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Abstract
Transactional memory (TM) promises to substantially reduce the
difficulty of writing correct, efficient, and scalable concurrent pro-
grams. But “bounded” and “best-effort” hardware TM proposals
impose unreasonable constraints on programmers, while more flex-
ible software TM implementations are considered too slow. Pro-
posals for supporting “unbounded” transactions in hardware entail
significantly higher complexity and risk than best-effort designs.

We introduceHybrid Transactional Memory(HyTM), an ap-
proach to implementing TM in software so that it can use best-effort
hardware TM (HTM) to boost performance but does notdependon
HTM. Thus programmers can develop and test transactional pro-
grams in existing systems today, and can enjoy the performance
benefits of HTM support when it becomes available.

We describe our prototype HyTM system, comprising a com-
piler and a library. The compiler allows a transaction to be at-
tempted using best-effort HTM, and retried using the software li-
brary if it fails. We have used our prototype to “transactify” part
of the Berkeley DB system, as well as several benchmarks. By dis-
abling the optional use of HTM, we can run all of these tests on
existing systems. Furthermore, by using a simulated multiproces-
sor with HTM support, we demonstrate the viability of the HyTM
approach: it can provide performance and scalability approaching
that of an unbounded HTM implementation, without the need to
support all transactions with complicated HTM support.

Categories and Subject DescriptorsC.1 [Computer Systems Or-
ganization]: Processor Architectures; D.1.3 [Software]: Concur-
rent programming

General Terms Algorithms, Design

Keywords Transactional memory

1. Introduction
Transactional memory (TM) [11, 29] supports code sections that
are executedatomically, i.e., so that they appear to be executed
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one at a time, with no interleaving between their steps. By allowing
programmers to expresswhatshould be executed atomically, rather
than requiring them to specifyhowto achieve such atomicity using
locks or other explicit synchronization constructs, TM significantly
reduces the difficulty of writing correct concurrent programs. A
good TM implementation avoids synchronization between concur-
rently executed transactional sections unless they actually conflict,
whereas the more traditional use of locks defensively serializes sec-
tions thatmayconflict, even if they rarely or never do. Thus, TM
can significantly improve the performance and scalability of con-
current programs, as well as making them easier to write, under-
stand, and maintain.

Despite significant progress in recent years towards practical
and efficient software transactional memory (STM) [1, 5, 8, 9, 10,
29], there is a growing consensus that at least some hardware sup-
port for TM is desirable. Herlihy and Moss [11] introducedhard-
ware transactional memory(HTM) and showed that bounded-size
atomic transactions that are short enough to be completed with-
out context switching could be supported using simple additions
to the cache mechanisms of existing processors. Although studies
(e.g., [3, 7, 23]) suggest that a modest amount of on-chip resources
should be sufficient for all but a tiny fraction of transactions, re-
quiring programmers to be aware of and to avoid the architecture-
specific limitations of HTM largely eliminates the software engi-
neering benefits promised by TM. This is a key reason why HTM
has not been widely adopted by commercial processor designers.

Recent proposals for “unbounded” HTM [3, 7, 22, 23, 27] aim
to overcome the disadvantages of simple bounded HTM designs
by allowing transactions to commit even if they exceed on-chip re-
sources and/or run for longer than a thread’s scheduling quantum.
However, such proposals entail sufficient complexity and risk that
we believe they are unlikely to be adopted in mainstream commer-
cial processors in the near future.

We introduceHybrid Transactional Memory(HyTM), a new ap-
proach to supporting TM so that it works in existing systems, but
can boost performance and scalability using future hardware sup-
port. The HyTM approach exploits HTM supportif it is availableto
achieve hardware performance for transactions that do not exceed
the HTM’s limitations, and transparently (except for performance)
executes transactions that do in software. Because any transaction
can be executed in software using this approach, the HTM need not
be able to execute every transaction, regardless of its size and du-
ration, nor support all functionality. HyTM thus allows hardware
designers to buildbest-effortHTM, rather than having to take on
the risk and complexity of a full-featured, unbounded design.



To demonstrate the feasibility of the HyTM approach, we built
a prototype compiler and STM library. The compiler produces code
for executing transactions using HTM, or using the library; which
approach to use for trying and retrying a transaction is under soft-
ware control. A key challenge in designing HyTM is ensuring that
conflicts between transactions run using HTM and those that use
the software library are detected and resolved properly. Our proto-
type achieves this by augmenting hardware transactions with code
to look up structures maintained by software transactions. Some
recent proposals for unbounded HTM maintain similar structures
in hardware for transactions that exceed on-chip resources, adding
significant hardware machinery to achieve the same goal. In con-
trast, our HyTM prototype makes minimal assumptions about HTM
support, allowing processor designers maximal freedom to design
best-effort HTM within their constraints.

