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ABSTRACT 

The precise localization of human operators in robotic workplaces 

is an important requirement to be satisfied in order to develop 

human-robot interaction tasks. Human tracking provides not only 

safety for human operators, but also context information for 

intelligent human-robot collaboration. This paper evaluates an 

inertial motion capture system which registers full-body 

movements of an user in a robotic manipulator workplace. 

However, the presence of errors in the global translational 

measurements returned by this system has led to the need of using 

another localization system, based on Ultra-WideBand (UWB) 

technology. A Kalman filter fusion algorithm which combines the 

measurements of these systems is developed. This algorithm 

unifies the advantages of both technologies: high data rates from 

the motion capture system and global translational precision from 

the UWB localization system. The developed hybrid system not 

only tracks the movements of all limbs of the user as previous 

motion capture systems, but is also able to position precisely the 

user in the environment. 

Categories and Subject Descriptors 

I.2.9 [Artificial Intelligence]: Robotics – operator interfaces, 

sensors. 

General Terms 

Algorithms, Measurement, Experimentation, Human Factors. 

Keywords 

Motion capture, inertial sensors, UWB, human tracking and 

monitoring, indoor location, data fusion, Kalman filter. 

1. INTRODUCTION 
Collaboration between human beings and robots takes advantage 

of their complementary features. On one hand, robots are able to 

do repetitive tasks which are dangerous or exhausting for people. 

On the other hand, humans can perform complex tasks which 

require intelligence. However, human-robot interaction in 

industrial workplaces may be dangerous for human operators 

because of the possibility of collisions with robots or with heavy 

objects. Therefore, a precise localization of human operators is 

needed. Nevertheless, most localization systems only register 

global position and orientation of the person. Motion capture 

systems don’t have this drawback because they are able to 

measure full-body movements. 

Motion Capture (MoCap) is a technique for digitally recording the 

movements of a person. The user of the system wears markers (or 

sensors) near each joint of his body and the motion capture 

system calculates his movements by comparing the positions and 

angles between the markers. Although the first motion capture 

systems were used in biomechanics [2] to study and model the 

movements of the human body, MoCap is applied in a wide 

variety of application fields nowadays: animation and computer 

graphics [5], robot teleoperation [6], human-robot interaction 

[7]… 

The ability of motion capture systems to track precisely all the 

limbs of the human body not only guarantees the security of 

operators in industrial environments, but also provides significant 

information about their behaviour. This context-awareness 

provided by motion capture systems is the first requirement to be 

satisfied in order to apply ‘Ambient Intelligence’ (AmI) [1] in 

industrial environments where there is human-robot interaction. 

Context information can be interpreted in order to create 

‘intelligent environments’ which adapt their operation to the 

user’s needs. Thus, the robot workplace becomes context-aware 

and the robot controller is able to change the robot movements 

depending on the position of the human operator. 

This paper analyses an inertial motion capture system which is 

used to track human operators who interact with a robotic 

manipulator in an industrial environment. Although the rotational 

measurements for each joint are very precise, the global 

translation position returned by this system accumulates high 

errors through time. Due to this fact, an additional UWB 

localization system, which provides more precise position 

measurements, has been used. In section 2 of this paper, different 

 

 



motion capture technologies are compared for their use in 

industrial workplaces and previous work on similar hybrid 

tracking systems is described. In section 3, both tracking systems 

are presented and evaluated. The Kalman Filter (KF) algorithm 

designed to combine the position data of both systems is 

explained in section 4. Section 5 describes some experimental 

results of this filter. Finally, the conclusions of this paper and 

future research are presented in section 6. 

2. BACKGROUND 

2.1 Motion Capture Technologies 
Several motion capture technologies have been developed in the 

last decade [13]. However, not all of them are appropriate for 

industrial applications. Each one has different advantages and 

limitations depending on the physical principles on which it 

relies.  

Mechanical MoCap systems (such as Gypsy5 from Animazoo) are 

composed of a set of articulated rigid segments (exoskeleton) 

attached to the user’s limbs and interconnected between them 

through electromechanical transducers (such as potentiometers). 

