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Abstract

This paper presents an experimental and numerical investigation of the mechanical response of
bolted joints manufactured using new hybrid composite laminates based on the substitution of CFRP
plies with titanium plies. This concept is proposed for bolted joints, which are often the critical
part of composite structures. Two modeling strategies based on non-linear finite element methods
are proposed for the analysis of the bolt-bearing and transition regions of the hybrid laminates. The
numerical and experimental results indicate that the use of hybrid composites can drastically increase
the strength of CFRP bolted joints and therefore increase the efficiency of this type of connection.

Key words: B. Strength, C. Finite element analysis, D. Mechanical testing, E. Joints/joining.

1 Introduction1

One of the main methods used for joining composite components for aircraft and spacecraft2

applications is mechanical fastening [1]-[2]. Mechanically fastened joints have the advantages3

of reliability, detachability and inspectability, and represent a well-established and well-known4

method. However, to reach a satisfactory structural coupling efficiency with composite materials5

is much more challenging than it is for metals due to the low bearing and shear strengths, the6

higher notch sensitivity, the dependence of the joint strength on the laminate configuration, and7

the influence of environmental effects on the mechanical behavior of the joint. These properties8

represent a limiting factor on the structural performance of composite structures.9
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The load capacity of composite bolted joints is typically increased by means of a local laminate10

build-up at the structure coupling area. The resulting laminate thickness increase leads to11

additional laminate stresses due to eccentricities, particularly in the case of single-shear joints,12

to complex geometries of the adjacent structures, as well as to a significant weight increase13

due to larger grip lengths, larger bolt diameters and heavier metallic fittings. The increasing14

requirements for weight reduction and cost efficiency for aerospace and spacecraft structures15

demand the development of alternative advanced coupling techniques.16

One of such alternatives is the use of bonded metallic inserts [3]-[6]. However, this technique17

has proved to be effective only if specially designed inserts, that promote alternative paths for18

the load transfer, are used in single-shear lap joints [7]-[8].19

The coupling efficiency of highly loaded composite joints has been proven by the research20

activities conducted at the German Aerospace Centre [9]-[11], to be considerably improved by21

the use of a local reinforcement of the joining area with thin high-strength metal foils using22

ply substitution techniques. The use of a hybrid composite increases the bearing strength,23

the coupling stiffness and reduces the sensitivity of the mechanical properties to the laminate24

configuration and environmental effects. Higher absolute mechanical properties prevent any25

local laminate thickening and eccentricities and allow possible reductions of the number of26

bolts and bolt rows, resulting in a mechanically and cost efficient design.27

The local reinforcement technique applied to the bolt-bearing region is accomplished by the28

gradual substitution of specific composite plies by titanium foils within the coupling region, see29

Figure 1. The remaining composite plies are not interrupted and pass from the pure composite30

region through the transition region to the hybrid region, thus acting there as adhesion inter-31

layers between each embedded metal foil. The continuous plies should preferably contribute32

most to the total load carrying of the laminate.33

[Fig. 1 about here.]34

Previous experimental analysis [9] have demonstrated that the use of hybrid laminates with35

20% titanium content increases the tensile strength of a three-row bolted joint by 91% when36

compared to that of a full carbon-fibre reinforced plastic (CFRP) laminate, whereas the specific37

tensile strength is increased by 32%. This means that the joint based on the hybrid composite38

is lighter and it does not require a local increase of the thickness that would trigger secondary39

bending effects in single-shear joints and increase bolt bending. Therefore, the weight gains in40

actual composite structures may be even higher than the values obtained by comparing the41

specific joint strength of test coupons.42

Based on the promising preliminary experimental results obtained in [9]-[11], it is necessary43

to define a methodology to design hybrid composites. Therefore, the objectives of this paper44

are to present the numerical analysis of the inelastic response of hybrid carbon-epoxy/titanium45

bolted joints, which can support the design of these joints, and to further assess the gains that46

can be obtained by locally reinforced composites using both the results of the numerical models47

and the experimental data obtained in representative test specimens.48

The mechanical performance improvement in comparison to the reference conventional design49

is presented. Taking into account that the new technology proposed can only be effective if50

the strength of the transition region is higher than that of the bearing (hybrid) region (Figure51