The HyTM approach we propose enables the programming rev-
olution that TM has been promising to begin, even beforeanyHTM
support is available, and to progressively improve the performance
of transactional programs as incremental improvements to best-
effort HTM support become available. In this way, we can develop
experience and evidence to motivate processor designers to include
HTM support in their plans and to guide HTM improvements. With
the HyTM approach, processor designers are free to exploit use-
ful and clever ideas emerging in recent proposals for unbounded
HTM without having to shoulder the responsibility of supporting
all transactions in hardware. Furthermore, they do not need to fore-
see and support all functionality that that may be required in the
future: additional functionality can be supported in software if its
expected use does not justify complicating hardware designs for
it. We believe it would be a mistake to forgo the advantages of
TM, as well as other important uses for best-effort HTM (see Sec-
tion 5), until an unbounded design can be found that supports all
needed functionality and is sufficiently robust to be included in new
commercial processors. We therefore hope our work will encourage
hardware designers to begin the journey towards effective support
for high-performance transactional programming, rather than delay
until they can commit to a full unbounded solution.

In Section 2, we briefly discuss some relevant related work.
In Section 3, we describe the HyTM approach and our prototype.
Section 4 reports our experience using our prototype to “transac-
tify” part of the Berkeley DB system [25] and some benchmarks.
We present preliminary performance experiments in which we use
an existing multiprocessor to evaluate our prototype in “software-
only” mode, and a simulated multiprocessor to evaluate its ability
to exploit HTM if it is available. We conclude in Section 5.

2. Related work
We briefly discuss some relevant related research below; an exhaus-
tive survey is beyond the scope of this paper.

2.1 Bounded and best-effort HTM

The first HTM proposal, due to Herlihy and Moss [11], uses a sim-
ple, fixed-size, fully-associative transactional cache and exploits
existing cache coherence protocols to enforce atomicity of transac-
tions up to the size of the transactional cache. Larger transactions
and transactions that are interrupted by context switches fail.

HTM can also be supported by augmenting existing caches, al-
lowing locations that are read transactionally to be monitored for
modifications, and delaying transactional stores until the transac-
tion is complete [32]. Related techniques have been proposed for
ensuring atomicity of critical sections without acquiring their locks
[26], and for speculating past other synchronization constructs [18].
In these approaches, a transaction can succeed only if it fits in
cache. This limitation means that a transaction’s ability to commit
depends not only on its size, but also on its layout with respect to

cache geometry. In addition, it is convenient in many cases to avoid
complexity by simply failing the current transaction in response to
an event such as a page fault, context switch, etc.

Because suchbest-effortmechanisms do not guarantee to han-
dle every transaction, regardless of its size and duration, they must
be used in a way that works even if some transactions fail determin-
istically. Some proposals [18, 26] address this by falling back to the
standard synchronization in the original program, so it is merely
a performance issue. Our work brings the same convenience to
transactional programs: hardware designers can provide best-effort
HTM, but programmers need not be aware of its limitations.

2.2 Unbounded STM

Ananian et al. [3] describe two HTM designs, which they call
Large TM (LTM) and Unbounded TM (UTM). LTM extends sim-
ple cache-based HTM designs by providing additional hardware
support for allowing transactional information to be “overflowed”
into memory. While LTM escapes the limitations of on-chip re-
sources of previous best-effort HTM designs (e.g., [11]), transac-
tions it supports are limited by the size of physical memory, and
more importantly, cannot survive context switches. UTM supports
transactions that can survive context switches, and whose size is
limited only by the amount of virtual memory available. However,
UTM requires additional hardware support that seems too compli-
cated to be considered for inclusion in commercial processors in
the near future.

Rajwar et al. [27] have recently proposed Virtualized TM
(VTM), which is similar to UTM in that it can store transactional
state information in the executing thread’s virtual address space,
and thus support unbounded transactions that can survive context
switches. Rajwar et al. make an analogy to virtual memory, rec-
ognizing that the hopefully rare transactions that need to be over-
flowed into data structures in memory can be handled at least in part
in software, which can reduce the added complexity for hardware
to maintain and search these data structures. Nonetheless, designs
based on the VTM approach require machinery to support an in-
terface to such software, as well as for checking for conflicts with
overflowed transactions, and are thus still considerably more com-
plicated than simple cache-based best-effort HTM designs. The
way VTM ensures that transactions interact correctly with other
transactions that exceed on-chip resources is very similar to the
way HyTM ensures that transactions executed by best-effort HTM
interact correctly with transactions executed in software. However,
HyTM does not need any special hardware support for this purpose,
and thus allows significantly simpler HTM support.

