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Abstract 

We present a technique to reconstruct the electromagnetic properties of a 
medium or a set of objects buried inside it from boundary measurements when 
applying electric currents through a set of electrodes. The electromagnetic 
parameters may be recovered by means of a gradient method without a priori 

information on the background. The shape, location and size of objects, when 
present, are determined by a topological derivative-based iterative procedure. 
The combination of both strategies allows improved reconstructions of the 
objects and their properties, assuming a known background. 

(Some figures may appear in colour only in the online journal) 

1. Introduction 

The use of electric signals to obtain information about the environment is an old survival 
strategy in nature. For example, nocturnal fishes found in fresh water (the gymnotiformes, 
commonly known as South American knifefishes) produce electric fields for navigation. 
Technology exploiting this idea has been developed based on impedance imaging. The 
impedance imaging problem consists in producing an image of the electromagnetic properties 
of a medium by applying electric currents to its exterior surface and measuring voltages on it. 
Information about the internal electrical properties of a body can be used for nondestructive 
materials testing [17], locating mineral deposits [34], imaging multiphase fluid flow [39], 
tracing contaminants [35] or for medical imaging [27]. The range of medical applications is 
wide, because different tissues have different electromagnetic properties [10]. For example, we 
can think of monitoring for lung problems (embolies, clots, accumulation of fluids) or blood 
flow (internal bleeding, heart function), screening for breast cancer, determining the boundary 
between dead and living cells, detecting temperature changes in hyperthermia treatments and 
so on. 

The electromagnetic properties of interest are typically the electric conductivity and the 
permittivity. The reconstruction problem consists in finding an approximation of the electric 
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conductivity and the permittivity in the interior of the body from boundary measurements. This 
problem is nonlinear and ill posed. Given arbitrary data solutions may not exist. When they 
exist, small changes in the measured data can lead to large changes in the interior conductivity 
or permittivity. If the boundary potentials are known for all current patterns in reasonable 
function spaces, then there is no second smooth conductivity distribution which fits these data 
[31, 32]. It has been shown that positive conductivities can be uniquely recovered from the 
Dirichlet to Neumann map [38]. In practice, we only have information from a finite number 
of electrodes. For a revision of theoretical results, see [4] and [30]. 

A wide variety of strategies to solve this type of inverse problem have been proposed; see 
the reviews [4, 12] and references therein. When the conductivity is almost constant, we may 
resort to linear approximations such as backpropagation methods [2], Calderon's approach 
[11], moment techniques [1] or one-step Newton methods [10, 19]. Between the noniterative 
methods addressing the full nonlinear problem, we may cite the layer-stripping method [37], 
schemes based on Nachman's uniqueness proofs [30], techniques to find discontinuities [5], 
factorization and MUSIC algorithms to locate cavities [23]. Iterative [15, 26] and adaptive 
[33] schemes are other possibilities. Recently, level set techniques have been extended to 
characterize interfaces between regions of different conductivity [13,28]. In [24] and [25], level 
set techniques are initialized by means of a topological sensitivity analysis. Available methods 
typically impose technical restrictions on the admittivity or possible objects to proceed, as 
the assumption about almost constant conductivity in linear approximations. Most techniques 
focus on the inverse conductivity problem. Methods tracking discontinuities or objects with 
sharp interfaces usually consider piecewise-constant conductivity [5, 13, 24, 26, 28]. Some of 
them reconstruct the support of inclusions or just small cavities without being able to make 
precise the value of the conductivity [5, 23]. The iterative methods presented in [13, 24, 25, 
28] show reconstruction tests involving several hundred or thousand iterations. Noniterative 
methods may suffer from apparent geometrical restrictions [37]. 

In this paper, we solve the impedance imaging problem by a combination of topological 
derivative-based schemes and gradient techniques. We distinguish two cases. Initially, we 
consider the presence of discontinuities corresponding to inclusions of a different material. 
The geometry of the set of inclusions and the values of the electromagnetic parameters in them 
have to be identified. There are no restrictions on their size or distribution, and their parameters 
may be space dependent. The admittivity of the background is assumed to be known and may 
also be space dependent. In the second framework, we do not consider the presence of sharp 
interfaces. The conductivities and permittivities of the whole medium are considered to be 
unknown and vary smoothly. We propose a technique to reproduce their spatial variations. 

Both imaging problems can be reformulated as inverse scattering problems and then recast 
as constrained optimization problems. In the first, we have a matrix with known electrical 
properties containing several domains with unknown properties. Computing the topological 
derivative of the shape functional to be minimized we find the first approximation of the 
number, size and location of the domains. A gradient method produces the first guess of 
the values of the parameters. This procedure can be iterated to improve the approximation. 
In the second, we just minimize the functional with respect to the unknown variable 
parameters by a gradient method. For an introduction to topological derivative techniques 
the reader may consult [6, 7, 20, 21] and references therein. Time-harmonic problems 
with spatially dependent coefficients are considered in [7] and general time-dependent 
problems in [8]. 

The paper is organized as follows. In section 2, we formulate the impedance imaging 
problem and give a constrained optimization reformulation. Section 3 considers domains 
with inclusions. Both the exterior and the interior admittivities may be constant or 
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smooth-space-dependent functions. We suggest a reconstruction technique combining 
topological derivatives of the shape functional for fixed parameters and a gradient-based 
method for the conductivities and permittivities for fixed domains. Section 4 proposes a 
method to reconstruct smoothly varying conductivities and permittivities. (In this case, we do 
not consider the presence of permittivities.) In section 5, we show some imaging tests using the 
numerical algorithms introduced in sections 3 and 4. Section 6 summarizes our conclusions 
and comments on extensions to more realistic settings. 

2. The impedance imaging problem 

The electrical properties of interest are typically the electric conductivity and permittivity. 
Inside the body £2, the electric potential u(x) satisfies 

V-y(x, co)Vu = 0, (1) 

where y = a + me, with a being the electric conductivity, e the electric permittivity and co 

the angular frequency of the applied current. A derivation from Maxwell's equations is given 
in [12]. When co = 0, we are left with an inverse conductivity problem. 