1), the experimental tests and numerical analysis are conducted in specimens representative of52
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these two regions. The delamination behavior of the transition region is analyzed by means of53

numerical simulations based on plane-stress models. The simulation of the bolt bearing region is54

performed using a three-dimensional model that accounts for ply failure mechanisms, combined55

with a plasticity model that simulates the mechanical response of the titanium inserts. The56

numerical models are validated by comparing the predictions with experimental data obtained57

in test specimens representative of the bolt-bearing and transition regions.58

2 Manufacturing, material characterization and specimen configurations59

2.1 Manufacturing60

The selection of the metal to be used in the locally reinforced region of the laminate is of61

primary importance to the efficiency of the technology proposed. Taking into account that62

titanium has good specific mechanical properties, is electrochemically compatible with carbon,63

and has a relatively low coefficient of thermal expansion, this material is selected for the metal64

layers. The standard titanium alloy Ti-6-4 (Ti 6Al-4V) was excluded because it has a poor cold65

workability and a low strength (about 980MPa). Therefore, a meta stable beta-alloy Ti-15V-66

3Cr-3Sn-3Al with reference Ti 15-3-3-3 titanium alloy was selected. This alloy has a good cold67

workability and hardening which enable a flexible tailoring of sheet thickness with moderate68

costs. In addition, the strength of Ti 15-3-3-3 with a nominal thickness of 0.25mm is 1634MPa.69

The composite material selected for the study was the carbon-fibre reinforced epoxy M40-70

J/CYCOM 977-2. This material is supplied as unidirectional pre-impregnated plies. After cur-71

ing, the nominal ply thickness is 0.25mm.72

The hybrid composite material can be manufactured using different technologies such as pre-73

preg lay-up, resin infusion and fibre placement. All these techniques were successfully demon-74

strated in previous investigations [9]-[11]. The pre-preg technique was used in the test specimens75

manufactured here, where the lay-up process consists of stacking alternate layers of titanium76

alloy foils (Ti 15-3-3-3) and pre-preg plies without adding any adhesive. The selected titanium77

surface pre-treatment consists of a surface cleaning and a chemical pickling pre-treatment which78

provides an optimal adhesion quality between the metal and the pre-preg resin. Higher adhe-79

sion performance and delamination growth attenuation is achieved generating a metal surface80

macro-roughness by means of surface grit blasting.81

2.2 Material characterization82

The standard material properties of the M40-J/CYCOM 977-2 CFRP are shown in Tables 183

and 2. The shear modulus G23 was calculated assuming transverse isotropy and a Poisson ratio84

υ23 = 0.5.85

[Table 1 about here.]86

[Table 2 about here.]87
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The coefficients of thermal expansion of M40-J/CYCOM 977-2 are α11 = −0.84× 10−6/◦C and88

α22 = 29.1 × 10−6/◦C.89

Besides the “standard” material properties presented in Tables 1 and 2, the analysis models90

require the values of the fracture toughness. The values of the mode I and mode II interlaminar91

fracture toughness were measured for the carbon-carbon and for the carbon-titanium interfaces,92

and are reported in Table 3. The mode I interlaminar fracture toughness is measured using the93

double-cantilever beam test specimen [12], and the mode II interlaminar fracture toughness is94

measured using the transverse crack tension test [13].95

[Table 3 about here.]96

The values reported in Table 3 enable the calculation of the in-situ shear (Sis
L) and transverse97

tensile (Yis
T ) strengths used in the analysis models according to the models presented in [14].98

The calculated in-situ strengths are presented in Table 4.99

[Table 4 about here.]100

The fracture toughness for longitudinal fracture under tension and compression were not101

measured for M40-J/CYCOM 977-2. Instead, the values previously measured for IM7-8552,102