Moore et al. [23] have proposed Thread-level TM (TTM). They
propose an interface for supporting TM, and suggest that the re-
quired functionality can be implemented in a variety of ways, in-
cluding by software, hardware, or a judicious combination of the
two. They too make the analogy with virtual memory. They de-
scribe some novel ways of detecting conflicts based on modifica-
tions to either broadcast-based or directory-based cache coherence
schemes. More recently, Moore et al. [22] have proposed LogTM,
which stores tentative new values “in place”, while maintaining logs
to facilitate undoing changes made by a transaction in case it aborts.
Like the other proposals mentioned above, these approaches to sup-
porting unbounded transactions require additional hardware sup-
port that is significantly more complicated than simple cache-based
best-effort HTM designs. Furthermore, as presented, LogTM does
not allow transactions to survive context switches; modifying it to
do so would entail further complexity.

Hammond et al. [7] recently proposed Transactional Coherence
and Consistency (TCC) for supporting a form of unbounded HTM.
TCC is a more radical approach than those described above, as it
fundamentally changes how memory consistency is defined and



implemented, and is thus even less likely to be adopted in the
commercial processors of the near future.

All of the proposals discussed above acknowledge various sys-
tem issues that remain to be resolved. While these issues may not
be intractable, they certainly require careful attention and their so-
lutions will only increase the complexity and therefore the risk of
supporting unbounded transactions in hardware.

2.3 Hybrid transactional memory

Kumar et al. [12] recently proposed using HTM to optimize the
Dynamic Software Transactional Memory (DSTM) of Herlihy et
al. [10], and described a specific HTM design to support it. Like
us, they recognize that it is not necessary to support unbounded
HTM to get the benefits of HTM in the common case. Their mo-
tivation is similar to ours, but our work differs in a number of
ways. First, our prototype implements a low-levelword-basedTM
that can be used in the implementation of system software such
as JavaTMVirtual Machines, while they aim to optimize an object-
based DSTM which requires an existing object infrastructure that
is supported by such system software. Our approach therefore has
the potential to benefit a much wider range of applications. Fur-
thermore, the approach of Kumar et al. [12] depends on several
specific properties of the HTM. For example, it crucially depends
on support for nontransactional loads and stores within a transac-
tion. These requirements constrain and complicate HTM designs
that can support their approach. Unlike our HyTM prototype, their
approachrequiresnew hardware support, and therefore cannot be
applied in today’s systems. Finally, even given HTM support built
to their specification, their system cannot commit a long-running
transaction because their HTM provides no support for preserving
transactions across context switches.

As explained elsewhere [20, 21], simple software techniques
can overcome all of these disadvantages, delivering the same ben-
efits as the low-level word-based HyTM approach described here
to object-based systems such as DSTM [10]. Lie [15] investigated
a similar object-based approach using best-effort HTM as an alter-
native to using UTM, and concluded from his performance studies
that UTM is preferable because it is “not overly complicated”. But
we believe that UTMis too complicated to be included in the com-
mercial multiprocessor designs of the near future, and that Lie’s re-
sults lend weight to our argument that we can use best-effort HTM
to provide better performance and scalability than software-only
approaches allow, without committing to a full unbounded HTM
implementation.

2.4 Additional HTM functionality

Several groups have recently proposed additional HTM function-
ality, such as various forms of nesting [4, 24], event handlers and
other “escape mechanisms” [19], etc. This work is mostly orthog-
onal to our own, though as we discuss in Section 5, the HyTM ap-
proach gives designers the flexibility to choose not to support such
functionality in hardware, or to support it only to a limited degree.

3. Hybrid transactional memory
Transactional memory is a programming interface that allows sec-
tions of code to be designated astransactional. A transaction either
commits, in which case it appears to be executed atomically at a
commit point, oraborts, in which case it has no effect on the shared
state. A transactional section is attempted using a transaction and if
the transaction attempt aborts, it is retried until it commits.

The HyTM prototype described in this paper provides aword-
basedinterface, rather thanobject-basedone: it does not rely on
an underlying object infrastructure or on type safety for pointers.
Thus, it is suitable for use in languages such as C or C++, where
pointers can be manipulated directly.