Currents are applied through electrodes placed on the boundary dQ, of the body. Different 
boundary conditions have been proposed to account for this effect. The simplest model imposes 
a 'continuous' Neumann condition 

ydnu = j on dQ, (2) 

and measures the voltage on the boundary 

U = Vmeas On dQ. ( 3 ) 

Here, n denotes the outward unit normal and j stands for the outward-pointing normal 
component of the current density generated by the electrodes on the surface. The Neumann 
problem (l)-(2) admits solutions when the current satisfies the compatibility condition 
faa J <^l

 = 0' which is precisely the law of conservation of charge. To select a reference 
potential u, we impose faa udl = 0. The measured voltage also satisfies faa Vmeas dl = 0. 

In real experiments, only the values of the current and the voltages at a 'discrete' set 
of electrodes is known. In this paper, we focus on the simplified model (l)-(2). Section 6 
comments on possible extensions to more realistic settings. 

We want to reconstruct the admittivity y inside £2 from measurements on the boundary. The 
impedance tomography problem can be reformulated as an optimization problem: minimize 

J(Y) = \ f \u-Vmeas\
2
dl (4) 

when u solves (l)-(2). 
If we assume that Q, contains a number of inclusions £2y, the admittivity y is apiecewise 

function in Q, with discontinuities at the boundaries of the inclusions. We set £2; = Uj=1£2y, 
&ij being open connected bounded sets satisfying £2,-̂  n £2,j = 0 for / ^ j ; see 
figure 1. The admittivity in the matrix Q,e = Q, \ £2; is ye. We define y\ in £2; as y\ = yij in 
&ij. To simplify, we assume ye to be known. In this case, (4) is replaced by 

J(Q \ Qi, Yd = ~ I \U- Vmeas|
2 d/, (5) 

2 Jaa 

where u is a solution of 
V • yeVu = 0 in Q.e, V • y,VM = 0 in £2,-, 
ur — u

+
 = 0 on 9£2,-, yidnii~ - yednu

+ = 0 on 9£2,-, (6) 
yed„u = j on 3£2. 
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Figure 1. Geometry for the imaging problem. 

The unit normal n points outside Q.e but inside £2,-, and u and M+ denote the limit values of u 

on dQ,i from outside and inside £2,-, respectively (see figure 1). 

3. Reconstruction of inclusions 

In the case where the medium Q,e contains inclusions £2y of a different material, discontinuities 
in the admittivity are expected at the boundaries of the inclusions. To determine its spatial 
variation we must optimize (5) with respect to the interior domains and their admittivity. Even 
if the admittivity is unknown, we may locate the regions where it undergoes notable changes 
by computing the topological derivative of the shape functional. We refer the reader to [6] and 
references therein for an introduction to topological derivative methods in inverse scattering 
and shape optimization. Once the first guess for £2; = U

d
-=1 £2;j is found, we may approximate 

the admittivity y\ optimizing J{Q, \ £2;, y,) with respect to y\ for &i Axed. 

Below we will describe the resulting procedure in three steps. First, we compute the 
required topological derivatives and propose the first approximation for £2,-. Then, we use 
a gradient technique to optimize with respect to y\. Finally, we explain how to iterate both 
procedures to improve the guesses of £2; and y-x. For simplicity, we take il to be a bounded set 
of R2. The method applies with straightforward modifications in three dimensions. 

3.1. Topological derivative with respect to the domain 

The first guess for the inclusions is found evaluating topological derivatives of the cost 
functional with respect to the domain. 

The topological derivative of a shape functional J(R), TZ C £2 measures its sensitivity 
when an infinitesimal hole is removed from TZ [36]. Let us consider a small ball Be(x) = 

B(x, e), x e TZ, and the domain 1ZS := TZ \ Be(x). The topological derivative of J(TZ) is 
defined as 

J{KS) - J(TZ) 
DT (x, TZ) := Urn ^ ^ 7 7 ^ ^ , (7) 

s^o V(e) 
where V(e) is a positive and decreasing function satisfying l inwo V(e) = 0, for which this 
limit is finite and nonzero. The expansion 

J(1ZS) = J(1Z) + V(e)DT(x, TZ) + o(V(e)) (8) 

for e small implies that the functional decreases if we remove from TZ small balls centered at 
points x at which DT (x, TZ) < 0. This suggests a minimizing strategy. We start by computing 
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the topological derivative of the cost functional with 1Z = £2. Then, we select as the first 
approximation of the inclusions a region Q,ap c £2 at which the topological derivative takes 
large negative values, so that J{Q, \ Q,ap) < J(£l). We may update the approximation Q,ap 

by setting 1Z = £2 \ Q,ap, computing the topological derivative of J{Q, \ Q,ap) and adding to 
Q,ap points at which the new topological derivative is negative and large. This strategy only 
allows us to add points to the approximations Q,ap. To be able to add and remove points from 
our approximated domain at each iteration, we need a value for the topological derivative 
inside Q,ap. Formula (7) gives a value for the topological derivative at points x e £2 \ Q,ap. An 
extension to all x e £2 can be defined for our particular type of functional following [7]. The 
extended topological derivative is defined as 

Je{£l\£lap)-J{£l \ £lap) 

"
ap

> • " "?o V(e) 
DT(x, £2\£2 ) := l i m — — ' v

' — \ _ ^ xett, (9) 

where JS{£1 \ £lap) := \ faa \us — Vmeasl2d/ and us solves (6) for the domains 

_ Q.ap\Be{x), xeQ.ap, 
£2e := £2 \ S2; where £2; := _ 

£2apUBs(x), xe£2\£2ap. 

For the electrical impedance tomography problem in 2D, V(e) can be taken as the measure 
of a two-dimensional ball: V(e) = jre

2
. When x e S2\ Q,ap, formula (9) agrees with (7). 

An expansion of the form (8) still holds, now for x e £2. By adding to Q,ap points where 
the topological derivative is large and negative (as they decrease the shape functional to first 
order) and removing points at which the topological derivative is large and positive (since they 
increase the shape functional) we expect to generate new approximations for which the cost 
functional takes smaller values. 

An explicit expression for the topological derivative of the cost functional (5) in terms of 
forward and adjoint fields is given in the next result. The proof is sketched in the appendix. 
Expressions for the topological derivative using definition (7) with Q,ap = 0 in real-valued 
inverse conductivity problems with piecewise constant conductivity have been obtained in 
[24, 25] expanding asymptotically a modified functional. 