G1+ = 81.5N/mm (fibre tension), G1− = 106.3N/mm (fibre compression) are used in the nu-103

merical models [25].104

The mechanical properties of the titanium sheet are presented in Table 5. The coefficient of105

thermal expansion of Ti 15-3-3-3 is αT = 9.2 × 10−6/◦C.106

[Table 5 about here.]107

2.3 Specimen configurations108

In the design of hybrid composites it is necessary to ensure that the strength of the transition109

region show in Figure 1 is higher than that of the bolt-bearing region. Therefore, the experi-110

mental programme was conducted in two different types of test specimens, one representing the111

bearing region and the other representing the transition region. The lay-up of the specimens112

manufactured is shown in Table 6. The test specimens with references B7/TT2 and B7/TT3113

have the same lay-up, but different lengths of the titanium plies.114

[Table 6 about here.]115

The details of the specimens manufactured for the bearing tests are shown in Table 7; the116

bearing test specimens are 170mm long, 45mm wide, 3mm thick, and have a hole with a117

nominal diameter of 6.35mm. No end-tabs are used for the bearing test specimens.118

[Table 7 about here.]119

The configuration and stacking sequence of the test specimens manufactured for the analysis120

of the transition region are presented in Table 8. The specimens are 250mm long, 15mm wide121

and 3mm thick. End-tabs with a length of 70mm were bonded to the test specimens.122
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[Table 8 about here.]123

Figure 2 schematically shows the configurations of the specimens under investigation.124

[Fig. 2 about here.]125

3 Test and analysis of the bearing region126

3.1 Testing127

The specimens are tested in tension using a Zwick 1484 test machine, under displacement128

control, and with a test speed of 1mm/min. Five specimens are tested for each configuration.129

A H8f7 tolerance between the hole and the bolt is used, resulting in a small clearance between130

the two components. Finger-tight clamping conditions are used in all the tests performed.131

Figure 3 shows the measured relation between the bearing stress, defined as σb = P
dt

where P132

is the load, and the cross-head displacement measured for each test specimen.133

[Fig. 3 about here.]134

Figure 4 shows the through-the-thickness micrography of the bearing plane of the B1 and of135

the B7/TT2 test specimens loaded to 40%, 60%, 80% and 100% of the failure stress.136

[Fig. 4 about here.]137

It is observed that the titanium plies develop cracks and the 0◦ plies present fibre kink bands at138

80% of the failure stress. A major through-the-thickness shear crack, that starts at the bottom139

ply and propagates towards the end of the washer, is visible at the failure stress.140

3.2 Numerical models141

Abaqus [15] finite element code is used for all the numerical analysis presented here. The142

specimen is meshed using 8-node continuum shell SC8R elements, using two different levels143

of refinement (see Figure 5). In the neighborhood of the hole, where damage takes place, a144

refined mesh is used, using the smaller elements, with the approximate dimensions 0.25mm ×145

0.25mm × 0.25mm, along the edge of the hole. The coarse mesh, approximately four times146

less refined, is connected to the fine mesh by a surface-to-surface based TIE constraint, which147

allows the correct simulation of the stress distribution at the mesh-transition region. In both148

the refined and coarse regions, one element per ply is used along the thickness direction. The149

bolt is modeled by a titanium cylinder, meshed with fully-integrated C3D8 three-dimensional150

(3D) linear hexahedral elements. The mesh of the bolt is twice less refined than that of the151

composite.152

[Fig. 5 about here.]153

5



The mid-plane symmetry of the laminate (plane 1-2 in Figure 5) is taken into account in the154

analysis of all specimens, by applying appropriate boundary conditions. Whenever possible155

(absence of ±45◦ plies), symmetry boundary conditions with respect to the plane 1-3 shown in156

