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Hybrid Training Method for MLP: Optimization of
Architecture and Training

Cleber Zanchettin, Teresa B. Ludermir, and Leandro Maciel Almeida

Abstract—The performance of an artificial neural network
(ANN) depends upon the selection of proper connection weights,
network architecture, and cost function during network training.
This paper presents a hybrid approach (GaTSa) to optimize the
performance of the ANN in terms of architecture and weights.
GaTSa is an extension of a previous method (TSa) proposed by the
authors. GaTSa is based on the integration of the heuristic simu-
lated annealing (SA), tabu search (TS), genetic algorithms (GA),
and backpropagation, whereas TSa does not use GA. The main
advantages of GaTSa are the following: a constructive process to
add new nodes in the architecture based on GA, the ability to
escape from local minima with uphill moves (SA feature), and
faster convergence by the evaluation of a set of solutions (TS
feature). The performance of GaTSa is investigated through an
empirical evaluation of 11 public-domain data sets using different
cost functions in the simultaneous optimization of the multilayer
perceptron ANN architecture and weights. Experiments demon-
strated that GaTSa can also be used for relevant feature selection.
GaTSa presented statistically relevant results in comparison with
other global and local optimization techniques.

Index Terms—Genetic algorithms (GAs), multilayer perceptron
(MLP), optimization, simulating annealing, tabu search (TS).

I. INTRODUCTION

O PTIMIZATION is the process of finding the best solution

for a problem from a group of possible solutions. An

optimization problem has an objective function and a group

of restrictions, both related to the decision variables. Genetic

algorithms (GA) [14], simulated annealing (SA) [18], and tabu

search (TS) [13] are iterative algorithms used to solve different

combinatory optimization problems.

These three algorithms are the most popular from a class of

optimization algorithms known as general iterative algorithms.

All three optimization heuristics have similarities [29]: 1) they

are approximation (heuristic) algorithms, i.e., they do not assure

the finding of an optimal solution; 2) they are blind in that they

do not know when they have reached an optimal solution, and

therefore, they must be told when to stop; 3) they have a “hill

climbing” property, i.e., they occasionally accept uphill (bad)

moves; 4) they are general, i.e., they can easily be engineered

to implement any combinatorial optimization problem; and
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5) under certain conditions, they asymptotically converge to an

optimal solution.

A manual selection of the artificial neural network (ANN)

parameters involves difficulties such as the following: the ex-

ponential number of parameters that need to be adjusted, the

need for a priori knowledge on the problem domain and ANN

functioning in order to define these parameters, and the require-

ment of an expert when such knowledge is lacking. In most

cases, the choice of parameters is performed manually through

the trial and error method, which is tedious, less productive, and

error prone. Furthermore, when the complexity of the problem

domain increases and when optimized networks are desired,

manual searching becomes quite difficult and unmanageable.

This paper presents a hybrid method based on global and

local optimization techniques (GaTSa), which automatically

optimizes the ANN architecture and performance. This method

is based on the integration of SA, TS, GA, and backpropagation

(BP). In this paper, the performance of GaTSa is investigated in

the simultaneous optimization of multilayer perceptron (MLP)

architecture and weights.

GaTSa presents some interesting characteristics: 1) search

optimized for generating new solutions; 2) pruning to eliminate

connections and to optimize network size; and 3) a constructive

approach for finding the best network architecture. With the

help of experiments, we investigate different cost functions for

searching the best ANN architecture in ANN optimization. The

experiments demonstrate that GaTSa can also be used for a

relevant feature subset selection. During network architecture

optimization, the network input processing units may be elim-

inated in accordance with the GaTSa performance. Thus, an

exclusion of the irrelevant network inputs is obtained in the

ANN optimization process.

This paper makes the following major contributions: 1) the

extension of TSa [21] into GaTSa; 2) the empirical evaluation

of GaTSa on 11 public-domain data sets and five cost functions;

3) the possibility of using GaTSa to feature selection; and

4) the use of the factorial experimental design to estimate the

configuration parameters of GaTSa.

II. RELATED WORK

A number of approaches in the literature have used the

integration of TS, SA, and GA for specific applications. This

section describes only those works that are more or less similar

to our work. An integration of the three heuristics was initially

proposed by Fox [11]. Tsai et al. [34] used a hybrid algorithm

to feedforward the ANN architecture and parameter design.

Palmes et al. [25] used a mutation-based algorithm to train

1083-4419/$26.00 © 2011 IEEE
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TABLE I
COMPARISON BETWEEN THE INVESTIGATED ALGORITHMS

MLP. Gepperth and Roth [12] used an evolutionary multiobjec-

tive process to optimize the feedforward architectures. Works

using SA and TS for ANN optimization are scarce. The recog-

nition of signal responses using SA and BP was implemented

for the training of an MLP with a fixed architecture containing

two hidden layers [26].

The SA method was successfully used in some global op-

timization problems, as can be seen in Corana et al. [7] and

Sexton et al. [31]. In Stepniewski and Keane [32], SA and

GA were used to optimize the architectures of MLP. Similar

experiments were performed by Sexton et al. [31]. Sexton et al.

[30] repeated the same experiments applying the TS algorithm.

Metin et al. [24] used SA to optimize the ANN architec-

tures applied to expert diagnosis systems. In Hamm [15], SA

was used to optimize the ANN weights. Mart and El-Fallahi

[23] presented a new proposal based on TS for MLP weight

optimization.

The integration of TS, SA, and BP (TSa) was proposed by the

authors in [21] for MLP architecture and weight optimization.

