements

The workload per time step is of the order 4bN where b is the bandwidth of the
system (6.24) after renumbering and N is the number of unknowns which is equal to
the number of edges in the unstructured grid. Neglecting boundaries, the number
of edges equal 1.5 times the number of triangles. The factorization takes 2b2N
arithmetical operations, but it is only performed once. The bandwidth is of course
problem dependent. The memory requirements are bN floating point values. We
use the reverse Cuthill-McKee [41] ordering algorithm to reduce the bandwidth of
the system (6.24).

The use of an iterative method would decrease the computational workload and
the memory requirements. Iterative solvers will be further discussed in Chapter 7.

6.4 Finite-volume method

6.4.1 FV formulation

The Finite-volume (FV) solver is based on the following integral formulation of
Ampère’s and Faraday’s laws:

∂

∂t

∫

A

µH dA = −
∮

Γ

n × E dl , (6.32)

∂

∂t

∫

A

ǫE dA =

∮

Γ

n × H dl , (6.33)

where A is an arbitrary area, Γ is the path that encloses A and n is the unit normal.

6.4.2 Spatial discretization

The integral formulations in (6.32) and (6.33) are discretized on a staggered grid by
introducing a dual grid to the primary triangular grid. The magnetic components
are situated at the nodes of the primary grid and the electric components, in the
2D TM case only Ez, are situated at the nodes of the dual grid. The dual grid is
created at the preprocessing stage by defining dual nodes at the barycenters of the
primary cells; see Section 6.4.5 for a detailed description.

In the 2D TM case integrating the magnetic and electric fields over each dual
and primary cell gives the following integral form:

∂

∂t

∫

Ad
j

µ̃d
j H dA = −

∑

k

∫

Γd
j,k

nd
j,k × (Ez ẑ) dl , (6.34)

∂

∂t

∫

Ap
i

ǫp
i Ez dA =

∑

m

∫

Γp
i,m

n
p
i,m × H dl , (6.35)
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where Ad
j is the area of dual cell j, Γd

j is the path that encloses Ad
j and nd

j,k are
the unit edge normals for the dual edges k in dual cell j. The variables belonging
to the primary cell i are defined similarly.

All materials are defined relative to primary grid cells. For dielectric materials
that is a natural definition. However, the magnetic permeability, µ, is associated
with the dual grid cells. Therefore, µ requires averaging. The average permeability
of dual cell j is computed as

µ̃d
j =

1

Ad
j

∑

q

µp
qA

d
j,q , (6.36)

where Ad
j,q is the part of the area Ad

j that is inside primary cell q. Performing the
material averaging in this manner preserves the second-order accuracy of the solver
for inhomogeneous materials.

The area integrals in (6.34) and (6.35) are evaluated by taking the average
values of the fields multiplied by the areas of the respective cells. Simplifying the
two integrands in the line integrals implies

µ̃d
j

∂

∂t
Hj = 1

Ad
j

∑

k

∫

Γd
j,k

Ẽz|j,k td
j,k dl , (6.37)

ǫp
i

∂

∂t
Ez|i = 1

Ap
i

∑

m

∫

Γp
i,m

H̃ · tp
i,m dl , (6.38)

where td
j,k are unit vectors for the dual edges k in dual cell j and t

p
i,m are unit

vectors for the edges m in primary cell i. The line integral in (6.37) is evaluated
by assuming that the electric field is piecewise linear along the dual edges. Hence,
Ẽz|j,k is computed by taking the arithmetic mean value of the electric field at
the two nodes defining the dual edge, td

j,k. However, we cannot use the same
approach when calculating the integral in (6.38) since that does not guarantee that
the divergence is preserved on a local cell level. This has been found to be very
critical if spurious modes in the numerical solution are to be suppressed. The
divergence is preserved if we incorporate an “FD-TD”-correction along the edges
in the primary grid (see Section 6.4.4 for a proof). Following Riley et al. [84], the
magnetic field projected along the primary edge t

p
i,m is evaluated as

H̃ · tp
i,m = H · nd

j,k

(
nd

j,k · tp
i,m

)

+
1

2

[
(Hj + Hr) −

(
(Hj + Hr) · nd

j,k

)
nd

j,k

]
· tp

i,m ,
(6.39)

where Hj and Hr are the magnetic field at the two nodes defining the primary
edge and H ·nd

j,k is the FD-TD component in the direction nd
j,k orthogonal to the
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dual edge td
j,k, which crosses the primary edge t

p
i,m, see Figure 6.4. The FD-TD

component is updated according to

∂ H · nd
j,k

∂t
=

Ez|q − Ez|i
∆d

j,k µ̃d
j,k

, (6.40)

where ∆d
j,k is the length and µ̃d

j,k is the average permeability of the dual edge td
j,k.

The average permeability, µ̃d
j,k, is approximated as

µ̃d
j,k =

µp
q ∆q + µp

i

(

∆d
j,k − ∆q

)

∆d
j,k

, (6.41)

where i and q are the two primary cells sharing dual edge td
j,k, ∆q is the part of

the length of the dual edge that is inside primary cell q, see Figure 6.4.

nd
j,k

t
p

i,mHj Hr

Ez i

Ez q

∆ q

tj,k
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Figure 6.4. The magnetic field along t
p
i,m is corrected using the FD-TD value in

direction n
d
j,k.

Taking a closer look at (6.39) we see that if the primary and dual edges are
orthogonal, the vectors nd

j,k and t
p
i,m are parallel and the second part of (6.39)

vanishes. Hence, the name “FD-TD”-correction is somewhat misleading since that
term is actually the important one. The magnetic node values are only used to give
a better approximation of the edge-projected field in the case when nd

j,k and t
p
i,m

do not align.
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The boundary condition for a perfect magnetic conductor (PMC) gives us that
the tangential component of the magnetic field at the object is zero. A complication
occurs whenever the computation of H̃ · tp

i,m does not reduce to the FD-TD term,

H ·nd
j,k, where t

p
i,m denotes a primary edge with one node on the boundary. When

that is not the case the following alternative is used (see Figure 6.5(a)):

H̃ · tp
i,m = H · nd

j,k

(
nd

j,k · tp
i,m

)

+
1

2

[
Hj + (Hj · ñr) ñr − (Hj + (Hj · ñr) ñr) · nd

j,k

]
· tp

i,m ,
(6.42)

where ñr denotes an average normal at the boundary node. This normal is defined
by taking the average direction of the two boundary edges including the boundary
node and then taking the cross product with that direction and ẑ.
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Figure 6.5. Primary and dual cells at PMC and PEC boundaries. The boundaries
are illustrated by thick lines. The PEC boundary condition is enforced using the
method of images.

For a perfect electric conductor (PEC) the tangential electric components, in the
TM case only Ez, should equal zero at the boundary. However, the Ez components
are not situated on the boundary. The boundary condition is enforced by setting
the electric field inside the conductor equal to the value of the electric field directly
outside the conductor with a change of sign, see Figure 6.5(b). These uniquely
determined virtual image nodes are identified when the dual grid is constructed in
the preprocessing phase, see Section 6.4.5.
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6.4.3 Time discretization

We use a third-order staggered Adams–Bashforth scheme (ABS3) [40],

H
n+ 1

2

j = H
n− 1

2

j (6.43)

+
∆t

µ̃d
j Ad

j

∑

k

(
25

24
Ẽz|nj,k − 1

12
Ẽz|n−1

j,k +
1

24
Ẽz|n−2

j,k

)

td
j,k∆d

j,k ,

Ez|n+1
i = Ez|ni +

∆t

ǫp
i Ap

i

∑

m

(
25

24
H̃ · tp

i,m|n+ 1
2− (6.44)

1

12
H̃ · tp

i,m|n− 1
2 +

1

24
H̃ · tp

i,m|n− 3
2

)

∆p
i,m ,

H · nd
j,k|n+ 1

2 = H · nd
j,k|n−

1
2 + ∆tF

(
25

24
En

z − 1

12
En−1

z +
1

24
En−2

z

)

, (6.45)

where F is an operator taking care of the update of H · nd
j,k according to (6.40).

Since ABS3 is a staggered time integrator the time-coupling with FD-TD is straight-
forward, see Section 6.6. Furthermore, its stability properties are superior compared
to the traditionally used leap-frog scheme, see Section 6.4.7.

6.4.4 Preservation of divergence

The finite-volume solver is based on an integral formulation of Ampère’s and Fara-
day’s laws. However, the Maxwell equations also include the Gauss’ laws that have
to be satisfied in order to ensure a physical solution. For lossless materials, the
divergence of the magnetic flux density vector, B, as well as that of the electric
flux density vector, D, should equal zero.

Proposition 6.1. For the 2D TMz Maxwell equations, ∇ · D = 0 is auto-

matically satisfied.

Proof The proof is trivial because E only has a z component in the TM case and
the last term is zero because we do not have any variation in the z-direction in 2D,

∇ · D = ∇ · ǫE =
∂ ǫEx

∂x
+

∂ ǫEy

∂y
+

∂ ǫEz

∂z
= 0 .
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Proposition 6.2. The FV solver preserves ∇ · B on a local cell level to

machine precision.

Proof For dual cell j we have

∂

∂t

∫

Ad
j

∇ · B dA =
∂

∂t

∫

Ad
j

∇ · µH dA =
∂

∂t

∮

Γd
j

µH · nd
j dl ,

where Gauss’ theorem is used to get the last equality. Splitting the integral path
into k segments gives us

∂

∂t

∑

k

∫

Γd
j,k

µH · nd
j,k dl .

So far we are still using continuous variables. If we think of the segments as being
the dual edges and also assume that H · nd

j,k and µ are constant along each edge
we get

∂

∂t

∑

k

µ̃d
j,k H · nd

j,k

∫

Γd
j,k

dl =
∂

∂t

∑

k

µ̃d
j,k H · nd

j,k ∆d
j,k ,

where ∆d
j,k is the edge length. The permeability is time independent and we can

swap the sum and time derivative operator to obtain

∑

k

µ̃d
j,k ∆d

j,k

∂H · nd
j,k

∂t
.

Finally we can use (6.40) which gives us

∑

k

(Ez|q − Ez|i) = 0 ,

where the last expression equals zero because in the sum over k, each electric node
value occurs twice with opposite signs.

Thus, the time derivative of the divergence is equal to zero and hence the di-
vergence is preserved to machine precision in each cell.

Note that if H ·nd
j,k had been computed as a projection of the arithmetic mean

value of the two magnetic node values (see Figure 6.4), instead of being updated
using (6.40), the divergence would in general have differed from zero.

We would also like to point out that the proof is independent of how µ̃d
j,k is

calculated. However, if we use (6.41) in (6.40) and (6.36) in (6.37) we obtain a
second-order accurate FV solver.
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6.4.5 Creating the dual grid

Perhaps the most demanding task in implementing the FV solver is the construction
of the dual grid from the primary grid. This is done in the preprocessing phase
by joining barycenters of the neighboring cells. Hence, the dual grid is uniquely
determined by the primary grid.

Starting with the inner edges, i.e. edges not situated on a boundary, each inner
edge in the primary grid is crossed by a dual edge, see Figure 6.6. These dual edges
belong to the dual elements surrounding the start- and stop-nodes of the respective
primary edges.

At a PEC boundary, as already mentioned, the electric field nodes are mirrored
in the boundary. The dual edges crossing the boundary edges are assigned to the
dual elements surrounding the start- and stop-nodes of the boundary edges. The
dual edges lying inside the PEC object are constructed by joining the image nodes
together and they are assigned to the dual elements that hold both the dual nodes
of these edges.
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 Hybrid boundary
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 Interface layer

 Inward corner
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Figure 6.6. Construction of the dual grid from the primary grid.

Note that if we have a very thin PEC object it is possible that two dual elements
lying on opposite sides of the boundary will overlap each other geometrically. This
does not pose any problems because the image nodes are only virtual and the
electric fields in these nodes are not updated, but assigned values from the field in
their corresponding node.

The hybrid boundary is slightly more complicated. The nodes lying on a hybrid
interface should be updated as usual, i.e. they have dual cells surrounding them, see
Section 6.6. The dual edges that cross the edges lying on the interface boundary
belong as usual to the dual elements surrounding the start- and stop-nodes of
the boundary edges, see Figure 6.6. Generating the outermost dual edges in the
interface layer is the trickiest part. Mainly because the interface is allowed to be
staircased to minimize the number of unstructured cells. Hence, we cannot, as in



6.4. Finite-volume method 63

the PEC case, create the outermost dual edges by simply joining the dual nodes
lying in the interface layer. We have to take care of the convex corners, which
are always four more than the concave corners. We know that we have an convex
corner when the midpoint of the dual edge joining two consecutive dual nodes,
moving counterclockwise in the interface layer, is the same point as the corner node
in the primary grid; see the dotted line in bottom right corner of Figure 6.6. If that
is the case we construct a new dual node and remove the dual edge going through
the corner. Instead we generate the two dual edges going to and from the new
node.

When all dual nodes and dual edges are constructed, the edges in each dual
element are sorted such that they are traversed counterclockwise for each dual
element. The area of a dual element is calculated by dividing it into triangles and
summing the contributions from each triangle.

6.4.6 Workload and memory requirements

To implement the solver efficiently we have chosen to compute as much as possible
initially. Hence, the update of the fields is accomplished using matrices acting on
the respective vectors. Due to the fact that the matrices will be sparse but without
structure we store them in compress sparse row format. This format is a very
memory efficient format for sparse matrices and gives fast access to the matrix
elements. After the matrices have been created, all grid variables can be written to
disk. Hence, this approach is much more efficient than recomputing the expressions
needed to update the field variables at every time step or using indirect addressing
in several levels.

To be able to obtain a theoretical estimate of the memory requirements and
number of arithmetic operations of the solver we have to make a few assumptions.
First of all we neglect boundary conditions. The following is assumed about the
grid:

• There are n triangles.

• There are three edges in each triangle and each edge is shared by two triangles.
⇒ There are 1.5n edges.

• There are three nodes in each triangle and each node belongs to six triangles.
⇒ There are 0.5n nodes and six dual edges per dual cell.

The field variables that we need to store are Ez, H · nd, H and H̃ · tp. Using
ABS3, Ez and H̃ · tp are stored at three time levels, whereas H · nd and H only
are stored at the latest time level.
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Variable Floating point numbers
Ez 3 · n
H · nd 1.5n
H 2 · 0.5n

H̃ · tp 3 · 1.5n
∑

10n

Table 6.1. Memory requirements to store the field variables.

The memory requirements for the matrix operators used to update the field
variables can be calculated from (6.37)–(6.40).

Variable Floating point numbers Integers
Ez n · 3 = 3n 3n + n = 4n
H · nd 1.5n · 2 = 3n 3n + 1.5n = 4.5n
H n · 6 = 6n 6n + n = 7n

H̃ · tp 1.5n · 5 = 7.5n 7.5n + 1.5n = 9n
∑

19.5n 24.5n

Table 6.2. Memory requirements to store the matrices.

Hence, using the results in Tables 6.1 and 6.2 the total memory requirements
for the FV solver is 29.5 floating point numbers and 24.5 integers per cell. Using
64-bit precision for the floating point numbers and 32-bit precision for the integers
this means that approximately 334 bytes per cell are needed.

The number of arithmetic operations used by the solver are calculated from (6.37)–
(6.40) and (6.43)–(6.45).

Variable Arithmetic operations
Ez n · 11 = 11n
H · nd 1.5n · 4 = 6n
H n · 12 = 12n

H̃ · tp 1.5n · 14 = 21n

Ẽz n · 5 = 5n
∑

55n

Table 6.3. Number of arithmetic operations per cell.

Hence, from Table 6.3 we conclude that the FV solver performs approximately
55 arithmetic operations per cell for each time step. This should be compared with
FD-TD, which needs eleven arithmetic operations per cell and 36 bytes of memory.
Hence, the FV solver is a factor 5 more expensive in terms of arithmetic operation
per cell and a factor of nine in terms of memory per cell compared to FD-TD.
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Note that in the above calculations we have not used the fact that when the
primary and dual edges are orthogonal the second part of (6.39) vanishes and the
H values are not needed. A case where this will happen is the equilateral grid. An
implementation of the solver should of course take advantage of this and the memory
requirements and workload will go down considerably. On an equilateral grid, or any
other grid where orthogonality occurs, the memory requirements are 16.5 floating
point numbers and 10 integers per cell. The total memory requirement is in this
case 172 bytes using the same precision. The number of arithmetic operations goes
down to 31 per cell for such a grid. Thus, it is possible to reduce the memory
requirements and the number of arithmetic operations by approximately a factor
of two for the special case when the grids are mutually orthogonal.

6.4.7 Stability analysis

We will now investigate the stability properties of our FV scheme. The stability
region for ABS3 for the scalar test equation u′ = λu is given in Figure 6.7. The
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Figure 6.7. Stability region for ABS3.

scheme is stable for λ between ±12/7 along the imaginary axis compared to the
leap-frog scheme, which is stable between ±2. That implies that we have to use
a shorter time step for ABS3. However, the main disadvantage with the leap-frog
scheme is that it is only stable on the imaginary axis and becomes unstable as soon
as we have eigenvalues with a nonzero real part, which we are likely to have on
unstructured grids and when boundaries are taken into account.

By introducing operators A and B that take care of the spatial discretization
we are able to write the semi-discrete problem on matrix form as

∂

∂t

(

Ĥ

Ez

)

=

(
0 A
B 0

)(

Ĥ

Ez

)

, (6.46)

where Ĥ =
(
H H · nd

)
.
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Figure 6.8. Three different uniform triangular grids, the equilateral grid (left),
the one-directional grid (middle) and the diamond grid (right). The respective dual
grids are indicated by dashed lines.

A detailed Fourier analysis of the stability and dispersion properties on the
three types of unstructured grids in Figure 6.8 is given in the Licentiate thesis of
Fredrik Edelvik [29]. This analysis shows that the stability condition for leap-frog
timestepping is given by

c∆tLF ≤ ∆√
2
· ∆min

∆
, (6.47)

where the first part in the right-hand side is the stability condition on Cartesian
grids and ∆min equals the shortest edge length in the primary and dual grids. The
stability condition for ABS3 timestepping is given by

c∆tABS3 ≤
6

7

∆√
2
· ∆min

∆
. (6.48)

To analyze the eigenvalues for a general unstructured grid including its bound-
aries we can no longer use Fourier analysis. Instead, let

zn =

(

Ez|n Ĥ
n− 1

2 Ez|n−1 Ĥ
n− 3

2 Ez|n−2

)T

, (6.49)

and after some straightforward rearrangements we are able to write (6.43)–(6.45)
on matrix form as zn+1 = P(A,B)zn, where

P =













I + 625

576
∆t

2
BA

23

24
∆tB −

25

288
∆t

2
BA

1

24
∆tB 25

576
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2
BA

25

24
∆tA I −
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12
∆tA 0

1

24
∆tA

I 0 0 0 0

0 I 0 0 0

0 0 I 0 0













, (6.50)

where A and B are defined as in (6.46). Analyzing the eigenvalues of the companion
matrix P, for the grid shown in Figure 6.9, reveals that if we choose the time step
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for ABS3 in the same manner as above we get the eigenvalue spectrum shown in
Figure 6.9, where all eigenvalues are within the unit circle. If we use the leap-frog
scheme with the same time step, the largest eigenvalue is of the order 1.0003. Hence
the leap-frog scheme is unstable even for a time step well within the stability limit
along the imaginary axis. The eigenvalues close to the origin in Figure 6.9 are the
“parasitic” roots of the ABS3 multi-step scheme. However, since these roots are all
close or equal to zero they are quickly damped away.
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Figure 6.9. Eigenvalues of the companion matrix P using ABS3 for a PMC cylinder
scattering case. The primary grid around the cylinder is shown to the right.

The values of the elements of P are taken directly from the code. Hence, we do
not need analytical definitions of these elements to perform the eigenvalue analysis.

6.5 Grid requirements

The cell size of the structured Cartesian grid is chosen by balancing the computa-
tional cost of using smaller cells and the inability to capture the physics by using
too large cells. When it comes to unstructured grids the cell size does not have to
be constant throughout the whole grid. Smaller cells are used where fine geomet-
rical details need to be resolved and larger cells are used as much as possible to
save computer resources. If the cell size in the Cartesian grid is based on resolving
characteristic wavelengths, then the unstructured cells must not be larger than the
structured cells.

The local wave propagation speed for waves propagating through a discrete grid
depends on the local grid size. If the grid size changes abruptly this will inevitably
give spurious reflections. Even if the cell size is changed in a smooth way there
will be some reflections although they can be made small. A few fundamental
observations about unstructured grids can be made:
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1. The rate of change in grid size must be controlled, see Figure 6.10a.

2. The cells should be as close to equilateral as possible in homogeneous domains,
see Figure 6.10b.

3. At material interfaces the cell size could be changed abruptly by a factor
of
√

ǫ1/ǫ2 (for a dielectric transition). This is due to the change in wave
impedance for the physical problem, see Figure 6.10c.

a) b) c)

Figure 6.10. a) Cell size changes must be reasonable. b) Equilateral cells are
preferable. c) Cell sizes are only allowed to change abruptly at material interfaces.

Some comments about the three points above are necessary:

1. One would of course like to have a very smooth transition from large to small
cells and vice versa, but this means that many unstructured cells are required.
For performance reasons we would like to have as few unstructured cells as
possible and hence a well balanced compromise must be found between these
two contradictory desires. Moreover, a too rapid transition in the FV case
leads to dual cells that are ill-balanced, i.e. a primary node will be surrounded
by a dual cell whose center is far from the primary node.

2. The reasons for the desire for equilateral triangles is that skewed triangles
augment the local numerical error. This is expressed as a stronger anisotropy
of the local wave propagation speed.