The HyTM approach is to provide an STM implementation that
does not depend on hardware support beyond what is widely avail-
able today, and also to provide the ability to execute transactions
using whatever HTM support is availablein such a way that the
two types of transactions can coexist correctly. This approach al-
lows us to develop and test programs using systems today, and then
exploit successively better best-effort HTM implementations to im-
prove performance in the future.

The key idea to achieving correct interaction between software
transactions (i.e., those executed using the STM library) and hard-
ware transactions (i.e., those executed using HTM support) is to
augment hardware transactions with additional code that ensures
that the transaction does not commit if it conflicts with an ongo-
ing software transaction. If a conflict with a software transaction is
detected, the hardware transaction is aborted, and may be retried,
either in software or in hardware.

3.1 Overview of our HyTM prototype

Our prototype implementation consists of a compiler and a library:
the compiler produces two code paths for each transaction, one that
attempts the transaction using HTM, and another that attempts the
transaction in software by invoking calls to the library.

The compiler for our prototype is a modified version of the
SunTM Studio C/C++ compiler. We chose this compiler because we
are interested in using transactional memory in future implemen-
tations of system software such as operating systems, JavaTM vir-
tual machines, garbage collectors, etc. Our proof-of-concept com-
piler work has been done in the back end of the compiler. As
a result, it does not support special syntax for transactions. In-
stead, programmers delimit transactional sections using calls to
specialHYTM SECTION BEGIN andHYTM SECTION END functions.
The compiler intercepts these apparent function calls and translates
the code between them to allow it to be executed transactionally,
using either HTM or STM.

We assume the following HTM interface:1 A transaction is
started by thetxn begin instruction, and ended using thetxn end
instruction. Thetxn begin instruction specifies an address to
branch to in case the transaction aborts. If the transaction executes
to thetxn end instruction without aborting, then it appears to have
executed atomically, and execution continues past thetxn end in-
struction; otherwise, the transaction has no effect, and execution
continues at the address specified by the precedingtxn begin in-
struction. We also assume there is atxn abort instruction, which
explicitly causes the transaction to abort.

Because we expect that most transactions will be able to com-
plete in hardware, and of course that transactions committed in
hardware will be considerably faster than software transactions,
our prototype first attempts each transaction in hardware. If that
fails, then it calls a method in our HyTM library that decides be-
tween retrying in hardware or in software. This method can also
implement contention control policies, such as backing off before
retrying. In some cases, it may make sense to retry the transaction
in hardware, perhaps after a short delay to reduce contention and
improve the chances of committing in hardware; such delays may
be effected by simple backoff techniques [2], or by more sophis-
ticated contention control techniques [10, 28]. A transaction that
fails repeatedly should be attempted in software, where hardware
limitations become irrelevant, and more flexible contention control
is possible. Of course, all this should be transparent to the pro-
grammer, who need only designate transactional sections, leaving
the HyTM system to determine whether/when to try the transaction
in hardware, and when to revert to trying in software.

1 The particular interface is not important; we assume this one merely for
concreteness.
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Figure 1. Key data structures for STM component of HyTM.

3.2 HyTM data structures

As in most STMs, software transactions acquire “ownership” for
each location they intend to modify. Transactions also acquire “read
ownership” for locations that they read but do not modify, but this
kind of ownership need not be exclusive. There are two key data
structures in our prototype: thetransaction descriptorand theown-
ership record(orec). Our prototype maintains a transaction descrip-
tor for each thread that may execute a transaction, and a table of
orecs.2 Each location in memory maps to an orec in this table. To
keep the orec table a reasonable size, multiple locations map to the
same orec. These data structures are illustrated in Figure 1.

A transaction descriptorincludes atransaction descriptor iden-
tifier tdid, a transaction header, a read setand awrite set. The
transaction header is a single 64-bit word containing aversion
number and astatus (which may beFREE, ACTIVE, ABORTED,
or COMMITTED). The version number distinguishes different (soft-
ware) transactions by the same thread: a transaction is uniquely
identified by its descriptor’s identifier and its version number. The
read set contains a snapshot of each orec corresponding to a loca-
tion the transaction has read but not written. The write set contains
an entry for each location that the transaction intends to modify,
storing the address of the location and the most recent value writ-
ten to that location by the transaction.