The method combines accepting the new solution scheme of

SA with the multiple search of TS. In this approach, a set

of new solutions with a fixed size (the maximum network

architecture needs to be defined) is generated in each iteration,

and the best one (i.e., the one with the lowest cost) is selected

according to the cost function, as performed by TS. In the

present study, some experiments compare the performance of

TSa with GaTSa.

Table I provides a comparison among GaTSa and three

other approaches with their differences and similarities. In

all approaches, SA, TS, and GA are typically used to adjust

the weights between processing units in fixed architectures.

GaTSa performs the simultaneous optimization of the MLP

architecture and weights, using a constructive way to find the

best network architecture and pruning to eliminate connections

and to optimize the network size.

III. FEATURE SELECTION METHODS

Feature selection is based on the reaction of the cross-

validation data set classification error due to the removal of fea-

tures (inputs). Feature selection with ANN can be thought of as

a special case of architecture pruning, where the input features,

rather than the hidden neurons or weights, are pruned [28].

In the literature, feature selection methods are categorized

as wrapper, embedded, and filter methods [4]. In the wrapper

method, subsets are evaluated and partitioned based on the

Fig. 1. Forward, backward, and random search strategies.

output of the base classifiers before making the final decision.

In the filter method, subsets are partitioned prior to training.

This method is less expensive, and the selection of architecture

and base classifiers does not have to be made in advance. The

embedded method is a native part of the classifier itself and

is implemented by the learning-method evaluation criteria for

selecting the most relevant attributes.

We use the classical feature selection methods, namely, hill-

climbing [35], random bit climber [8], best-first [1], beam

search [1], and Las Vegas [20], in a wrapper way to evaluate

the performance of GaTSa in optimal feature subset selection.

These methods were chosen because they are simple and similar

to GaTSa.

The input selection process is based on some saliency mea-

sure aiming to remove less relevant inputs. Fig. 1 explains the

three search strategies. For GaTSa, the input connections with

minor statistical relevance will be the first to be removed. If

GaTSa eliminates all input connections of one input processing

node, this input is eliminated from the network architecture.

IV. INTEGRATION OF SA, TS, AND GA

IN A CONSTRUCTIVE WAY

The SA method has the ability to escape from local minima
through the choice between accepting or discarding a new
solution that increases cost (uphill moves). The TS method, in
contrast, evaluates a group of new solutions at each iteration
(instead of only one solution as in SA). This makes TS faster as
it generally needs less iterations to converge. The GA evolution,
in turn, involves a sequence of iterations, where a group of
solutions evolves through selection processes and reproduction.
These observations motivated the proposal of an optimization
method (GaTSa) that combined the main advantages of GA,
SA, and TS in order to avoid their limitations.

Fig. 2 shows a summary of the major features borrowed (be-
tween parentheses) from different heuristics. GaTSa works in
the following manner: the initial solution has a minimum valid
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Fig. 2. GaTSa composition.

architecture size. A group of new solutions is generated at each
iteration, starting from the microevolution of the current popu-
lation, as in GA. The cost of each solution is evaluated, and the
best solution is chosen, as in TS. However, unlike TS, this solu-
tion is not always accepted. The acceptance criterion is the same
as that used in the SA algorithm—if the chosen solution has a
smaller cost than the current solution, it is accepted; otherwise,
it can either be accepted or rejected depending on a probability
calculation. This probability is given by the same expression
as that used in the SA method. Previously visited solutions are
marked as tabu, as in TS. During the search, the chromosome
size is increased in a constructive manner in order to find the
best solutions according to the acceptance criterion. By the end
of the optimization process, only the best solution is returned.

The proposed technique has two well-defined stages: a global

search phase, where it makes use of the capacity for generating

new solutions from the GA, cooling process, and cost function

of the SA as well as the memory characteristics of the TS tech-

nique, and a local search phase, where it makes use of charac-

teristics such as gradient for a more precise solution adjustment.
During the global search stage, the proposed algorithm can

also optimize the number of hidden processing units in the hid-
den layer. Most optimization methods based on pruning require
the designer to set up the ANN maximum architecture. Hence,
the algorithm can eliminate connections from this structure
to find a network architecture with an acceptable result. The
GaTSa algorithm is based on a constructive methodology. Thus,
the initial solution represents the minimum valid architecture—
the number of nodes in the input layer gives the number of
problem attributes, the hidden layer has only one node, and the
output layer has nodes corresponding to the number of classes
in the problem. For the optimization process, new nodes are
added as and when required. New nodes are created with all
connections between adjacent layers and are eventually elimi-
nated according to their influence on the MLP performance.

The pseudocode of GaTSa is presented in Algorithm 1. Let

S be a group of solutions and f be a real cost function. The

proposed algorithm searches the global minimum s, such that

f(s) ≤ f(s′),∀ s′ ∈ S. The process finishes after Imax itera-

tions or if the stop criterion based on the validation error is satis-

fied. The best found solution SBSF (best so far) is returned. The

cooling process updates temperature Ti of iteration i to each IT

algorithm iteration. At each iteration, a new population with k
solutions of size z is generated. A genetic microevolution of gn

generations is used to generate this population from the current

population. The microevolution combines the best population

solutions and, in the process, creates and eliminates network

connections, like a pruning process. The initial solution is coded

with the minimum valid network architecture, and new hidden

nodes are added following the constructive process.