3. Abrupt change of the cell size at material interfaces is possible due to the fact
that the number of cells per wavelength is conserved in the normal direction.
This must of course be balanced against the second observation above. How-
ever, in the tangential direction there is not much one can do since the nodes
on the material interface are shared between the cells on both sides.

The unstructured grid should be as free as possible from global anisotropy, which
means that the orientation of the individual cells should be as random as possible
or counteract each others’ directivity as much as possible. This desire comes from
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c3

c2

c1
c)b)a)

Figure 6.11. a) The local wave propagation speed c depends on the propagation
direction (c1 6= c2 6= c3). b) Global directivity might amplify global anisotropy. c)
Global anisotropy might be reduced by locally counteracting anisotropies.

the fact that the local numerical wave propagation speed is not constant for all
angles of propagation. See Figure 6.11 for illustrations.

Coupling unstructured grids to structured Cartesian grids is described in Sec-
tion 6.6. In this case the unstructured grids must have a transition layer of split
rectangles which coincide with the Cartesian cells. An example of a transition layer
is shown in the left part of the unstructured grid in Figure 6.12.

6.6 Hybridization

It is very important that an electromagnetic solver for realistic industrial applica-
tions can handle complex geometries without compromising the efficiency more than
necessary. We believe that the best way to achieve this is to combine structured
grids with unstructured grids thereby getting a hybrid method.

Our strategy of using hybrid techniques between unstructured grids and struc-
tured grids is based on the following observations:

• The FD-TD method is an extremely efficient second-order method for homo-
geneous materials, with respect to time and memory consumption.

• The Cartesian grid handles general geometries poorly, and fine details cannot
be taken into account without special tricks.

• An unstructured grid can be fitted to general geometries and small details
can be resolved.

• Unstructured grids lead to more elaborate memory accessing, and the number
of operations per cell or wavelength is higher than in the classical FD-TD
method.

Coupling of structured grids and unstructured grids strives to utilize their ad-
vantages without suffering too much from their disadvantages. For unstructured
grids we distinguish between two cases:

1. The cell sizes in the unstructured domain are of the same size as in the
Cartesian grid. Typically this is the case when moderately curved boundaries
are meshed.



70 Chapter 6. Hybrid Methods in 2D

2. The cell sizes in the unstructured domain vary from the same size as in the
Cartesian grid to very small cells. The small cells are used close to fine
geometrical details in order to capture the physical influence of these details
on the global solution.

We distinguish between two types of time integrators: explicit and implicit time
integrators. The principal difference is:

un+1 = Bun + f (explicit), (6.51)

Kun+1 = Bun + f (implicit), (6.52)

where un is the vector of discrete unknowns at time level n, un+1 is the vector of
discrete unknowns at time level n + 1, B and K are (non-diagonal) matrices (for
finite elements a combination of the stiffness- and mass-matrix) and f is a source
term vector.

For explicit timestepping algorithms the time step is limited by the smallest cell
size. This is generally not the case for implicit timestepping algorithms, where the
time step usually can be chosen arbitrarily regarding stability. On the other hand,
explicitly marching on in time is trivial since this is only a straightforward matrix-
vector multiplication whereas implicitly marching on in time gives a system of linear
equations to solve for each time step. However, the mass matrix in (6.52) is time
independent and hence an LU factorization can be done in the initialization phase.
But implicit algorithms cannot, in general, be used for large unstructured grids
since the computational cost of doing an LU factorization does not scale linearly
with the number of cells. An option to circumvent this is to us iterative methods
to solve (6.52).

For large unstructured grids where some cells are small, explicit and implicit
solvers will be very computer demanding if used separately. In that case one could
try to couple an explicit solver (used for the larger cells) with an implicit solver
(used for the smaller cells). This is outlined in Section 6.6.3.

There is an appropriate note to make here. Using implicit timestepping means
that the time step does not have to be in accordance with the space step. Hence
the high spatial frequencies that can be (locally) supported by regions of small cells
cannot be propagated by the timestepping mechanism because larger time steps
only support temporal frequencies up to a limit of

max(fsupp) =
1

2 ∗ ∆t
≪ c

2 ∗ ∆
,

where ∆ is the smallest cell size. A justified question is then why bother to resolve
small details? The answer is that small geometric details do have an impact on the
lower part of the (temporal) frequency spectrum part of the solution. This is easily
realized by thinking of a thin infinite large PEC plate with a small hole. Even
though the hole might be smaller than a wavelength, a wave impinging the plate
on one side will result in fields excited into the other side.
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6.6.1 FD-FE

Coupling between the FD-TD solver for structured grids and the implicit FE solver
for unstructured grids (described in Section 6.3) is shown in Figure 6.12 and Fig-
ure 6.13.
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Figure 6.12. Coupling between structured FD-TD and unstructured FE. The lo-
cations of the Hy components on ΓA and Γa coincide. The locations of the Ez

components on ΓB and Γb also coincide.

1. The Hx and Hy components in the structured grid (to the left in Figure 6.12)
are updated using the standard FD-TD method once Ez on ΓB is given (ΓB

is the FD-TD boundary at B). When Hx and Hy are calculated the Hy

components along ΓA are sent to Γa in the FE grid.

2. The Ez components in the structured domain are updated using the standard
FD-TD method.

3. The FE solver calculates the magnetic field implicitly in the unstructured
domain using the values at Γa as boundary conditions.

4. By utilizing a discrete ∇-operation around the auxiliary Ẽz variables, Ẽz can
be time stepped according to Ẽn+1

z = Ẽn
z + ∆t

ǫ ∇× H at Γb.

With the grid we use at the interface the updating of Ẽz becomes identical to the
standard FD-TD method and when Ẽz is known on Γb these variables are copied
to ΓB for the next time step.

6.6.2 FD-FV

Coupling between the FD-TD solver for structured grids and the FV solver for un-
structured grids (described in Section 6.4) is very similar to the procedure described
in the previous section. However, one main difference is important to point out.
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Figure 6.13. The timestepping mechanism for the FD-FE hybrid. Compare with
Figure 6.1.

The FD-TD solver sends Ez components to the FV solver and receives magnetic
components from the FV solver, see Figure 6.14.
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Figure 6.14. Coupling between structured FD-TD and unstructured FV. The
locations of the Ez components on ΓA and Γa coincide. The locations of the Hy

components on ΓB and Γb also coincide. (On Γb, the Hy components are denoted

H̃ · tp to signify that they are edge values.)

In Figure 6.14 only the magnetic edge values along Γb are drawn (denoted H̃ ·tp).
They are collocated with the Hy components along ΓB in the FD-TD region and
hence a straightforward sending of magnetic components from the FV domain at
Γb to ΓB in the FD-TD domain can be performed.

6.6.3 FE-FV

A coupling between the two unstructured solvers is rendered possible because of the
differences in sending to and receiving from the two unstructured solvers when cou-
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pled with the structured FD-TD solver. The FE solver sends Ez components to the
FV solver and receives magnetic components from the FV solver, see Figure 6.15.

In this case one can use the explicit solver for the larger cells and the implicit
solver where smaller cells otherwise would limit the time step.
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Figure 6.15. Coupling between unstructured FE and unstructured FV. The lo-
cations of the Ez components on ΓA and Γa coincide. The locations of the H

components on ΓB and Γb also coincide. (On Γb, the H components are denoted
H̃ · tp to signify that they are edge values.)

Our hybrid code is currently limited to coupling between FD-TD and one of the
two unstructured solvers which means that the coupling of the two unstructured
solvers has not been verified experimentally. There are no reasons to believe that
there would be any accuracy problems but one cannot say anything about stability
without numerical experiments.

6.7 Stability

A critical aspect of every numerical method is stability All three schemes described
in Sections 6.2–6.4 are stable as long as the CFL limits in (4.12) and (6.48) are not
violated. However, this does not guarantee stability for the hybrid schemes since
coupling of two stable schemes might result in an unstable scheme.

The complexity of the hybrid scheme makes it very difficult and cumbersome
to perform a theoretical stability analysis. Instead we perform a numerical study.
The entire hybrid scheme can be written as

un+1 = Aun + fn , (6.53)

where fn represent the source terms. The vector u contains the unknown values of
both E and H fields and includes unknowns from several time levels from both the
structured domain and the unstructured domain. Furthermore u0 is given by initial
values. Instability in the sense of exponential growth is generated if any eigenvalue
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of A is larger than one. One possible way to find the eigenvalues of A would be to
use the technique employed for the FV solver in Section 6.4.7. However, it would
be very cumbersome to find the explicit values for all the elements of A in the
hybrid case. An alternative technique is to examine the dominant eigenvalue of A

by running the code for a very large number of time steps. We have utilized this
procedure which in numerical linear algebra is known as the power method.

6.7.1 Details

We performed stability tests for several hybrid grids, including those three grids
used in the convergence study for the circular cylinder, see Section 6.8. In all cases
we tested both PEC and PMC boundary conditions.

We ran the code for ten million time steps. The time to complete these com-
putations on an IBM Power 3 processor ranged from a few hours up to 24 hours
depending on the size of the grid. As ABC we used a twelve cell thick U-PML layer
with the profile given in (6.1). A plane wave was continuously fed into the compu-
tational domain using Huygens’ surfaces. The actual shape of the pulse is not so
important. It is crucial that all frequencies supported by the grid are present in the
calculation, but round off errors will introduce them even if they are not present
initially. A clever choice of excitation may lead to a quicker discovery of instability,
but instability will finally show up no matter what pulse is used.

6.7.2 FD-FE

We did encounter stability problems for the FD-FE hybrid for some grids when
the Crank-Nicholson scheme was used for time discretization. The grids used in
Section 6.8 were all stable, with one exception. The finest grid was unstable when
PMC BC was used. Furthermore, another grid, which is very similar to the coarse
grid used for the circular cylinder, showed instabilities for both PEC and PMC.

Stability problems with FD-FE hybrids are not unique to our approach. It has
been noted by other researchers in this area. A remedy has been suggested by
Hwang and Wu [51]. They used a temporal filtering technique to stabilize their
scheme. However, this approach reduces the order of convergence to one.

Our technique to stabilize the unstable cases is to increase the value of θ in
the timestepping scheme, see (6.29). Thus, we increase the stability region and
introduce dissipation for purely imaginary eigenvalues of the spatial discretization
matrix. However, θ = 0.5 is the only value that gives a second-order time integration
scheme. Table 6.4 summarizes our results for the three grids that were unstable
using the θ-method with θ = 0.5, i.e. Crank-Nicholson.
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θ coarse grid, PEC coarse grid, PMC fine grid, PMC
0.50001 Unstable Unstable Unstable
0.5001 Unstable Stable Stable
0.501 Stable Stable Stable

Table 6.4. Result of stability tests for the FD-FE hybrid.

For all three grids it was enough to increase θ to 0.501. This change in θ is so
small that the impact on accuracy is negligible even though it formally reduces the
order of convergence (in time) to one.

We have not encountered any instabilities when using the BDF-2 timestepping
scheme. The drawback of this scheme is that it has a time integration error ap-
proximately four times larger than the Crank-Nicholson scheme.

6.7.3 FD-FV

All grids tested were stable for the FD-FV hybrid as long as the time step was
selected properly. The time step we used was a factor of

√
2/4 smaller than the

stability limit for the FD-TD scheme, i.e. we chose

∆t =

√
2

4c0

√
1

∆x2 + 1
∆y2

. (6.54)

Using a time step twice as large proved to be unstable. This is not surprising since
it violates the stability condition in (6.48). The grids used in these stability tests all
have a shortest edge length of slightly less than half the cell size of the structured
grid.

6.8 Convergence

The order of convergence is at least two in both time and space for all three schemes
described in Sections 6.2–6.4. The hybridization techniques presented in Section 6.6
are designed to preserve this property. We have validated this by doing calculations
on five different cases:

• vacuum,

• a circular PMC cylinder,

• a circular PEC cylinder,

• a circular cylinder with ǫr = 4, and

• a circular cylinder with µr = 4.
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Note that the duality of the Maxwell equations means that PMC boundary condi-
tion for the TM mode is equivalent to PEC boundary condition for the TE mode.
Hence a PMC cylinder is an interesting test case even though there are no PMC
materials in the real world. We compare with FD-TD solutions which use staircase
approximations of the circular cylinder. We demonstrate that when the circular
cylinder is present, the FD-TD method does not show second-order convergence
but the hybrid methods do. This holds for all four test cases with a circular cylin-
der. In all cases, we have used Huygens’ surfaces to create a plane wave, with a
Gaussian shape given by

f(t) = e−(t−t0)
2/t2w , (6.55)

with t0 = 20/c0 and tw = t0/6. The angle of incidence was given by k = (1, 0). As
ABC we used a twelve cell thick U-PML layer with the profile given in (6.1).

6.8.1 Modeling of circular cylinders in FD-TD

As explained in Section 4.6, we have to model the circular cylinder using a staircased
approximation when we use the FD-TD method. The PEC and PMC boundary
conditions are implemented by zeroing components on the boundary of the stair-
case representation of the circular cylinder. However, we still have to choose an
algorithm for finding this representation of the circular cylinder.

In the PEC case, a simple way would be to zero all Ez components that are
located inside the circular cylinder. However, this would lead to a staircase repre-
sentation that always has an area smaller than the true area of the circular cylinder.
Instead, we have chosen to zero all Ez components that are located inside a virtual
radius of the true radius plus half the cell size. (We use the same resolution in both
spatial dimensions.) Numerical tests have confirmed our belief that this procedure
gives better results.

PMC boundary condition is implemented by zeroing the four surrounding H

components of every Ez component that are located inside the circular cylinder,
see Figure 4.1.

A computational cell is considered to be a part of the cylinder if its center lies
inside the cylinder. An Ez component is located at the corners of four cells, see
Figure 4.1. The ǫ value needed for the update of this Ez component is taken as
the arithmetic mean value of the ǫ values in these four cells. The Hx and Hy

components are located on the sides of the cells. The µ values needed for the
update of these components are taken as the harmonic mean value of µ in the two
cells sharing this side. The reason for using a harmonic mean value rather than an
arithmetic is the fact that these components are normal to the interface. This issue
is discussed in detail in the Ph. D. thesis of Ulf Andersson [5].

6.8.2 The coarse grids

Figure 6.16 displays the unstructured grids for a circular cylinder with a radius of
two meters. These 8 × 8 meter grids were created using Femlab [35] and inserted
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(a) PEC/PMC (b) Material

Figure 6.16. The coarsest unstructured grids.

in the center of a structured FD-TD grid with 40 × 40 cells of the size ∆ = 1m
so that the center of the cylinder was located at (x,y)=(19.5, 20.5). The coarsest
unstructured grid for the vacuum calculations consists of eight by eight squares
that have been split into two triangles each.

In all FD-TD calculations we have used CFL = 1/
√

2 for the circular cylinder.
The same time step was used for the FD-FE hybrid, while the time step for the
FD-FV hybrid was a factor of two smaller for the PEC and PMC cylinders and a
factor of four smaller for the material cylinders. For ∆x = ∆y = ∆ = 1 m this
gives ∆t ≈ 1.67 ns, ∆t ≈ 0.83 ns and ∆t ≈ 0.42 ns. The FD-FV time step has not
been chosen as the largest possible value. It has deliberately been chosen so that
the FD-FE time step is a multiple of the FD-FV time step. This allows us to avoid
temporal interpolation when probing the solutions. In the vacuum case all schemes
have used CFL = 1/

√
8. We have used Crank-Nicholson for the FE timestepping.

The error has been measured in those Ez components in the FD-TD grid that
lie closest to the unstructured grid. There are 36 such components, namely the
outer components in the set Ez(17:24,18:25). By choosing to measure the error in
the FD-TD grid we avoid spatial interpolation since all refined grids will have Ez

components in these locations. The error is defined as the difference between the
computational solution and a reference solution. The reference solutions for the
circular cylinders have been obtained by highly resolved FD-TD calculations. We
used Nx = Ny = 10240 for the PEC and PMC cylinders and Nx = Ny = 5120 for
the material cylinders. The errors in these reference solutions have been estimated
by comparing them with solutions where the problem size was a factor of two
smaller in each dimension. The results are given in Table 6.5.
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Error estimate
Vacuum 0
PEC 1.3 · 10−4

PMC 1.6 · 10−4

ǫr = 4 2.8 · 10−5

µr = 4 3.8 · 10−4

Table 6.5. Estimates of the maximum errors in the reference solutions.

For vacuum, we have used the analytical solution as the reference solution.
The Huygens’ surfaces were placed two meters from the outer boundary. In

this case it means that they were placed in the third cell. When we refine the grid
we will keep the physical location of the Huygens’ surfaces at two meters from the
boundary.

6.8.3 Grid refinement

The unstructured grids in Figure 6.16 consist of two parts: the interior 6 × 6
meter part and a one cell thick transition layer. When we refine the grids, the
interior part of the unstructured grids are refined by splitting all triangles into four
triangles. This is done in such a way that all edges are split into two edges. This
was done using a slight adjustment in the grid refinement procedure of Femlab [35].
When splitting one right angle triangle into four new triangles, Femlab splits the
triangles as in the left part of Figure 6.17. As mentioned in Section 6.5 we prefer
the methodology illustrated in the right part of Figure 6.17.

Figure 6.17. Two different grid refinement methodologies.

After the refinement of the interior part, we add a one cell thick transition layer
outside the interior part. This means that the area of the unstructured grid shrinks
with the refinement, see Table 6.6.

The nature of the hybrid scheme and the refinement procedure described above
make it necessary to move the circular cylinder when a grid is refined with a factor
of two. The lower left corner of the interior part of the unstructured grid must
coincide with the center of a cell in the structured grid, i.e. a location where there
is no field component. When we refine the grid with a factor of two, a new Ez

component will appear in the center of the coarse grid cell and hence, we may not
have the lower left corner of the interior part there. Hence, we have to move the
unstructured grid. The location of the center of the circular cylinder, (xcyl, ycyl),
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is specified in Table 6.6. A separate reference solution was calculated for each
location of the circular cylinder. The relocation of the cylinder could have been
avoided by using a refinement factor of three, but we considered this to be a too
rapid refinement.

Grid Coarse Medium Fine

Nx = Ny 40 80 160
∆ (m) 1 0.5 0.25
side of unstr. domain (m) 8 7 6.5
PEC, area (m2) (FD-TD) 9 11.25 11.56
PMC, area (m2) (FD-TD) 12 13 13
xcyl (m) 19.5 19.25 19.125
ycyl (m) 20.5 20.25 20.125
number of triangles 100 280 904
number of edges 172 460 1432
shortest dual edge 0.4714 0.2357 0.1179
Bandwidth (FE) 14 19 36

Table 6.6. Parameters for the circular cylinder test case. (PEC and PMC)

Grid refinement of the semi-structured grid used for the vacuum test case was
performed in a similar manner. However, in this case we need only one reference
solution since there is no object in the unstructured grid.
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6.8.4 Results

The results for the convergence study are shown in Figures 6.18–6.22. The plots
display the mean value of the absolute error in the 36 measure points as a function
of time. The peak of the Gaussian pulse passes the circular cylinder at t ≈ 125 ns.
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Figure 6.18. Errors for three refinement levels and three methods for the circular
PMC cylinder.
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Figure 6.19. Errors for three refinement levels and three methods for the circular
PEC cylinder.
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Figure 6.20. Errors for three refinement levels and three methods for the circular
cylinder with ǫr = 4.
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Figure 6.21. Errors for three refinement levels and three methods for the circular
cylinder with µr = 4.
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Figure 6.22. Errors for three refinement levels and three methods for vacuum.



6.8. Convergence 85

We note that in the beginning, the error is larger for the FD-FV hybrid. This
is caused by the shorter time step which gives a larger error in the FD-TD scheme.
This effect is not present in Figure 6.22 because we have used the same time step
for all methods in this particular test case.

For PEC and PMC, we note that around 110–115 ns, the error in the FD-TD
solution is slightly smaller than the errors in the hybrid solutions. This is most
likely due to reflections in the transition layer between the structured grid and the
unstructured grid. However, once the errors in the geometrical representation of
the circular cylinder affects the solution, we clearly see that the hybrid schemes are
superior.

The increase in error that can be seen in Figure 6.22 for t > 220 ns is caused
by the Huygens’ surfaces. When the Gaussian pulse reaches the upper Huygens’
surface a Gaussian with opposite sign is generated which is intended to zero out the
approaching Gaussian and thus giving a zero scattered field. Due to the dispersion
error there is a mismatch leading to a nonzero scattered field. This error is however
absorbed by the ABC. The error mentioned above is an error component generated
at the upper Huygens’ surface and traveling in the opposite direction. This effect
is present also in the other four cases, but is harder to spot since errors in the
scattered field are also present.

The order of convergence has been estimated by calculating the L1 norm of the
errors in Figures 6.18–6.22. The result is given in Table 6.7. In all cases we have
second-order convergence for the hybrid schemes. The FD-TD scheme however,
only has second-order convergence for vacuum. Note that we have used a numer-
ical reference solution for the circular cylinder cases. This affects the convergence
estimates in Table 6.7. The last digit could be slightly altered if we use a better
reference solution. However, this does not alter the main conclusion that we have
second-order convergence for the hybrid schemes.

We would also like to point out that the results in Figures 6.18–6.22 prove that
there are no large reflections at the grid interfaces. Small reflections are unavoid-
able, but as long as these reflection errors do not dominate the other error sources,
they are acceptable.