2 Independently, Harris and Fraser also developed an STM thatuses a table
of ownership records [8]. Their approach bears some similarity to ours, but
the details are quite different. In particular, as far as we know, transactions
executed in hardware cannot interoperate correctly with their STM.

An orec is a 64-bit word withtdid, ver, mode andrdcnt fields.
To avoid interference, orecs and transaction headers are modified
using a 64-bit compare-and-swap instruction. Thetdid andver
fields indicate the transaction that most recently acquired the orec
in WRITE mode. Themode field may beUNOWNED, READ, or WRITE,
indicating whether the orec is owned, and if so, in what mode. If the
orec is owned inREAD mode, therdcnt field indicates how many
transactions are reading locations that map to this orec. This form
of read ownership is “semi-visible”: a transaction can determine
whether any transactions are reading locations that map to this
orec—and if so, how many—but it cannot identify the specific
transactions doing so.

3.3 Implementing software transactions

A transaction executed using our HyTM library begins with empty
read and write sets and its status set toACTIVE. It then executes
user code, making calls to our STM library for each memory
access. Before writing a location, the transaction acquires exclusive
ownership inWRITE mode of the orec for that location, and creates
an entry in its write set to record the new value written to the
location. To acquire an orec inWRITE mode, the transaction stores
its descriptor identifier and version number in the orec. Subsequent
writes to that location find the entry in the write set, and overwrite
the value in that entry with the new value to be written.

Similarly, before reading a location, a transaction acquires own-
ership of the orec for that location, this time inREAD mode. If the
orec is already owned inREAD mode by some other transaction(s),
this transaction can acquire ownership simply by incrementing the
rdcnt field (keeping all other fields the same). Otherwise, the
transaction acquires the orec inREAD mode, by setting themode
field to READ and therdcnt field to 1. In either case, the transac-
tion records in its read set the index of the orec in the orec table and
a snapshot of the orec’s contents at that time.

After every read operation, a transactionvalidatesits read set to
ensure that the value read is consistent with values previously read
by the transaction. (This simple approach is much more conserva-
tive than necessary, so there is significant opportunity for improv-
ing performance here.) Validating its read set entails determining
that none of the locations it read have since changed. This can be
achieved by iterating over the read set, comparing each orec owned
in READ mode to the snapshot recorded previously, ensuring it has
not changed (except possibly for therdcnt field). We discuss a
way to significantly reduce this overhead in many cases below.

When a transaction completes, it attempts to commit: It val-
idates its read set and, if this succeeds, attempts to atomically
change its status fromACTIVE toCOMMITTED. If this succeeds, then
the transaction commits successfully. The transaction subsequently
copies the values in its write set back to the appropriate memory
locations, before releasing ownership of those locations.

The commit point of the transaction is at the beginning of
the read validation. The subsequent validation of the reads and
the fact that the transaction maintains exclusive ownership of the
locations it writes throughout the successful commit implies that
the transaction can be viewed as taking effect atomically at this
point, even though the values in the write set may not yet have
been copied back to the appropriate locations in memory: other
transactions are prevented from observing “out of date” values
before the copying is performed.

Figure 1 illustrates a state of a HyTM system in which there are
8 orecs and two executing transactions: an active transactionT0,
using transaction descriptor 0 with version number 27; and a com-
mitted transactionT1, using transaction descriptor 1 with version
number 35.T0 has read 6 from address 0x158 (and therefore has a
snapshot of orec 3), and has written 93 to 0x108, 8 to 0x148, and
24 to 0x100 (with corresponding entries in its write set).T1 has



read 6 from 0x158 and 68 from 0x130 (and therefore has snapshots
of orecs 3 and 6), and has written 2 to 0x120. BecauseT1 has al-
ready committed, its writes are considered to have already taken
effect. Thus, the logical value of location 0x120 is 2, even though
T1 has not yet copied its write set back (so 0x120 still contains the
pre-transaction value of 19). Note that althoughT1 is the only ex-
ecuting transaction that has read a location corresponding to orec
6, the transaction descriptor identifier for orec 6 is 5, not 1, be-
cause that was the descriptor identifier of the transaction that most
recently acquiredwrite ownership of that orec.

Resolving conflicts If a transactionT0 requires ownership of a
location that is already owned inWRITE mode by another transac-
tion T1, andT1’s status isABORTED, thenT1 cannot successfully
commit, so it is safe forT0 to “steal” ownership of the location
from T1. If T1 is ACTIVE, this is not safe, as the atomicity ofT1’s
transaction would be jeopardized if it lost ownership of the loca-
tion and then committed successfully. In this case,T0 can choose
to abortT1 (by changingT1’s status fromACTIVE to ABORTED),
thereby making it safe to steal ownership of the location. Alterna-
tively, it may be preferable forT0 to simply wait a while, giving
T1 a chance to complete. Such decisions are made by a separate
contention manager, discussed below.