Algorithm 1—Pseudocode of the proposed algorithm

1. P0 ← initial population with K solutions sk

2. and size sz

3. List ← ∅ (tabu list)
4. T0 ← initial temperature

5. Update SBSF with sk of the P0 (best solution
6. found so far)
7. Update List ← SBSF

8. For i = 0 to Imax − 1
9. If i + 1 is not a multiple of IT

10. Ti+1 ← Ti

11. End− If

12. Else

13. Ti+1 ← new temperature

14. If validation based stopping criteria

15. are not satisfied

16. Stop global search execution

17. End− If

18. Increase the size of the population Pi

19. Pi ← Pz

20. End− Else

21. For j = 0 to gn

22. Generate a new population P ′ from Pi

23. Pi ← P ′

24. End− For

25. Choose the best solution sk from Pi

26. and is not in tabu list

27. If f(s′) < f(sk)
28. sk+1 ← s′

29. List ← List − (oldest solution) + sk

30. End− If

31. Else

32. sk+1 ← s′with probability e(f(s′)−f(sk)/Ti+1)

33. List ← List − (oldest solution) + sk

34. If f(sk+1) < f(SBSF)
35. Update SBSF

36. End− If

37. End− Else

38. End− For

39. Keep the architecture contained in SBSF

. constant and use the weights as initial ones

. for training with the BP algorithm
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Fig. 3. MLP codification sample.

A. Representation of Solutions

The MLP architecture definition depends on the choice of

the number of layers and the number of hidden nodes in each of

these layers. All MLP architectures have a single hidden layer

network, containing connections only between adjacent layers.

The network architecture contains N1 input nodes, N2 hidden

nodes, N3 output nodes, and BN2 and BN3 as the bias for the

hidden and output layers, respectively.

Normally, parameters N1 and N3 are problem dependent

according to the data preprocessing and the number of input

and outputs features, but N2, BN2, and BN3 must be defined

in the ANN implementation. Thus, the maximum number of

connections is given by

Nmax ≡ (N1 × N2 + BN2) + (N2 × N3 + BN3). (1)

Each solution s is coded in a vector that represents the C
connections and the W weights among the ANN nodes. C
means the connectivity, containing a set of bits that represent

the network architecture, and W contains real numbers that

represent the network weights

s≡ (C,W ) (2)

C≡ (c1, c2, . . . , cNmax
) ci∈{0, 1}, i=1, 2, . . . , Nmax (3)

W ≡ (w1, w2, . . . , wNmax
) wi∈), i=1, 2, . . . , Nmax (4)

where ) is the set of real numbers.

Fig. 3 shows a sample of the vector that represents the MLP

architecture. Thus, connection i is specified by two parameters:

1) a connectivity bit (ci), which is equal to one if the connection

exists and zero otherwise, and 2) the connection weight (wi),
which is a real number. If the connectivity bit is equal to zero, its

associated weight is not considered since the connection does

not exist in the network.

The initial solution s0 is an MLP network with the mini-

mum architecture (N1 and N3 are problem dependent) fully

connected (i.e., ci = 1, i = 1, 2, . . . , Nmax), and the initial

weights are randomly generated from a uniform distribution in

the interval [−1.0,+1.0].

B. Cost Function

Unlike the constructive algorithms that generate a solution

only at the end of the process, the iterative algorithms derive

possible solutions for each iteration. The cost function is used to

evaluate the performance of successive iterations and to select

a solution that minimizes an objective function.

Different cost functions can be used to evaluate the quality

of a solution. Other authors had investigated the hole of the

cost functions [17]. In this paper, five ways of performing cost

evaluation were investigated.

1) Average Method: The cost f(s) of solution s is given

by the mean of the classification error for the training set and

the percentage of the connections used by the network. For

classification problems, the cost f(s) of solution s is

f(s) =
1

2
(E(Pt) + ψ(C)) (5)

ψ(C) =
100

Nmax

Nmax∑

i=1

ci. (6)

Considering NC classes in the data set, the true class of

pattern x from the training set Pt is defined as

γ(x) ∈ {1, 2, . . . , NC} ∀x ∈ Pt. (7)

For prediction problems, the cost f(s) of solution s is given by

the mean of the squared error percentage (SEP) for the training

set and the percentage of the connections used by the network:

f(s) =
1

2
(SEP (Pt) + ψ(C)) (8)

SEP = 100
omax − omin

Nc#Pt

#Pt∑

p=1

Nc∑

i=1

(φ(x)pi − γ(x)pi)
2

(9)

where φ(x)pi is the predicted class of pattern x and omin and

omax are the minimum and maximum values of the output

coefficients in the problem representation (assuming that these

are the same for all output nodes).

2) Weighted Average Method: In the experiments, the net-

work parameters, network performance, network connection

percentage, and percentage of the hidden nodes are weighted

by the parameters α, β, and κ, respectively.

For the classification problems

f(s) =
(E(Pt) ∗ α) + (ψ(C) ∗ β) + (pN ∗ κ)

(α + β + κ)
. (10)

For the prediction problems

f(s) =
(SEP (Pt) ∗ α) + (ψ(C) ∗ β) + (pN ∗ κ)

(α + β + κ)
(11)

where pN is the percentage of the used hidden node con-

nections, α = 1, β = 0.5, and κ = 0.25. These values were

determined empirically by previous experiments.

3) Weight Decay: The method was initially proposed as an

implementation to improve the BP algorithm for the preference

bias of a robust ANN that is insensitive to noise [16], [36]. In

a network architecture, the weight decay mechanism performs

differentially toward zeroes by reinforcing large weight con-

nections and weakening small weight connections. As small

weights can be used by the network to code noise patterns, this

weight decay mechanism is considered especially important in

noisy data.