User motion is registered through voltage variations in the 

potentiometers. Although these systems have accurate 

measurements and low latencies, they are very uncomfortable for 

industrial workers who have to wear the exoskeleton for many 

hours a day. 

Magnetic MoCap systems (such as MotionStar from Ascension) 

use a permanent transmitter (a set of three coils) that induces 

magnetic fields in the environment. These magnetic fields are 

measured by small receivers attached to the user’s body and so 

user location is estimated. These systems are accurate and don’t 

have light-of-sight restrictions. Nevertheless, they are not 

convenient for industrial workplaces because electronic devices 

and ferrous metals can change the electromagnetic fields induced 

by the transmitter and thus distort receiver measurements. 

Optical MoCap systems (such as Vicon MX from Vicon) are based 

on the installation of a set of calibrated cameras which record 

images of the markers attached to the actor’s body. The position 

of each marker is triangulated by using three or more images that 

contain the marker. Orientation is deduced from the relative 

orientation between three or more markers. These systems have 

high accuracy and high sampling rate, which enables quick 

movement registration. However, these systems are very complex 

to install in an industrial environment because they require many 

calibrated cameras in order to avoid marker occlusion (line-of-

sight restrictions). 

Inertial MoCap systems (such as GypsyGyro-18 from Animazoo) 

use inertial sensors: accelerometers and gyroscopes. These 

sensors are tied to the actor’s body. Actor’s limb positions are 

calculated by double integrating the accelerations obtained from 

accelerometers and orientations are calculated by integrating the 

angular rates obtained from gyroscopes. These systems are the 

most appropriate for industrial environments because of their 

numerous advantages. Inertial sensors have low latencies, can be 

sampled at high rates, are self-contained and easy to install (no 

emitters are needed in the environment). Furthermore, they don’t 

have line-of-sight restrictions as optical systems. However, the 

main disadvantage of these systems is the accumulation of errors 

through time (drift). This problem has been solved by developing 

hybrid systems which combine inertial measurements with other 

sensors.  

2.2 Previous Work on Hybrid Tracking 
Pose (position and orientation) estimation by inertial sensors is a 

well-studied field with applications in vehicle navigation, 

augmented reality (AR) and robotics. Most systems use additional 

sensors in order to correct drift accumulation of inertial sensors. 

Kalman filtering is the most frequently used technique for 

combining measurements of different sensors in this hybrid 

tracking systems.  

Foxlin [4] develops a small device for head-tracking in virtual 

environments. It is composed by three orthogonal angular rate 

gyroscopes, a two-axis inclinometer and a two-axis compass. This 

system implements a complementary Kalman filter which 

estimates errors in orientation (from the inclinometer and the 

compass) and angular rate (from the gyros).  

This device is an example of an inertial measurement unit (IMU): 

a package of inertial sensors (gyroscopes and accelerometers) 

which are used for tracking purposes by dead-reckoning 

estimation. Recent advances in sensor miniaturization have 

enabled the creation of small-sized compact MEMS (Micro-

Electro-Mechanical Systems) IMUs, which are usually composed 

by gyroscopes, accelerometers and magnetometers. 

Accelerometers and magnetometers measurements are used to 

correct drift of orientation measurements from gyroscopes. MTx 

from Xsens and InertiaCube3 from Intersense are two examples 

of commercial MEMS IMUs.  

Recent inertial tracking systems use these commercial MEMS 

IMUs because they return precise orientation and don’t have the 

typical drift problems of stand-alone gyros. However, these IMUs 

only obtain orientation measurements and no position information 

is supplied. An additional localization system is needed in order 

to obtain position measurements. 

Caron et al. [3] propose a multisensor Kalman filter which 

combines GPS and IMU data to localize an autonomous land 

vehicle (ALV). This Kalman filter has two different 

measurements models (one for each sensor type) which are 

weighted according to fuzzy context variables that define sensors 

data reliability. 

Ribo et al. [8, 9] present a wearable AR system that is mounted on 

a helmet. It consists of a real-time 3D visualization subsystem 

(composed by a stereo see-through HMD) and a real-time 

tracking subsystem (composed by a camera and an IMU). Sensor 

fusion is accomplished by an extended Kalman filter (EKF) which 

uses inertial measurements during the prediction step and vision-

based measurements during the correction step. 