Theorem 3.1. The topological derivative (9) of the cost functional (5) is given by 

~2ye(x)(yi(x) - ye(x)) 
DT(x, £2 \ £2a„,)/;) = Re 

D r(x,£2\£2a /,,y i) = Re 

Ke(x) + Ki(x) 

2yi(x)(y;(x) - ye(x)) 

VM(X)V^(X) 

Vu(x)Vp(x) 

x e £2 \ Uap, (10) 

xe£2ap, (11) 
K;(x) + ye(x) 

where u is the solution of the forward problem (6) and p is the solution of the adjoint problem 

V.yeVp = 0 in£2e, V-yiVp = 0 in £2;, 

p~ - p
+
 = 0 on 3£2;, Yjdnp~ - yednp

+ = 0 on 9£2,-, (12) 

Ye
d
»P = ^meas ~U On 9£2, 

with £2; = Q,ap. 

The admittivity yi enters formulas (10) and (11), but, in principle, it is unknown. To 
initialize our procedure, we select the first approximation of y\ by perturbing ye : y® = ye + e 
and set Q,ap = 0. Then, we evaluate DT(x, £2, y,) setting y{ = yf. The first approximation to 
ill is given by the set of points of il in which DT(x, £2, y?) takes large negative values: 

Q] = {xe £2\DT(x, £2, X,0) < -Ci} 

for some value C\ > 0. We refer the reader to [7] for some guidelines about the selection of 
this constant C\. 
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3.2. Variation with the admittivity 

The topological derivative DT(x, £2, y0) of the cost functional (5) provides the first 
approximation of the regions where the admittivity differs from ye. Our goal now is to correct 
the value of y in Qj. We seek to minimize 

J(Yi) u 
L
 Jda 

Vm dl (13) 

when u is a solution of (6) with £2,- = £2/ and Yi = Yi- To do so, we resort to a gradient method. 

in such a way that ^ < 0. We update yt° setting y} = Y,° + Wp, choosing r\ and 
Finding an explicit expression for this derivative, we obtain a formula for the corrector 
profile <f> in each iteration. Related differential calculus and formulas (Frechet derivatives 
with respect to the conductivity, for instance) are developed in [3,4,15,22]. A broad review of 
techniques to reconstruct admittivities and conductivities can be found in [4,12]. The gradient 
iteration we propose is easy to combine with topological derivatives and produces reasonable 
reconstructions in simple geometries (see section 5). The specific derivatives and corrector 
functions we need are given below. 

Theorem 3.2. The derivative with respect to x\ of the function J{x\) := / (y° + r](p) is 

M(Y? + # ) | 
drj IT;=0 Re 

J a} 
•VuVp&z (14) 

where u and p are the solutions of the forward (6) and adjoint (12) problems with 

£2,. = Q] = uf=1Q]j and y = y0. Choosing 

4>l = -VuVp, xeti], (15) 

and x] > 0, we ensure J{YI) < J(yl
>
)for y} = y9 + rjfa, ifr] is small enough. 

Proof. The derivative with respect to r\ is 

d 

drj 
J(ri) Re 

7J=0 
/ < (u-Vmeas)udl 

where u = ^.uv\ =0 and un is the solution of (6) for y 
variational formulation: 

(16) 

Y^
1
 + r)(f>. We replace (6) by its 

(17) «„efli(£2), | b<j);un,v) = l(v), Vu e H
l
m{U), 

where H
l
m (£2) is the subspace of H1 (£2) formed by functions of zero mean, 

b(rj; u, v) := / yeVnVt7dz + / (y° + #)V«ViTdz VM, V e H
l
m{il), 

Jae Ja, 

Vuefli(£2). l(v) := I jvU, 
Jaa 

We avoid computing u by introducing an adjoint problem. Let us set 

Choosing u 

and 
d , 

£(rj; u, p) := J(rj) + Re[b(rj; u, p) 

u
-, 

Hp)l V«,peH»(S2). 

J(rj) C(rj; Ur,,p), 

drj 
£(iT,Un,p)\ ( 7J=0 Re 

_drj 
b(ir, u, p)]^ Re[fe(0; u, p)] 

Re [ («• 
Jaa 

Vmeas)udl (18) 
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We select an adjoint field p satisfying 

p^H
l
m(Q), | b(p;v,p) [ («• Vmeas)vdl, VveH^Sl). (19) 

The derivative of J(rj) with respect to r\, given by (18), reduces then to 

drj 
Jin) Re 

7J=0 drj 
b(rj; u, p) 

7J=0 

Re 
J a) 

(pVuVp&z 
U 

We have defined 4>i only in £2j, but formula (15) holds for all x e £2. When y; is 
piecewise constant, we expect the resulting y1 to be almost piecewise constant. Another 
possible choice for y1 is obtained replacing the function <f>\ defined in (15) by piecewise 
constant approximations 

J a}, 
VuVpdz, xe &]:, j = 1, , d\. (20) 

This procedure may be iterated to generate a sequence y\ jt+i Y,
k
 + rik<Pk, with <pk given by 

(15) or (20), where now u and p solve forward and adjoint problems with £2,- = £2j. 

3.3. Iterative algorithm 

When guesses £2ap for the domain £2; and yap for the admittivity y,- are known, we calculate 
the topological derivative of J(Q \ Q,ap, yap) to update the approximation of £2,-. 

Formulas (10) and (11) allow us to implement an iterative procedure to improve our 
approximations of £2; and y. 

• Find the initial guesses £2- and y1 as explained in sections 3.1 and 3.2. 
• At each step, 

£2?, Yi Solve the forward and adjoint problems with £2; 

DT(x, £2\£2*, yk
) forxe £2. 

Set 

£2?+1 

y and compute 

£2f U {x e £2 \ £2* | D r(x, £2 \ £2*, y* -Q +U 

\{xe£2f |Z) r(x,S2\^1 . ,y ' :)>c j t + 1}, (21) 

or 
•Jc+l £2*+1

 = £2* U {x e £2 \ £2,. | DT (x, £2 \ £2,., y*) < - Q + i } , (22) 

for decreasing thresholds Q+i, c^+i > 0. The first choice generates a nonmonotonic 
sequence of domains, where regions can be added and removed at each step. The 
second choice produces a monotonic sequence of approximations. Regions can only 
be added. The first method reduces to the second one if the thresholds ck+\ are too 
large. The starting value for the thresholds is calibrated using the guidelines in [7] 
(see also [9]). 