The weight decay mechanism is used in the GaTSa cost

function to eliminate solutions with small weights that can
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be used by the ANN to code noise patterns. The GaTSa cost

function is presented in the following:

f(s)=
1

2

∑

i

E(Pt)+
1

2
ψ(C)+

1

2
µ

∑

ij

W 2
ij/

(
1+W 2

ij

)
(12)

where Wij is the weight connection from node j to node i.
4) Multiobjective Optimization: This is the search for si-

multaneously minimizing the u components fk, k = 1, . . . , u,

of a vector function f of a variable s in a universe u, where

f(s) = (f1(s), . . . , fn(s)) . (13)

Most problems usually have no unique global solutions, but

they have a set of equally efficient or noninferior alternative

solutions, known as the Pareto-optimal set [10]. The Pareto-

optimal solutions consist of all solutions for which the corre-

sponding objective cannot be improved in any one dimension

without degradation in another.

In the present work, the multiobjective strategy is used in

genetic operators to evolve the population, considering two

goals to be minimized—the MLP size and its generalization. In

contrast to the objective problem, the ranking of a population in

the multiobjective case is not unique.

5) Multiobjective Optimization and Weight Decay: The fifth

cost function investigated comprises a combination of multiob-

jective optimization and weight decay strategies.

C. Insertion of New Hidden Nodes

The constructive process is used to add new hidden nodes in

the network architecture. The search process starts with a high

probability of adding new nodes in the network architecture,

but in order to perform a better error surface exploration, the

addition of new nodes is controlled by a probability. This

probability decreases over time by the multiplication of the

actual probability by a factor (ε), which is smaller than but

close to one. The initial probability λε and the factor ε must be

defined in the implementation as well as in Iλ (the number of

iterations between two consecutive probability variations) and

Imax (the maximum number of iterations). Thus, the probability

of the insertion of new hidden nodes λi at iteration i is given by

λi ≡

{

ελi−1, if i = kIλ, k = 1, 2, . . . , Imax

Iλ

λi−1, otherwise.
(14)

D. New Solution Generation Mechanism

The initial solution is randomly generated, with N1 and N3
being problem-dependent values and N2 ∈ 1, 2, . . . , N3. The

initial population is defined with a size of ten chromosomes.

From the current solution s = (C,W ), the new solution s′ =
(C ′,W ′) is generated by the genetic microevolution of gn

generations. The chromosomes are classified by rank-based

fitness scaling [2]. Parent selection for the next generation is

accomplished in a probabilistic manner using universal stochas-

tic sampling [2]. Elitism was not used, and the crossover oper-

ator uniform crossover [33] was used for the combination of

parent chromosomes, with a probability of 80%. The crossover

operation was performed by combining the parts of the parent

chromosomes that have the same length as in the succeeding

sample. The mutation operator used was the Gaussian mutation

[31], with a probability of 10%.

Uniform Crossover

Parent A
︷ ︸︸ ︷

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Parent B 0 0 0 0 0 0 0 0 0 0 0
Mask 0 1 0 1 1 1 0 0 1 1 0
Child A 1 1 1 0 0 1 0 0 1 0 0 1 1 1 1
Child B 0 1 0 1 1 1 0 0 1 1 0.

E. Stop Criteria

The optimization process stops for the following reasons:

1) the GL5 criterion defined in Proben1 [27] is met (based on

the classification error or SEP of the validation set), or 2) the

maximum number of iterations is reached. For the implementa-

tion of the GL5 criterion, the classification error or SEP for the

validation set is evaluated at each IT iteration.

The GL5 criterion is a good approach for avoiding overfitting

to the training set. The classification error for the validation set

Pv is given by E(Pv). Thus, if V (k) denotes the classification

error E(Pv) at iteration i = kIT , k = 1, 2, . . . , Imax/IT , the

generalization loss parameter (GL) is defined as the relative

increase in the validation error over the minimum-so-far. The

GL5 criterion stops the execution when the parameter GL
becomes higher than 10%

GL(k) ≡

(
V (k)

minj≤k V (j)
− 1

)

. (15)

F. Feature Subset Selection

In training and improving the network weights and con-

nections, the GaTSa method is able to eliminate the input

connections of the ANN architecture. The input processing

node represents a feature of the data set. The input connections

with the highest usage frequency have the highest importance in

the classification and prediction tasks, and the inputs with minor

statistical relevance will possibly be the first to be removed. If

GaTSa eliminates all input connections of one input processing

node, that particular input is eliminated from the network

architecture.

Thus, the proposed method can be used to feature subset

selection, reducing the problem dimensionality and, conse-

quently, the complexity of the generated ANN. The feature

subset selection process performed by GaTSa is a combination

of the wrapper and embedded definitions.

G. Local Search Algorithm

Global optimization techniques are relatively inefficient for

minimum local search. In this case, it is important to improve

the performance of the ANNs training the best architectures

found in the global search phase with a local search method.

This strategy represents the second phase of the proposed opti-

mization method: without changing the architecture generated

by the global search, the final network produced is used as a
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TABLE II
CHARACTERISTICS OF THE USED DATA SETS

starting point in the local search. In this way, the connections

and weights obtained by global optimization are preserved.

The missing connections between nodes have their weights

initialized to zero. This architecture is used as the start search

point for local optimization. This combination of global and

local optimization techniques is often referred to as hybrid

training. In this paper, the BP algorithm using the sum squared

error (SSE) was chosen for local search optimization.

V. EXPERIMENT METHODOLOGY

Ten classification (1–10) and one prediction (11) data sets

were used in the experiments: 1) the odor recognition problem;

2) diabetes diagnoses; 3) fisher’s iris; 4) thyroid dysfunction;

5) credit screening data set; 6) breast cancer; 7) glass iden-

tification; 8) heart disease; 9) horse colic; 10) soybean; and

11) Mackey–Glass time series [22]. The classification data sets

were obtained from the UCI repository [3] and Mackey–Glass

time series data set from [22].