If T1’s status isCOMMITTED, however, it isnot safe to steal
the orec (becauseT1 may not have finished copying back its new
values). In this case, in our prototype,T0 simply waits forT1 to
release ownership of the location.

If T0 needs to write a location whose orec is inREAD mode, then
T0 can simply acquire the orec inWRITE mode; this will cause the
read validation of any other active transactions that have read loca-
tions associated with this orec to fail, so there is no risk of violating
their atomicity. Again, the transaction consults its contention man-
ager before stealing the orec: it may be preferable to wait briefly,
allowing reading transactions to complete.

Read after write If a transaction already has write ownership of
an orec it requires for a read, it searches its write set to see if it
has already stored to the location being read. If not, the value is
read directly from memory and no entry is added to the read set,
because the logical value of this location can change only if another
transaction acquires write ownership of the orec, which it will do
only after aborting the owning transaction. Thus, validation of this
read is unnecessary.

Write after read If a transaction writes to a location that maps
to an orec that it owns inREAD mode, then the transaction uses
the snapshot previously recorded for this orec to “upgrade” its
ownership toWRITE mode, while ensuring that it is not owned in
WRITE mode by any other transaction, and thus that locations that
map to this orec are not modified, in the meantime. After successful
upgrading, the entry in the read set is discarded, as the orec is no
longer owned inREAD mode.

Fast read validation Our prototype includes an optimization, due
to Lev and Moir [13], that avoids iterating over a transaction’s read
set in order to validate it. The idea is to maintain a counter of
the number of times an orec owned inREAD mode is stolen by a
transaction that acquires it inWRITE mode. If this counter has not
changed since the last validation, then the transaction can conclude
that all snapshots in its read set are still valid, so it does not need to
check them individually. Otherwise, the transaction resorts to the
“slow” validation method described previously.

Nesting Our prototype supportsflattening, a simple form of nest-
ing in which nested transactions are subsumed by the outermost
transaction: it records the nesting depth in the transaction descriptor
and ignoresHYTM SECTION BEGIN andHYTM SECTION END calls
for inner transactions so that only outermost transaction commits.

Dynamic memory allocation To ensure that memory allocated
during an aborted transaction does not leak, and that memory freed
inside a transaction is not recycled until the transaction commits
(in case the transaction aborts), we provide specialhytm malloc
andhytm free functions. To support this mechanism, we augment
transaction descriptors with fields to record objects allocated during
the transaction (to be freed if it aborts), and objects freed during the
transaction (to be freed if it commits).

Contention management Following Herlihy et al. [10], our pro-
totype provides an interface for separable contention managers.
The library uses this interface to inform the contention manager of
various events, and to ask its advice when faced with decisions such
as whether to abort a competing transaction or to wait or abort it-
self. We have implemented the Polka contention manager [28], and
a variant of the Greedy manager [6] that times out to overcome the
blocking nature of this manager as originally proposed. We have
not experimented extensively with different contention managers
or with tuning parameters of those we have implemented.

3.4 Augmenting hardware transactions

We now discuss how our prototype augments hardware transactions
to ensure correct interaction with transactions executed using the
software library. The key observation is that a location’s logical
value differs from its physical contents only if a current software
transaction has modified that location. Thus, if no such software
transaction is in progress, we can apply a transaction directly to the
desired locations using HTM. The challenge is in ensuring that we
do so only if no conflicting software transaction is in progress.

Our prototype augments HTM transactions to detect conflicts
with software transactions at the granularity of orecs. Specifically,
the code for a hardware transaction is modified to look up the orec
associated with each location accessed to detect conflicting soft-
ware transactions. The key to the simplicity of the HyTM approach
is that the HTM ensures that if this orec changes before the hard-
ware transaction commits, then the hardware transaction will abort.