Check that J(p, \ Q,i , yf) < j(p, \ Q,i, yf). Otherwise, we reduce the thresholds 
until this condition is satisfied. 

Solve the forward and adjoint problems with £2; 
<pk = -VUk+\Vpk+\. 
Set yf+ 1 = yf + r,k<f>k. 

£2 jt+i 
Yi y and compute 

/(£2 \ S2; ' \ yf). Otherwise, we reduce the value of rjk. Check that J(Q \ Q •+1, y*+1) 
Check the stopping criterion: the iteration stops if either meas(£2*+1 - Q

k
) is small enough, 

or /(f2 \ S2;, yf) is small enough, or the discrepancy principle ||M^eas - uk+\\\ < re is 
satisfied, where e describes measurement errors and x > 1 (in our examples x = 1.2). 
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For simplicity, we have described a procedure that alternates one update of the domain 
with one update of the parameter. However, it is computationally more efficient to iterate 
several times with respect to the parameter before updating the domains (see [7, 9]). In 
practice, we perform five or ten iterations with the gradient method for the admittivity before 
updating the domain. This scheme is tested in section 5 producing fairly good results. The only 
restriction to apply it is that the admittivity of the background medium has to be known. Both 
the admittivities of the background and the objects may be complex and space dependent. 

4. Spatial variation of the admittivity 

In the previous section, we have proposed a mixed topological derivative—gradient-based 
method to reconstruct admittivities when sharp interfaces are present. It is worthwhile 
to compare the performance of this hybrid strategy with global methods to reconstruct 
admittivities without assuming any a priori information on the background. Let us assume 
now that Q, is made up of a single material and the admittivity y inside £2 is unknown. We 
want to reconstruct its spatial variation inside £2 from measurements at the boundary. The 
gradient technique described in section 3.2 can be adapted to reproduce smooth variations 
of the admittivity, when applied to the functional J(y) defined in (4) without any previous 
knowledge of the background. 

Theorem 4.1. The derivative with respect to x\ of the function J{x\) := J(y
k
 + r)4) is 

dJ(y
k
 + r)4,). 

• VuuVpk dz 
la 

where Uk is a solution of(l)-(2) with y = y
k
, and pt is a solution of 

dr)
 l

i=° f (23) 

V • yVp = 0, in £2, ydnp = Vmeas - u, on 3£2, (24) 

with y = y
k
,u = uk. Choosing 

4k = -VUkVpk, x e £2, (25) 

we ensure J(y
k+1

) < J(y
k
)for y

k+1
 = y

k
 + r)4k, provided r) > 0 is small. 

Proof. The proof is similar to that of theorem 3.2, setting now 

b(r); u,v) = / (y
k
 + #)VnVt7dz, VM, V e H

l
m{il), 

Ja 

l(v)= f jvdl, VveHlW). 

• 
Related differential calculus and formulas are developed in [3, 15]; see also the 

review [4]. 
Note that 4k depends on x. This theorem may be used to generate a sequence 

y
k+1

 = y
k
 + r)k4k with 4k given by (25) yielding information on the spatial variation of 

y. The resulting algorithm is as follows. 

• Choose a value for y° (it may be generated from the known value at the boundary). 
• Set yk+1

 = y
k
 + r)k4k with <pk given by (25). 

• Stop when the variations in y
k from one step to the next are small; the functional falls 

below a threshold or the discrepancy principle \\u"meas - uk\\ < re is satisfied. 

This algorithm has been tested in section 5, producing reasonable reconstructions in simple 
geometries, though the hybrid scheme seems to behave better in problems with interfaces. 
Other choices would be possible, see [3, 14, 15, 40] for instance. 
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5. Numerical results 

In this section, we test the algorithms proposed in the previous sections. The first examples 
consider the inverse conductivity problem, obtained when the frequency co = 0. The 
permittivity disappears from the problem, which becomes real valued. We focus on piecewise 
constant conductivities initially. Next, we consider complex-valued examples, and a problem 
with space-dependent conductivity, used to compare the two approaches described in 
sections 3 and 4. Prior to the numerical tests we nondimensionalize the problem. 

In all our numerical experiments £2 is the unit ball. Synthetic data are generated by solving 
problem (6) for the following ten current patterns: 

je(t) = cos(lt), js+e(t) = sm(lt), 1 = 1,..., 5, te[0,2n). 

When a is piecewise constant, that is, 

\ae, ien\uj . 1a u , 
CT(X) = \

 J
-

L 

[crUj, x e £2,-,;, 

we can use boundary integral methods to solve the direct and adjoint problems (6) and (12). 
In this case, at the kth step of the iterative method described in section 3.3 we need to define 
a smooth contour for £2*. We track the interfaces assuming that each boundary of £2* can be 
parameterized as 

(cx, cy) + r(f)(cos(27tf), sin(2jrf)), t e [0, 2TT], (26) 

and solve a least-squares problem to find an approximation of r (t) of the following form: 

M M 

r(t) «s flo + '^2am cos(2jrmt) + ^femcos(27rmf), (27) 

see [7] for details. When a varies smoothly with x, we resort to finite element codes. 
For simplicity, in our numerical experiments, objects do not have inner boundaries, like 

in annular objects, but our method can deal with those kinds of objects. The interested reader 
may find a reconstruction of an annular region using topological derivatives for a scattering 
problem in [7]. In our current implementation, using boundary elements we assume that the 
boundaries are C

2
. The approximation (26)-(27) can be substituted by other methods to track 

the interfaces, for instance by spline curves, easily. Note also that the number of components 
does not have to be known from the beginning and can change from one iteration to the next 
(see figure 3). The method can also deal with components that separate or merge without 
problems (see [6] for an example in a scattering context). 

In the first simulations (figure 2-5), we reconstruct the geometry of regions with different 
real constant conductivities. In all of them the exterior conductivity is ae = 1. The measured 
data were generated by solving the equivalent nonlinear system of integral equations proposed 
in [16], using a finer mesh and adding a 1% relative error at each observation point. We took 
300 grid points on each curve to create synthetic data and 32 for solving the direct and adjoint 
problems at each step. In all our experiments, we have taken 30 observation points, that is, 
30 electrodes, uniformly distributed on the boundary of the unit ball (they are represented by 
crosses in all figures). 