In Table II, a summary of the used databases along with the

number of examples is presented. It includes the number of

binary (b), continuous (c), and total (t) features and the number

of binary (b) classes. In the selection of data sets to be used, we

seek databases with different characteristics, mixing problems

of classification and prediction. We are mainly concerned with

diversity in the experiments in order to support the obtained

results.

A. Training Methodology

The local training algorithm employed is the BP method

using SSE. The configuration parameters of all methods are

summarized in Table III. Training stops for the following

reasons: 1) the GL5 criterion [27] is satisfied twice (to avoid

initial oscillations in validation errors); 2) the training progress

criterion is met, with P5(t) < 0.1 [27]; and 3) the maximum

number of iterations is reached.

We used 30 twofold iterations [5]. At each iteration, data

were randomly divided into halves. One half was the input for

the algorithm (65% for training and 35% for the validation

set), and the other half was used to test the final solution

(test set). All network units implemented the hyperbolic tan-

gent activation function. The patterns were normalized to the

range [−1, +1].
In the experiments, each solution represents an ANN ar-

chitecture. For the GA and GaTSa experiments, the chromo-

TABLE III
METHOD CONFIGURATION PARAMETERS

somes (solution) are classified by rank-based fitness scaling

[2]. Parent selection for the next generation is accomplished

in a probabilistic manner using universal stochastic sampling

[2]. Elitism—the best chromosomes are preserved for the next

generation—was used in GA. For the combination of parent

chromosomes, the crossover operator uniform crossover [33]

was used. The mutation operator was Gaussian mutation [31].

For the TS, TSa, and GaTSa experiments, the proximity cri-

terion [29] was used to compare two solutions. A new solution

is considered identical to the tabu solution for the following

reasons: 1) each connectivity bit in the new solution is identical

to the corresponding connectivity bit in the tabu solution, and

2) each connection weight in the new solution is within ±a of

the corresponding connection weight in the tabu solution. The

parameter a is a real number with a value of 0.001.

B. Subset Selection

1) Representation of Solutions:

a) Classical methods: In classical feature selection meth-

ods, each subset is represented by a vector that defines the

selected and nonselected attributes. In the experiments, we have

used different search strategies considering the characteristics

of the investigated search technique. With the hill-climbing,

best-first, and beam search, we use the forward, backward,

and random search strategies. The three search strategies are

shown in Fig. 1, where the white circles represent the not

selected features and the shaded circles represent the selected

features. The proposed GaTSa method implements its own

representation topology.

The forward strategy starts with the empty set and gradually

adds the features. The backward strategy starts with the full set

and deletes the features. The random approach starts from a

random set and randomly performs the addition and removal of

features. Unlike other strategies, the random bit climber method

has removed and added the attributes during the search process.

Thus, in order to carry out the search in different directions,

we use different initial states—initial solution without features,

with all features, and randomly selected features. The Las Vegas

and proposed GaTSa methods implement their own search

strategies.

2) Performance Classification:

a) Classical methods: To determine the classification ac-

curacy for the classical methods (hill-climbing, best-first, beam
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TABLE IV
RESULTS FOR THE MLP NEURAL NETWORKS

search, random bit climber, and Las Vegas), a KNearest neigh-

bor (k-NN) classification algorithm was used [9]. This strategy

was used to reduce the experiment time. The similarity function

used is straightforward, and it relies on equally weighted fea-

tures. To compute the similarity distance between two scaled in-

stances, we use the Euclidian distance. In the k-NN algorithm,

the value of k is seven, defined in an empirical way.

In the experiments for feature selection, the database was

divided into two groups—50% of the patterns was used in

the feature selection process, and the remainder was used for

testing the obtained subsets. The quality of each subset was

given by the performance of the classifier. The cross-validation

process was used to obtain the classifier performance.

The fivefold cross-validation in subset search and the tenfold

cross-validation in subset evaluation were used. This difference

in performance assessment was necessary in order to reduce the

computational cost of the search process for the optimal subset

of features.

b) GaTSa: Table VI presents the maximal topology of

the experiments. In all ANN architectures, the N1 and N3
values are problem dependent, and N2 was obtained from the

experiments in Section VI-A (for a fair comparison, a fixed

GaTSa architecture is used).

VI. RESULTS AND DISCUSSION

A. MLP Experiments

Apart from the GaTSa method, the other investigated opti-

mization techniques require a good initial network architecture

(maximum architecture) for a successful ANN architecture

optimization. To define this architecture, experiments were

performed with random architecture sizes on each one of the

data sets. For all data set experiments in each architecture,

we used 30 twofold iterations. Table IV presents the SEP and

the classification error of the test set obtained in the training

of a fully connected MLP by using a gradient descent with

momentum BP.

B. Optimization Methodology Experiments

1) GaTSa—Fixed Architecture Experiments: Table V pre-

sents the average performance of each investigated optimization

technique, starting the search with the same network architec-

ture as in the artificial nose data set. These results were obtained

for each technique as the optimization of the number of connec-

tions and weight connection values of an MLP. The parameters

TABLE V
GaTSa FIXED ARCHITECTURE OPTIMIZATION IN ARTIFICIAL NOSE

Fig. 4. GaTSa performance optimization in artificial nose.

TABLE VI
MAXIMUM MLP ARCHITECTURE USED IN THE EXPERIMENTS

evaluated were the following: 1) the SEP and classification error

(class) of the training, validation, and test sets; 2) the algorithm

iteration number; 3) the ANN connection number; and 4) the

temperature value.