We illustrate this transformation using pseudocode below. On
the left is the “straightforward” translation of a HyTM transactional
section, wherehandler-addris the address of the handler for failed
hardware transactions, andtmp is a local variable). On the right is
the augmented code produced by the HyTM compiler:

txn begin handler-addr

tmp = X;

Y = tmp + 5;
txn end

txn begin handler-addr
if (!canHardwareRead(&X))
txn abort;

tmp = X;
if (!canHardwareWrite(&Y))
txn abort;

Y = tmp + 5;
txn end

wherecanHardwareRead andcanHardwareWrite are functions
provided by the HyTM library. They check for conflicting owner-
ship of the relevant orec, and are implemented as follows, where
h is the hash function used to map locations’ addresses to indices
into the orec tableOREC TABLE:

bool canHardwareRead(a) {
return (OREC TABLE[h(a)].o mode != WRITE);

}

bool canHardwareWrite {
return (OREC TABLE[h(a)].o mode == UNOWNED);

}



Alternative conflict detection If there are almost never any soft-
ware transactions, then it may be better to detect conflicts using
a single global counterSW CNT of the number of software trans-
actions in progress. Hardware transactions can then just check
whether this counter is zero, in which case there are no software
transactions with which they might conflict. However, if software
transactions are more common, reading this counter will add more
overhead (especially because it is less likely to be cached) and will
increase the likelihood of hardware transactions aborting due to un-
related software transactions, possibly inhibiting scalability in an
otherwise scalable program.

An advantage of the HyTM approach is that the conflict de-
tection mechanism can be changed, even dynamically, according
to different expectations or observed behavior for different appli-
cations, loads, etc. Thus, for example, a HyTM implementation
can support both conflict detection mechanisms described above.
Fixing conflict detection methods in hardware does not provide
this kind of flexibility. Of course, hardware could provide several
“modes”, but this would further complicate the designs. Because
conflicts involving software transactions are detected in software in
HyTM, improvements to the HyTM-compatible STM and methods
for checking for conflicts between hardware and software trans-
actions can continue long after the HTM is designed and imple-
mented.

4. Experience and evaluation
In this section, we describe our experience using our prototype
to transactify part of the Berkeley DB system, three SPLASH-
2 [33] benchmarks (barnes, radiosity, andraytrace), and a
microbenchmarkrand-array we developed to evaluate HyTM.

Because HyTM does notdependon HTM support, we can
execute all of the benchmarks in existing systems today; we report
on some of these experiments in Sections 4.2 and 4.3, and in
Section 4.4 we report results of simulations we conducted using
therand-array benchmark to evaluate HyTM’s ability to exploit
HTM support, if available, to boost performance. First, we describe
the platforms used for our experiments.

4.1 Experimental platforms, real and simulated

The software-only experiments reported in Sections 4.2 and 4.3
were conducted on a Sun FireTM 6800 server [31] containing 24
1350MHz UltraSPARCR© IV chips [30]. Each UltraSPARCR© IV
chip has two processor cores, each of which has a 32KB L1 instruc-
tion cache and a 64KB L1 data cache on chip. For each processor
chip, there is a 16MB L2 cache off chip (8MB per core). The sys-
tem has 197GB of shared memory, and a 150MHz system clock.

To compare performance of our HyTM prototype with and
without various levels of hardware support to an unbounded HTM
implementation, as well as to conventional locking techniques,
we used several variants of the Wisconsin LogTM transactional
memory simulator. This is a multiprocessor simulator based on
Virtutech Simics [16], extended with customized memory models
by Wisconsin GEMS [17], and further extended to simulate the
unbounded LogTM architecture of Moore et al. [22].

Our first variant simply adds instruction decoders and handlers
for thetxn begin, txn end andtxn abort instructions produced
by our compiler, mapping these to LogTM’sbegin transaction,
commit transaction andabort transaction instructions. In
LogTM, if a transaction fails due to a conflict, it is rolled back
and retried, transparently to the software (possibly after a short
delay to reduce contention). Thus, there is no need to resort to
software transactions, and no need to check for conflicts with them,
so we directed the compiler not to insert the usual library calls
for such checking in this case. We used this simulator for curves
labeled “LogTM” in the graphs presented later, as well as for

all experiments not involving HTM, i.e., HyTM in software-only
mode, and all conventional lock-based codes.

To experiment with HyTM with HTM support, we also created a
variant of the simulator that branches (without delay) to ahandler-
addr, specified with thetxn begin instruction, in case the transac-
tion fails. This way, a failed transaction attempt can be retried using
a software transaction. This is the simulator used for HTM-assisted
HyTM configurations.

Because LogTM is an “unbounded” HTM implementation,
transactions fail only due to conflicts with other transactions. To
test our claim that the HyTM approach can be effective with “best-
effort” HTM, we created another variant of the simulator that aborts
HTM transactions when either (a) the number of distinct cache
lines stored by the transaction exceeds 16, or (b) a transactional
cache line is “spilled” from the cache. This emulates a best-effort
HTM design that uses only on-chip caches and store buffers, and
fails transactions that do not fit within these resources. We call this
the “neutered” HyTM simulator.