For our first example, we consider the kite-shaped object £2; given by the parameterization 

/ 1 1 \ 1 
x(t) = - - , — + (380cos(f)+247cos(2f), 570 sin(O), te[0,2n), (28) 

\ 2 5 / 1600 

with constant conductivity o\ = 6. This object is represented in figure 2 with a white solid 
line. Note that this object is not in the set of functions defined by (26) and (27). 



(a) (b) (c) 

(d) (e) (f) 

(g) (h) 

Figure 2. Reconstruction of an object with known conductivity using the topological derivative-
based scheme, (a) Topological derivative when £2; = 0. (b)-(g) Approximate domain ^ 
superimposed to the topological derivative for £2; = 52̂  when k = 1,4,7,10,13 and 
16. (h) Cost functional through the iterative procedure. 

The values of the topological derivative when £2,- = 0 at a sampling grid defined in 
the unit ball are represented in figure 2(a). We see that the largest negative values attained 
by the topological derivative (dark blue colors in the plots) are concentrated inside the true 
object. Figure 2(b) shows our initial guess Q,} (denoted in the plot as £2i) and the topological 
derivative computed when £2,- = Q,\. Some of the subsequent iterations are shown in 
figures 2(b)-(g). The last plot shows the decreasing values of the cost functional at each 
iteration. The iterative procedure was finished by the discrepancy principle at the 16th iteration. 
At each step, the domain was defined using (22). The alternative definition (21) provides exactly 
the same results since the topological derivative does not take large positive values during the 
iterations. We obtained a good reconstruction of the size, location and shape of the object 
taking into account that no a priori information is used. 

Let us consider now a geometrical configuration with three objects of circular shapes 
and different sizes (see figure 3). In this example, o\ = 8 in all the objects. Computing the 
topological derivative when £2; = 0, we observe that only the biggest object is detected 
(see figure 3(a)). Therefore, our initial guess shown in figure 3(b) has only one defect. 
The computation of the topological derivative when £2; = i\ allows us to distinguish the 
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Figure 3. Reconstruction of several objects with known conductivity using the monotone 
topological derivative scheme, (a) Topological derivative when £2; = 0. (b)-(h) Approximate 
domains £2̂  superimposed to the topological derivative for 52; = 52̂  when k = 1,2, 3, 5, 7, and 
11. (h) Cost functional through the iterative procedure. 

right-most object. In the next iteration, £2,- has two components (see figure 3(c)). The smaller 
object is detected when computing the topological derivative for £2,- = £22 (see figure 3(c)). 
In the subsequent iterations, we have caught the correct number of defects. Some of them 
are represented in figures 3(d)-(h). The values of the cost functional versus the number of 
iterations are given in figure 3(i). We get a satisfactory reconstruction after just 11 iterations 
without having any a priori information. We are able to detect the correct number of objects, 
their position and approximate size. A better reconstruction of the shapes is possible after a 
few more iterations. 

In figures 2 and 3, we generated monotone sequences of objects in the sense that 
£2f C £2f+1 for all k. That is, we used the definition of £2f+1 given in (22). The approximate 
domains increase slowly to resemble the true object in figure 2. Instead, in the example with 
three objects, we observe that figure 3(c) already includes a spurious region. All the subsequent 
subplots include spurious regions that cannot be removed. This is an artifact of the monotone 
method, though the value of the constants Ck and Q affects the appearance of such regions. In 
spite of this, the final approximation provides a reasonable reconstruction of the shape, size 
and location of the objects. On the other hand, if we observe the values of the topological 
derivative at the 11th step (see figure 3(h)), we realize that there are regions where it takes 
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(a) (b) (<0 

-1 -0.5 0 0. 

(d) 

(g) 

0 0.5 1 

-1 -0.5 0 0.5 1 

(e) 

-1 -0.5 0 0.5 1 

(h) 

(f) 

(0 

-1 -0.5 0 0.5 1 

-1 -0.5 0 0.5 1 

-1 -0.5 0 0.5 I 10 15 

Figure 4. Reconstruction of an object with known conductivity using the non-monotone 
topological derivative scheme, (a) Topological derivative when £2; = 0. (b)-(h) True object 
(solid line), approximate domain £2̂  (dashed line) and topological derivative when 52; = 52̂  
for k = 1, 2, 3, 4, 5, 8 and 11. (i) True object (solid line) and approximate domain (dashed line) 
obtained at the 13th step, (j) Values of the cost functional versus the number of iterations, (k) True 
and approximate domain in the first example. (1) Values of the cost functional versus the number 
of iterations in the first example. 

positive values close to the two objects at the bottom. This indicates that spurious regions are 
included and that we should use now a non-monotone method if we want to correct them. 
Defining now £2*+1 as in (21), the spurious regions would be removed in a few steps. 

In figure 4, we revisit the first example taking a larger value for C\. We will use now 
the non-monotone method. We compute the topological derivative inside and outside the 
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objects and represent the true object by a solid line and the current approximation by dashed 
lines. Our initial guess is bigger and contains spurious regions that do not belong to the true 
object (compare figure 4(b) with figure 2(b)). When computing the topological derivative for 
£2; = £2- we only detect new regions where its values are large and negative (see figure 4(b)). 
Therefore, in the next iteration Q] c £2?. This also happens in the second and third steps (see 
figures 4(c) and (d)). However, at the fourth iteration, we detect a region with large positive 
values, indicating that spurious regions are included in Qj (see figure 4(e)) and in the next 
iteration Qf <£ £2?. As the method proceeds, it happens that £2f £ £2f+1 for k = 5 , . . . , 10 
(see figures 4(f) and (g) where we represent the results for k = 5 and k = 8). The computation 
of the topological derivative when £2,- = Q]

x provides regions with large negative values, but no 
large positive values appear (see figure 4(h)). Therefore, Q]

1 c S2p. Our final reconstruction 
at the 13th step is shown in figure 4(i) with a dashed line. The values of the cost functional 
through the iterative procedure are given in figure 4(j). For comparison, we have added in 
figure 4(k) the reconstruction that we obtained in figure 2(g). We observe that our final 
reconstruction has a similar quality and also that the values of the cost functional when the 
iterations stop are almost the same (compare figures 4(j) and (1)). This indicates that our 
non-monotone method is not very sensitive to the initial guess. 