Roetenberg et al. [10] have designed a wearable human motion 

tracking system consisting of a magnetic tracker (composed by a 

magnetic source and three magnetic sensors) and an inertial 

tracker (composed by three IMUs). The magnetic tracker is able 

to calculate relative distances and orientations between body 

segments while the inertial tracker registers accelerations and 

angular rates. A complementary Kalman filter is developed to 

correct inertial measurements with the magnetic ones. 

Finally, Vlasic et al. [11] present a motion capture system which 

fuses accelerometers, gyroscopes and acoustic sensors by an EKF. 

The ultrasonic subsystem provides relative distances between 



sensors. However, this MoCap system and the previous one don’t 

obtain absolute localization of users in the environment because 

they only return relative measurements. The MoCap system 

presented in this paper not only tracks all the limbs of the body 

but also gets the global position of the user in the environment. 

3. SYSTEM ARCHITECTURE 
The industrial environment built in this work project has three 

main devices (Figure 1): a Mitsubishi PA-10 robotic arm, an 

Animazoo GypsyGyro-18 MoCap system and an UWB 

localization system from Ubisense. 

 

Figure 1. Main components of the industrial workplace: a PA-

10 robotic arm (left) and a human operator (right), who wears 

a GypsyGyro-18 MoCap suit and an Ubisense tag. 

The PA-10 is an industrial robotic arm (or manipulator) normally 

used for pick-and-place applications and component assembly. 

The robot controller is connected to a PC and can be controlled 

with a software library. The two tracking systems are described in 

the following sections. 

3.1 Inertial Motion Capture System 
The GypsyGyro-18 is an inertial motion capture system composed 

of 18 small IMUs attached to a lycra suit which is worn by a 

human operator (Figure 1). Each IMU is an InertiaCube3 from 

Intersense which measures the orientation (roll, pitch and yaw) of 

the operator’s limb to which it is attached. This orientation data is 

transmitted through wireless link to a controller PC where global 

position of the operator is estimated with a footstep extrapolation 

algorithm. 

All this movement data (limbs orientations and global body 

translation) is represented on a 3D hierarchical skeleton structure 

(Figure 2) whose size corresponds to the limbs’ lengths. The hips 

node is the root node of the skeleton and represents global 

translation and rotation of the whole body in the environment. 

The other nodes of the skeleton represent limbs’ rotations 

registered by IMUs. The rotation of each node is relative to the 

coordinate system of the parent node in the hierarchy of the 

skeleton. 

 

Figure 2. GypsyGyro-18 hierarchical skeleton. 

The GypsyGyro-18 datasheet points out that orientation 

measurements calculated from each IMU have a resolution lower 

than 1º. Some experiments have verified these accuracy values, 

which are sufficient for general industrial manipulation tasks. 

Nevertheless, the accuracy of the global translation measurements 

estimated by the footstep algorithm is not specified. A set of 

experiments have been developed in order to quantify this 

accuracy. These experiments involve comparing the actual 

displacement of a person at different distances (200, 300 and 400 

cm) with the displacement obtained from the MoCap system. Six 

trials have been executed for each distance and their results are 

shown in Table 1: 

Table 1. GypsyGyro-18 translational error statistics (in cm). 

Distance

(cm) 

Minimum 

error 

Maximum 

error 

Mean 

error 

Standard 

Deviation 

200 16.70 66.04 40.10 17.92 

300 15.33 69.54 37.92 20.97 

400 35.43 64.23 51.09 10.67 

 

These errors are very high for industrial purposes. In some cases, 

they represent more than 30% of the actual distance. For this 

reason, an additional localization system (based on UWB 

technology) is needed in order to correct the translational errors of 

the GypsyGyro-18. 

3.2 UWB Localization System 
An Ultra-WideBand (UWB) radio positioning system from 

Ubisense is used to obtain more accurate translation information 

of the human operator. 