The technique that combined the heuristics of TS, SA, and

GA obtained the best performance. This technique worked

better without using the local search heuristic (GaTSa without

BP, performing only the global search phase) to optimize the

ANN connection values. Using GaTSa + BP, the average clas-

sification error was 2.86%, with an average of 8.33 connections

from 36 possible connections in a fully connected ANN. Using

a fully connected network, the local optimization technique BP

obtained an average error of 6.30%.

Fig. 4 shows the graphs comparing the performances of the

investigated techniques. The proposed technique obtained the

best results regarding the classification error, the final network

connection number, and the number of iterations needed for

architecture optimization.

2) GaTSa—Variable Architecture Experiments: Table VI

presents the maximal architecture (N1—input units, N2—

hidden units, N3—output units, and Nmax—maximum number

of connections) for SA, TS, GA, and TSa. In all ANN archi-

tectures, the N1 and N3 values are problem dependent, and

N2 was obtained by experiments (Table IV). For GaTSa, the
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TABLE VII
OPTIMIZATION TECHNIQUE PERFORMANCE IN MLP OPTIMIZATION

same values with N1 and N3 are used, but the value of N2 is

optimized together with the network weights and connections

in a constructive manner.

Table VII displays the average performance of each inves-

tigated optimization technique. These results were obtained

for each technique by the optimization of the number of con-

nections and weight connection values of an MLP. The cost

function used was average. The parameters evaluated were the

following: 1) the SEP and classification error (class) of the

test set; 2) the mean number of the input units; 3) the mean

number of the hidden units; and 4) the percentage of network

connections.

For all data sets, the optimized ANN obtains a lower classi-

fication error than those obtained by MLP without architecture

optimization (Table IV), and the mean number of connections is

lower than the maximum number allowed. In most of the simu-

lations, the best performance to optimize the ANN architecture

was obtained by GaTSa.

In the experiments with GaTSa, the average of the number

of connections was computed relative to the maximum network

architecture generated, rather than it being calculated with the

maximum fixed architecture (as in the other models). This

seemed to be the fairest approach. However, it seemed to have

harmed the model because, most of the time, GaTSa gener-

ated an architecture with less connections than the maximum

allowed.

A paired-difference t test with a 95% confidence level was

applied in order to confirm the statistical significance of these

conclusions. In Table VII, statistically significant results are

indicated by asterisk. Statistically, GaTSa achieves better opti-

mization of the architecture input nodes. Despite its finding ar-

chitectures with a smaller number of hidden nodes, all methods

were statistically equivalent regarding the optimization of these

units. This is an indication that the constructive strategy works

in the definition of the number of hidden nodes. The MLP

performance obtained from the optimized ANN was statisti-

cally equivalent for the thyroid, diabetes, cancer, glass, Heart-

Cleveland, horse, and Mackey–Glass data sets. The GaTSa

method obtained better results in the artificial nose, card, and

soybean data set, whereas GA had the best performance in the

iris data set.

3) GaTSa—Cost Function Influence: In the experiments,

the maximal architecture is defined in Table VI. Table VIII

displays the experimental results with different cost functions.

The evaluated cost functions are the following: the average

method (average), weighted average (WA), weight decay (WD),

multiobjective (MO), and combination of multiobjective and

weight decay (MO+WD). The parameters evaluated were the

following: 1) the SEP and classification error (class) of the

test set; 2) the mean number of the input processing units;

3) the mean number of the hidden processing units; and 4) the

percentage of the network connections.

In the artificial nose data set, the best classification results

were obtained by the multiobjective approach, and the best ar-

chitecture optimization was found by the weight decay method.

The combination of weight decay and genetic operators using

multiobjective optimization presented the best performance

in the iris, horse, soybean, Heart-Cleveland, card, and glass

data sets. The weight decay presented the best optimization

performance in the thyroid, diabetes, and Mackey–Glass data

sets. In the cancer data set, the multiobjective cost function

presented the best optimization performance.

The rate of success of using each of the five cost functions

in the optimization techniques was studied. Besides the better

performance of weight decay, the different cost functions pre-

sented unequal behavior in each data set. This behavior can be

explained by the presence of noise in the data sets.

Noisy data sets are complex problems in ANN training. In

some analyses, the artificial nose, diabetes, and thyroid data sets

presented absolute deterministic and absolute random noises.
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TABLE VIII
COST FUNCTION EXPERIMENTAL RESULTS

The sources of absolute deterministic noise are computational

errors and systematic measurement errors. Absolute random

noise is typical in optimization problems such as adaptation,

learning, and pattern recognition. This noise in the data sets

probably influenced the experiments, but the average perfor-

mance of the cost functions was confirmed.

The better performance of weight decay and multiobjective

approaches demonstrates the capacity of this method in restrict-

ing the type of functionality that the network can produce by

favoring networks that produce smoother functions. Smooth

output functions are generally more likely to represent the

underlying functions of the real-world data. Moreover, the use

TABLE IX
FEATURE SELECTION PERFORMANCE

of weight decay can modify the error surface of a given problem

in such a way as to reduce the growth of large update values. In

addition, the parameter µ was empirically determined. A fine

tuning in this parameter may improve the results.

The use of multiobjective optimization in genetic operators

presented interesting results in some data sets but exhibited

a poor performance in most. The main problem with this

approach is the construction of the Pareto ranking. There is no

efficient algorithm for checking nondominance in a set of feasi-

ble solutions. Traditional algorithms have serious performance

degradation as the size of the population and the number of

objectives increase [6]. The multiobjective approach presented

some outlier results in the experiments.