Figure 5 are also used to reduce computation time.157

The progressive damage model implemented in Abaqus [15] was used to simulate the failure158

mechanisms that occur in the composite plies in the refined region of the model. To prevent159

the problems that occur when using damage models with large elements [16]-[17], a linear-160

elastic response is imposed in the coarse mesh. The progressive damage model uses the Hashin161

failure criteria [18] for the prediction of the onset of the different types of intralaminar damage162

that occur in laminated composites: fibre tensile fracture, fibre kinking, matrix tensile cracking163

and matrix compressive failure. In addition, the damage model predicts the accumulation and164

propagation of the different ply damage mechanisms. This is accomplished by defining a linear165

damage evolution law that uses the material toughness for each failure mechanism to ensure a166

mesh-independent result [15],[19]. The full details of the damage model can be found in [19].167

An elastic-plastic material model is used for the titanium plies used in the hybrid composite168

and in the bolt. The Von Mises criterion is used to predict the onset of plastic flow, and the169

plastic deformation is simulated using an isotropic hardening behavior and an associated flow170

rule.171

An initial thermal step, from 180◦C to 25◦C, is applied to simulate the curing process. During172

the thermal step the laminate was allowed to contract freely, and the bolt (without thermal load173

applied) was centered in the hole by specifying kinematic constraints. An intermediate step,174

corresponding to the attachment of the specimen to the test machine, is applied afterwards.175

Finally, the bearing test is simulated: a constant velocity along the 1-axis shown in Figure 5 is176

imposed to the nodes at the axis and top surface of the bolt using proper kinematic conditions177

are imposed to ensure the correct alignment of the parts. The previous kinematic constraint178

between the bolt and the specimen’s hole is removed, and a contact definition is activated to179

allow the surface of the bolt to drag the laminate during the simulation of the test. Friction180

between the bolt and the laminate is taken into account in the analysis. The contact is assumed181

to follow Coulomb’s friction law and a coefficient of friction between the bolt and the laminate182

of 0.3 is used [20].183

The non-catastrophic bearing failure mode, characterized by a progressive elongation of the184

hole, is predicted for all specimens simulated. Figure 6 shows the predicted region where fibre185

kinking takes place in the 0◦ ply at 40%, 60% and 80% of the maximum predicted bearing stress186

of the B7/TT2 specimen. Figure 7 shows the value of the equivalent plastic strain, defined as187

ε̄ =
∫ t
0

√

2

3
ε̇pl : ε̇pldt, where ε̇pl is the time derivative of the plastic strain tensor, on the top188

titanium layer for the same applied loads to the B7/TT2 specimen.189

[Fig. 6 about here.]190

[Fig. 7 about here.]191
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3.3 Discussion192

Figure 8 compare the numerical and experimental relations between the bearing stress and the193

bolt displacement.194

[Fig. 8 about here.]195

Table 9 presents the predicted bearing strengths, σ̄b, for the different specimens simulated and196

the corresponding experimental results. Table 10 compares the predicted and experimentally197

measured bearing stress at the onset of non-linear response of the joint, σb
e. This bearing stress198

defines the elastic limit of the joint.199

[Table 9 about here.]200

[Table 10 about here.]201

The results shown in Table 9 indicate that the numerical models developed can predict with a202

remarkable accuracy the maximum bearing stress sustained by the different joint configurations203

(monolithic CFRP and hybrid). The models are also able to predict within reasonable accuracy204

the elastic limit of the joints. One possible reason for the the higher errors obtained in the205

prediction of the elastic limit is the fact that the Abaqus damage model [15] is defined for plane206

stress conditions, i.e., although the SC8R continuum shell elements are volumetric elements,207

they can only predict the in-plane components of the stress tensor. This means that the out-of-208

plane components of the stress tensor that are present along the hole of the laminate [21]-[23]209

are not used in the failure criteria. In addition, Abaqus uses Hashin’s [18] failure criterion to210

predict fibre kinking, defined as σ11

Xc

− 1 ≤ 0, which does not take into account the effect of the211

shear stresses on the onset of fibre kinking. However, the shear stresses do play an important212

role in fibre kinking [24] and their absence in the failure criteria results in an over-prediction of213

the elastic limit.214

Figure 8 shows that the experimentally measured displacement at the peak value of the bearing215

stress is higher than that predicted by the numerical models. The reasons for this difference216

can be attributed to the fact that the delaminations that were observed in the micrographs217

of the test specimens were not simulated in the FE models. For example, in the specimen218