The Ubisense system consists of two kinds of hardware devices: 

sensors and tags (Figure 3). Four sensors are situated at fixes 

positions on the localization area. Tags are small devices, of 

similar size to a credit card, which are carried by the users. A tag 

sends UWB pulses to the sensors, which use a combination of 

TDOA (Time-Difference of Arrival) and AOA (Angle of Arrival) 

PA-10 

Ubisense 

Tag 

GypsyGyro 

suit 



techniques to estimate the global position (3D coordinates) of the 

user carrying the tag. 

Sensors are connected to an Ethernet switch and send the location 

information to a controller PC which can access to this data 

through a software library. Slave sensors are also connected to a 

master sensor for synchronization in the TDOA algorithm. 

 

Figure 3. Ubisense architecture. 

UWB is an appropriate technology for human positioning because 

of the following advantages: 

- Immunity to multipath fading: UWB signals are much less 

susceptible to this effect than conventional RF (Radio-Frequency) 

technologies because UWB receivers are able to differentiate the 

original pulses from the reflected/refracted ones owning to their 

small time duration. 

- Immunity to RF interferences: UWB signals have low power 

values which allow them to coexist with other RF signals despite 

their large bandwidth. Thereby, UWB systems have higher 

accuracy (15-30cm) than other RF technologies (1-3m). 

- Reduced infrastructure: The number of sensors to be installed 

in the workplace is small. Other technologies (e.g. ultrasound) 

require denser sensor installations. 

- No line-of-sight restrictions: In optical localization systems, 

there shouldn’t be any obstacle (occlusion) between the emitter 

and the receiver. UWB technology doesn’t have this limitation. 

4. FUSION OF POSITION MEASURES 

4.1 Algorithm Motivation 
The first strategy for correcting the translational errors of the 

GypsyGyro-18 would be to substitute its location data with the 

coordinates returned by the Ubisense system. However, this 

strategy is not suitable because the Ubisense has small data 

frequency (5-9fps) which will cause extremely high latencies for 

industrial environments. In addition, the Ubisense software 

applies a filter to the data which reduces the number of 

measurements, involving a variable data frequency. On the other 

hand, the GypsyGyro-18 supplies constant data rates (30-120fps), 

but with accumulated errors in global translational measurements. 

For these reasons, the best solution is to combine the global 

translational measurements from both systems. This fusion will 

correct the defects of one system with the advantages of the other 

system: The GypsyGyro-18 will supply a high data frequency 

while the Ubisense will correct the accumulated errors with its 

location measurements. The GypsyGyro-18 rotational 

measurements for each joint (obtained from IMUs) will remain 

unchanged because they are accurate relative rotation 

transformations in the skeleton (Figure 2). 

4.2 Coordinate Transformation 
The first step to combine the global position measurements of 

both tracking systems is to represent them in the same coordinate 

system (Figure 4). The Ubisense frame U is a fixed coordinate 

system in the workplace while the GypsyGyro-18 frame G is 

determined every time the system is initialized. The Ubisense 

frame is selected as the reference frame and thus all 

measurements will be completely located in the environment. 

 

Figure 4. Ubisense and GypsyGyro-18 coordinate frames. 

As shown in Figure 4, between the GypsyGyro-18 frame and the 

Ubisense frame there is only a translation and a rotation about the 

Z axis by α . Therefore, the following equation will be used to 

transform a point p  from the GypsyGyro coordinate system Gp  

to the Ubisense coordinate system U
p : 

 ( ) ( ), , ,U U G U U U U G

G G G Gx y z α= ⋅ = ⋅ ⋅p T p Trans Rot z p  (1) 

Expanding the previous expression, the following equation will be 

obtained: 
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The angle α  will be a known constant parameter (angle between 

the north direction and the Y axis of the Ubisense system). The 

only unknown variables of the transformation matrix U

GT  are the 

three coordinates of the translation vector from the Ubisense 

frame to the GypsyGyro frame. They can be calculated from 

equation 1 by substituting two corresponding measurements: 

 ( ) ( )cos sinU U G G

Gx x x yα α= − +  (3) 

 ( ) ( )sin cosU U G G

Gy y x yα α= − −  (4) 

 U U G

Gz z z= −  (5) 

After obtaining the transformation matrix U

GT , all the 

translational measurements from the GypsyGyro-18 (3D position 

of the hips node) will be transformed from the GypsyGyro-18 

frame to the Ubisense frame by equation 1. 