Another possible problem was to choose the best solution

when there were several solutions at the same position in the

Pareto ranking. In such a case, the solution with the lower

classification error was chosen. However, there is no guarantee

that this solution has a small number of connections. Possibly,

the best solution would be to choose the solution with the best

average of classification errors and connection number. These

problems hampered the performance of the combination of

weight decay and multiobjective optimization.

The best problem search space exploration was achieved with

the use of the combination of weight decay and multiobjective

approach. This method generated solutions with low complex-

ity architecture and low number of errors.

4) GaTSa—Feature Subset Selection: Table IX displays the

results of the k-NN classifier (for classical methods) and MLP

(for the GaTSa method) in data sets with all attributes. The

k-NN was used to determine the classification accuracy of the

solutions (network input configuration) obtained by the clas-

sical methods. The labels Attrib. and Class. mean the number

of features selected by the technique and the classification

performance, respectively.

This table displays the average performance—the num-

ber of attributes following feature selection and performance

classification—containing the results of the feature selection

technique with the forward (F), backward (B), and random (R)

search strategies, e.g., the best-first experiments are labeled as

BF-F, BF-B, and BF-R, respectively.
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The performance of the algorithms was obtained in a tenfold

cross-validation process. The same method was used to evaluate

the precision of the classifier with all features. The results of the

random strategy correspond to the average of ten runs due to the

random characteristics of this model.

In the experiments, there were similarities between the best-

first (BF) and beam search (BS) algorithms. Although using a

beam size of 15 and having the number of expansions without

improvement ()) set at 50, the two algorithms presented very

close results. It is possible that the difference between the

methods is only apparent in data sets with more attributes. In

the performed experiments, the explored search space was the

same in both methods.

The results from the best-first and beam search were obtained

with a high computational effort. For example, in the thyroid

data set, over 2000 subsets were evaluated before the algorithms

presented the best found solution. This result was found even

with setting a low number of expansions without improvement.

The number of selected features reflected most of the differ-

ences between the variants (forward, backward, and random).

The forward variant obtained solutions with the least attributes,

mostly in the thyroid data set (better than 76% reduction in data

set dimensionality).

The best-first and beam search methods obtained interesting

results regarding feature selection. The k-NN classifier also

exhibited a good performance. In the thyroid data set, k-NN

obtained better results than the MLP that is fully connected

with all attributes (MLP obtained a 7.38% classification error).

The characteristics of the data set can explain these results. This

database has a nonbalanced data distribution. The class proba-

bility distributions are 5.1%, 96.2%, and 2.3%, respectively.

Unlike previous experiments, the hill-climbing forward vari-

ant obtained worse results than the backward and random vari-

ants. The characteristic of the forward strategy is the evaluation

of a small number of subsets.

In the Las Vegas simulations, the maximum number of

subsets generated without improvement was 50. The Las Vegas

method does not exhibit variations in the search strategy. This

algorithm is characterized as random search. It cannot perform

the forward or backward strategies.

The simulations carried out with the Las Vegas and beam

search algorithms (random) obtained the best results in the

fisher iris data set where only one attribute was selected. In

the thyroid and diabetes data sets, the best algorithms were

hill-climbing and random bit climber (random), with two and

five attributes selected, respectively. The method classification

performance was similar in almost all experiments. The clas-

sification degradation regarding simulations with all attributes

was low.

Most of the algorithms using the forward variant presented

less subset evaluation than the backward and random strategies.

The evaluation of a few subsets can hinder the selection of in-

terrelated attributes (attributes that produce better results when

combined than when isolated).

The forward method is faster than its backward counterpart.

This is expected because the forward method starts with small

subsets and enlarges them, whereas the backward method starts

with large subsets and shrinks them. It is computationally more

Fig. 5. Topology optimization of the optimization techniques.

expensive to determine the criterion value for large subsets than

for small subsets.

The proposed GaTSa method obtained interesting results in

relevant feature selection. GaTSa obtained results that are very

close to classical feature selection methods in the problems

investigated. Even if it is not being specifically developed for

relevant feature selection, the GaTSa method, even though in an

indirect way, is able to eliminate features that are nonrelevant

to learning algorithms.

In order to find suitable solutions, the remaining search

techniques require the definition of a good initial ANN architec-

ture. The method may eliminate network connections through

pruning. GaTSa is able to automatically optimize the network

size in the search.

In case of GaTSa, the mean number of connections was less

than all remaining approaches. It can be seen that the method is

able to perform a better exploration in the architecture search

space due to a combination of the advantages of GA, SA,

and TS in order to generate an MLP with a small number of

connections and high classification performance. In the search

process, irrelevant connections are eliminated from the network

architecture through pruning. The integration of SA and TS has

the same characteristics, but the use of GA operators incorpo-

rates more domain-specific knowledge in the search process.

Fig. 5 shows a summary of the results.

A number of differences between the feature selection meth-

ods and the proposed algorithm are evident. One of the main

differences is the random characteristics of the model. In this

kind of method, the expected value will depend upon the ran-

dom choices in the algorithm and not on the imposed probabil-

ity distribution of the input features. This behavior distinguishes

the expected processing time in random algorithms from the

mean case complexity normally used in deterministic algorithm

analysis.

It is important to say that the behavior of the random algo-

rithms may change even when repeatedly applied to the same

entrance. Thus, the processing time is a random variable, and

the processing time analysis requires a better comprehension of

the associated probability distribution.