B1 a delamination between the +45◦ and the 0◦ plies, triggered by a fibre kink band, was219

experimentally observed (Figure 4). The simulation of the interaction between fibre kinking220

and delamination would require a fully 3D damage model using at least five elements per ply221

thickness [26], that would render the model unfeasible to be solved within a reasonable time.222

In addition, shear fracture of the titanium plies was observed in the test specimen B7/TT2223

(Figure 4). In spite of the fact that the FE models account for the elasto-plastic response of224

the titanium plies, they do not simulate their fracture. After cracking, the titanium plies can225

still transfer load under compression due to the contact between the crack planes; however the226

relative movement of the fractured surfaces of the titanium plies increase the compliance of the227

joint, leading to a higher displacement at the peak load.228

It is observed that the maximum value of the predicted equivalent plastic strain at 80% of the229

failure load (Figure 7) is higher than the equivalent plastic strain that is measures in a tensile230

test of a sheet of titanium. This result is consistent with the cracks observed in the titanium231

ply (Figure 4). In addition, the fibre kink bands predicted in the top 0◦ ply by the numerical232
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model shown in Figure 7 are also observed in the experimental observations of Figure 4.233

The results presented in Figure 3 and in Table 9 show that the bearing strength increases with234

the titanium content: when increasing the titanium content from 0% to 50% the bearing strength235

increases 154%. In addition, the specific bearing strength, defined here as the ratio between the236

bearing strength and the mass of the joint, increases 29%. Another relevant observation is that237

the stiffness of the joint, which is a relevant parameter for spacecraft applications, is higher in238

the hybrid joints.239

4 Test and analysis of the transition region240

4.1 Testing241

The specimens are tested in tension using a Zwick 1484 test machine, under displacement242

control, and with a test speed of 2mm/min. Five specimens are tested for each configuration.243

Figure 9 shows the relation between the remote stress, defined as the ration between the ap-244

plied load and the cross-section of the test specimen, and the cross-head displacement for the245

specimens that represent the transition region and for a baseline specimen manufactured using246

only in CFRP. This relation is linear until the peak stress and the hybrid laminates marginally247

decrease the strength of a monolithic CFRP specimen.248

[Fig. 9 about here.]249

Figure 10 shows the C-scan performed in the specimen B8/TT4 at a load approximately equal250

to the failure load.251

[Fig. 10 about here.]252

A delamination propagating form the end of the titanium plies is observed just before the253

specimen fails as a result of the tensile fracture of the 0 plies. No free-edge delamination is254

observed in both the hybrid and fully composite regions of the test specimen.255

4.2 Numerical models256

The numerical analysis of the test specimens of the transition region is performed by modeling257

the free edge of the laminate using two-dimensional plane stress finite elements (Abaqus [15]258

CPS4 4-node elements). The analysis of the transition region of the hybrid laminates using259

linear elasticity creates a difficulty since the multi-material corners result in singularities in the260

stress field. This, in turn, means that the maximum stress predicted by the numerical model261

increases with the mesh refinement. To mitigate these difficulties and to simulate the possible262

delamination growth from the singular points, cohesive finite elements previously developed263

and implemented as Abaqus user-defined elements [27] are used along the Titanium-CFRP and264

CFRP-CFRP interfaces. In addition, cohesive finite elements are also placed in the elements265

that represent the 90◦ plies at the place where the titanium layers terminate (Figure 2). Using266
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cohesive elements, the stress field is bounded and a fracture process zone (FPZ) on the interfaces267

between the plies and a transverse crack at the end of the titanium ply can be simulated. To268

correctly capture the kinematics of the cracks that may develop along the vertical Titanium-269

CFRP interfaces, six elements are used per ply thickness in all plies.270

All the specimens are modeled making use of the symmetry along the through-thickness di-271

rection. An initial thermal step with ∆T = −155◦C is applied to simulate the curing process.272