FD-TD FD-FE FD-FV
coar fine coar fine coar fine

Vacuum 2.08 2.02 2.08 2.02 2.06 2.02
PEC 2.23 1.06 2.01 1.98 1.99 1.98
PMC 1.33 0.97 2.13 2.08 2.01 1.91
ǫr = 4 1.50 1.10 2.03 2.00 2.03 2.00
µr = 4 1.54 1.16 2.06 2.01 2.04 1.97

Table 6.7. Estimates of the order of convergence for the three methods. The values
in the columns labeled coar have been obtained by comparing errors on the coarse
and medium grids and the values in the columns labeled fine have been obtained by
comparing errors on the medium and fine grids.
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6.9 PMC wall

A classical paper demonstrating the errors caused by staircasing is that by Cangel-
laris and Wright [17]. They study waves propagating along PEC walls in 2D and
conclude that the TE modes suffer dispersion due to the staircase approximation
of a PEC wall, while the TM modes do not.

One of their test cases involved a line source close to a PEC wall. The field was
probed at a distance of 100 cells from the line source. We make a similar test here.
Since we are working with the TM equations, we use the PMC boundary condition.
The duality of the Maxwell equations makes this equivalent to the PEC boundary
condition for the TE equations, which was shown by Cangellaris and Wright [17]
to be the “bad” case.

6.9.1 Details of the numerical setup

The computational domain is a square, i.e. we have N = Nx = Ny and ∆ = ∆x =
∆y. The value of N is chosen such that effects from the ABC or from the edges of
the PMC wall do not reach the probing points during our probing window, i.e. N
depends on the number of time steps taken. We use ∆ = 0.1 m and CFL = 0.75.
This gives us ∆t ≈ 0.176 ns.

The line source is applied as a current source, i.e.

Ez|n+1i,j = Ez|n+1i,j +
∆t

ǫ∆2
e−((n+1

2
)∆t−t0)

2/t2w , (6.56)

where t0 = 10.56 ns and tw = t0/6 = 1.76 ns. The weighting with ∆t/∆2 is nec-
essary to ensure convergence since the discrete current source is equivalent to an
integral over the cell area which is ∆2. The ∆t comes from the time discretization.

In the same way as in [17] we made two different FD-TD calculations: one
where the PMC wall aligns with the FD-TD grid and one where the wall is tilted
45 degrees compared to the grid axes. We will refer to the first case as “para” and
the second as “diag”.

In the “para” test case we placed the line source at Ez(N/2-50,8) and the PMC
wall at Hx(:,2). Hence, the distance from the wall to the line source was h = 0.65 m.
The probing point was placed in Ez(N/2+50,8), i.e. it lies at the same distance from
the wall as the line source. The distance between the line source and the probe
point were d = 10.0 m.

In the “diag” test case we placed the line source at Ez(N/2-54,N/2-46) and the
PMC wall was modeled by zeroing Hy(k,k), k=1,..,N, and Hx(k+1,k), k=1,..,N-1
in each time step. If we regard the wall as being placed along the line y=x-∆/2,
then the distance from the wall to the line source is h = 0.60 m. The probing point
was located at Ez(N/2+17,N/2+25). Hence, the line source and the probe point
were separated by a distance of d = 10.04 m.

To obliterate the error introduced by the staircase approximation of the tilted
wall, we introduced an unstructured grid close to the wall, see Figure 6.23. The line
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source and the probing point are located as in the “diag” case. The distance h from
the PMC wall to the source point and probe point was h = 4.5 ·

√
2∆ ≈ 0.636 m.

Due to the one half cell overlap between the structured and unstructured grid, it
is not possible to align the wall along y=x-∆/2. In Figure 6.23 we only display
a small piece of the unstructured grid. In all calculations we have used a large
enough grid to insure that effects from the edges of the PMC wall do not influence
the solution at our probing point.
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Figure 6.23. The horizontal wall is shown to the left and the tilted wall in the
middle. The unstructured grid used for the tilted wall is shown to the right.

The FV hybrid was not stable for CFL = 0.75. Instead we used CFL = 0.375,
doubled the number of time steps and probed the field every other time step.

6.9.2 Results

Figure 6.24 presents the result of this test case. The analytical solution is given by

u(t) =

2∑

i=1

∫ t

−∞

q(τ)G(ρi, t − τ)dτ , (6.57)

where ρ1 is the distance between the current source and the probing point, ρ2 is
the distance between the image point of the current source and the probing point,

q(τ) =
1

ǫ0

∂

∂τ
e−(τ−t0)

2/t2w , (6.58)

and the Greens function is given by

G(ρ, t) =
H(tc0 − ρ)

2πc0

√

t2 − ρ2/c2
0

, (6.59)

where H(t) is the Heaviside step function. Note that ρ1 and ρ2 are slightly different
for “para”, “diag” and the unstructured solutions. Hence we calculate different
analytical solutions for these cases. The analytical solution displayed in Figure 6.24
is for the “para” case.
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Comparing the errors in Figure 6.24 we clearly see that the hybrid schemes
outperform the “diag” case. We also note that the errors of the two hybrid schemes
are very similar. Furthermore, the hybrid solutions are actually slightly better
than the “para” solution. This may be due to the fact that the error in the FD-TD
scheme is smaller for waves traveling diagonally than for waves traveling along a
Cartesian axis, see Chapter 5 in [98].

We also tested two contour path modeling schemes. The first scheme is the one
described in Chapter 10.6 of [98]. It is labeled “Taf” in Figure 6.24. This scheme
was found to be unstable, but the instability did not significantly affect the solution
in the probing point during our probing window. The instability was generated at
the wall. Finally, we also implemented the scheme of Dey and Mittra [21]. This
scheme was found to be stable for this test case.
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Figure 6.24. The analytical solution in the probing point and the errors of the six
schemes.

We note that these contour path modeling schemes give much better results
than the “diag” solution, but they are not quite as good as our hybrid schemes.
Furthermore, even though the contour path modeling schemes were rather easy to
implement for this very special 2D case, we feel that it would be a very complex
and cumbersome task to make a general implementation in 3D.
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6.10 Conclusion

We have introduced a new general hybrid approach for solving the Maxwell equa-
tions in the time domain. By combining the efficiency of the classical FD-TD
method with the flexibility of solvers for unstructured grids we obtain a very favor-
able compromise between efficiency and accuracy. Flexibility is further enhanced by
using two solvers on the unstructured grids, one explicit FV solver and one implicit
FE solver. Note that the key words here are implicit and explicit and not FE and
FV. An explicit solver is much faster per time step than an implicit solver. On the
other hand, we have unconditional stability for the implicit solver while the explicit
solver must obey a stability limit where the maximum time step is proportional to
the shortest edge in the unstructured grid. Furthermore, the accuracy in the FD-
TD scheme decreases when the time step decreases, since the spatial and temporal
errors are of opposite sign. Hence, the proper choice of solver for an unstructured
part in the hybrid depends on the cell sizes in the unstructured grid.

We chose not to put any extra effort into optimizing the unstructured 2D solvers.
Hence, we feel that it might be misleading to make any measurements of the effi-
ciency in 2D. Furthermore, we feel that this question is much more relevant in 3D.
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Chapter 7

Hybrid Methods in 3D

7.1 Introduction

This chapter is devoted to the 3D hybrid solvers. The implicit Finite-element solver
is described in Section 7.3. An adoption of the plane wave excitation originally
developed for FD-TD is also included. It is primarily intended for wave guide
excitation in the FE solver. In Section 7.4 a thorough description of the explicit
Finite-volume solver is given. It also contains a divergence analysis as well as a
stability analysis for the FV solver. This section is based on the Licentiate thesis
of Fredrik Edelvik [29]. Section 7.5 describes the hybridization technique used to
couple the structured and unstructured solvers together. The optimal choice of
method on the unstructured grid depends on the cell sizes. An implicit method is
preferable for grids with small cells while an explicit method is preferable for grids
where the cell sizes are of the same order as in the Cartesian grid. The stability
of the hybridization is discussed in Section 7.6. The stability is not absolute and
instabilities are observed for highly resonant geometries. But for all scattering
problems examined the stability has not been an issue. In Section 7.7 several
results are presented. Convergence results on simple vacuum grids shows that the
solvers are second-order accurate but under hybridization we formally lose accuracy.
However, the accuracy in the scattering problems examined are very satisfactory
for the hybrid solvers. Finally, conclusions are given in Section 7.8.

7.2 Finite-difference method

The FD-TD method is described in Chapter 4 and will not be further discussed here.
We simply note that we use the uniaxial perfectly matched layer (U-PML) absorbing
boundary conditions [38], and for plane wave excitation the total/scattered field
decomposition described in [98] is used. The FD-TD method is also thoroughly
described in the literature, see for example the book by Taflove [98].
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7.3 Finite-element method

In this section the Finite-Element Time-Domain (FE-TD) method in 3D is briefly
discussed. A lot of details are the same as in 2D and hence Section 6.3.1 contains
materials also valid here.

In 3D we use the vector wave equation for the electric field, instead of the
magnetic field formulation used in 2D TM case. For σ = σ∗ = 0 we have

ǫ
∂2E

∂t2
+ ∇× 1

µ
∇× E = 0 . (7.1)

The weak formulation is now: find E ∈ W such that

∫

Ω

(

ǫ
∂2E

∂t2
· w +

1

µ
∇× E · ∇ × w

)

dΩ = −
∫

Γ

1

µ
n ×∇× E · w ds , (7.2)

for all w ∈ W . Again we use “edge” or “Whitney” elements but they are now
tetrahedral elements [76] instead of triangular.

To define these linear edge elements, which are second-order accurate, consider
the standard linear basis functions Φi for nodal-based finite elements, constructed
such that Φi = 1 in node number i and Φi = 0 in all other nodes. Take edge e to
be the edge on a tetrahedral element joining node i and node j. The basis function
for edge e is

ϕe = Φi∇Φj − Φj∇Φi . (7.3)

The properties of the basis functions are the same as in 2D,

• ∇ · ϕe = 0 .

• ϕe has constant tangential component ( = 1/length ) along edge e, which
means that the tangential component is continuous around edge e. The nor-
mal components are discontinuous across element boundaries for ϕe.

• ϕe has zero tangential component along the other edges.

A sketch of the basis function for edge e is plotted in Figure 7.1.

Our unknowns can be seen as edge values because there is only one basis func-
tion that has a nonzero tangential component on each edge. Furthermore, we can
always use the basis functions to calculate the electric field in any point inside each
tetrahedra. But if we seek the electric field at the nodes we are in trouble because
the basis functions are not continuous around a node. In this case a least square
fit of all emanating edges can be used.
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Figure 7.1. The vector valued basis function ϕe for the edge connecting node 1
and 2. ϕe is illustrated for this tetrahedral element but is also defined in all other
tetrahedra that share this edge. (Node 3 in the tetrahedron is furthest away.)

Since we are solving for the E field we use a Neumann boundary condition for
PMC, a homogeneous Dirichlet boundary condition for PEC and an inhomogeneous
Dirichlet boundary condition for the hybrid boundary,

n × (∇× E) = 0 on ΓPMC , (7.4)

n × E = 0 on ΓPEC , (7.5)

n × E = n × Efdtd(t) on ΓHyb . (7.6)

We use the same timestepping technique as in 2D, see Section 6.3.3 for a de-
scription. We also use the same procedure to renumber and solve the system of
linear equations. The use of a direct method to solve the linear system of equations
is a major bottleneck for larger problems in 3D. Therefore we have recently imple-
mented an iterative solver based on the conjugate gradient method. An incomplete
Cholesky factorization is also used as preconditioner. Preliminary results shows
that the iterative method converges within tens of iterations. However, this is not
further discussed here.

7.3.1 Huygens’ surfaces for the FE solver

Traditionally Huygens’ surfaces are associated with plane wave excitations in the
FD-TD method. But the same idea can also be utilized and formulated for the
FE-TD method. Furthermore, as in FD-TD, Huygens’ surfaces can also be used
for waveguide excitation. In fact, Huygens’ surfaces can be used for any excitation
that can be formulated over a surface, for example plane wave expansions, wave
guide modes and spherical expansions. The only requirement on the excitation is
that the electric field is known for each edge, as a function of time, around the
Huygens’ surface.
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The Huygen excitation is based on splitting the total field in a scattered and an
incident field, i.e.

Etot = Esca + Einc. (7.7)

Let us start the derivation by the following formulation of the spatial discretiza-
tion,

MË + SE = 0, (7.8)

where conductivity and boundary terms are neglected for simplicity. Furthermore,
split the matrices in 3 × 3 blocks and the unknowns in three parts, which yields





M11 M12 0
M21 M22 M23

0 M32 M33









Ëtot
1

Ëtot
2

Ëtot
3



+





S11 S12 0
S21 S22 S23

0 S32 S33









Etot
1

Etot
2

Etot
3



 = 0, (7.9)

where Etot
1 , Etot

2 , and Etot
2 contains three groups of unknowns which are written

in a total field formulation. Now we can substitute the total field by the scattered
field using (7.7) because the only difference is the known incident field. Therefore,
let us associate the edges in the first region to a scattered field formulation, and
the edges in the third region to a total field formulation. Furthermore, associate
the edges on the triangulated surface between the two regions to a scattered field
formulation. The surface is called a Huygens’ surface and the corresponding edges
forms the second group of unknowns. This is illustrated in Figure 7.2 where two
tetrahedral elements are separated by a Huygens’ surface.

Edges in

region 1

Edges in

region 3

Huygens’ surfaceSecond group of edges

Region 1, scattered field Region 3, total field

Figure 7.2. Scattered field formulated unknowns in region 1, and total field for-
mulated unknowns in region 3 are separated by the Huygens’ surface. The edges on
the surface is associated to scattered field formulated unknowns.

The edges in the first and third region are not directly coupled to each other
because the basis functions have a local support and the common edges are associ-
ated to the Huygens’ surface. Therefore we have two zero-blocks in the block-matrix
structure of (7.9).
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Consider the first and second group of unknowns to be solved only in scattered
field formulation. Split Etot

1 and Etot
2 into the corresponding scattered and incident

variables using (7.7). This gives





M11 M12 0
M21 M22 M23

0 M32 M33









Ësca
1

Ësca
2

Ëtot
3



+ . . . =





0 0 0
0 0 −M23

0 M32 0









Ëinc
1

Ëinc
2

Ëinc
3



+ . . . (7.10)

where only the first block-matrixes are given. The other terms have identical struc-
tures.

If we take a closer look at where the incident field is applied we realize that the
Huygens’ surface is not mathematically collocated with the triangular surface. The
surface divides the unknowns into the scattered and total field formulated unknowns
and hence the surface is localized slightly to the right in Figure 7.2. However, it
is not important to specify the position of the Huygens’ surface exactly. But it is
important to realize that the surface affects the edges in a layer around the surface.
This layer is the key to the success of the Huygens’ surface because it is not enough
to specify the electric field on a surface to obtain an excitation propagating only in
one direction.

The mechanism to excite the FE-TD solver is only described briefly and in
the case of a plane wave excitation we simply use the analytically known incident
field. This is verified numerically and results comparable to FD-TD excitations
have been obtained. Also, if the unstructured grid can be characterized in terms of
a dispersion relation the method of dispersion compensation described in [65] can
be utilized.

Furthermore, we can use the Huygens’ surface to excite wave guide modes and
in this case we must find the time dependent incident mode solution for each edge
affected by the surface. This is done in three steps; First, find the mode solution in
frequency domain for the wave guide cross section. Next, evaluate the mode solution
in the affected edges in the total field region. Third, Fourier transform the mode
solution to time domain and excite the Huygens’ surface with the time dependent
incident field. This three step process can be very memory consuming if the wave
guide is inhomogeneous because then all edges must have a unique time history. In
the case of homogeneous cross sections the mode solution is frequency independent
and each edge then only need an individual time dependent amplitude factor for
each mode excited. However, this three step procedure is not further addressed
in this thesis. It is currently being implemented in the GEMS project [39] and
preliminary results are promising.
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7.4 Finite-volume method

The FV solver is based on the following integral formulation of Faraday’s and
Ampère’s laws given in (3.11):

∂

∂t

∫

A

µH · n dA = −
∮

Γ

E · dl , (7.11)

∂

∂t

∫

A

ǫE · n dA =

∮

Γ

H · dl −
∫

A

σ E · n dA , (7.12)

where A is an arbitrary area, Γ is the path that encloses A and n is a unit normal.

7.4.1 Space discretization

The integral formulations (7.11) and (7.12) are discretized on a staggered grid.
The primary grid consists of tetrahedra, which are generated by a Delaunay grid
algorithm. Associated with the unstructured tetrahedral grid is a mutually orthog-
onal dual grid, the Dirichlet tessellation, which is constructed in the preprocessing
phase. The nodes in the dual grid are the centers of the circumscribed spheres of
each tetrahedron. However, for a general tetrahedral grid there are circumcenters
that lie outside the corresponding tetrahedra. Such nodes deteriorate the accuracy
of the solver and they are hence replaced by the barycenters of these tetrahedra.
Replacing a circumcenter with a barycenter implies that the mutual orthogonality
is lost locally. The dual edges are constructed by joining dual nodes of tetrahedra
sharing a common face. The dual face associated with a primary edge is defined
by the dual edges which correspond to all the faces which share the given primary
edge. The areas and normals are calculated by a piecewise planar approximation of
the dual faces. Finally, the dual cell associated with a primary node is defined by
the dual faces which correspond to all the primary edges sharing the given primary
node. Hence, there is a one-to-one correspondence between the nodes, edges, faces
and cells of the primary and dual grids. At each triangular face the normal com-
ponent of the magnetic field is stored and, similarly, at each dual face the normal
component of the electric field is stored, see Figure 7.3.

Integrating (7.11) and (7.12) over a primary and a dual face, respectively, results
in

µ̃p
i

∂

∂t

∫

Ap
i

H · np
i dA = −

∑

m

∫

Γp
i,m

Ẽ · tp
i,m dl , (7.13)

ǫ̃d
j

∂

∂t

∫

Ad
j

E · nd
j dA =

∑

k

∫

Γd
j,k

H̃ · td
j,k dl − σ̃d

j

∫

Ad
j

E · nd
j dA, (7.14)

where Ap
i is the area of the primary face i, Γp

i is the path that encloses Ap
i , n

p
i is

the unit face normal for face i and t
p
i,m are the unit vectors for the edges in face i.

The variables belonging to the dual face j are defined in the same way.
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Figure 7.3. A cell in the primary grid and a dual face.

When the primary and dual grids are mutually orthogonal the normals and
edge vectors are parallel. In that case the solver is basically a generalization of
FD-TD to unstructured grids. The normal component of the electric field, E · nd

j ,
is updated by circulating the magnetic field along the edges of the dual face. The
normal component of the magnetic field, H ·np

i , at each triangular face is updated
in the dual way by circulating the electric field along the edges of the triangular
face.

However, for non-orthogonal grids the normals and edge vectors do not align
and we need an approximation for the electric and magnetic fields projected along
the respective edges. This is accomplished by first calculating an approximate value
of the fields at the primary and dual nodes, respectively. The magnetic field at the
dual nodes, e.g. Hr in Figure 7.3, are calculated as a least square fit of the magnetic
fields normal to the four faces of each tetrahedron. Electric node values are defined
by doing a similar fit for the electric fields normal to the dual faces of each dual
cell. Following Riley and Turner [84], the magnetic field projected along the dual
edge td

j,k, see Figure 7.3, is then evaluated as

H̃ ·td
j,k = (H · np

i )
(
n

p
i · td

j,k

)
+

1

2
[(Hr + Hq) − ((Hr + Hq) · np

i ) n
p
i ]·td

j,k . (7.15)

The electric field projected along the primary edge t
p
i,m is evaluated accordingly as

Ẽ ·tp
i,m =

(
E · nd

j

) (
nd

j · tp
i,m

)
+

1

2

[
(E1 + E2) −

(
(E1 + E2) · nd

j

)
nd

j

]
·tp

i,m . (7.16)

Taking a closer look at (7.15) and (7.16) we note that if n
p
i is parallel to td

j,k and nd
j

is parallel to t
p
i,m, the second part of (7.15) and (7.16) vanish. Evaluating the fields

projected along the edges in this way guarantees that the divergence of the electric
and magnetic fields are preserved on a local cell level up to machine precision; see
Section 7.4.3 for a proof. This has been found crucial in order to suppress spurious
modes in the solution.
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All materials are defined relative to primary grid cells. Hence, the material
parameters require averaging to get an approximate value at the faces. The average
permeability on primary face i, µ̃p

i , is defined by

µ̃p
i =

2
1

µp
r

+ 1
µp

q

, (7.17)

where r and q are the tetrahedra sharing face i. At a boundary face µ̃p
i equals the

permeability of the only tetrahedron associated with the face. The average electric
material parameters on dual face j, ǫ̃d

j and σ̃d
j , are constructed as

ǫ̃d
j =

∑

q
ǫp
qA

d
j,q

Ad
j

, σ̃d
j =

∑

q
σp

qAd
j,q

Ad
j

, (7.18)

where Ad
j,q is the part of the area of the dual face which is inside tetrahedron q and

the sums are taken over the tetrahedra associated with the dual face. Performing
the material averaging in this manner preserves the second-order accuracy of the
solver for inhomogeneous materials [5]. The reason for the different averaging of
magnetic and electric materials is that the normal magnetic field is discontinuous at
a material interface, whereas the tangential electric field is continuous. Therefore,
harmonic averaging is used for µ and area weighted arithmetic averaging is used
for ǫ and σ.