In our next example, we illustrate the performance of our method for the full problem, 
that is, for the reconstruction of both the objects and the parameters. We consider again the 
kite-shaped defect given by the parameterization (28) with unknown conductivity a{ = 7. To 
initialize the procedure we took er° = 3. The topological derivative for this value when £2,- = 0 
is represented in figure 5(a). As pointed out in [7, 9], it is more efficient to iterate several 
times with respect to the conductivity before updating the domains (updating the domains 
requires one to recompute the boundary element method matrices but updating the parameters 
does not). For this reason, we perform five iterations with the gradient method before updating 
the domain with the topological derivative method. The final reconstruction of the object 
is shown in figure 5(b). The values of the conductivity at each iteration are represented in 
figure 5(c), and the values of the cost functional versus the number of iterations are given 
in figure 5(d). The combined algorithm stopped after 20 updates of the object, producing a 
satisfactory reconstruction. Furthermore, the true conductivity o\ = 7 was approximated by 
a; = 6.51 which is also a reasonable value. 

Our next two examples deal with complex admittivities, that is, of the form y = a + me 

with co = 1. We consider again the kite-shaped object defined in (28) with admittivity 
Yi = 1 + 2;. In the exterior medium, ye = 1 + ;. 

First we assume that both y; and ye are known. The topological derivative when £2; = 0 
in this case is represented in figure 6(a). The iterative algorithm stops at the 21st iteration, 
yielding the approximate domain that is represented by a dashed line in figure 6(b). The values 
of the cost functional are given in figure 6(c). We observe that the quality of the reconstruction 
is similar with real-valued y (see figure 2(g)) or complex-valued y (see figure 6(b)). 

In figure 7, we consider the same problem as in figure 6, but now the interior admittivity 
yi is assumed to be unknown. We started the method with initial guess ]/° = 3 + 4; and 
obtained for £2,- = 0 the topological derivative shown in figure 7(a). As in the real-valued case, 
we perform five iterations with the gradient method before updating the domain at each step. 
The reconstruction of the object at the 17th iteration with respect to the domain is depicted 
in figure 7(b). The interior admittivity y\ = 1 + 2; is approximated by 6.58 + 2.26;. Both 
the values of the real part of the admittivity (the conductivity a) and its imaginary part (the 
permittivity e) versus the number of iterations are given in figures 7(c) and (d), respectively. 
Again, the reconstructions have the same quality as in the real-valued case (compare 

13 



Figure 5. Reconstruction of the shape and the conductivity of an object combining topological 
derivatives and gradient methods, (a) Topological derivative when £2; = 0. (b) True object (solid 
line) and approximate domain (dashed line) obtained at the 20th iteration with respect to the 
domain, (c) Values of a\ through the iterative method, (d) Values of the cost functional versus the 
number of iterations. 

-1 -0 .5 0 0.5 1 5 10 15 

iteration 

Figure 6. Reconstruction of an object with known complex admittivity using topological 
derivatives. Topological derivative when £2; = 0. (b) True object (solid line) and approximate 
domain (dashed line) obtained at the 21st iteration with respect to the domain, (c) Values of the 
cost functional versus the number of iterations. 

figure 7(b) with figure 5(b) for the reconstruction of the object and figures 7(c)-(d) with 
figure 5(c) for the reconstruction of the parameters). 

Our last two examples are devoted to the reconstruction of smoothly varying 
conductivities. In this case, we use a finite element method (FEM) with triangular elements 
and linear interpolation [29] to solve direct and adjoint problems. 
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(a) (b) 

iteration iteration iteration 

Figure 7. Reconstruction of an object, its conductivity and permittivity combining topological 
derivatives and gradient methods, (a) Topological derivative when 52; = 0. (b) True object (solid 
line) and approximate domain (dashed line) obtained at the 17th iteration with respect to the 
domain, (c) Values of a\ through the iterative method, (d) Values of e, through the iterative method. 
(e) Values of the cost functional versus the number of iterations. 

We start by illustrating the performance of the gradient method introduced in section 4. 
Our goal is to recover the conductivity 

a(x,y) = l +5exp ( -25 ( ( x - 0 .5 ) 2 / 0 . 8 2 + y 2 / l - l 2 ) ) , (29) 

that is plotted in figure 8(a). To do that, we start with the value er° = 1. The gradient method 
stopped at the 17th iteration. The reconstructed function is shown in figure 8(g). Some of the 
intermediate approximations are presented in figures 8(b)—(f). We do not recover the function 
a(x, y) sharply, but we obtain a reasonable reconstruction. The true function a is a radially 
increasing function that attains its maximum at point (0.5,0). Our reconstruction provides an 
almost radially increasing function attaining its maximum value close to the point (0.55,0). 
However, the region where a ^ 1 is bigger for the reconstructed function than for the true 
one, and the values of a are underestimated in the region close to the point (0.55,0) and 
overestimated far from that region (note that the scale is the same in all the plots in figure 8). 

In our last example, we consider the problem of recovering an obstacle with unknown 
smoothly varying conductivity. The obstacle is the ellipse centered at (0.5,0) and semi-axes 0.3 
and 0.4, represented in figures 9(a), (b) and (d), are represented by a solid line. The unknown 
true interior conductivity is given by the function o\ defined in (29), and the exterior ae = \ 

is assumed to be known. Note that the function a(x,y) defined as a(x,y) = cr,(x,y) inside 
the ellipse and a(x,y) = 1 outside it (represented in figure 9(f)), has a discontinuity at the 
boundary of the ellipse but is close to the smooth function a (x, y) considered in the previous 
example (see figure 8(a)). 