After this step, the edges are constrained in the through-thickness direction, one end of the273

specimen is clamped, and a displacement was applied to the other edge. The models are 110mm274

long, 3mm thick and 15mm wide.275

The average stress method is used to predict the final failure load of the test specimens loaded276

in tension. The average stress method consists in applying a failure criterion using the stress277

distribution averaged over a given distance - the characteristic distance, dc - from a stress278

concentrator. This method was first proposed by Whitney and Nuismer for the strength predic-279

tion of notched composites [28]. Since the FPZ simulated by the cohesive elements is generally280

confined to the vicinity of the multi-material corner and it does not propagate along the full281

length of the specimen, it creates a non-uniform stress distribution in the adjoining plies. The282

non-uniform stress distribution in the 0◦ ply is the basis for the application of the average stress283

method.284

Final failure of the laminate is predicted by the average stress method when the 0◦ ply fails285

according to the following equation:286

1

dc

∫ dc

0

σ11(y)dy = XT (1)

The characteristic distance must be determined from a baseline configuration. The B6/TT1 test287

specimen was selected for the determination of the characteristic distance, and the procedure288

used consists in the following steps:289

(1) Apply the measured remote failure stress to the FE model of one test specimen (the290

specimen B6/TT1 was selected here).291

(2) Identify the critical point in the test specimen.292

(3) Determine the stress distribution in the 0◦ ply in the vicinity of the critical point, along293

the fracture plane.294

(4) Fit the point-wise stress distribution obtained in the FE model by an appropriate poly-295

nomial function using the least-squares method. This procedure defines an approximate296

function for σ11(y).297

(5) Solve equation (1) for dc.298

Once dc is known, steps (2)-(4) are repeated for the other configurations of the transition region.299

The failure stress is then calculated as the remote stress that leads to a stress distribution300

satisfying (1).301

Figures 11 and 12 show the predicted sequence of failure mechanisms that precede the failure302

of the B6/TT1 specimen, and the corresponding values of the stress in the loading direction at303

each ply.304
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[Fig. 11 about here.]305

[Fig. 12 about here.]306

These figures indicate that the failure initiates at the vertical interface between the 90 ply and307

the titanium ply. The predicted critical region of the B6/TT1 specimen is shown in Figure 13.308

[Fig. 13 about here.]309

It is observed that there is a small, negligible delamination between the titanium and the 0/-45310

plies, and between the 90◦ and 0◦/−45◦ plies, prior to the collapse of the laminate which results311

from the fibre fracture of the 0 ply. The application of the methodology outlined above yields312

a value of dc = 0.18mm. No plastic deformation of the titanium plies is predicted in the FE313

analysis.314

The predicted critical location of the test specimen B7/TT2 is shown in Figure 14. The first315

failure mechanism predicted is cracking along the vertical CFRP-Titanium interfaces. Whenever316

a titanium ply has an adjoining 90◦ ply, this crack propagates along the 90◦ ply until it reaches317

the 0◦/90◦ interface (Figure 14). A small delamination occurs before the specimen fails by fibre318

fracture.319

[Fig. 14 about here.]320

The stresses at the centroid of the elements located in the vicinity of the stress concentration321

in the critical 0◦ ply were obtained from the FE analysis and the previously obtained value322

of dc = 0.18mm was used for the prediction of final failure. A least-squares approximation of323

the stress distribution σ11(y) based on a fourth-order polynomial was used and the predicted324

remote failure stress is σ̄∞ = 1007.4MPa. No plastic deformation was predicted in the titanium325

layer.326

The predicted critical location of the test specimen B7/TT3 is shown in Figure 15. Like in327

the specimen TT2, the first failure mechanism predicted is cracking along the vertical CFRP-328

Titanium interfaces. This crack propagates along the 90◦ ply until reaching the 0◦/90◦ interface.329

A small delamination occurs before the specimen fails by fibre fracture.330

[Fig. 15 about here.]331

Using the procedure previously outlined, the predicted remote failure stress is σ̄∞ = 1087.2MPa.332