4.3 Kalman Filter Fusion Algorithm 
Global translational measurements from both trackers are 

combined by a fusion algorithm based on a standard Kalman filter 

(Figure 5). First of all, the transformation matrix U

GT  will be 

initialized with equations 3-5 and the first two measurements. 

Thereby, the following measurements form the GypsyGyro-18 

will be transformed to the Ubisense coordinate system with 

equation 1. 
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Figure 5. Fusion algorithm diagram. 

 

After representing all measurements in the same coordinate 

system, a Kalman filter will be applied to them. The Kalman filter 

is a recursive stochastic technique which estimates the state 
n∈ℜx of a dynamic system from a set of incomplete and noisy 

measurements [12]. The dynamic system is modeled by the 

following state-transition equation at time k (state model): 

 
1 1 1k k k k− − −= + +x Ax Bu w  (6) 

In equation 6, A is a n n×  state-transition matrix, B is a n p×  

matrix, u is a 1p ×  vector with system inputs and w is a 1n ×  

process noise vector (zero mean multivariate normal distribution 

with covariance matrix 
kQ ).  

In the current work, the state vector x  is composed by the 

coordinates ( ), ,x y z=p  of the global position of the user in the 

environment. A  is a 3x3 identity matrix in order to incorporate 

directly the GypsyGyro-18 measurements and B  is a null matrix 

because there are no control inputs. The process noise covariance 

matrix Q  is a diagonal matrix because state vector variables are 

not correlated. The diagonal terms of this matrix correspond to the 

mean error of the GypsyGyro-18 measurements.  

Sensor measurements m∈ℜz at time k  are modeled in a KF by 

the following equation (measurement model): 

 k k k= +z Hx v  (7) 

In equation 7, H is a m n×  observation matrix which represents 

how the state of the system is registered by sensors and v is a 

1m ×  measurement noise vector (zero mean multivariate normal 

distribution with covariance matrix kR ). In this paper, H  is a 

3x3 identity matrix and R is a diagonal matrix whose diagonal 

terms correspond to the mean error of the Ubisense 

measurements. 

The Kalman filter algorithm is composed of two steps: prediction 

step and correction step. The prediction step obtains a-priori 

estimate ˆ
k

−p  (equation 8) of the global position of the user and a 

priori estimate of the error covariance matrix k

−P  (equation 9) by 

incorporating position measurements kp  from the GypsyGyro-18: 

 1
ˆ

k k k

−

−= +p Ap Bu  (8) 

 1

T

k k

−

−= +P AP A Q  (9) 

On the other hand, the correction step uses Ubisense 

measurements kz  in order to eliminate error accumulation in 

previous a-priori estimates and thus compute an improved a-

posteriori estimate of the global position ˆ
kp  (equation 11) and the 

error covariance kP  (equation 12): 

 ( )
1

T T

k k k

−
− −= +K P H HP H R  (10) 

 ( )ˆ ˆ ˆ
k k k k k

− −= + −p p K z Hp  (11) 

 ( )k k k

−= −P I K H P  (12) 

Finally, the transformation matrix U

GT  is re-calculated with the 

position estimate ˆ
kp . Thereby, the prediction step will be 

executed with the GypsyGyro-18 rate and the correction step will 

be executed with the Ubisense rate.  

Although the Ubisense system usually returns accurate positions, 

some measurements from the Ubisense system have big errors and 

shouldn’t be incorporated to the Kalman filter. These outliers are 

eliminated by a filter which verifies that the distance between the 

current position and the previous one does not involve an 

excessive velocity for a person walking. 