To recover both, the geometry of the object and the function a,-, we use the method 
described in section 3.3. We take as the initial value er° = 1.5 and compute the topological 
derivative when £2,- = 0. The largest negative values of the topological derivative are 
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(a) 

Figure 8. Reconstruction of a space-dependent conductivity function using the gradient method. 
(a) True function a. (b)-(g) Reconstructions of a at the 1st, 7th, 13th, 19th, 25th and 31st iteration. 

concentrated inside the object, as seen in figure 9(a). Figure 9(b) shows our initial guess £2i. 
We perform now ten iterations with the gradient method to update the interior conductivity, 
recovering the function represented in figure 9(c). We fix this function and compute the 
topological derivative again (see figure 9(b)). After 18 iterations with respect to the domain, 
our reconstruction of the ellipse is represented in figure 9(d). This approximation is quite 
satisfactory. The reconstructed conductivity is presented in figure 9(e). Our reconstruction 
is not sharp, but we get reasonable information about the behavior of er;, recognizing a 
radially increasing function. The small discontinuities that are observed inside the ellipse in 
figure 9(e) correspond to updates in the domains at the iterative procedure (recall that the 
gradient method is applied to reconstruct o\ only inside the current approximate domain). 

Comparing with our previous example, the combination of topological derivatives with 
the gradient method improves the reconstruction of the conductivity (compare figures 8(g) 
and 9(e)) since the center of the ellipse is better reconstructed and the values of a are closer 
to the real ones. However, the second strategy uses information on the background, whereas 
the first one assumes no a priori knowledge of the structure of the medium. It is worth noting 
that although the overall reconstruction is satisfactory, the maximum error in the region where 
a takes the largest values is 2.19 in the first case and 1.64 in the second one. To compare 
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(a) (b) (c) 

(d) (e) (f) 

Figure 9. Reconstruction of an object and its space-dependent conductivity combining 
topological derivatives and gradient methods, (a) Topological derivative when 52; = 0 and 
at = 1.5. (b) Approximate domain 521 superimposed to the topological derivative when 52; = 52j 
and a; = ffio (c) Reconstructed function a after ten iterations of the gradient method when 
52; = 52j. (d) True object (solid line) and approximate domain (dashed line) obtained at the 18th 
iteration with respect to the domain, (e) Final reconstruction of a. (f) True function a. 

(a) (b) (c) 

Figure 10. Comparison of both methods when the same data are used, (a) True function a. 

(b) Reconstruction of a with the method that combines topological derivatives and gradient 
methods, (c) Reconstruction of a with the gradient method. 

both methods, we have used the data for the conductivity of figure 9 in the gradient method 
(although it was proposed to recover smooth functions a). The reconstructed conductivity 
is represented in figure 10(c). Note that the conductivities in figures 8(g) and 10(c) are 
almost indistinguishable at first sight. Figure 10 also includes the true conductivity and its 
reconstruction using the hybrid method for a better comparison. 

Although more research on the influence of the threshold choices and the way to combine 
iterations on the quality of the reconstruction remains to be done, the approximations of the 
variable conductivities could be poor in practice. Nevertheless, they can be of interest to give a 
good initial guess for a more sophisticated technique. Topological derivatives provided a good 
reconstruction of the object even when the reconstruction of a{ was not sharp. The gradient 
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method could be substituted by a more refined technique to recover the conductivity such as 
those described in [3, 14, 40], which combined with topological derivatives could provide a 
better algorithm for recovering both objects and their space-dependent conductivities. Further 
research on the behavior of the schemes in more complex geometries remains to be done. 

6. Conclusion 

We have presented a numerical reconstruction technique for electrical impedance tomography 
problems that allows us to handle both smoothly varying admittivities, and admittivities with 
sharp discontinuities due to the presence of different objects inside the medium. 

The inverse conductivity and impedance problems are the mathematical problems that 
must be solved for electrical impedance tomography systems to be able to generate images. 
These systems apply currents to the boundary of a body, measure the induced voltages at this 
boundary and use this information to reconstruct the electromagnetic properties inside the 
body. 

In real experiments, only the values of the current and the voltages at a 'discrete' set of 
electrodes are known. Thus, a 'discrete' Neumann condition replaces (2): 

ydnu = 0 between the electrodes, (30) 

ydnudl = Ik, k=l,...,N, (31) 

N 

I> = 0, (32) 
jt=i 

where Ik is the current sent to the kth electrode and ek denotes the part of 3 £2 that corresponds 
to the kth electrode. 

At the electrodes, we measure the voltages Vk. Dirichlet conditions u = Vk at ek have been 
shown not to be realistic [12]. Instead, the following constraint is used: 

u + zkydnu = Vk at the electrodes ek, k = 1 , . . . ,N, (33) 
N 

jt=i 

where zk is the effective contact impedance or surface impedance. 
Our methods can be extended to handle this more realistic setting. However, the numerical 

codes are much more complex. Testing our methods for this model will be the subject of 
forthcoming work. 

Appendix 

This appendix is devoted to the proof of theorem 3.1. We adapt the strategy used in [6, 7] for 
inverse scattering problems. 

The idea is the following. First, we give a variational formulation of the boundary 
value problem. Next, we deform the domain £2,- along the vector field V and compute 
the shape derivative in the deformed domains. To do so, we differentiate the transformed 
functionals with respect to a control parameter x. The resulting expression involves the 
derivative of the solutions ux in the deformed domains. The computation of this derivative 
is avoided establishing a relationship with the derivatives of modified functionals, in which 
a free state can be selected to eliminate ^ - . This adjoint state solves the so-called adjoint 

/ 
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problem. Integrating by parts the resulting expression, we find the desired formula for the 
shape derivative. The topological derivative is then computed using the relationship with 
shape derivatives established by [ 18]. The vector field V representing the direction of change of 
the domain is selected in such a way that V(z) = - n(z), z e dBs(x). The normal vector n 
points inside the ball. This field V is extended to R2 in such a way that it vanishes away from 
a narrow neighborhood of dBs. Selecting the deformations 

(pr(x):=x+rV(x), x e R2, 

it follows that the topological derivative of a shape functional J{R) is given by 

DT(x,K) = lim 
1 

-J((px(Tl\Bs(x))) xeTZ, (A.l) 
r=0 s^o V'(e) dr 

where V (e) is the derivative of the function V (e). Note that cpx (71 \ Bs (x)) = TZ\(px(Be(x)). 

Let us recall that V(e) = jre
2
. 

The proof is organized in seven steps. Steps 1-6 assume Q,ap = 0 and TZ = Q,. Step 7 
indicates the changes when Q,ap ^ 0. 