The boundary condition for a perfect electric conductor (PEC) is implemented
as described in 6.4.2. For a perfect magnetic conductor (PMC) the tangential mag-
netic components, should equal zero at the boundary. However, the Hcomponents
are not situated on the boundary. The boundary condition is enforced by setting
the magnetic field below the conductor equal to the value of the magnetic field
directly above the conductor with a change of sign in the tangential component.
The PMC boundary condition is non-physical, but useful as a symmetry boundary
condition.
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7.4.2 Time discretization

The equations (7.13) and (7.14) are discretized in time using a third-order staggered
Adams–Bashforth scheme (ABS3) [40]

H · np
i |n+ 1

2 = H · np
i |n−

1
2

+
∆t
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i Ap

i

∑

m

(
25

24
Ẽ · tp

i,m|n − 1

12
Ẽ · tp

i,m|n−1

+
1

24
Ẽ · tp

i,m|n−2
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∆p
i,m ,

(7.19)
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j |n
)

,

(7.20)

where ∆p
i,m are the lengths of the primary edges t

p
i,m and ∆d

j,k are the lengths of

the dual edges td
j,k. Note that the notation E · nd

j |n means E · nd
j at time step n

and accordingly for the other components. The ABS3 method is chosen due to its
superior stability properties compared to the normally used leap-frog scheme, see
Section 7.4.4.

7.4.3 Preservation of divergence

When solving the Maxwell equations it is common to solve only for Faraday’s
and Ampère’s laws. However, the Maxwell equations also include two divergence
relations (Gauss’ laws) for the electric flux density vector, D, and the magnetic flux
density vector, B, that have to be satisfied in order to ensure a physical solution.
The divergence of the B-field is always equal to zero, while the divergence of the
D-field is zero in vacuum. For linear, non-dispersive, isotropic media the simple
relationships between the fields are given by

B = µH , D = ǫE . (7.21)

Consider,

∂

∂t

∫

V p
q

∇ · B dV =
∂

∂t
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V p
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∇ · (µH) dV =
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∂
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i dA = −
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m

∫

Γp
i,m

Ẽ · tp
i,m dl = 0 ,
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where Gauss’ divergence theorem and (7.13) have been used. The last expression is
zero because in the double sum the electric field projected along the edges belong-
ing to the faces i appear twice with opposite signs. Hence, the divergence of the
magnetic flux density vector is preserved up to machine precision. The proof for
the divergence of the electric flux density vector is analogous. Note that the proof
does not assume that the faces have to be planar, which is not necessarily the case
for the dual faces.

7.4.4 Stability analysis of the FV solver

An important issue for explicit solvers across many disciplines is how to obtain
long-term stability. In 2D we have shown in experiments that our FV solver is
stable if ABS3 is used for the time discretization [28]. The stability region for
ABS3 in the scalar case is given in the left part of Figure 7.4. The great advantage
of using ABS3 compared to the commonly used leap-frog scheme is that we obtain
a stable and accurate solution even if the highest frequency eigenvalues of the space
operator have a small real part. Using ABS3 will suppress the amplitude of the
highest frequency components, but they are not accurately resolved by the grid and
are therefore considered parasitic.
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Figure 7.4. The stability region for ABS3 is shown to the left. To the right the
eigenvalues for the perturbed 4×4×4 grid. Note the different x-scales in the figures.

To analyze the eigenvalues in vacuum for the semi-discrete case, we write the
solver on matrix form as

∂

∂t

(
H · np

E · nd

)

=

(
0 A
B 0

)(
H · np

E · nd

)

, (7.22)

where the operators A and B take care of the space discretization of the respective
fields.
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Consider a grid consisting of 4 × 4 × 4 cubes, where each cube is split into
five tetrahedra in the same way as the cells in the transition layer, see Figure 7.6.
Calculating the eigenvalues numerically to the block-matrix above reveals that they
are all on the imaginary axis. In this case the primary and dual grids are mutually
orthogonal. Let us perturb the grid such that the orthogonality is lost by moving
the midpoint along one of the Cartesian directions. The eigenvalues, scaled with
the CFL number, are shown in the right part of Figure 7.4. Hence, the loss of
orthogonality locally is enough to get eigenvalues with a nonzero real part.

For the fully-discrete case, let

zn =
(

E · nd|n H · np|n− 1
2 E · nd|n−1 H · np|n− 3

2 E · nd|n−2
)T

. (7.23)

After some straightforward rearrangements we are able to write (7.19) and (7.20)
on matrix form as zn+1 = P(A,B)zn, where

P =
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. (7.24)

Analyzing the eigenvalues of the companion matrix P, for the perturbed 4× 4× 4
grid, results in the eigenvalue spectrum shown in Figure 7.5, where all eigenvalues
are within the unit circle. The time step is chosen on the stability limit for the
FV solver and is given by the largest eigenvalue of the semi-discrete problem. For
a general unstructured grid an eigenvalue analysis is not possible and hence the
CFL condition is not known. A rule of thumb, which works well in practice, is to
decrease the time step given by the stability condition for stand-alone FD-TD with
a factor given by the quotient between the shortest primary edge and the shortest
edge in the structured grid. The eigenvalues close to the origin in Figure 7.5 have
to do with the fact that ABS3 is a multi-step scheme, but only one of the roots are
relevant and we get a number of irrelevant roots. However, because these roots are
all close or equal to zero they are quickly damped away.

If ABS3 is replaced by the leap-frog scheme and the same time step is used, the
largest eigenvalue is of the order 1.004, despite the fact that this time step is well
within the stability limit for leap-frog. Hence, not surprisingly the leap-frog scheme
is unstable due to the fact that we have eigenvalues with a nonzero real part.

However, using ABS3 does not guarantee long-term stability on general tetra-
hedral grids in 3D. Eigenvalues to the semi-discrete problem might have a real part
that is too large for ABS3 to handle. One way of enhancing the numerical stability
is to suppress the amplitude of the highest frequency components. A low-pass filter
is ideal for this purpose, the undesirable highest frequency components are elimi-
nated, whereas the rest of the solution is remained unchanged. We use a spatial
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Figure 7.5. Eigenvalues of the companion matrix P using ABS3 for the perturbed
4 × 4 × 4 grid. The time step is chosen on the stability limit.

filter based on the Laplace operator. The filter is only applied to the node values
and therefore it does not act on edges, which are orthogonal to their corresponding
faces. For edges which are not orthogonal the larger the deviation from orthogonal-
ity the more the filter affects the edge values. A filtered value Ĥr of Hr is given
by

Ĥr = Hr +
1

2N

N∑

q=1

(Hq − Hr) , (7.25)

where the sum is taken over the nodes q, which share an edge with node r. The
filtering for the electric node values is analogous. This filter improved the stability
considerably for the grids used in Section 7.7 without loosing accuracy in the solu-
tion. Note that this filter is not needed in 2D (Chapter 6), where the use of ABS3
is sufficient to obtain long term stability. However, the grids in 3D are in general
much more complex for realistic applications and the deviation from orthogonality
could be large, which we believe is the main source of the stability problems.

7.5 Hybridization

The 3D hybridization technique requires the unstructured grid to have a transition
layer consisting of semi-structured cells. This means that the outermost unstruc-
tured cells are obtained by splitting a brick into five tetrahedra (the brick is of the
same size as the FD-TD cell). This outermost layer of cells is called the transition
layer because the unstructured grid and the structured grid overlaps here, see Fig-
ure 7.6. Hence, a number of electric field components coincide in space and time
for the solvers in the transition layer and it is these components that are involved
in the actual communication between the solvers.

Based on Figure 7.6 the hybridization technique can be described as follows:
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Figure 7.6. The transition layer is based on coincidental structured and unstruc-
tured cells. To the left an FD-TD cell and to the right a cluster of five tetrahedra
forming a brick is shown.

Left part of Figure 7.6, Right part of Figure 7.6,
the structured cell the unstructured cells

The four Cartesian components to
the left (filled) are sent to the cor-
responding components in the un-
structured region. The diagonal
component (also filled) is calcu-
lated by interpolation of the four
filled components and is also sent
to the unstructured region.

=⇒ The five filled components are re-
ceived from the structured region
and are treated by the unstruc-
tured solver as an inhomogeneous
Dirichlet boundary condition.

⇓ ⇓
(A full time step is taken) (A full time step is taken)

⇓ ⇓
The remaining eight Cartesian
components (hollow) are received
from the corresponding compo-
nents in the unstructured region.

⇐= When the components are up-
dated in the unstructured re-
gion the remaining eight Cartesian
components (hollow) are sent to
the structured solver.

The remaining five diagonal components (ordinary arrows) in the right part of
Figure 7.6 are not involved in the hybridization. Note that sending the eight Carte-
sian components from the unstructured solvers is equivalent in space to sending the
four tangential H-fields in the transition layer to FD-TD.

It is worthwhile to point out that the primary and dual grids are mutually
orthogonal in the transition layer. Without this orthogonality also node values
would have to be sent from the structured region, to update the electric edge values
in the transition layer according to (7.16). In that case a careful interpolation would
have to be performed because there are no nodal values in the FD-TD solver. That
could possibly jeopardize the accuracy and stability of the hybrid solver.

The transition layer is one of the keys to the success of the hybrid scheme
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because it gives a well defined communication between the structured and unstruc-
tured solvers. One could think of methods without a transition layer but then the
components used for communication are not (in general) collocated and hence in-
terpolation is needed which will deteriorate the hybridization. The one cell overlap
also makes it possible to communicate only E-fields between the solvers and hence
fit into a multi block concept better because the FD-TD code is only affected once
per time step.

7.6 Stability of the hybrid methods

In this section we discuss the stability of the hybrid solvers. The implicit FE solver
is unconditionally stable as a stand alone code. The FD-TD solver is also stable
as long as the CFL condition in (4.10) is not violated. The explicit FV-TD solver
is stable on orthogonal grids but on general grids it may exhibit weak instabilities,
see Section 7.4.4.

For open problems, we demonstrate in Section 7.7 that it is possible to obtain
very good results using the hybrid solvers. But for some cavity problems the hybrid
solvers suffer from instabilities caused by the communication between the solvers.
Cavity problems are often found in electromagnetic compatibility problems.

Two similar cavity problems are solved here to demonstrate the instabilities
that can arise. In the first problem a closed vacuum cavity problem is studied. In
the second problem a slits is introduced in the cavity. The cavity has a rectangular
shape of 16 × 8 × 8 m and an FD-TD grid with 16 × 8 × 8 cells is used (cell size
1 m). A point source in Ez(5, 5, 5) is used for excitation of the cavity. The pulse
shape is a derived Gaussian, but as will be discussed later, the pulse shape is not
crucial. The simulation is probed in Ez(5, 11, 5). In all cases presented the CFL
number is 0.433 which means that it takes four time steps to propagate the solution
one meter.

The basic problem setup is displayed in Figure 7.7. For the test of the hybridiza-
tion technique half of the cavity volume is replaced by a semi-structured tetrahedral
grid in which the FD-TD cells are split into five tetrahedra (as in the right part of
Figure 7.6). The hybrid interface divides the cavity in two blocks of cells.

In the first problem there is no physical damping because the volume is lossless
and hence the cavity is infinitely resonant. This is also seen in the FD-TD response
where the amplitude in the probed point is essentially constant, see Figure 7.8.
In contrast to the pure FD-TD simulations the hybrid solutions become unstable.
Four different hybrid results are obtained, see Figure 7.8. First the FD-FV hybrid is
used which becomes unstable after roughly 30 000 time steps. The same happens if
we use the FD-FE hybrid utilizing the Θ-method with Θ = 0.5 (see Section 6.3.3).
In the third case the FD-FE hybrid is used but with Θ = 0.51. This gives a
slightly dissipative timestepping scheme but still the solution becomes unstable
after approximately 60 000 time steps. The FD-FE hybrid is also used in the fourth
case but this time the BDF2 timestepping scheme is used (see Section 6.3.3). In
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(4,4,4)

(5,11,5)

(5,5,5)

(12,4,4)

(19,11,11)

Figure 7.7. 16 × 8 × 8 FD-TD cells constitute the basic cavity problem. The
outer walls are perfectly electric conducting and excitation and probing is done in
Ez(5, 5, 5) and Ez(5, 11, 5). The hybrid interface divides the cavity into the left
part where FD-TD is used and the right part where the 8 × 8 × 8 cells are split into
tetrahedra to constitute the unstructured region. In the second cavity problem a
slits is introduced (illustrated by the shadowed rectangle).

this case the solution does not becomes unstable. The trend shown in Figure 7.8
continues up to 900 000 time steps where a plateau level of 10−7 is reached. After
1 500 000 time steps the amplitude is still 10−7.
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Figure 7.8. The infinitely resonant cavity (left) exhibits unstable hybrid solutions
for the FD-FV hybrid as well as for the three FD-FE hybrid methods. The difference
between the three FD-FE hybrid methods is the choice of timestepping scheme; the
Θ-method with Θ = 0.5 (Crank-Nicholson), Θ = 0.51, and the BDF2-method. The
BDF2 solution does not exhibit instabilities up to 700 000 time steps. To the right
the response for the slitsed cavity is shown. In this case the unstable solutions for
all four hybrid methods are almost the same.

The FE solver is slightly dissipative if Θ > 0.5 or the BDF2 method is used. This
gives rise to energy losses which is clearly seen in Figure 7.8. These timestepping
errors are decreased if we pay the price of taking a smaller timestep. If we lower
the CFL number by a factor of two the solution for Θ = 0.51 has a one decade
amplitude loss over 150 000 time steps whereas the BDF2 solution has a one decade
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amplitude loss over 600 000 time steps. (Remember that these two numbers are
obtained with a time step that is half of that used in Figure 7.8.) The Θ = 0.51
solution exhibit a weaker instability if the CFL number is halved. But the BDF2
solution shows a stronger instability if the CFL number is halved.

The strength of the instabilities are different for the different hybrid solvers
and it is interesting to follow the instability curves backwards in time to t = 0.
Even though the strength of the instabilities are different it is clear that they all
originate from the round off error level of 10−16 which is the dynamic range for
double precision floating point numbers in this simulation. This means that even
if the excitation itself does not contain the dominant unstable mode the round off
errors will inevitable trig the unstable modes.

In the second test case the cavity is opened which introduces a physical loss
mechanism. The aim of the test is to show that also highly but not infinitely
resonant cavities might become unstable. A slits of two cells width is opened on
top of the yz-plane at the lower x-end of the cavity. The slits is illustrated by
the shadowed rectangle in Figure 7.7. Outside the cavity a surrounding layer of
FD-TD cells are used with a simple absorbing boundary condition. The energy loss
through the slits is characterized by a one decade amplitude decrease over 200 000
time steps

This slitsed cavity problem also exhibit instabilities when the hybrid methods
are used. The instabilities appear after only 6 000 time steps and all four hybrid
methods have approximately the same response to the dominant unstable mode.
If we follow the instability curves back to t = 0 we see that the unstable mode is
trigged by the excitation on a level of 10−5. In this case the dominant unstable
mode is almost unaffected by the choice of timestepping methods used for the FE
solver. If the CFL number is halved the instability is somewhat weaker but still
affects the four hybrid schemes approximately the same.

Instabilities for FD-FE hybrids have been observed and addressed by other re-
searchers [51]. Our efforts include various spatial low-pass filters in FD-TD close
to the hybrid interface, different dissipative timestepping schemes, and splitting
the transition layer cubes into six tetrahedra instead of five. None of these ef-
forts have been fully successful to guarantee general stability. However, in [87, 88]
Rylander et al. present a stable FD-FE method. No rigorous stability proof is given
but the argumentation is based on properties for symmetric matrices. Pyramidal
elements and cube elements are used to join the unstructured tetrahedral grid with
the structured hexahedral FD-TD grid and thus the need for interpolating diagonal
components is avoided.
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7.7 Results

In this section the convergence of the hybrid code is studied numerically for a few
simple vacuum cases. The hybrid code is also validated in four different scattering
cases, a PEC sphere, a dielectric sphere, the NASA almond and the generic aircraft
RUND. For the PEC and dielectric spheres analytical solutions (Mie series) for the
radar cross section (RCS) are known in frequency domain. For the almond and
the generic aircraft, converged Method of Moments solutions are used as reference
solutions. Since the computation of RCS requires the scattered field intensity at
infinity, we use a near-to-far-field transformation [63] to compute the far-field so-
lution. The computational domains are truncated by eight layers of U-PML cells.
The CFL number is set to 0.2 in all cases, where CFL equal to one is the stability
limit for FD-TD, see (4.11). The grids used for stand alone FD-TD are generated
such that all edges which belong to a cell whose centroid is inside the object are
considered to be PEC or dielectric edges. The center of the sphere coincides with
the center of an FD-TD cell.

7.7.1 Convergence in vacuum

Procedure

We estimate the order of convergence for vacuum test cases. Since we have ana-
lytical solutions for these cases, we only need two numerical solutions: one coarse
grid solution and one fine grid solution. Since we consider the electric components
in the grids to be located at the center of each edge, and we want to avoid spa-
tial interpolation, the fine grid must have edges that are three times shorter than
the edges in the coarse grid. Furthermore, we use an odd number of cells in the
z-direction and an even number of cells in the x- and y-directions. This will ensure
that we have a z-edge in the center of the unstructured grids.

In the structured grid we use cubic cells with side length ∆ = 1m for the coarse
grid and ∆ = 1

3 m for the fine grid. The unstructured grids have a size of 4 m ×
4m × 3 m and they are inserted in the center of an FD-TD grid that is 14 m ×
14m × 13 m.

We probe one or more electric field components every time step on the coarse
grid. On the fine grid we probe every third time step. We always probe electric field
components because their values are represented at t = n∆t where n = 0, . . . , Nt

and hence we need no temporal interpolation.

We calculate the convergence estimate pmax as

pmax =
ln(max(abs(errc))) − ln(max(abs(errf )))

ln(3)
. (7.26)

where errc and errf are time vectors containing the errors in a probed point. The
indexes c and f stands for coarse and fine. The convergence estimate pmean is
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calculated equivalently as

pmean =
ln(mean(abs(errc))) − ln(mean(abs(errf )))

ln(3)
. (7.27)

Stand alone unstructured solvers

First we study the convergence properties of the unstructured solvers in stand alone
mode. This is done using semi-structured unstructured grids, where each cube is
split into five tetrahedra (as in the right part of Figure 7.6). We excite the un-
structured grid by supplying analytical boundary conditions, i.e. a time dependent
Dirichlet boundary condition. This is done in the same way as the FD-TD solver
sends values to the unstructured solvers. Hence, it is only the the four (filled)
Cartesian components in the left part of Figure 7.6 that are given boundary values.
The filled diagonal component is calculated by interpolating the four Cartesian
components.

For the incident field we use a Gaussian shaped pulse propagating in x-direction
with electric polarization in z-direction. The half-maximum-pulse-width corre-
sponds to 11∆c.

For both methods we use CFL =
√

3/4 where the CFL number is defined as
in (4.11). We use the Crank-Nicholson method for the FE timestepping.

Our first probe is located at the centermost z-edge in the unstructured grid.
The second probe is located with an offset of (1,−1, 0) m to the first probe.

Table 7.1 contains the convergence estimates for the two probes. We have almost
exactly two in all cases and may hence conclude that the unstructured solvers have
second-order accuracy on semi-structured grids.

Method FE FV
Edge 1 2 1 2
pmean 2.00 2.00 1.99 1.99
pmax 1.99 1.99 1.99 1.99

Table 7.1. Estimates of the order of convergence for the two unstructured grid
methods. Edge 1 is the centermost edge.

Hybrid solvers

We will now study the hybrid code. We use the same two semi-structured grids and
the same incident field as in the previous test case. The incident field is generated
by Huygens’ surfaces which are located two meters from the outer boundary. For
FD-TD and the FD-FE hybrid we use CFL =

√
3/2 and for the FD-FV hybrid

we use CFL =
√

3/4. A highly absorbing ABC is used (a twelve cells thick PML
layer) to ensure that reflections from the outer boundary do not noticeably affect
our convergence estimates.
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The absolute value of the errors for Ez at (x, y, z) = (4, 7, 6.5) are shown in
Figure 7.9. We see that they are significantly larger for the hybrid methods.
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Figure 7.9. Errors for two refinement levels and three methods for Ez at (x, y, z) =
(4, 7, 6.5) (thick lines: coarse grid, thin lines: fine grid).

We probe the solution in all Ez components (on the coarse grid) that lie one
meter or one and a half meter from the outer boundary of the transition layer. We
calculate the l2 error and use these time dependent vectors to estimate the conver-
gence. Estimates are given in Table 7.2. Clearly, we have super-linear convergence.
However, we do not have second-order convergence.

FD-TD FD-FE FD-FV
pmean pmax pmean pmax pmean pmax

1.96 1.98 1.25 1.11 1.15 1.04

Table 7.2. Estimates of the order of convergence for the two hybrid methods and
the FD-TD method.

The convergence estimates for the two hybrid methods are rather similar. This
fact and the fact that our previous test case shows that the FV-TD and FE-TD
solvers are second-order accurate on these grids in stand alone mode, strongly
indicates that our hybridization technique destroys the second-order accuracy. The
likely culprit is the interpolation of diagonal values. The error in the interpolation
itself is proportional to ∆2. However the interpolated value is then used in what is
basically a difference approximation. If this happened in only one point, it would
not destroy the global accuracy. However, because it happens in every diagonal on
the outer surface of the transition region, it does affect the global accuracy.

To validate our hypothesis that the interpolation of diagonal values are causing
the deteriorated accuracy, we perform two tests. In the first test we replace the
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diagonal values with analytical values. The absolute value of the errors for Ez at
(x, y, z) = (4, 7, 6.5) are shown in Figure 7.10. Convergence estimates are given in
Table 7.3.
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Figure 7.10. Errors for two refinement levels for the two hybrid methods for Ez

at (x, y, z) = (4, 7, 6.5) when diagonal values are substituted by analytical values.
(thick lines: coarse grid, thin lines: fine grid).

FD-FE FD-FV
pmean pmax pmean pmax

1.93 1.96 2.11 1.88

Table 7.3. Estimates of the order of convergence for the two hybrid methods when
diagonal values are substituted by analytical values.

In the second test we use higher order interpolation. Four values are used
instead of two when performing the interpolation. This procedure is unstable but
it seems to be second-order accurate for the brief time span that is unaffected by
the instability.