Intuitively, a higher number of database attributes mean a

greater classifier discriminatory power and a greater facility in
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TABLE X
SELECTED FEATURES BY THE TECHNIQUES

extracting the database knowledge models. In practice, how-

ever, the real world presents evidence that this is not always

true as many methods suffer the curse of dimensionality—the

algorithm computational time increases aggressively with the

database attribute number. Moreover, the experiments confirm

that the number of samples used to ensure a classification rate

increases exponentially with the number of irrelevant attributes

present in the data set [19].

It is not possible to compare, in a fair manner, the classifi-

cation performance of the methods used because the classical

feature selection algorithms implemented the classifier k-NN

in a wrapper model, whereas GaTSa implements MLP. De-

spite the higher complexity of GaTSa, in the experiments, we

found out that the characteristics of some data sets favored the

k-NN model. For example, the thyroid data set has a probability

distribution that favored one class (92.6% of the data is from the

underfunctioning thyroid class).

Table X displays the attributes selected by each investigated

technique. The table presents the attributes that, on average,

have more relevance in the database. The attributes are sorted in

the order of importance, as defined by the number of citations

for each algorithm in each simulation performed. As observed,

GaTSa presents very similar feature selection results as the

classical methods.

C. Sensivity Test of the GaTSa Parameters

The design of the experiments was applied in order to de-

termine the factors with the greatest influence on the system’s

performance. When analyzing the influence of each of these

parameters, the designer should pay most attention to the ones

presenting values that are statistically most significant. This

makes it possible to avoid the necessity for a detailed analysis

of different configurations that might, in fact, lead to the design

of various models with very similar behavior patterns.

We expected a small number of parameters to have a great

influence on model performance in different databases. In this

analysis, we verified the most influential parameters and also

the interaction and interrelationship between them. In the study

TABLE XI
GaTSa EXPERIMENT CONFIGURATION

TABLE XII
ANOVA TABLE

performed with GaTSa, we opted to accomplish a factorial

experiment with two levels (2k factorial experiment), seeking

to reduce the amount of experiments done. Table XI presents

the controlled factors.

The factors H = sigmoid logistic (type of activation func-

tion), I = backpropagation (local optimization algorithm),

J = 0.001 (learning rate), K = 0.6 (momentum), L = 10
(interaction number to successive temperature reduction),

M = 5 (k for GL(k) stop criteria), and N = 1 (initial temper-

ature) were fixed during the experiments.

The analyses were accomplished in an aleatory manner.

Seven control factors (variables) were considered, each one of

them with two levels, resulting in 128 combinations. Each level

combination of the control factors was accomplished five times,

totaling to 640 analyses. Due to the random characteristics of

the model, in each of the 640 analyses, 30 runs of the algorithm

were performed (one result is the average of 30 runs) so that

19 200 simulations were performed.

Through the variance analysis of the factorial experiment,

considering the statistically significant level of 5% in the F

distribution, two factors were identified as having a larger

influence on the performance of the MLP optimized by the

proposed model.

A deeper analysis revealed that, statistically, a smaller num-

ber of generation and a larger crossover rate can induce net-

works with better performance. The differences in the number

of solutions generated in each iteration, the initial value of the

temperature, and the size of the tabu list did not significantly

influence the model result. It was also found that a smaller

number of iterations and a higher mutation rate contribute to

the success of the model.

Table XII gives the variance analysis. The more relevant

factors are the following: the number of microevolutions in

the genetic operators (D), corresponding to ≈32.64% of the

system variance, and the genetic operator crossover rate (E),

corresponding to ≈24.04% of the variance. The interaction

(variation among the differences between means for different

levels of one factor over different levels of another) among the

factors was also identified: the number of microevolutions in the
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genetic operators (D) and genetic operator crossover rate (E)

(≈10.39% of the system variance) and the neighborhood

size (A) and list tabu size (G), corresponding to ≈1.82% of the

total data variance.

The experiments confirmed that, despite the large number

of the configurable parameters of the method, very few have

a significant influence on the performance of the optimized

ANNs. This is an interesting characteristic because even the

inexperienced designers can successfully use it. The parameters

that are most influential in the method performance were the

variables that controlled the solution’s evolution in the search

space. GaTSa is robust to other settings because it did not show

a significant change in the network’s generated performance.

VII. FINAL REMARKS

This paper has shown that the combination of GA, SA,

and TS in the proposed methodology can be successfully used

for the simultaneous optimization of the MLP network topol-

ogy and weights. According to the experiments, based on the

network performance, GaTSa outperforms the TSa previously

proposed by the authors. GaTSa surpassed other methods from

the literature explored in this paper for most problems, and it is

situated among those with better performance for the remaining

ones. The experiments have also demonstrated that this method

can be used for relevant feature selection. Additionally, the

experiments have indicated that the most relevant parameters

in GaTSa are the number of microevolutions in the genetic

operators and the genetic operators’ crossover rate.

In the context of feature selection, the main disadvantage

of the proposed method is the difficulty in getting a good

performance by the model when some information in the

database is missing and when the classification task is not

performed with the required low errors. This occurs because

the elimination of the connections does not take each input

node into consideration. The elimination of an input node only

happens if all connections that connect this node are eliminated.

The nonselection of a feature occurs as a consequence of the

process of connection reduction. The proposed method does

not verify the contribution of each input during optimization,

and the emphasis is on the contribution of each connection.

As future work, the time complexity of GaTSa must be

analyzed, and ways of reducing time consumption must be pro-

posed. Other recently proposed optimization heuristics such as

particle swarm optimization could be explored [37]. GaTSa will

be explored in solving some real-world problems in science,

business, technology, and commerce.
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