No plastic deformation was predicted in the titanium layer.333

The predicted critical location of the test specimen B8/TT4 is shown in Figure 16. The first334

failure mechanism predicted is cracking along the vertical CFRP (both 90◦ and −45◦ plies)-335

titanium interfaces. Final failure is triggered by fibre fracture in the bottom 0◦ ply.336

[Fig. 16 about here.]337

The predicted remote failure stress is σ̄∞ = 996.5MPa. No plastic deformation was predicted338

in the titanium layer.339
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4.3 Discussion340

Table 11 presents the comparison between the predicted failure stress and the corresponding341

experimental values.342

[Table 11 about here.]343

The results show in Table 11 indicate that the methodology proposed can predict with good344

accuracy the strength of the transition region. Also, it is observed that changing the step345

distance from 5mm (specimen B7/TT2) to 15mm (specimen B7/TT3) decreases the strength346

of the transition region by 1.8%. The numerical models predict a linear load-displacement347

relation up to failure; this result is consistent with the experimental observations.348

Table 12 presents the measured remote failure stress for the bearing and transition regions of349

each configuration tested.350

[Table 12 about here.]351

It is observed that the strength of the transition region is always higher than that of the bolt-352

bearing region. Therefore, the hybrid laminates fail as they should: in the bolt-bearing region353

and not in the transition region.354

Comparing Figures 10 and 16, it can be concluded that the numerical model correctly captured355

the delamination that preceded the tensile fracture of the B8/TT4 test specimen.356

5 Conclusions357

The work presented in this paper leads to the following conclusions:358

• The bearing strength of the laminate increases when the titanium content is increased: there is359

a remarkable improvement of 158% when comparing the bearing strength of the B1 specimen360

(baseline configuration without titanium) with the one of the B8 specimen (with highest361

titanium content)362

• The specific bearing strength of an hybrid joint with 50% titanium content at the bearing363

region has a specific bearing strength 29% higher than that of a monolithic CFRP joint.364

• The joint stiffness increases with the titanium content: an increase of stiffness of 31% is365

predicted when the titanium content is increased from 0% to 50%.366

• The critical region of the hybrid joints is the bolt-bearing region. The material does not fail367

prematurely at the transition region.368

• Increasing the step distance from 5mm to 15mm decreases the strength of the B7 configuration369

by 1.8%.370

• The modeling strategy used in the bolt-bearing region yields good predictions for the bearing371

strength of both monolithic and hybrid composites. Improvements on the prediction of the372

elastic limit and load-displacement response require the simulation of fracture of the titanium373

plies and a fully 3D damage model.374

• The models developed for the analysis of the transition region are able to capture the failure375

mechanisms that trigger structural collapse, and to predict with excellent accuracy the failure376
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load of this region of the hybrid composites.377
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Fig. 3. Relation between the bearing stress and the cross-head displacement.
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Fig. 4. Optical micrographies of the B1 and B7/TT2 test specimens.
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Fig. 6. Predicted evolution of fibre kinking in top 0◦ ply of the B7/TT2 specimen.
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Fig. 7. Predicted evolution of plastic deformation in the top titanium ply of the B7/TT2 specimen.
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Fig. 8. Predicted and experimental bearing stress-bolt displacement relations.
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Fig. 9. Relation between the remote stress and the displacement for the transition specimens.
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Fig. 10. C-Scan of the specimen B8/TT4.

24



(Avg: 75%)
S, S11

+1.079e+00
+7.328e+01
+1.455e+02
+2.177e+02
+2.899e+02
+3.621e+02
+4.343e+02
+5.065e+02
+5.787e+02
+6.509e+02
+7.231e+02
+7.953e+02
+8.676e+02

X

Y

Z

0

+45

0

Ti 90

−45

0

Deformed scale: 8x

Transverse crack

Fig. 11. Detail of B6/TT1 test specimen at σ∞ = 225MPa.
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Fig. 12. Detail of B6/TT1 test specimen at σ∞ = 651MPa.
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Fig. 13. Predicted critical region of the B6/TT1 test specimen.
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Fig. 14. Predicted critical region of the B7/TT2 test specimen.
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Fig. 15. Predicted critical region of the B7/TT3 test specimen.
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Fig. 16. Predicted critical region of the B8/TT4 test specimen.
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Table 1
Elastic properties of M40-J/CYCOM 977-2 carbon epoxy.