These tests clearly demonstrate that it is the interpolation of diagonal values
that destroys the second-order accuracy.

7.7.2 Scattering from a PEC sphere

A standard test case to validate electromagnetic codes in 3D is scattering from
PEC spheres. In this case the sphere has a radius of three meters and a Gaussian
pulse with horizontal polarization impinges the sphere at an angle of θ = 0, using
spherical polar coordinates. A few layers of unstructured cells are used in the
vicinity of the sphere to obtain a good geometrical representation of the sphere. A
structured grid is used for the rest of the domain. The edges in the unstructured
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region are approximately of the same length as the ones in the structured region.
The results for monostatic RCS and bistatic RCS at 27 MHz are compared to
the analytical Mie series solutions and with three staircased FD-TD solutions in
Figure 7.11.
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Figure 7.11. Monostatic RCS (left) and bistatic RCS at 27 MHz (right) for a PEC
sphere of radius three meters. ∆ =1m corresponds to a resolution of eleven points
per wavelength at 27 MHz. θ = 0 is the monostatic angle. The FD-FV hybrid solver
is used but the FD-FE hybrid solver gives similar results.

The results using the hybrid solver are clearly much better than the ones obtained
using staircased FD-TD and agree very well with the analytical solution even with
a moderate resolution of eleven points per wavelength. It is interesting to note the
behavior of FD-TD at the monostatic angle, θ = 0, in the right part of Figure 7.11.
It takes a resolution of 44 points per wavelength to even get close to the correct
behavior of the solution. Note that increasing the resolution with a factor of four
requires 64 times more memory and 256 times more arithmetic operations in FD-
TD, and we are still not able to obtain an accurate solution. Hence, staircasing
introduces large geometrical errors and an extremely fine resolution is needed to
rectify these errors.

To estimate the order of accuracy for the hybrid solver in this case we per-
form a grid refinement study. We refine the grids with a factor of three, because
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that implies that the staggered components on the coarse grid are located at the
same positions on the finer grids. The three grids have edge lengths ∆ = 0.99 m,
∆ = 0.33 m, and ∆ = 0.11 m, respectively. A Gaussian pulse is used as incoming
pulse and the pulse width is chosen such that the significant spectral components
are well resolved with twenty points per wavelength for the coarse grid. The scat-
tered electric field is sampled at different points in the near zone located both in the
backscattering region and in the shadow region behind the sphere. To analyze the
order of accuracy in a standard numerical manner we study the difference between
the scattered fields on the coarse- and intermediate-grid and on the intermediate-
and fine-grid for each sample point. Averaging these differences over all sample
points results in the two curves in Figure 7.12. Finally, from these two curves we
obtain estimates of the order of accuracy using L1 norm. The result is given in
Table 7.4.

FD-FV FD-FE
1.85 1.92

Table 7.4. Convergence estimates.

Choosing different sample points and a different norm does not affect the ac-
curacy figures significantly. For a more careful study of the order of accuracy we
probably need one more level of refinement.
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Figure 7.12. The mean absolute differences in the scattered field in the sample
points as a function of time for the FD-FV hybrid solver and the FD-FE hybrid
solver.
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7.7.3 Scattering from a dielectric sphere

The ability to treat different materials is an important feature of a general purpose
electromagnetic code. In this thesis we only consider materials whose properties
are independent of frequency. Results for frequency dependent materials are given
in [29]. The sphere has the same dimensions as in the previous case and the same
incoming Gaussian pulse is used. The relative permittivity, ǫr, of the sphere equals
four. Tetrahedra are used throughout the inside of the sphere. For a larger sphere
tetrahedra should be used only close to the surface of the sphere, and structured
cells should be used inside the sphere to reduce the memory requirements and
computational time. However, here the sphere is small in terms of wavelengths and
the extra computational cost for using tetrahedra throughout the sphere is small.

In Figure 7.13 the results from our hybrid solver are compared to the Mie series
and to FD-TD solutions with different resolutions. The frequency is 15 MHz, which
implies a resolution of ten points per wavelength in the sphere when ∆ = 1 m. This
resolution is enough for the hybrid solver to obtain a good correspondence with
the Mie series for all angles. However, FD-TD needs a resolution of 40 points per
wavelength to get results of similar accuracy.
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Figure 7.13. Bistatic RCS for a dielectric sphere, ǫr = 4, of radius three meters at
15 MHz (left). ∆ = 1m corresponds to a resolution of ten points per wavelength in
the sphere. A zoom of the plot is shown to the right where an FD-TD solution using
∆ = 1/4m is added. The FD-FV hybrid solver is used. Similar results are obtained
with the FD-FE hybrid.
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7.7.4 Scattering from the NASA Almond

Another common test problem for electromagnetic methods is the NASA almond.
It is defined in for instance [24]. Figure 7.14 shows the surface grid on the NASA
Almond.

Figure 7.14. The NASA Almond.

The computations are performed at Ericsson Saab Avionics using the FD-FV
hybrid. The monostatic RCS for nineteen different angles of incidence are shown
in Figure 7.15. They agree very well with a converged MoM solution.

In order to see how large the reflection from the grid interface is, the interior of
the NASA almond is filled with tetrahedra and a vacuum computation is performed.
In Figure 7.15 these results are labeled FV-TD void. The errors are -60 to -80 dB.
This can be compared with the errors for pure FD-TD which are -110 to -125 dB.

The frequency-domain near-to-far-field transform with dispersion compensation
is used to generate the far-field. The compensation is based on the dispersion
relation for FD-TD. Hence the higher error for the FD-FV hybrid might not only
be due to reflections in the transition layer, but could also be partially caused by
the discrepancy between the FD-TD dispersion relation and the actual dispersion
for the FV method. In order to investigate the the dispersion compensation, we
perform computations with φ = 180 with and without dispersion compensation.
The results are given in Table 7.5.

Dispersion compensation Yes No
FV-TD PEC -39.2 -39.0
FV-TD void -67.7 -63.9
FD-TD void -122.0 -74.9

Table 7.5. Monostatic RCS (σθ) for φ = 180.

The PEC RCS results are almost unchanged, while there is a drastic increase in
the FD-TD void RCS and a small increase in the FV-TD void RCS. It is clear that
the dispersion compensation plays a major roll in the excellent FD-TD void result.
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Figure 7.15. Monostatic RCS for the NASA Almond at 3 GHz.

We can also conclude that our hybridization method does not introduce reflections
that destroys the accuracy of the monostatic RCS for the NASA almond.

7.7.5 Scattering from the generic aircraft RUND

The RCS for canonical objects like spheres are often used for validation because
analytical solutions are known. However, from an industrial perspective spheres are
not targets of practical interest. A more realistic case is scattering from the generic
aircraft RUND. This aircraft is approximately one meter long, one meter between
the wing tips and half a meter high, see Figure 7.16. The computational domain is
discretized using roughly 150 000 tetrahedra and 500 000 FD-TD cells. The FD-TD
cells have one centimeter long edges, which corresponds to a resolution of 20 points
per wavelength at 1.5 GHz. A Gaussian pulse illuminates the aircraft head on with
either vertical polarization or horizontal polarisation, see Figures 7.17 and 7.18.
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Figure 7.16. Part of unstructured mesh around generic aircraft RUND. The struc-
tured mesh continues outside the shown unstructured cells. Note that the interface
between the grids is staircased to minimize the number of unstructured cells.
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Figure 7.17. Comparison of bistatic RCS between the hybrid solver, FD-TD and
a MoM solver at 1.5 GHz for vertical polarization. The resolution with ∆ = 10mm
corresponds to 20 points per wavelength. BDF2 is used for timestepping in the FE
hybrid.
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Figure 7.18. Comparison of bistatic RCS between the hybrid solver, FD-TD and a
MoM solver at 1.5 GHz for horizontal polarization. The resolution with ∆ = 10mm
corresponds to 20 points per wavelength. BDF2 is used for timestepping in the FE
hybrid.

The agreement with the Method of Moments (MoM) solution, which is con-
sidered to be a good reference solution, is excellent for all angles except the first
30 degrees for the horizontal polarization, see Figures 7.17 and 7.18. The FD-TD
solution with four millimeter long edges is good for some angles, but to get a good
agreement for the monostatic angle, φ = 0, where the staircasing effect in this case
is at worst, would require a very fine resolution.

The execution times and memory requirements are in this case comparable for
the FV hybrid solution, the FE hybrid solution, and the FD-TD solution with four
millimeter long edges. However, none of the hybrid solvers are fully optimized in
terms of memory requirements and execution times. The FD-FV hybrid would ben-
efit from using local timestepping in the unstructured region and the convergence
properties of the FE iterative solver could be improved by a more sophisticated pre-
conditioner. A detailed comparison of the efficiency and accuracy of the methods
will be performed after these issues have been rectified.
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7.8 Conclusions

We have introduced an explicit as well as an implicit hybrid solver for the Maxwell
equations in time domain. By combining the efficiency of the classical FD-TD
method with the flexibility of an solver for unstructured grids we obtain a very
efficient and accurate solver. Due to the fact that the explicit FV solver must
obey a stability limit where the maximum time step is related to the smallest
unstructured cell, the explicit solver is intended for problems where the cell sizes
in the unstructured region are of the same size as the FD-TD cells. The implicit
FE solver has no stability limited regarding the time step and hence it is suitable
for grids used to resolve fine details.

The FV solver uses ABS3 for time discretization.Together with a spatial Laplace
filter we can run all the FD-FV scattering cases in Section 7.7 without any signs
of instability. The Θ-method used as time integrator for the FE solver gives us
a possibility to stabilize the FD-FE hybrid. This is not needed in any of the
convergence studies, where FD-FE is used. But for the calculation of RCS for the
generic aircraft RUND stabilizing of the FD-FE hybrid is necessary. Stable results
are obtained for Θ = 0.54 and also if BDF2 is used for timestepping.

The numerical examples presented in this paper clearly demonstrate that our
hybrid solvers are much more efficient than standard FD-TD on complex geometries.
It is also interesting to note that the numerical results show no signs of large
reflections at the grid interface. This is clearly illustrated in the Almond test case
where the reflections from the hybrid interface is approximately 20 dBsm lower
than the scattering from the object itself. We believe that the low level of reflection
is mainly due to the transition layer, which ensures a smooth transition from the
structured to the unstructured grid. The number of unstructured cells is minimized
by allowing a staircased interface between the structured and unstructured grids.



Chapter 8

Thin-Wire Subcell Models

8.1 Introduction to thin-wire subcell models

This chapter deals with the problem of how to include thin wires into the FD-TD
method. Thin wires are often important parts in electromagnetic compatibility
problems and antenna problems and have been studied since the famous experi-
ments conducted by Hertz [46] more than a century ago. Modern antenna tech-
niques, and a nice overview of the antenna development, is found in Balanis [7].

The most straightforward technique to include wires into the FD-TD method
would of course be to model the wire as a perfect electric conductor, and hence
set all tangential electric components on the wire surface equal to zero. But this
strategy requires a very fine discretization in order to resolve the cross-section of
the wire which is clearly out of question in most practical cases. If we use the
hybrid methods described in Section 7 we could wrap a layer of unstructured cells
around the wire and resolve the cross-section of the wire locally. But this would
give us many very small cells and hence the computational burden becomes too
heavy. Therefore, thin-wire subcell models have been developed with the purpose of
capturing the effects of a wire present in the discretized 3D space without resolving
the wire radially.

In this chapter a thin-wire model for FD-TD is extended to allow for an arbitrary
orientation of the wire. This is important in order to treat wires that cannot
be aligned with the Cartesian grid, for example circular loop antennas and tilted
straight wires. The only way to incorporate arbitrarily oriented wires into FD-TD
today is to accept a staircased discretization of the wire. However, this leads to
large errors, and the wire length does not converge if a finer resolution is used. This
implies that resonance frequencies, and related quantities, can be erroneous with
tens of percent.

There are basically two approaches to construct thin-wire subcell models for
FD-TD. Holland et al. [49] separates the wire from the 3D volume and solves two

119
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(a) Wire included
in the 3D domain.

?

(b) Wire separated from the 3D domain.

Figure 8.1. Separation of the two problems.

mutually interacting problems, see Figure 8.1. The idea behind this wire model
is based on solving partial differential equations governing the current and charge
density on the wire. Umashankar et al. [103] does not solve a wire problem explicitly
but includes the effect of the wire directly into the stencil of the Yee scheme. This
is done by using the contour-path interpretation of the Maxwell-Faraday law [98].

There are several other techniques to solve problems including thin wires than
to use subcell models in FD-TD. The most well known method is the frequency
domain electric field integral equation (EFIE). This formulation is often found in
the wide spread Method of Moments (MoM) codes such as NEC [75]. Time domain
integral equations are also used to formulate a marching-on-in-time procedure to
solve wire problems, see for example [12]. The Transmission-line modeling technique
(TLM), which is similar to FD-TD, has also been extended to include thin wires,
see [86]. For unstructured mesh time domain solvers, Riley et al. have developed
thin wire models for both Finite Volumes [85] and Finite elements [83]. There are
also hybrid techniques presented combining the MoM in time domain and FD-TD,
see for example [14].

Several extensions to the basic wire models for volumetric solvers are presented
in the literature. Based on the FD-TD subcell model of Holland et al. [49], Bérenger
developed a multiwire formalism to include bundled wires [10]. A multiconductor
model is also presented by Wlodarzyk et al. for TLM [107]. These models for sev-
eral wires running close together treat a very common situation in electromagnetic
compatibility problems. The method presented by Umashankar et al. [103] is also
enhanced by several groups. Douglas et al. [26] have improved the model to enable
better treatment of end effects. The basic assumption of a 1

r dependency of the
normal electric field and tangential magnetic field, along the wire, is improved by
adjusting the dependencies at the wire ends. In [106] Watanabe et al. presents an
improved feeding gap model giving more accurate impedances compared to the reg-
ular “one-cell gap”. Bingle et al. [11] have extended the wire model of Umashankar
et al. to also incorporate non-perfect conducting wires.
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As will be shown later, the subcell model of Holland et al. [49] is suitable to start
with when constructing a wire model that can handle arbitrarily oriented wires.

The subcell model of Umashankar et al. [103] will not be further covered here
even though it is commonly used. The formulation requires the wire to be aligned
to the Cartesian grid and it is not clear how to generalize this model to arbitrarily
oriented wires.

None of the two approaches for FD-TD can be completely defined in continuous
space and then discretized. The coupling of the wire and the surrounding field
depends on the discrete cell size in relation to the wire radius. This is somewhat
bothering but is not yet successfully circumvented. A consequence of this is that
a classical order of accuracy analysis is hard to perform. The parameters in the
models have basically a logarithmic dependency on the ratio between the cell size
and the wire radius and hence, changing the cell size will alter the coefficients in
the model. Moreover, if a grid is sufficiently refined, the wire cannot be regarded
thin and the model breaks down. For problems where the wire radius is moderate
the hybrid techniques described in Chapter 7 might successfully be used to resolve
the wire as a perfect conducting object.

This chapter consists primarily of five parts. In Sections 8.2, 8.3, and 8.5 the
wire equations are established and discretized. These sections contain essentially
known material, and follow [49] quite closely. Sections 8.4 and 8.6 include an
extended interpretation to the coupling between the wire equations and the Maxwell
equations. The interpretation is new all though the underlying equations are well
known. Section 8.7 describes the new shell interpolated tri-linear interpolation
technique which can handle arbitrarily oriented thin wires. To our knowledge, there
is no open literature that describes this capability for an FD-TD thin-wire model.
A stability analysis for a periodic model problem is provided in Section 8.8 where
the thin-wire model is shown to be stable under a time step limit. In Section 8.10
results are presented showing that the new shell interpolated tri-linear interpolation
technique gives very good results for dipole antennas and circular loop antennas.
Finally, some comments on the physical assumptions as well as conclusions are
given in Sections 8.9 and 8.11

8.2 Physics

In order to split the original field-and-wire problem we derive a suitable wire equa-
tion by studying an infinite long cylinder running in the z-direction, see Figure 8.2.

Following Holland et al. [49] we start by taking the θ component of Faraday’s
law written in cylindrical coordinates. Together with the boundary condition on
the wire surface (tangential component of the electric field is equal to zero on a
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Figure 8.2. Cylindrical coordinates.

metallic surface) we have

∂Er

∂z
− ∂Ez

∂r
= −µ

∂Hθ

∂t
,

Ez = 0, r = a.
(8.1)

Integration of (8.1) from r = a to R gives

∂

∂z

∫ R

a

Er dr − ∂

∂r

∫ R

a

Ez dr

︸ ︷︷ ︸

Ez(R)−Ez(a)

= −µ
∂

∂t

∫ R

a

Hθ dr

⇔

Ez(R) = µ
∂

∂t

∫ R

a

Hθ dr +
∂

∂z

∫ R

a

Er dr.

(8.2)

The r component of Ampère’s law written in cylindrical coordinates with periodic
boundary condition for the Hz component reads

1

r

∂Hz

∂θ
− ∂Hθ

∂z
= ǫ

∂Er

∂t
,

Hz(r, 0) = Hz(r, 2π) .
(8.3)

Integration of (8.3) from θ = 0 to 2π gives

1

r

∂

∂θ

∫ 2π

0

Hz dθ

︸ ︷︷ ︸

Hz(2π)−Hz(0)=0

− ∂

∂z

∫ 2π

0

Hθ dθ = ǫ
∂

∂t

∫ 2π

0

Er dθ

⇔

− ∂

∂z

∫ 2π

0

Hθ dθ = ǫ
∂

∂t

∫ 2π

0

Er dθ .

(8.4)

In order to close the system of equations formed in (8.2) and (8.4) we have to
make some assumptions. These assumptions are made in the borderland between
the discretized problem and the (real) continuous problem which is somewhat an-
noying.
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8.2.1 First assumption

We need relations between the field quantities and the wire quantities and hence we
make the following quasi-static assumption. Assume that the interaction between
the surrounding field and wire have a much smaller time variation than space vari-
ation. In that case we can use Biot-Savart’s law (8.5) and Couloumbs law (8.6) to
obtain relations between the field-variables and the wire-variables.

Biot-Savart’s laws for direct current (frequency = 0) in an infinite long wire is,

Hθ(r) =
I

2πr
, (8.5)

and Couloumbs law for static charges on an infinite long wire is,

Er(r) =
Q

2πrǫ
, (8.6)

where I is the wire-current and Q is the charge per unit length on the wire surface.

I
Q

Figure 8.3. Wire-variables.

Now we can substitute (8.5) and (8.6) into (8.4),

− 1

2πr

∂I

∂z

∫ 2π

0

dθ =
ǫ

2πrǫ

∂Q

∂t

∫ 2π

0

dθ ⇔ ∂Q

∂t
+

∂I

∂z
= 0 (8.7)

and (8.5) and (8.6) into (8.2),

Ez(R) =
µ

2π

∂I

∂t

∫ R

a

1

r
dr +

1

2πǫ

∂Q
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∫ R
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dr
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ln(
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)
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2πǫ

∂Q

∂z
ln(

R

a
).

(8.8)

Reformulating (8.8) gives

Ez(R) = L(
∂I

∂t
+

1

ǫµ

∂Q

∂z
), R > a, (8.9)

Ez(R) = 0, R ≤ a, (8.10)

where L is the inductance per unit length of the wire in Henry/meter [ V s
Am ],

L(R) =
µ

2π
ln(

R

a
). (8.11)
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8.2.2 Second assumption

Equation (8.9) is not a constant coefficient PDE because L = L(R). Since L dictates
the influence of the external electric field on the current we must be careful when
discretizing (8.8). If for example a discrete current node and a tangential electric
component are colocated the inductance per unit length is infinite if calculated
using (8.11).

We would like to avoid variable coefficients and hence we make our second
assumption to obtain a constant coefficient problem. The assumption will lead us
to formulas of the type found in (8.16).

By taking the discrete cell size into account we can determine L. This can be
done in several ways and the most obvious choice is to pick a radius, for example
R = ∆/2 if the FD-TD cells are cubic (∆x = ∆y = ∆z = ∆). An argument for
this choice is that a discrete field component also represents the field averaged over
a surface of ∆ × ∆. This yields

Ls =
µ

2π
ln(

∆

2a
). (8.12)

Another choice is to take an average of (8.11) over some area, see left part of
Figure 8.4. Holland et al. [49] presents two strategies where the simplest one for

X
Y

log(R/a)

(a) L(R) ∼ log(R
a

).

∆
∆

(b) Equivalent area,

R =
√

4

π
∆.

Figure 8.4. Averaging log(R
a

) over an equivalent area.

cubic FD-TD cells is to average over a circle with the same area as four times the
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FD-TD face area, see right part of Figure 8.4. This gives
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a ) dr dθ

∫ 2π

0

∫ R

0
r dr dθ

=
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2π
(ln(

2∆√
πa

) − 1

2
+

a2π

8∆2
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(8.13)

We could think of integrating from 0 to R in the radial integral in the numerator
of (8.13) but since Ez= 0 for r < a, see (8.10), (8.13) is justified. Furthermore,
we can argue about using the same radial integration limits in the denominator,
but Holland et al. [49] reports on better agreements to known analytic solutions to
simple problems by using r = 0.

A more refined calculation of L, which also holds for non-cubic cells, is found
by integrating (8.11) over the four rectangles in Figure 8.5 and divide by the area.
We have,

B
θ

R

A

Figure 8.5. Arbitrary rectilinear cells.