5. EXPERIMENTAL RESULTS 
A set of experiments has been performed to verify the developed 

fusion algorithm. A human operator wearing the GypsyGyro-18 

suit and an Ubisense tag has walked along a preestablished linear 

path in the industrial workplace described in section 3. The 

measurements from both trackers are registered by a Visual C++ 

program which is running in the controller PC where the 

GypsyGyro-18 and Ubisense software libraries (DLLs) are 

installed. All these data are combined by the Kalman filter fusion 

algorithm which has been implemented in Matlab in order to 

obtain graphical representation of the resulting measurements. 

Figure 6 shows the global translational measurements returned by 

the GypsyGyro-18 and the Ubisense systems in a linear path in the 



XY plane. They are represented in the Ubisense coordinate 

system. It is also represented the predefined linear path that the 

human operator has followed. The trajectory obtained from the 

GypsyGyro-18 presents an error of 0.56m with regard to the 

preestablished path. This error is produced by the GypsyGyro-18 

footstep extrapolation algorithm because it sometimes estimates 

wrongly when the feet come into contact with the floor. This 

translational error justifies the need of the UWB system. 

However, the frequency of measurements from the Ubisense 

system (6Hz) is highly lower than the GypsyGyro-18 data rate 

(30Hz), as it is shown in Figure 6. Because of this fact, the fusion 

of both systems is used in order to combine their complementary 

features. 
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Figure 6. Comparison between the planned path and 

measurements from the GypsyGyro and the Ubisense systems. 

 

Figure 7 shows the trajectory estimated by the Kalman filter 

fusion algorithm implemented in this paper. The GypsyGyro-18 

global translational error has been reduced to 0.14m and the 

resulting data rate is equal to the GypsyGyro-18 frequency 

(30Hz). 
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Figure 7. XY trajectory from the fusion algorithm. 

 

Figure 8 represents the position estimates of the fusion algorithm 

that are obtained during the prediction step and the ones that are 

obtained during the correction step of the developed Kalman 

filter. GypsyGyro-18 measurements are used in the prediction step 

in order to fill in the gaps between Ubisense measurements and 

thus obtain a more detailed trajectory. Ubisense measurements are 

used in the correction step in order to improve the accuracy of the 

global translation measurements from the GypsyGyro-18. 

The current experiment has been performed several times and the 

obtained results have been very similar to the ones described 

above. 
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Figure 8. Prediction and correction estimates from the KF. 

 

An additional experiment has been developed in order to verify 

the integration between the global translation data from the fusion 

algorithm and the limbs orientation measurements from the 

MoCap system. It is an interaction task between the PA-10 

manipulator and a human operator who is wearing the 

GypsyGyro-18 suit and an Ubisense tag. The operator picks up an 

object which is out of the robot’s workplace and gives it to the 

manipulator (Figure 9). Limbs orientations from the GypsyGyro-

18 and global displacement in the environment are shown over a 

skeleton in a 3D rendering software (Figure 9). The obtained 

animation shows that limbs movements are very accurate and the 

global localization of the human operator is appropriate. 

6. CONCLUSIONS 
In this paper, a hybrid tracking system for localizing precisely a 

human operator in a robotic workplace is developed. It consists of 

two components: an inertial motion capture system (GypsyGyro-

18) and an UWB localization system (Ubisense). The MoCap 

system is able to register the movements of the operator’s limbs 

with high precision. Nevertheless, the global position of the 

operator in the environment is not determined with sufficient 

accuracy. Thereby, an UWB localization system is used in order 

to obtain precise position measurements. A fusion algorithm 

based on a Kalman filter has been implemented in order to 

combine global position measurements of both systems. This 

fusion algorithm joins the advantages of the MoCap system (high 

data rate and accurate rotational data of each limb) and the UWB 

system (accurate global position estimation). 

0.56 



   

   

   

Figure 9. Frame sequence of a human-robot interaction task where a human operator gives an object to the robot. 

 

The main advantage of this hybrid tracking system over previous 

systems (see section 2.2) is the combination of the global position 

of the operator in the environment with the precise location of all 

his limbs. Thereby, the operator is completely localized in the 

workplace. The precision of the system guarantees the security of 

the operator and allows the development of intelligent interactive 

tasks with robots. 

In future work, more complex interaction tasks which take into 

account spatial relationships between the robot and the skeleton of 

the operator will be developed. 
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