E1 (MPa) E2 (MPa) G12 (MPa) G23 (MPa) υ12 υ23

211424 6287 3895 2095.7 0.30 0.5
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Table 2
Ply strengths of M40-J/CYCOM 977-2 carbon epoxy.

XT (MPa) XC (MPa) YT (MPa) YC (MPa) SL (MPa)

2132 994 47 217 67
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Table 3
Interlaminar fracture toughness.

Titanium-CFRP CFRP-CFRP

GIc (N/mm) 0.179 0.199

GIIc (N/mm) 2.784 0.699
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Table 4
In-situ strengths for M40-J/CYCOM 977-2 carbon epoxy.

Ply Yis
T (MPa) Sis

L (MPa)

Outer ply, t=0.25mm 50.5 80.6

Inner ply, t=0.25mm 79.8 100.4
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Table 5
Mechanical properties of the titanium plies.

E (GPa) σ0.2% (MPa) σr (MPa)

116 1534 1634
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Table 6
Stacking sequence of the test specimens.

Reference Lay-up

B1/TT0 [0/ + 45/0/90/ − 45/0]s

B6/TT1 [0/ + 45/0/Ti 90/ − 45/0]s

B7/TT2 [0/Ti + 45/0/90/Ti − 45/0]s

B7/TT3 [0/Ti + 45/0/90/Ti − 45/0]s

B8/TT4 [0/Ti + 45/0/Ti 90/Ti − 45/0]s
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Table 7
Details of the bearing test specimens.

Ref. Geometry Observations

B1/TT0 w/d = 7, e/d = 4 Reference

B6/TT1 w/d = 7, e/d = 4 Hybrid

B7/TT2 w/d = 7, e/d = 4 Hybrid

B8/TT4 w/d = 7, e/d = 4 Hybrid

e-end distance; d -hole diameter; w -width
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Table 8
Configuration for ply-substitution transition specimens.

Reference Step distance Dimensions (l × t × w) (mm)

B6/TT1 15mm 110 × 3 × 15

B7/TT2 15mm 110 × 3 × 15

B7/TT3 5mm 110 × 3 × 15

B8/TT4 15mm 110 × 3.25 × 15

l-length; t-thickness; w-width
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Table 9
Bearing strengths.

Ref. σ̄b (MPa)-FE σ̄b (MPa)-Exp. Error (%)

B1 678.3 680.6 0.3

B6/TT1 1036.2 1012.4 -2.3

B7/TT2 1269.1 1395.5 -9.1

B8/TT3 1608.7 1729.1 -7.0

40



Table 10
Bearing stresses at the onset of non-linearity.

Ref. σb
e (MPa)-FE σb

e (MPa)-Exp. Error (%)

B1 500 441.7 +13.2

B6/TT1 650 550.1 +18.2

B7/TT2 767 758.5 +1.1

B8/TT3 1000 933.5 +7.1
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Table 11
Test-analysis correlation for the transition specimens.

Ref. σ̄∞ (MPa), FE σ̄∞ (MPa), test Error (%)

B6/TT1 ref. 1069.2 n/a

B7/TT2 1007.4 1005.9 +0.1

B7/TT3 1087.2 1024.4 +6.1

B8/TT4 996.5 988.7 +0.8

42



Table 12
Remote failure stress for the bearing and transition specimens.

Ref. σ̄∞ (MPa), transition σ̄∞ (MPa), bearing

B1/TT0 1091 36

B6/TT1 1069 142

B7/TT2 1006 195

B7/TT3 1024 195

B8/TT4 989 242
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