L� =
µ

2π

∫ ∫

Ω−W
ln( r

a ) dx dy
∫ ∫

Ω
dx dy

, (8.14)

where Ω is the domain of the four rectangles and W is the wire cross-section.
W is removed in the numerator to avoid a logarithmic singularity and is justified
by (8.10). As in (8.13) the integral in the denominator is taken over the whole area.
Hence, it equals 4AB. Working through the evaluation of the numerator integrals
in (8.14) gives the averaged inductance per unit length,

L� =
µ

4π
(ln(

A2 + B2

a2
) − 3 +

A

B
arctan(

B

A
) +

B

A
arctan(

A

B
)) +

a2

16AB
. (8.15)
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In the case of quadratic cell cross-sections we can compare L�, L◦ and Ls:

L� =
µ

2π
(ln(

√
2∆

a
) − 3

2
+

π

4
+

πa2

8∆2
, )

L◦ =
µ

2π
(ln(

2∆√
πa

) − 1

2
+

πa2

8∆2
),

Ls =
µ

2π
ln(

∆

2a
).

(8.16)

From Figure 8.6 there is apparently not much of a difference between L� and L◦

for quadratic cross-sections. The normalized difference is only ≈ 0.011 for all a
∆ . It
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Figure 8.6. Normalized inductance per unit length ( 2π
µ

L) for quadratic cross-

sections for L� , L◦ and Ls. In this Figure L� and L◦ are indistinguishable.

is only for larger wire radii, say a = 0.1∆, that the difference exceeds one percent.
We also see that Ls ≤ 0 for a ≥ 1

2∆, but L� is always positive and L◦ = 0 for
a ≈ 1.13∆. However, it is doubtful whether you can call a wire with a radius equal
to ∆

2 a thin wire since the diameter of the wire equals the cell size.
Interestingly enough Ls = 0 if the diameter of the wire equals the cell size which

in turn means that Ez is zero since the right hand side of (8.9) becomes zero. This
is equivalent to the simplest method to include thin wires into the FD-TD scheme,
i.e. to put Ez equal to zero for the edges where a wire is located. However, if we
stick to the thin-wire model in this case, we get a singular problem, see Section 8.8.

Holland et al. [49] suggests that a correction term is subtracted from L� to get
better agreement to solutions of simple wire problems obtained by the Method of
Moments. This correction is obtained by a request to get L� = 0 for a

∆ = 0.6 and
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the effect is that of lowering the curve of L� in Figure 8.6. From all this we can
draw the conclusion that it does not matter much whether you use the adjusted
L� or the much simpler Ls, at least not for quadratic cross-sections.

Without going into any details regarding the thin-wire subcell model of Uma-
shankar [103] it is worth noting that putting the wire radius equal to ∆

e2 (= 0.135∆)
is equivalent to put Ez equal to zero for the edges where a wire is located.

8.3 The wire equations

By making use of the relation between the change in potential and the wire charge
density we can write the wire equation in terms of the wire current and the wire
voltage. We have V = Q

C where C is the characteristic capacitivity in Farad/meter

C = ǫµ
1

L
. (8.17)

We can now reformulate (8.7) and (8.9) and and get the system that will be
discretized and solved,

C
∂V

∂t
+

∂I

∂z
= 0,

L
∂I

∂t
+

∂V

∂z
= Ez − RI.

(8.18)

We have here included R which is the resistance per unit length of the wire in
Ohm/meter. By changing the boundary condition in (8.1) to Ez = RI and following
this through up to (8.9) gives the right hand side Ez − RI.

The equation system (8.18) is sometimes called the telegraphers equations and
is also called the wave equation formulated as a first-order system. The speed of
propagation of the current and voltage is 1/

√
LC = 1/

√
ǫµ = c, i.e. the speed of

light.

8.4 Coupling between the wire and the surround-

ing 3D domain

The electric field surrounding the wire couples to the wire equations as a source
term according to (8.18) where the time derivative of the wire current picks up the
electric field component aligned with the wire. Coupling back to the 3D domain is
accomplished by writing the wire current as a current density. This current density
term is treated in the same way as the σE term in Ampères law, i.e. as a source term
for the time derivative of the electric field. This yields a closed form of equations
and hence we know how to separate the wire problem from the surrounding field
problem, see Figure 8.7 and the system of equations in (8.19).
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(a) Wire included
in the 3D domain.

!

(b) Wire separated from the 3D domain.

Figure 8.7. Separation of the two problems.

µ
∂H

∂t
+ ∇× E = 0,

ǫ
∂E

∂t
−∇× H = −σE − I

A
,

C
∂V

∂t
+

∂I

∂ξ
= 0,

L
∂I

∂t
+

∂V

∂ξ
= Eξ − RI,

(8.19)

where I
A is the current density associated with the wire current I, and the cross-

section area A is discussed later. (The current density is also denoted Jw.) The
ξ-coordinate is the (local) wire coordinate. If the wire is aligned with the z-axis
the ξ-coordinate coincides with the z-coordinate. When we discretize our problem
the underlying understanding of these source terms gets more accentuated. In the
basic case, where the wire is oriented in a Cartesian direction and the discretized
current nodes coincide with the electric components, the coupling between the two
equation systems are straightforward. Holland et al. [49] suggests that the wire
current is transformed to a current density simply by dividing the current with the
cross-section of the Yee cells where the wire is passing. The electric component
needed in (8.19) can be picked directly from the 3D grid. Holland et al. [49] also
treats the situation where the wire runs parallel to the edges of the Yee cells. In
this case a simple bi-linear interpolation is used in order to obtain the electric field
at the wire current node. These interpolation weights are re-used when the current
density is distributed among the surrounding electric components.

For wires running arbitrarily through the 3D domain we must broaden our view
of the governing equations, particularly the mutual source terms.

8.4.1 Distributional contemplation

The wire current is transformed to a current density in (8.19) and if the wire is thin
the current density is nonzero only along a one-dimensional curve in R

3. This is
equivalent to using a one-dimensional Dirac functions in R

3 for the source term in
the Maxwell equations. In the FD-TD method the inclusion of this current density
is fairly straight forward if the wire runs along the edges of the FD-TD cell. But
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for arbitrarily oriented wires we need to use a careful interpolation technique to
couple the FD-TD method and the discretized wire equations.

We start the search for a good interpolation technique by defining a scalar
weighting function ϕ(xξ,x), R3+3 → R

1 with the following properties:

1.
∫∫∫

Ω

ϕ(xξ,x) dx = 1 ∀ xξ (consistency condition),

2.
∫∫∫

Ω

x ϕ(xξ,x) dx = 0̄ ∀ xξ (concistency condition),

3. ϕ(xξ,x) ≡ 0 ∀ xξ,x : |xξ − x| > ρ (compact support),

4. ϕ(xξ,x) = ϕ(x,xξ) ∀ xξ,x (symmetry),

where xξ is the position of the wire coordinate ξ in 3D space.
The consistency conditions are absolutely fundamental for accuracy reasons. As

will be seen later, the weighting function is used for interpolation. The two consis-
tency conditions guarantees that there will be no interpolation error for first-order
polynomials. Compact support is necessary in order to avoid large interpolation
stencils in the discretization of the equations. Larger stencils are more difficult
to implement because surrounding geometries might affect the stencil. Also, the
distributed current density should, as much as possible, be concentrated around
the corresponding physical current density. A wider stencil distributes the current
density over larger domains which degrades the near field accuracy of the model.
Finally, symmetry is the key to the stability of the thin-wire model, see Section 8.8.

8.4.2 Distributed coupling between the wire and the sur-

rounding 3D domain

We can now use the weighting function from the previous section to interpolate the
surrounding electric field to the wire as well as to distribute the wire currents to the
surrounding electric field. Due to the compact support of the weighting function it
is enough to distribute and interpolate the quantities within a closed, finite domain.
In Figure 8.8 the distribution and interpolation procedure is shown for a compact
domain of spherical shape.

We can now define an interpolated value of the ξ component of the electric field.
At the wire coordinate ξ we have

E
interp

ξ (ξ) =

∫∫∫

Ω

ϕ(xξ,x) E(x) · x̂ξ dx, (8.20)

where x̂ξ is the directional vector of the wire. Similarly we define a distributed
current density by

Jdistrib(x) =

∫∫∫

Ω

ϕ(xξ,x) I(xξ)
1

A
x̂ξ dxξ (8.21)
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I
E E

I

Figure 8.8. The electric field, at a position on the wire, is obtained by integrating
the surrounding electric field multiplied by the weighting function ϕ (left). The
current density at a point in R

3 is obtained by integrating the current on the wire
multiplied by ϕ and divide by an area (right).

where A is an appropriate area. The volume integral in (8.21) is replaced by a line
integral because the wire current only exists along the wire. This yields:

Jdistrib(x) =

∫

Γ

ϕ(xξ,x) I(ξ)
1

A
x̂ξ dξ (8.22)

The first choice for the area A, is to use the cross-section of an FD-TD cell. For
Cartesian oriented wires this is natural, but for arbitrarily oriented wires we have
to define the area more carefully, see Section 8.6.2.

8.4.3 Effects of distribution

The consistency in using a distributed current density instead of using the physical
current density is illuminated in the following observation.

Assume ǫ = 1 and σ = 0 for simplicity and study Ampère’s law for both the
physical case and the distributed case:

∂E

∂t
−∇× H = −Jw,

∂Ẽ

∂t
−∇× H̃ = −J̃w,

(8.23)

where J̃w is the distributed current density defined via ϕ in (8.22). We can now
study the effect of the distributed current density on Ẽ, in a weak sense. We have

∂

∂t

∫∫∫

Ω

(E − Ẽ) dx−
∫∫∫

Ω

(∇×H −∇× H̃) dx = −
∫∫∫

Ω

(Jw − J̃w) dx. (8.24)

If we assume the field to be periodic over Ω, the curl of the magnetic fields does not
contribute since the curl operator gives derivatives and the integral of a derivative is
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zero for periodic functions. That is,
∫ b

a
f ′(x)dx = f(b)− f(a) = 0 if f(x) is limited

and periodic over the interval. The physical magnetic field is limited because the
wire is not infinitely thin and the magnetic field for the distributed case is smoother
than in the physical case. Furthermore, if we assume that the domain of support
for ϕ is small enough, such that the current density is constant within this domain,
we have

∫∫∫

Ω

(Jw − J̃w) dx =

∫∫∫

Ω

(Jw −
∫∫∫

Ω

ϕJw dx) dx

=

∫∫∫

Ω

Jw(1 −
∫∫∫

Ω

ϕ dx) dx = 0,

where the first consistency condition is utilized. The assumption of a local non-
variable current is already introduced in Section 8.2.1 and hence we have, from (8.24),

∂

∂t

∫∫∫

Ω

(E − Ẽ) dx = 0.

This analysis shows that the difference between the electric fields, using either
the distributed current density or the physical current density, is zero in a weak
sense.

8.5 Discretization of the wire equations

The equations describing the current and voltage along the wire are discretized by a
leap-frog scheme on a staggered grid. In fact the algorithm is more or less identical
to the FD-TD algorithm in 1D. This means that the wire model is very well suited
to fit into the FD-TD algorithm.

The influence of the surrounding electromagnetic field to the wire is described in
Section 8.6 as well as the feedback from the wire to the surrounding electromagnetic
field.

The boundary conditions are applied to voltage nodes and hence all current
nodes are surrounded by two voltage nodes.

An example of a wire is shown in Figure 8.9 and to simplify the presentation
we will assume that the nodes are given in increasing order and that the wire has a
start and stop node. However, the implementation can handle wires without start
and stop nodes, i.e. circularly connected wires, as well as nodes given in any order.
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Figure 8.9. An example of nodes and segments in the xy-plane (left). Correspond-
ing position of voltage and current nodes (right).

8.5.1 Inner nodes

We start by looking at the inner nodes. The voltage- and current-nodes are stag-
gered in both space and time (8.5.1) and the current nodes are placed halfway
between the voltage nodes. This gives a centered approximation of ∂V

∂ξ if approxi-

mated at the current nodes. But∂I
∂ξ calculated at the voltage nodes will in general

not be centered and hence formally only first-order accurate.
The variables are discretized at

V |ni , i = 1, . . . , N + 1, and I|n-
1
2

i+1
2

, i = 1, . . . , N, (8.25)

where N + 1 nodes and N segments are used.
The standard leap-frog scheme is used not only for the Maxwell part of (8.19)

but also for the time integration of the wire equations. For wires without resistance
we get

V n+1
i = V n

i − ∆t

C

I
n+1

2

i − I
n+1

2

i−1

∆ξI
, (8.26)

I
n+1

2

i+1
2

= I
n-1

2

i+1
2

− ∆t

L

[
V n

i+1 − V n
i

∆ξV
− Eξ

]

, (8.27)

where ∆ξI is the distance between the current nodes and ∆ξV is the distance
between the voltage nodes. For resistive wires (8.27) is replaced by

I
n+1

2

i+1
2

=
1 − R∆t

2L

1 + R∆t
2L

I
n-1

2

i+1
2

− 1

1 + R∆t
2L

∆t

L

[
V n

i+1 − V n
i

∆ξV
− Eξ

]

. (8.28)

The inner points are for the current nodes 1 ≤ i ≤ N , and for the voltage nodes
2 ≤ i ≤ N , where N is the number of wire segments. Hence, we need boundary
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conditions for V1 and VN+1 which is no surprise since these two nodes are the end
points of the wire, see Figure 8.9.

8.5.2 Boundary conditions

There are mainly two physical and one numerical boundary condition conceivable.
The two physical conditions are either I = 0 or V = 0 and the numerical boundary
condition is the nonreflecting boundary condition.

If a wire-end is free, we assume that there is no current flow through the end
point and therefore we enforce the current to be zero at the wire-end. On the other
hand, if a wire ends on a large perfectly conducting surface the charge per unit
length is zero and therefore we enforce the voltage to be zero at that wire-end.
This enforcement is valid only for wires ending on large PECs.

A nonreflecting boundary condition simulates an half-infinite wire and is applied
at a wire end point. This is achieved by using a nonreflecting boundary condition,
for example the first-order Mur boundary condition.

Boundary conditions for a wire ending on a perfect electric conductor

If V = 0 is the desired boundary condition we simply set

V1 = 0, (8.29)

VN+1 = 0. (8.30)

Free end boundary condition

If I = 0 is the desired boundary condition we plug this implicitly into the time
integration of the voltage at the end node by using a mirror value of the current.
From (8.26) we have

V n+1
1 = V n

1 − ∆t

C

I
n+1

2

1 − I
n+1

2

0

∆ξI
, (8.31)

V n+1
N = V n

N − ∆t

C

I
n+1

2

N+1 − I
n+1

2

N

∆ξI
. (8.32)

By putting I0 = −I1 and IN+1 = −IN we finally get

V n+1
1 = V n

1 − 2
∆t

C

I
n+1

2

1

∆ξI
, (8.33)

V n+1
N = V n

N + 2
∆t

C

I
n+1

2

N

∆ξI
. (8.34)

In (8.33) and (8.34) we have used a centered linear extrapolation to achieve
I = 0 at the wire end. If we instead put I0 = −αI1 , where α = 1−2δ

1+2δ , the effective
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length of the wire is increased by δ∆ξI , − 1
2

< δ < 1
2
. This procedure is outlined and

verified in [15] for a second-order extrapolation and will not be further addressed
in this thesis.

Nonreflecting boundary condition

The nonreflecting boundary condition is useful for long wires. This situation can
occur when lightning is simulated and the wire represents the ionized channel where
the current is propagating. Another example is for wires running through a PEC
surface without Galvanic contact and where the other side of the PEC surface is
excluded from the simulation. Since the wire is discretized by a 1D leap-frog scheme
the one-way wave equation [31] is perfectly suitable. We get

V n+1
1 = V n

2 − c∆t − ∆ξV

c∆t + ∆ξV
(V n

1 − V n+1
2 ), (8.35)

V n+1
N = V N−1 − c∆t − ∆ξV

c∆t + ∆ξV
(V n

N − V n+1
N−1). (8.36)

8.6 Discrete distribution

The wire equations and the Maxwell equations contains two interaction terms, Jw

and Eξ, coupling the two system of equations in (8.19) together. For a wire that
is discretized along the Cartesian edges of an FD-TD grid there is no need for
interpolation in order to communicate electric fields and wire currents, at least not
if the current nodes are colocated with the electric components (this case is briefly
explained in Section 8.4). But for arbitrarily oriented wires we must use some
interpolation technique. In Section 8.4.1 we defined distributional formulations for
E

interp

ξ and Jdistrib, (8.20) and (8.22), that can be used for the interaction between
the wire and the surrounding electric field in (8.19).

8.6.1 Introduction to discrete interpolation

We start the discussion in 1D by asking the following question: What is the Ez

field in an arbitrary point x?
The most natural way to determine Ez(x) if x is on a line between two discrete

Ez components, is to use the linear interpolation

Ez(x
ξ) = αEz(xi) + (1 − α)Ez(xi+1) where xξ = αxi + (1 − α)xi+1, 0 ≤ α ≤ 1.

This can also be formulated using a discrete weighting function ϕ(xξ, xi), see Fig-
ure 8.10, and we have

Ez(x
ξ) =

∑

i

ϕ(xξ, xi) Ez(xi).



8.6. Discrete distribution 135
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Figure 8.10. A linear discrete weighting function.

It is important that the width of the interpolation function ϕ is r = n∆x, where
n is an integer, and the amplitude of ϕ is 1/n. If this is the case, we inherit the
properties of the 3D weighting function discussed in Section 8.4.1 and we have

1.
∑

i

ϕ(xξ, xi) = 1 ∀ xξ (concistency condition),

2.
∑

i

xi ϕ(xξ, xi) dx = 0 ∀ xξ (concistency condition),

3. ϕ(xξ, xi) ≡ 0 ∀ xξ, xi : |xξ − xi| > ρ (compact support),

4. ϕ(xξ, xi) = ϕ(xi, x
ξ) ∀ xξ, xi (symmetry),

In our case we will stick to an interpolation distance equal to 1 ∆x which is the
narrowest possible radius. This choice is important in FD-TD simulations since
there are so many geometric objects that can obscure the interpolation if the wire
runs too close to them. Other commonly used weighting functions include poly-
nomial shaped and trigonometric shaped functions, but for our purpose the linear
shaped function works fine. The linear weighting function defined in Figure 8.10 is
translation invariant, that is

ϕ(xξ, xi) = ϕ(xξ − h, xi − h) ∀h . (8.37)

In particular, for h = xi we have ϕ(xξ, xi) = ϕ(xξ − xi , 0) and from now on
we will drop the second argument. Also, due to the symmetry property we have
ϕ(xξ − xi) = ϕ(xi − xξ) = ϕ(|xi − xξ|).

Now let us study the 2D case where Ez is sought between four discrete Ez

components in the xy-plane. That is, we are looking for the coefficients in the
following sum:

Ez(x
ξ) = αi,j Ez|i,j

+ αi+1,j Ez|i+1,j

+ αi,j+1 Ez|i,j+1
+ αi+1,j+1 Ez|i+1,j+1.
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The one-dimensional interpolation technique described above can easily be extended
to this situation by simply using the one-dimensional weighting function twice. This
gives

αi,j = ϕ(xξ − xi ) ϕ(yξ − yj )

αi+1,j = ϕ(xξ − xi+1) ϕ(yξ − yj )

αi,j+1 = ϕ(xξ − xi ) ϕ(yξ − yj+1)

αi+1,j+1 = ϕ(xξ − xi+1) ϕ(yξ − yj+1) ,

and is called a bi-linear interpolation. This can also be seen as a tensor product of
the two one-dimensional weighting functions and we can write

Ez(x
ξ) =

∑

i

∑

j

ϕ(xξ − xi) ϕ(yξ − yj) Ez(xi, yj) .

It is now time to study the general case where Ez is sought in an arbitrary point
in R

3. In the most general case eight discrete Ez components surrounds the sought
Ez and in that case a tri-linear interpolation gives the weights. This is achieved by
applying three one-dimensional weighting functions subsequently. This gives

Ez(x
ξ) =

∑

i

∑

j

∑

k

ϕ(xξ − xi) ϕ(yξ − yj) ϕ(zξ − zk) Ez(xi, yj , zk) , (8.38)

where the tensor product of ϕ(xξ − xi) ϕ(yξ − yj) ϕ(zξ − zk) corresponds to the
three-dimensional weighting function ϕ(xξ − xi) discussed in Section 8.4.

If the desired Ez is located as in the “2D” or “1D” cases above, or even colocated
with a discrete Ez point, the tri-linear interpolation is still valid since ϕ(xm−xi) = 1
if m= i and ϕ(xm−xi) = 0 if m 6= i. Furthermore, it is worth noting that the tensor
product of the three one-dimensional linear weighting functions does not destroy
the desired properties of consistency, because

∫∫∫

Ω

ϕx ϕy ϕz dx =

∫

x

ϕx dx

∫

y

ϕy dy

∫

z

ϕz dz = 1 · 1 · 1 = 1 ,

where ϕx = ϕ(xξ − xi) etc. and

∫∫∫

Ω

x ϕx ϕy ϕz dx =

∫∫

yz

ϕyϕz

∫

x

x ϕx x̂ dx dy dz +

∫∫

xz

ϕxϕz

∫

y

y ϕy ŷ dy dx dz

+

∫∫

xy

ϕxϕy

∫

z

z ϕz ẑ dz dx dy = 0̄ .

The separation of the integrals are possible because each one-dimensional weight-
ing function is independent of the other two coordinate directions. Replacing the
integrals with sums gives the same properties for the discrete case.
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8.6.2 Discrete interpolation for the wire problem

The application of the weighting functions can now be used to obtain usable values
of tangential electric fields and surface currents in discrete space. For the tangential
electric field at the m:th current node we have

Eξm
= Einterp(xξ

m) · x̂ξ
m =

=
∑

i,j,k

ϕ(xξ
m − i∆x − ∆x/2) ϕ(yξ

m − j∆y) ϕ(zξ
m − k∆z) Ex|ijk x̂

ξm

x

+
∑

i,j,k

ϕ(xξ
m − i∆x) ϕ(yξ

m − j∆y − ∆y/2) ϕ(zξ
m − k∆z) Ey|ijk x̂

ξm

y

+
∑

i,j,k

ϕ(xξ
m − i∆x) ϕ(yξ

m − j∆y) ϕ(zξ
m − k∆z − ∆z/2) Ez|ijk x̂

ξm

z .