Step 1: variational formulation of the forward problem. We replace (6) by its variational 
formulation: 

Me / / 1 (£2), | b(tti;u,v) = l(v), Vv e H
l
m(£2), (A.2) 

where 

,-; u, v) := I 

) := / jvdl, 

yeVuVvdz- h 
J a, 

VnVudz, V«,u ef f ! (B) , 

v«eM(a), 

and H^iQ.) is the subspace of//1 (£2) formed by functions of zero mean. 

Step 2: transformed Junctionals. By definition, the field V decays fast enough away from 
9£2; = r s to ensure (px(dQ) = 9£2.Letus set £2ijT := #>T(£2j) and Wer :=<pT(£2e) = £2\£2;jT. 
The cost functional in the transformed domains is 

5/ 
ym '•dl, 

We/ / I (£2 ) , 

(A3) 

(A.4) 

J(Q\QUT,Yi) 

where ux is a solution of 

UreHlW), I b{i\x;ux, v) = l{v), 

with 

b(£2i,r;u,v):= yeVZiuVZivdzx + y,VZrMVZriJdzT, VM, V e /4(£2). 

For r = 0, we recover (5) and (A.2). 

Step 3: adjoint states. We introduce the modified functional 

£(£2;,T; u, p) := /(£2 \ £2,-,r, yj) + Re[&(£2;,T; «, p) - £(/?)], VM, p e H
l
m{il). 

The derivative of J in the direction V is then 

dr 
/(£2\£2 i,T,y i) 

T=0 dr 
£(£2ijT; ux,p) Re 

T=0 dr 
&(£2ijT; u,p) 

T=0J 

Re[fe(£2,;M, p ) ] + R e 
/ ( « • 

_./3£2 
Vmeas)Md/ 

(A.5) 

(A.6) 
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If p satisfies 

peHl(Q), | b&f, v, p) = - f (u-Vmeas)vdl, WveH^Si), (A.7) 

then the derivative is given by the first term in (A.6). The adjoint problem (A.7) is equivalent 
to (12). 

Step 4: derivative of the transformed functionals. Let us compute the first term in (A.6). For 
any u, p e H^iSl), 

—b(S2iy, u, p) = I ye(Vu- V p ) V - V d z - / ye((VV + V V T ) V M ) • Vpdz 

+ I K ; ( V M - V p ) V - V d z - / Ki((VV + VVT)VM)-Vpdz. (A.8) 

Integrating by parts, using the equations satisfied by u and p, and the fact that V vanishes on 
3£2, the volume integrals on £2,- and Q,e and integrals on 3£2 vanish. Only the contribution to 
(A.8) from the interface T; = 3£2; remains: 

dr 
J{U\UhX,Yi) 

T=0 

Re 

Re 

dr 
b{UUx; u,p) 

T=0. 

JK» 
K> (A.9) 1 ) dnu dnp + (Yi - Ye)dtU dtp )d/ 

/ r \ \Ye 

Step 5: topological derivative when YI and ye are constant and Q,ap = 0. For any subset B c £2, 
we set J" (£2 \Z?) = J(£2\B, Yi')- We use identities (A.l) and (A.9) with £2; = Bs(x) to obtain 

Yi \ — ~ 1 ) dnU'dnp- + (Yi ~ Ye)dtU~dtp- ) dl DT(X, £2, Yi) = lim 
£^o V'(e) 

x e £2. 

Re /.(»(H 
(A. 10) 

Here, us and p s solve the forward (6) and adjoint (12) problems when £2; = Bs(x) and 
T = Ts = dBs (x). The asymptotic behavior of us and ps at Ts is obtained expressing them as 
corrections of u and p: 

Ue (Z) = U(Z)XQ\BS (
Z) + "s (Z)> Ps (Z) = P(

Z
')XQ\BS (Z) + <?s (ZX 

and expanding the remainders in powers of e. Let us denote by B the unit ball and set 
£2S := (£2 - x)/e. Making the change of variables f := (z - x)/e, the correction vs(%) 

satisfies 

= 0 A^v: 

A^v, 0 

(A.ll) 

in £2S \ B, 

inB, 

u~ - v+ = u(z) = u(x) + e£ • VM(X) + 0(s
2
) on T, 

Kn(§)V? • v- - Ken(§) • V ^ + = eyen(§) • V«(x) + 0(s
2
) on T, 

n(§) • Vtus = 0 on 3£2S. 

Expanding vs(%) in powers of e vs(%) = t>(1)(§) + eu(2)(f) + 0(e
2
), we find t>(1)(§) 

M(X)XB($) a n d 

u w ( ? ) ~ V i i ( x ) 
2ye 

Ke + Ki 
& * ( $ ) • 

Ke ~ Yi jf 

ye + K; ISI2 
X R 2 X 5 ( « ) ) = V « ( x ) - ^ ) , 
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up to an error term which is 0{e
2
). Thus, 

us(z) = M(z)/£2xa(z) + M(x)/B s(z)+eVM(x)-^) + 0(e2), z e Ts. 

A similar expansion holds for ps(z). This implies 

MS(Z) -> M(X), pe(z) ->- p(x), as e -> 0, 

VM7(Z) -> — — V M ( X ) , Vp7(z) -> — — V/?(x), as e -> 0, 
Ke + Yi Ye + Yi 

uniformly when |z — x| = e. 

Taking limits in the two integrals appearing in (A. 10) and taking into account that 
V'(e) = 2TT£, (10) follows. 

Step 6: variable parameters. The previous derivation holds when the parameters are constant. 
When they vary smoothly, we expand them about x and repeat the previous computations. 
Note that due to the choice of V, only the values of Yi and ye in a narrow band about Te are 
relevant for the computation of the shape derivative. For the topological derivative, we set 
Yi(z) = Yi(x) + ef • Vy;(x) + 0(e

2
) and an analogous expression for ye. Then, we check 

that u(1) and u(2) remain unchanged. For piecewise smooth ye and y, we use a regularizing 
approximation; see [7] for details. 

Step 7: topological derivative when Q,ap ̂  0. The formula for x e £2 \ Q,ap (i.e. (10)) follows 
in a similar way, replacing £2,- with Q,ap U Bs (x) in step 5. The formula for x e £lap (i.e. (11)) 
is obtained following the same steps, taking into account that now Bs (x) is part of the exterior 
domain and that the roles of YI and ye are interchanged. That is, the interior problem in B has 
parameter ye, whereas y; corresponds to the exterior problem. See [7] for further details. 
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