(8.39)

The summation is broken up into three parts to indicate that the electric compo-
nents are staggered. Hence the sums gives nonzero contributions for different sets of
{i, j, k} for different electric components. Equation (8.39) is a direct discretization
of the continuously formulated interpolation of (8.20).

Each wire segment m affects the same electric components with the same weights
that are involved in (8.39). That is, the current I(ξm) is distributed to the electric
components within the interpolation radius resulting in a total current density at
x given by

Jdistrib
Ex

|ijk =
∑

m

ϕ(i∆x + ∆x/2 − xξ
m) ϕ(j∆y − yξ

m) ϕ(k∆z − zξ
m) Iξm

∆ξm

V
x̂

ξm

x ,

Jdistrib
Ey

|ijk =
∑

m

ϕ(i∆x − xξ
m) ϕ(j∆y + ∆y/2 − yξ

m) ϕ(k∆z − zξ
m) Iξm

∆ξm

V
x̂

ξm

y ,

Jdistrib
Ez

|ijk =
∑

m

ϕ(i∆x − xξ
m) ϕ(j∆y − yξ

m) ϕ(k∆z + ∆z/2 − zξ
m) Iξm

∆ξm

V
x̂

ξm

z ,

(8.40)

where the ratio between the length ∆ξm and the volume V replaces the area A
in (8.22). It is necessary to include the length of the wire segment m to handle
wire segments consistently regardless of their length. A motivation for this is clear
if we think of two cases. First, assume that the wire is discretized in much shorter
segments than the FD-TD edges. In this case the number of segments is large for a
given physical wire. Secondly, assume the opposite, that a given wire is discretized
in very long segments. In both these cases the electric field should be the same, at
least far away from the wire.

Now, assume that the wire current is unitary in both cases. If the current is not
scaled by the segment lengths, a lot of short segments will drive the same electric
components and hence give rise to non-physically strong current densities. On the
other hand, if the segments are long, only a few electric components will be driven
by the wire currents. Therefore, it is clear that a length scaling is needed.



138 Chapter 8. Thin-Wire Subcell Models

To balance the added length dimension a division by volume, instead of area,
is needed in (8.22). This leads us to (8.40) where the volume must be constant for
all wire segments. The most obvious choice is to take the volume of an FD-TD cell
which reduces the ratio ∆ξm

V to the cross-section area for an FD-TD cell in case of
Cartesian oriented segments.

8.7 Improved discrete distribution

The discretization of the distributional function ϕ makes it possible to calculate
the electric fields and the current densities needed for the arbitrarily oriented wire
segments. However, if we use the tri-linear interpolation technique described in
Section 8.6.2 there will be significant discrepancies in the calculated quantities
when the segments are slightly moved or rotated (see the results in Section 8.10).
In this case the coupling between the wire and the surrounding 3D space is very
sensitive to small changes in the wire location. One way to reduce the sensitivity is
of course to use a linear weighting function with a radius of 2∆x instead of ∆x, see
Figure 8.10. However, numerical experiments show that this does not work very
well either.

Inspired by Burke et al. [15] we approach the finding of Eξ in a two step manner.
If we think of the thin wire equations as describing a circular TEM wave guide
where we first find the electric field on the shell and then use the averaged shell
field for driving the wire we obtain a very favorable interpolation technique. The
justification of this approach is primarily based on experimental results.

−1

 0

 1

−1

 0

 1

−1

 0

 1

Figure 8.11. Instead of interpolating the surrounding field directly to the midpoint
of the segment, the fields are interpolated to a number of point on a circular shell
around the midpoint. These shell point values are then averaged and used at the
midpoint.
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The shell averaged electric field at the current node is given in vector form by

Ẽ(xξ) =
1

2π

2π∫

0

∑

ijk

ϕ(xξ + rA(θ)ê − xijk) Eijk dθ

≈ 1

N

N∑

n=1

∑

ijk

ϕ(xξ + rA(θn)ê − xijk) Eijk (8.41)

where r is the shell radius, A is a rotation matrix describing rotation around the
wire-axis and ê is an arbitrary unit vector perpendicular to the wire. For reasons
of compactness (8.41) is written in vector form. Writing out (8.41) for the three
individual electric components would resemble (8.39) but with the averaging sum
over the shell points.

This extension of a standard tri-linear interpolation is simple to program once
you have a general tri-linear interpolation subroutine. The distribution of the wire
current back to the surrounding electric field is done using the same weights that
each individual FD-TD component contributes to the respective current nodes,
see (8.20) and (8.22). In this way the anti-symmetric structure of the system
matrix in Section 8.8 is kept and hence, stability is ensured. The four properties in
Section 8.4.1 are also kept. What is left to find is a suitable shell radius and the
number of intermediate interpolation points on the shell.

The shell radius is chosen such that the shape of the combined weighting function
has a flat center plateau, see Figure 8.12 where the regular bi-linear weighting
function and the shell averaged bi-linear weighting function are plotted in the xy-
plane. The interpretation of the plotted function of the regular bi-linear case is
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Figure 8.12. The regular bi-linear weighting function (left) and the shell averaged
bi-linear weighting function (right).
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as follows: Assume that the wire node is located in the origin. If there is also
an electric component at the origin we pick that electric component with the unit
weight (top of the cone). All other components are located outside the domain of
support and are hence not involved in the interpolation or distribution. But if the
wire is not collocated with an electric component, the regular bi-linear weighting
function will give up to four weights for the electric components inside the domain
of support. The interpretation of the plotted shell averaged bi-linear weighting
function is similar, but here the domain of support is larger which means that
there will always be more than one component involved in the coupling process.
Furthermore if there is an electric component close to the origin, the exact position
is not important at all due to the flatness of the weighting function. The wheight
for that component will have the plateau value anyway. However, the surrounding
electric components will come into play differently if the wire function is moved
slightly.

The flatness of the shell averaged function is obtained by using 20 intermediate
interpolation points on the circular shell and chosing the shell radius r = 1/

√
2.

If r is decreased, the shape will be more conical, and if the radius is increased the
shape will resemble a volcano crater. In the latter case centrally placed electric
fields will have a too weak influence on the averaged field.

Another commonly used shape function is the cosine bump. Using this shape
function instead of the hat function (Figure 8.10) will give a flat plateau for r = 0.65.
This is thus a more compact combined interpolation function, but numerical exper-
iments indicates that the shell averaged tri-linear weighting function is superior.

8.8 Stability

It is commonly known that both the Maxwell equations and the wire equations are
well-posed. But there is no guarantee that a coupling of these two sets of equations
preserves the well-posedness. The equations are given in (8.19) but are repeated
here for convenience:

µ
∂H

∂t
+ ∇× E = 0 ,

ǫ
∂E

∂t
−∇× H = −σE − Jw ,

C
∂V

∂t
+

∂I

∂ξ
= 0 ,

L
∂I

∂t
+

∂V

∂ξ
= Eξ − RI ,

(8.42)

where Jw is the current density given by the current I divided by an area, see
Section 8.6.2. Studying the well-posedness of the coupled equations is very com-
plicated because they have different dimensionality. The Maxwell equations are
defined in three space dimensions, and the wire equations are one-dimensional in
space. Therefore, let us study the equivalent property of stability for the discretized
equations. But also in the discrete case a general stability study is very difficult.
Hence, we will have to make a few assumptions: Assume that the wire is straight,
oriented in z-direction, and infinitely long. Also assume that there is no variation
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of any variables in the z-direction and that the electric field only has an Ez com-
ponent. Furthermore conductivity and resistance per unit length is omitted. Now
we can reduce (8.42) to the 2D TMz mode, see (3.8),

µ
∂Hx

∂t
= −∂Ez

∂y
,

µ
∂Hy

∂t
=

∂Ez

∂x
,

ǫ
∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
− Jz ,

C
∂V

∂t
+

0
︷︸︸︷

∂I

∂z
= 0 ,

L
∂I

∂t
+

∂V

∂z
︸︷︷︸

0

= Ez ,

(8.43)

and the wire equations reduces to an ordinary differential equation for I.
A necessary condition for stability of the fully discrete problem is that the

equivalent semi-discrete problem, written on matrix form in (8.44), have eigenvalues
in the left half plane. For the leap-frog integrator to be stable, the eigenvalues must
be purely imaginary.

∂
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, (8.44)

where the operators A and B take care of the spatial discretization of Ez, and C and
D take care of the spatial discretization of Hx and Hy. The operator F describes
how the wire current affects the electric field and the operator G describes how the
electric field affects the wire current.

If we introduce a scaling of the variables the symmetry of the operators are
obvious and the numerical solution of the eigenvalue problem becomes more robust.
Using the following scaling:

hx =
√

µHx , hy =
√

µHy , ez =
√

ǫEz , i =
√

µ
√

g(a)I , (8.45)

and substituting this into (8.44) only changes the magnitude of the operators A – G.
The scaling of the current is 1/

√
L where we split L in two parts, the permeability,

and g(a). From (8.16) we have

g(a) =
1

2π
ln(

∆

2a
)forLs. (8.46)

After the substitution, all the operators in (8.44) have the speed of light as a com-
mon factor, which can be extracted. If we rename our new variables and operators,
and choose the old names, equation (8.44) is valid again, but scaled.

Let us study an example. Assume that the wire is located in the center of a
6×6 cells FD-TD TMz-grid, see Figure 8.13. Use a Dirichlet boundary condition
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Figure 8.13. The position of the discretized variables. PMC boundary condition
is applied to the tangential magnetic components along the dashed lines.

for the tangential magnetic components in the outermost layer of cells, i.e. a PMC
boundary condition. This gives us 5×4 Hx components, 4×5 Hy components, 5×5
Ez components, and one current component. The total number of unknowns are
thus 66. Without lose of generality we assume that ∆x = ∆y = 1. If this is not
the case the scaling of the current must take ∆x and ∆y into account as well.

If we order the unknown lexicographical, that is, starting from the lower left
corner going to the right and then next row, the center Ez component is E13

z . The
operators A – D in (8.44) have a simple structure and are mutually anti-symmetric.
That is,

CT = −A , (8.47)

DT = −B , (8.48)

GT = −F , (8.49)

where F is a 25×1 matrix, and G is a 1×25 matrix. The only nonzero components
of F and G are

F(13, 1) = − c
√

(g)
, G(1, 13) =

c
√

(g)
, (8.50)

if the wire is placed in the center of the domain.
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The structure of the total matrix in (8.44) is plotted in Figure 8.14. The dif-
ferent sections are mutually anti-symmetric and hence the semi-discrete problem is
described by an anti-symmetric matrix, which has purely imaginary eigenvalues.
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Figure 8.14. The structure of the matrix in (8.44). The different block are the
operators A - G and the nonzero elements (plotted) are minus one or plus one.

To prove stability for the fully discrete case, using the leap-frog time integrator,
we study the magnitude of the imaginary eigenvalues. A sufficient condition for our
example is that the largest eigenvalues are contained within the stability domain
of leap-frog.

If we calculate the largest eigenvalue to the problem described in Figure 8.13 for
different number of cells we will find that the eigenvalues are slightly larger than for
a problem without a wire, see Table 8.8. Therefore, the largest time step allowed
for the wire problem is slightly smaller than what is allowed for the corresponding
stand alone problem. How much the time step must be reduced depends on the wire
radius. If the wire radius is increased the maximum time step must be decreased.
From Table 8.8 we have that the time step must be reduced by a factor 1.06 for
a wire with relative radius of 0.1. For a wire with relative radius of 0.25 the time
step must be decreased by a factor 1.30. But as long as we use a sufficiently small
time step we have stability.
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Problem- Wire radius
size no wire a=1.7410−6 a=0.00093 a=0.0216 a=0.1

Maximum eigenvalue
n-1 λempty λg=2 λg=1 λg=0.5 λg=0.256

5 0.9511 0.9570 0.9648 0.9872 1.0575
10 0.9877 0.9892 0.9914 1.0013 1.0593
15 0.9945 0.9952 0.9964 1.0031 1.0593
20 0.9969 0.9973 0.9980 1.0035 1.0593
25 0.9980 0.9983 0.9988 1.0036 1.0593
30 0.9986 0.9988 0.9992 1.0036 1.0593
35 0.9990 0.9991 0.9994 1.0036 1.0593
40 0.9992 0.9994 0.9996 1.0036 1.0593
45 0.9994 0.9995 0.9997 1.0036 1.0593
50 0.9995 0.9996 0.9997 1.0036 1.0593

Table 8.1. Maximum eigenvalue for the semi-discrete case for different problem
sizes, nx = ny = n, and different wire radius a. g is the scaling factor defined
in (8.46).

The numerical analysis performed so far is for a wire collocated with the cen-
ter electric component. The analysis can also be done for wires that are located
arbitrarily in the grid. For a wire located in the center of a cell, the operators F
and G will have four nonzero entries, at least if a bi-linear interpolation function
is used. The values of the matrix entries is one fourth of (8.50). For other wire
position the fractions between the four nodes are different. Numerical experiments
on the case where the current node is offseted 0.25∆x and 0.25∆y resembles the
results in Table 8.8 even though the wire radius does not have the same impact on
the eigenvalues as in the collocated wire case. For the problem size n − 1 = 50 the
maximum eigenvalue is only 1.0009 for a wire radius of 0.25∆x.

An important question is how general this stability study is. Does it apply to
3D using a wire with finite length? First of all we realize that the semi-discrete
3D problem without a wire can be described by an anti-symmetric matrix because
the leap-frog time integrator is stable as long as the time step is limited by (4.10).
Secondly, even though the size of F and G becomes larger (one column/row for
each current node), we still have FT = −G because the coupling from the field to
the wire is identical to the opposite coupling, except for a change in sign. We will
have to scale and include the voltage as well but all the operators will be mutually
anti-symmetric and hence the stability is ensured as long as the time step is chosen
according to the largest eigenvalues of the semi-discrete problem. However, for a
realistic 3D case, it is very cumbersome to calculate the largest eigenvalue because
the semi-discrete matrix becomes very large, and consequently, a practical limit on
the time step is in general very difficult to obtain.
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8.9 Comments on the physical assumptions

There are reasons to believe that the thin-wire model is accurate in the case of
long straight wires. But bearing in mind the introductory consideration of infinite
long cylinders it is dubious if the wire model always mimics the physics. What
happens close to wire-ends, where the wire bends abruptly, or if the wire runs close
to material interfaces?

At a wire-end the assumption of an 1
r dependency of the electric field on wire

charge, described by Biot-Savart’s law (8.6), is not valid. This effect is studied
in [26] for the wire model of Umashankar et al. [103] and a significnt effect is
shown.

Whether bending wires are poorly modeled is most of all a question of wire
radius. The coupling between the surrounding electromagnetic field and the wire is
stronger the thicker the wire is. Therefore, for really thin wires one can argue that
most energy will propagate in the wire and only a small fraction will be emitted
before the bend and collected after the bend, hence the physics is not severely
violated by the assumption for thin wires.

Pradiated

Pconducted

Figure 8.15. Conducted and radiated power close to a bending wire.

Close to material interfaces, the field is not decreasing like 1
r as assumed in

equation (8.5) and equation (8.6). We can perhaps recover the assumption and
modify the corresponding equations by considering a mirrored problem in the case
of wires running close to perfect electric conductors, see Figure 8.16. For general
materials, however, the method of mirroring becomes unpractical, particularly if
the wire is not running parallel to the geometry.

Figure 8.16. The field around a cylinder over an infinite ground plane can be found
using a mirror-cylinder.
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8.10 Results

In this section the thin-wire subcell model is used for modeling two antennas, a
linear dipole antenna and a circular loop antenna. The dipole antenna is run in
both receiving and transmitting mode.

The coupling from the surrounding 3D domain to the thin wire is most critical
for the receiving antenna whereas the the coupling from the thin wire to the 3D
domain is most important for the transmitting antenna.

The loop antenna demonstrates the capability of arbitrary orientation as well
as curved wires.

Two interpolation techniques are examined, the standard tri-linear interpolation
which is a natural extension to the bi-linear interpolation proposed by Holland
et al. [49], and the shell averaged tri-linear interpolation from Section 8.6.

The new shell averaged tri-linear interpolation technique gives very good re-
sults, which is shown in the following experiments. But the standard tri-linear
interpolation is incapable of modeling arbitrarily oriented thin wires correctly.

In preparation for Section 8.10.1 and 8.10.2 some fundamental properties of a
dipole antenna are given here (more details are found in Balanis [7]). An antenna
is a device that interacts with its surrounding media and for certain frequencies the
interaction is particularly strong. These frequencies corresponds to the resonant
modes of the wire and for a linear dipole the first resonant modes are plotted in
Figure 8.17. If the antenna length in Figure 8.17 is 41 meter the corresponding

Figure 8.17. The first five resonant modes on a dipole antenna. The horizontal
line is the wire, the solid curve is the current and the dashed curve is the voltage.

wavelengths for the eigenmodes are given in Table 8.2.

mode λ [m] f [MHz] mode λ [m] f [MHz]
1 82.0 3.6585 5 16.4 18.2927
2 41.0 7.3171 6 13.6667 21.9512
3 27.3333 10.9756 7 11.7143 25.6098
4 20.5 14.6341 8 10.25 29.2683

Table 8.2. The first eight resonant modes for a 41 m long wire, see Figure 8.17.
The frequency is based on the free space wave propagation speed.
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8.10.1 Receiving dipole antenna

A plane wave impinging a dipole antenna will induce currents on the antenna.
The currents will propagate along the antenna to the end point and reflect back
again. This process will continue until the energy induced by the exciting field has
been radiated out to the surrounding medium. For some frequencies this process is
particularly strong due to resonances. The resonant frequencies are easier to pick
up by the antenna and hence the corresponding currents are stronger.

In the following numerical experiment a thin wire with a length of 41 meter
is embedded in an FD-TD grid with ∆x = ∆y = ∆z = 1 m. The wire radius
is 10 mm and the wire runs in the x-direction discretized in one meter segments.
The direction of the incoming pulse is 26.6 degrees (atan(1

2 )) from broadside and a
horizontal polarization is used in order to excite the wire. By studying the radiation
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(b) Radiation pattern.

Figure 8.18. A plane wave impinges the wire at an angle of 26.6 degrees with a
plane polarization indicated to the left. To the right the radiation pattern (linear)
for the first four resonant modes.

pattern for a transmitting dipole antenna we find the angle 26.6 degrees for which
the first ten modes does not vanish. Reciprocity gives us that the same angle will
excite the modes if the impinging plane wave contains the corresponding frequency
components.

The pulse shape is a differentiated Gaussian pulse with tw = 2.0× 10−8 i.e. the
−3 dB bandwidth is 3.6− 22 MHz. We use the time step ∆t = 0.5∆x/c0. Current
node 21 is the midpoint of the wire.

In the basic setup the current nodes coincide with Excomponents and the wire
is then moved in four different ways.
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In the first case the wire is moved transversally as in Figure 8.19a using 0.25∆y
(Ia 25), 0.5∆y (Ia 50) and 0.5∆y + 0.5∆z(Ia 55). In the second case the wire is
moved longitudinal as in Figure 8.19b using 0.25∆x (Ib 25) and 0.5∆x (Ib 50). In
the third case the wire is rotated in the xy-plane, Figure 8.19c, by 26.6 degrees
(Ic 27) and 45 degrees (Ic 45). In the fourth case the wire is rotated as in Fig-
ure 8.19d from the direction [1 0 0] to [1 0.5 0.5] (Id 24) and to [1 1 1] (Id 35).
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k

(a) Transversal translation.
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E

Wire 45
0 25

(b) Longitudal translation.

27

45

4527

(c) Plane rotation.

35
24

24

35

(d) 3D rotation.

Figure 8.19. The four different test cases for moving the wire. Case a) is seen
from the side, and in case b) the wire is moved in the length direction.

In all these cases the incoming wave is designed such that the time when the
wave reaches the center point of the wire is the same, and hence a direct comparison
of the currents and voltages can be performed. The responses of the different cases
are shown in Figure 8.20–8.23.
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Figure 8.20. The midpoint current for the standard tri-linear interpolation (top)
and the shell averaged tri-linear interpolation (bottom). Close ups are given in the
following two figures.



150 Chapter 8. Thin-Wire Subcell Models

80 90 100 110 120 130 140 150 160
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Time step

A
m

p
e

re

Ia
00

Ia
25

Ia
50

Ia
55

Ib
25

Ib
50

Ic
27

Ic
45

Id
24

Id
35

80 90 100 110 120 130 140 150 160
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Time step

A
m

p
e

re

Ia
00

Ia
25

Ia
50

Ia
55

Ib
25

Ib
50

Ic
27

Ic
45

Id
24

Id
35

Figure 8.21. Detail of the midpoint current for the standard tri-linear interpolation
(top) and the shell averaged tri-linear interpolation (bottom).
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Figure 8.22. Detail of the midpoint current for the standard tri-linear interpolation
(top) and the shell averaged tri-linear interpolation (bottom).
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Figure 8.23. The (almost) midpoint voltage V22 for the standard tri-linear inter-
polation (top) and the shell averaged tri-linear interpolation (bottom).
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It is tempting to believe that the responses shown in Figure 8.20 and Figure 8.23
is described by damped harmonics, at least after a while when the initial excitation
have settled. Assuming that the response is described by a sum of damped oscil-
lations we can find them using Prony’s method. This method is described in the
literature, see for example [98], but it is necessary to use the method with some
care since spurious modes might occult the expansion.

Assume that the current response can be written

I21(t) =

p
∑

l=1

Cl e(−γlt+i2πflt), (8.51)

where Abs(Cl) is the initial amplitude, Arg(Cl) is the phase, γ constitutes the
damping, and f is the frequency of the oscillation.

If we run Prony’s method and extract the most dominant oscillation we can
summarize the responses for the two interpolation techniques in a table for direct
comparison. We get:

Standard tri-linear interpolation. Shell averaged interpolation.
Case f [MHz] γ [ 1

µs ] ampl.[mA] f [MHz] γ [ 1
µs ] ampl.[mA]

Ia 00 3.527 0.973 20.02 3.519 1.179 25.49
Ia 25 3.524 1.041 21.77 3.519 1.175 25.39
Ia 50 3.523 1.066 22.42 3.519 1.171 25.28
Ia 55 3.520 1.134 24.24 3.519 1.163 25.06
Ib 25 3.523 0.972 19.99 3.516 1.178 25.46
Ib 50 3.521 0.971 19.97 3.515 1.178 25.45
Ic 27 4.169 1.437 24.42 3.543 1.193 25.67
Ic 45 4.191 1.444 25.34 3.554 1.201 25.71
Id 24 4.672 1.890 28.52 3.594 1.223 26.03
Id 35 3.972 1.379 25.56 3.564 1.204 25.72

Table 8.3. The dominant current mode for a 41 m long wire using standard tri-
linear interpolation and shell averaged tri-linear interpolation.

The relative changes between the different wire cases is shown for both inter-
polation techniques in Table 8.4. The nominal values are choosen by inspection of
the figures in Table 8.3.
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Relative difference in percent, Relative difference in percent,
standard tri-linear interpolation. shell averaged interpolation.

Nominal values, Nominal values,
Case 3.52 1.18 25.4 3.52 1.18 25.4

[MHz] [ 1
µs ] [mA] [MHz] [ 1

µs ] [mA]

Ia 00 0.2 -21.2 -26.9 · -0.1 0.4
Ia 25 0.1 -13.4 -16.7 · -0.4 ·
Ia 50 0.1 -10.7 -13.3 · -0.7 -0.5
Ia 55 · -4.1 -4.8 · -1.4 -1.4
Ib 25 0.1 -21.4 -27.1 -0.1 -0.2 0.3
Ib 50 · -21.5 -27.2 -0.1 -0.2 0.2
Ic 27 15.6 17.9 -4.0 0.6 1.1 1.1
Ic 45 16.0 18.3 -0.2 1.0 1.8 1.2
Id 24 24.7 37.6 10.9 2.1 3.5 2.4
Id 35 11.4 14.4 0.6 1.2 2.0 1.2

Table 8.4. The relative differences in the dominant current mode for a 41 m long
wire using standard tri-linear interpolation and shell averaged tri-linear interpola-
tion.

It is very clear that standard tri-linear interpolation does not give consistent
results for different discretizations of the same physical setup. For pure translation
(Ia 00 to Ib 50) the frequency is accurate, but the damping and amplitude varies
several ten’s of percent. For the rotated wires (Ic 27 to Id 35) also the frequency
varies very much. The shell averaged interpolation technique gives a variation of
only a few percent for the worst cases.
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8.10.2 Transmitting dipole antenna

In this section we study the same dipole antenna as in the previous section but
in transmitting mode instead of receiving mode. The new shell interpolated wire
model showed very consistent results in receiving mode and it is now time to ask
the obvious question whether the model gives consistent and accurate results also
for transmitting antennas?

A transmitting dipole antenna is characterized by the input impedances and
input admittances. Burke et al.[15] present very good results using their method
for transversally moved wires. But a more general capability to tilt a wire with
respect to the mesh is inquired in the conclusion of[15]. In this section such results
are presented using the new shell interpolated model.

The transmitting dipole antenna is excited at the midpoint of the antenna where
also the input impedance is registered. We excite the center current segment using
a voltage source which is added to the right hand side of (8.27);

I
n+1

2

i+1
2

= I
n-1

2

i+1
2

− ∆t

L

[
V n

i+1 − V n
i

∆ξV
+ Eξ

]

+
∆t

L∆ξV
V exc.(tn) .

If we register the current at the mid segment we can calculate the input impedance
and input admittance for the dipole antenna. The impedance is calculated as the ra-
tio between the input voltage and the current in the frequency domain but we have
to compensate for the time-staggering between the excited voltage (tn) and the reg-
istered current (tn+1

2
). If we use one of the nominal Fourier transformed quantities

we can choose to compensate the other by using either V̂ exc.(f) = fft(V exc.(tn+1
2
)),

Î21(f) = fft(I
n+1

2

21 e−i2πfdt/2) or Î21(f) = fft(I
n-1

2

21 + I
n+1

2

21 ) ∗ 0.5. However, the differ-
ences in the results are very small regardless of the choice.

The impedance is given by

Ẑ21(f) =
V̂ exc.(f)

Î21(f)
, (8.52)

and the admittance

Ŷ21(f) =
1

Ẑ21(f)
. (8.53)

We can split the impedance and admittance into the real and imaginary parts.
The real and imaginary components are called resistance and reactance for the
impedance, and conductance and susceptance for the admittance.



156 Chapter 8. Thin-Wire Subcell Models

4 6 8 10 12 14 16 18 20 22 24
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

frequency [MHz]

re
a

l(
Z

) 
(O

h
m

s
)

Za
00

Za
25

Za
50

Za
55

Zb
25

Zb
50

Zc
27

Zc
45

Zd
24

Zd
35

MoM    

4 6 8 10 12 14 16 18 20 22 24
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

frequency [MHz]

re
a

l(
Z

) 
(O

h
m

s
)

Ga
00

Ga
25

Ga
50

Ga
55

Gb
25

Gb
50

Gc
27

Gc
45

Gd
24

Gd
35

MoM    

Figure 8.24. The input resistance for the standard tri-linear interpolation (top)
and the shell averaged tri-linear interpolation (bottom). A Method of Moments
reference solution is also plotted.
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Figure 8.25. The input reactance for the standard tri-linear interpolation (top) and
the shell averaged tri-linear interpolation (bottom). A Method of Moments reference
solution is also plotted.
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Figure 8.26. The input conductance for the standard tri-linear interpolation (top)
and the shell averaged tri-linear interpolation (bottom). A Method of Moments
reference solution is also plotted.
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The impedance and admittance for the different wire cases (see Figure 8.19)
are plotted in Figure 8.24 – 8.26 where we have some very clear resonances. These
correspond to the resonance modes shown in Figure 8.17 where the first, third and
fifth mode have nonzero currents but zero voltage whereas the second and fourth
mode have nonzero voltages and zero currents. Hence, we can expect peaks in the
impedances for the modes where the currents are zero, i.e. the even modes. The
odd modes will give peaks in the admittances.

The results are compared to a Method of Moments solution obtained by NEC-
3 and we see a good agreement for the shell interpolated wire model. But the
standard tri-linear interpolation technique gives very poor results. The impedance
for the first half wavelength resonance should be 73 + i42.5 Ω [7] and the reactance
goes from being capacitive to inductive very rapidly in the vicinity of the resonance
frequency (see Figure 8.25). Therefore we expect the impedance to be fairly close to
73 Ω at the frequency where the reactance goes to zero around the half wavelength
resonance. This also corresponds to where the admittance has it’s first peak. The
input impedance for the different wire cases are given in Table 8.5.

The impedances obtained for the standard tri-linear interpolation technique are
good as long as the wire is oriented along a Cartesian direction. But if we rotate
the wire we get very bad impedances as well as too high resonance frequencies. The
shell averaged interpolation technique gives good results in all cases. Interestingly
enough the impedance and resonance frequencies are closer to analytic values (73 Ω
and 3.65 MHz) for the rotated wires. The reason for this is not clearly understood,
but we note that a reference solution obtained by NEC-3 gives 3.53 MHz and
72.2 Ω which is also slightly below expected analytic values. A more careful study
of the influence of the wire radius might give some insight. The thicker the wire,
the tighter the coupling between the 3D field problem and the 1D wire problem
becomes, and the excitation and radiation process becomes stronger. This in turn
will lead to a higher damping term in the expansion in (8.51) which will lead to a
shift in frequency, see Section 8.10.4.
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Standard tri-linear interpolation. Shell averaged interpolation.
Case f [MHz] real(Z) [Ω] f [MHz] real(Z) [Ω]
Ia 00 3.54 71.9 3.54 71.6
Ia 25 3.54 71.8 3.54 71.6
Ia 50 3.54 71.7 3.54 71.6
Ia 55 3.54 71.6 3.54 71.6
Ib 25 3.54 71.8 3.54 71.5
Ib 50 3.54 71.8 3.54 71.5
Ic 27 4.20 111.3 3.57 72.3
Ic 45 4.22 104.0 3.58 73.2
Id 24 4.73 151.2 3.62 74.1
Id 35 4.00 95.8 3.59 73.5

Table 8.5. The frequency and resistance at half wavelength resonance for a 41 m
long transmitting wire using standard tri-linear interpolation and shell averaged tri-
linear interpolation. A reference solution obtained by NEC-3 gives 3.53 MHz and
72.2 Ω
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8.10.3 Loop antenna

In this section the thin-wire model is used to simulate a loop antenna in receiving
mode. This experiment was also performed by Holland et al. [49] using two stair-
cased wire approximations, one area matched, and one circumference matched. In
both cases differences in the order of ten percent were reported due to staicasing
effects.

The loop wire in [49] was discretized using 16 cells across the loop diameter and
hence we use 50 segments for the loop antenna using the arbitrarily oriented wire
model. The FD-TD grid contains 32×32×32 cells with a cell size of 0.0625 m in
cube. The loop diameter is one meter and the wire radius is 0.00779, 0.00286, and
0.00105 meter. This corresponds to Ω equal to 12, 14, and 16 where Ω is the fatness
factor defined through

Ω = 2 ∗ ln(
πD

a
), (8.54)

where D is the loop diameter and a is the wire radius.
The loop antenna is oriented in the x-y plane and a plane wave propagating in

the x-y plane impinges on the loop antenna with vertical magnetic polarization. The
problem setup and the response after roughly 100 time steps is shown in Figure 8.27.

Figure 8.27. The loop antenna setup. An impinging plane wave excites the wire.
The current is probed at the right-most segment, i.e. 135 degrees from the head-on
segment. The cutting plane displays the magnitude of the electric field. The current
is shown on the wire, whose radius is exaggerated in the figure.

The probed current is expanded in a Prony series and the mode corresponding
to the 100 MHz mode in [49] is extracted. This mode corresponds to the one
wavelength resonance and we can directly compare the results obtained by our
shell interpolated wire model with results obtained using the Method of Moments
(MoM). Holland et al. gives the frequency, damping coefficient, amplitude and phase
for this case. But since their incident plane wave is not specified in space we
cannot compare amplitude and phase. Also the damping is reported to be not fully
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trustworthy and hence the MoM code developed within the GEMS project [39]
is also utilized. In this MoM code we can choose between two wire models, a
simple model and a refined model developed by Mazari. We also use two wire
discretizations, one containing 50 segments and one built with 100 segments. The
comparison between our new FD-TD wire model and the different MoM simulations
is plotted in Figure 8.28.

98 98.5 99 99.5 100 100.5 101 101.5 102

12

14

16

Ω

MHz

FD−TD     
Mazari_lo
Mazari_hi
Simple_lo
Simple_hi
Holland   

Figure 8.28. Resonance frequencies for the new FD-TD model and five MoM
results. The diamond results are found in [49] and are obtained by MoM. The other
four types are different MoM solutions obtained by reading the zero crossing of the
input impedance for a transmitting antenna. Ω is the fatness factor (8.54).

The variation in the MoM results indicates that results obtained by the shell
interpolated wire model are accurate within one percent.
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8.10.4 The wire length

A very interesting question arises when we compare the expected resonance fre-
quencies in Table 8.2 with those obtained by Prony’s method, i.e. Table 8.3. The
differences are a few percent and it is tempting to believe that this is explained by
the assumptions in the wire model. The effect seems to be that the modeled wire
is longer than the discrete wire. In this case roughly a half segment longer at each
wire end. However, in the last section of Chapter 4.6 in Balanis book on antenna
theory [7] we find an interesting passage:

Depending on the radius of the wire, the length of the dipole for first resonance
is about l = 0.47 λ to 0.48 λ; the thinner the wire, the closer the length is to 0.48 λ.
Thus, for thicker wires, a larger segment of the wire has to be removed from λ/2
to achieve resonance.

Unfortunately, Balanis does not go further into this subject but leaves the reader
to this uncertain range of a few percent mismatch in resonance frequency.

Another effect which might add to the understanding is based on the model for
damped oscillations.

A free oscillation without damping can be modeled by the following differential
equation:

ẍ + ω2
0x = 0, (8.55)

which has the solution
x = Cei(ω0t+ϕ). (8.56)

Likewise a free oscillation with weak damping can be modeled by

ẍ + 2γẋ + ω0x = 0, (8.57)

which has the solution
x = Ce−γt+i(ωdt), (8.58)

where the eigenfrequency ωd is given by

ωd =
√

ω2
0 − γ2. (8.59)

The resonant wavelength in Figure 8.17 and Table 8.2 are valid for undamped
wire currents/voltages but for damped responses we have to compensate for the
shift in the eigenfrequencies given by (8.59).

Using observed dampings for the receiving dipole antenna, we can determine the
analytic damped frequency fc according to (8.59). If we put the undamped analytic
frequencies, the compensated analytic frequencies, and the observed frequencies
together in a table, we can easily compare the effect of taking damping into account,
see Table 8.6.

From Table 8.6 it is obvious that the damping does not explain the shift in
frequency compared to expected frequencies. The compensation effect adjusts the
undamped frequency less than one tenth of a percent (see Table 8.2) whereas the
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Analytic, Analytic, Observed
undamped compensated for damping

mode f0 [MHz] γm [ 1
µs ] fc [MHz] f0−fc

f0
% fm [MHz] f0−fm

f0
%

1 3.659 0.897 3.656 0.08 3.558 2.7
2 7.317 1.220 7.315 0.04 7.203 1.6
3 10.976 1.423 10.973 0.02 10.850 1.1
4 14.634 1.573 14.632 0.01 14.480 1.1
5 18.293 1.691 18.291 0.01 18.100 1.1
6 21.951 1.785 21.949 0.01 21.700 1.1
7 25.610 1.859 25.608 0.01 25.280 1.3
8 29.268 1.919 29.267 0.01 28.830 1.5

Table 8.6. The observed and corrected frequencies and wavelengths due to the
damping.

observed frequencies differ 1-3 percent from the analytic results. However, it is
interesting to note that also the Method of Moments solution used as reference
solution in Section 8.10.2 has a too low resonance frequency, 3.53 MHz for the first
mode.

But if we take the frequency shift of 4 to 6 % into account, proposed by Bala-
nis [7], our results are in good agreement with the “shifted” frequencies.
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8.11 Conclusion

We have introduced a new and accurate subcell model to deal with arbitrarily
oriented thin-wires. The model is useful for treating wires that cannot be aligned
with the Cartesian grid, for example circular loop antennas and tilted straight wires.

Without the new model, staircasing is the traditional way to treat arbitrarily
oriented thin-wires in FD-TD. The errors introduced by the staircasing can be
several tens of percent. A regular tri-linear interpolation technique is investigated
in order to allow arbitrarily oriented thin-wires. However, results obtained shows
that the coupling between the Maxwell equations and the wire equations does not
give consistent results for small changes in the wire position and orientation. These
errors can also be several tens of percent.

For our new shell averaged tri-linear interpolation technique results are pre-
sented that illustrate the success of the new model. Both straight wires and cir-
cular loop antennas are used in the simulations. Induced currents and voltages,
impedances and admittances, and resonance frequencies are confined within one
percent deviation from each other. Our results are also in very good agreement
with Method of Moments solutions.

Finally, a stability analysis for a periodic model problem is provided where the
thin-wire model is shown to be stable under a time step limit.
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Chapter 9

Color Electromagnetics

When a simulation is completed there is usually a need for a visualization of the
result. In a few rare cases, only a number is needed from the computation, such
as the monostatic radar cross section of a target at one frequency or the maxi-
mum field strength that appears in the simulation. But in most cases one has
to comprehend a larger amount of data to draw meaningful conclusions from the
computation. Hence, visualization of CEM computations is important. We can
also couple the computation to a visualization system and thereby get the data on
screen during simulation. This is only feasible for small problems, because the vi-
sualization engines are limited in performance compared to the rate of data output
from the computation.

Remembering the target group is very important, because it affects the choice
of visualization. If the target group are scientists, a regular x-y plot of derived
quantities might reveal details of the method or simulation best; but other groups
like CEM (Color ElectroMagnetics) more than regular x-y plots.

If you are restricted to 3D visualizations on a standard display there are some
techniques that can be used to enhance the perception of 3D features. These
include light sources, perspective rendering and making distant objects dimmer
(called depth cue). These techniques are important because the human brain uses
the effects to interpret the internal relations between geometrical objects.

A problem with visualizations on non-interactive media like paper is that inter-
esting features may be concealed by objects or cutting planes and isosurfaces closer
to the viewer. Semi-transparent color maps can decrease the hiding properties of
these objects somewhat, and the viewer can see through them and thereby get a
better experience of the data.

Another emerging technology is virtual reality, which provides tools and display
systems for an immersive exploration of data. Used correctly, it really enhances the
possibility of sharing results with others, especially if a complicated geometry is
included. We have used the VR-Cube at PDC in this way, and also to understand
the intricate interplay between the primary and dual grids used in the 3D Finite
Volume solver described in Chapter 7.

167
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Figure 9.1. An electromagnetic pulse strikes a metallic cavity with a narrow
opening of 1/40 of the diameter. Even though the opening is small a substantial
amount of the pulse sneaks inside. The pictures shows the amplitude of the magnetic
field at three different times. 4096 × 2048 quadratic cells are used (symmetry is
utilized) which makes it possible to resolve the crack with 40 × 40 cells. This
picture is a nice example of the perceptual enhancement of wave propagation by
using a carpet plot. In this case the wave amplitude is mapped to both color and
height.
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Figure 9.2. This figure shows, for a distinct time, the solution of an open waveguide
problem. An antenna is attached to an E-shaped waveguide and a current pulse is
injected into the antenna. The antenna is modeled with a thin wire model. The
calculation reveals how large fraction of energy that propagates along the waveguide
compared to the energy that leaks out of the waveguide. The depth in the figure is
enhanced by perspective visualization. Also note the depth cue, i.e. the colors fades
away with depth in the image.
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Figure 9.3. This picture shows the setup for a study of the current induction on
a wire connecting two electronic devices in the presence of a transmitting cellular
phone. The antenna on top of the telephone is driven by a current pulse and the
picture shows a snapshot in time of the response. In this picture a semi transparent
vertical cutting plane clearly illustrates the wave propagative nature of the trans-
mitted waves. Opacity is lower for weaker field values, hence the objects behind the
cutting plane is clearly visible.
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Figure 9.4. The surface currents on the generic aircraft Rund is plotted a short time
after a plane wave impinged the nose. The electric polarization of the plane wave is
vertical (top) and horizontal (bottom). The 3D FD-FV hybrid solver described in
Chapter 7 is used in this simulation and the hybrid mesh is shown in Figure 7.16.
Plotting the surface current automatically reveals the PEC geometries. The geo-
metric shape is easier to comprehend if a light model is used in the visualization.
The light reflections in the fuselage gives a good perception of the curvature of the
aircraft. Without shading (modeling directive light) the appearance would be very
flat and the only visual clue to the shape would be our general experience of aircraft
shapes.
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Figure 9.5. This figure shows the surface currents on the SAAB 2000 aircraft
125 ns (1500 time steps) after a lightning stroke the nose. Also the magnitude of
the magnetic field is shown on a cutting plane across the wings perpendicular to
the fuselage. The maker of a picture must choose a good viewing direction, view
angle and what part to visualize. These choices are often based on the desire to
enhance interesting parts but sometimes also to suppress distracting features in the
simulation. A minute spectator will notice that the outer boundary condition is
working fine at the upper boundary but there is an anomaly at the lower boundary.
A small mistake in the simulation setup gave a PEC condition at the lower boundary
and hence the image was cropped to spare the spectator from trying to interpret this
“anomaly” (read mistake).

Figure 9.6. The interior of the SAAB 2000 aircraft. Surface currents are shown at
the same time as in the figure above. The view is from center of aircraft towards the
cockpit. High surface currents are seen on the door pillar and the sill. To prevent
cables from picking up high induced currents this type of simulations is important
because proper countermeasures can be taken if the field distribution inside the
aircraft is known. A sofisticated light model would take the blocking effect of the
fuselage into account during rendering of the inside geometries. But this would
slow down the rendering drastically and we have to cope with the results from the
non-realistic light model used.
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Figure 9.7. The 3D hybrid solver requires a hybrid grid. In this case an unstruc-
tured grid is used only in the vicinity of the nose of the SAAB 2000 aircraft and a
structured grid is used for the rest of the problem. Different colors are assigned to
different parts of the object. Part of the fuselage and unstructured grid is removed
to let us see into the aircraft. Note the LEGO shape of the transition layer described
in Section 7.5.
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Figure 9.8. A thin wire is attached to the nose of the SAAB 2000 aircraft and
a current injection is used to simulate a lightning strike. In this figure the surface
current is plotted after a while. The electric field intensity is visualized on a cutting
plane and also by using a volumetric rendering in the unstructured volume. The
staggered components in FD-TD give rise to a half-cell bias between the field and
geometry (see Section 4.8). This is manifested on the cutting plane as blue marks
just above the fuselage.
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