The systems we simulated share the same multiprocessor
architecture described in [22], except that our simulated pro-
cessors were run at 1.2GHz, not 1GHz, and we used the sim-
pler MESI SMP LogTM cache coherence protocol, instead of the
MOESI SMP LogTM protocol.

In all experiments, both in real systems and in simulations, we
bound each thread to a separate processor to eliminate potential
scheduler interactions.

4.2 Berkeley DB lock subsystem

Berkeley DB [25] is a database engine implemented as a library
that is linked directly into a user application. Berkeley DB uses
locks in its implementation and also exposes an interface for client
applications to use these locks. The locks are managed by thelock
subsystem, which provideslock get andlock put methods. A
client callinglock get provides a pointer to the object it wishes to
lock. If no client is currently locking the object, the lock subsystem
allocates a lock and grants it to the client. Otherwise, a lock already
exists for the object, and the lock subsystem either grants the lock
or puts the client into the waiting list for the lock, depending on
whether the requested lock mode conflicts with the current lock
mode.

In the Berkeley DB implementation of the lock subsystem, all
data structures are protected by a single low-level lock. The Berke-
ley DB documentation indicates that the implementors attempted
a more fine-grained approach for better scalability, but abandoned
it because it was too complicated to be worthwhile. We decided to
test the claim that TM enables fine-grained synchronization with
the programming complexity of coarse-grained synchronization by
“transactifying” the Berkeley DB lock subsystem.

We replaced each critical section protected by the lock with a
transactional section. In some cases, a small amount of code re-
structuring was required to conform with our compiler’s require-
ment that eachHYTM SECTION END lexically matches the corre-
spondingHYTM SECTION BEGIN. We also replaced calls tomalloc
and free with calls to hytm malloc and htym free (see Sec-
tion 3.3).

We designed an experiment to test the newly transactified sec-
tions of Berkeley DB. In this experiment, each ofN threads repeat-
edly requests and releases a lock for a different object. Because they
request locks for different objects, there is no inherent requirement
for threads to synchronize with each other. The threads do no other
work between requesting and releasing the locks.

As expected, the original Berkeley DB implementation did not
scale well because of the single global lock for the entire lock
subsystem. However, in our initial experiments, the transactified
version had similarly poor scalability, and significantly higher cost
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Figure 2. Software-only experiments: (a) Berkeley DB lock subsystem (b)barnes (c) raytrace

per iteration. We were not surprised by the higher overhead (see
Section 4.5), but we were disappointed by the lack of scalability.

A quick investigation revealed that scalability was prevented
by false sharing, which occurs when variables accessed by dif-
ferent threads happen to fall in the same cache line, and by two
sources of “real” conflict. False sharing can be especially bad in a
transactional context because it can introduce unnecessary aborts
and retries, which can be much more expensive than the unnec-
essary cache misses it causes in lock-based programs. Moore et
al. [22] make a similar observation from their experience. It is stan-
dard practice to “pad” variables in high-performance concurrent
programs to avoid the profound impact false sharing can have on
performance. We found that this significantly improved the perfor-
mance and scalability of the transactified version. (Applying these
techniques to the original implementation did not improve its scal-
ability, because of the serialization due to the global lock.)

In addition to the conflicts due to false sharing, we found two
significant sources of “real” conflicts. First, the Berkeley DB lock
subsystem records various statistics in shared variables protected
by the global lock. As a result, each pair of transactions conflicted
on the statistics variables, eliminating any hope of scalability. It
is standard practice to collect such statistics on a per-thread basis
and to aggregate them afterwards. However, we simply turned
off the statistics gathering (in the original code as well as in the
transactified version).

Second, Berkeley DB maintains a data structure for each object
being locked, and a “lock descriptor” for each lock it grants. Rather
than allocate and free these dynamically, it maintains a pool for
each kind of data structure. We discovered many conflicts on these
pools because each pool is implemented as a single linked list,
resulting in many conflicts at the head of the list. We reduced
contention on these pools using standard techniques: Instead of
keeping a single list for all the lock descriptors, we distributed the
pool into multiple lists, and had threads choose a list by hashing on
their thread id. On initialization, we distribute the same number of
lock descriptors as in the original single-list pool over the several
lists implementing the pool in the revised implementation. We also
implemented a simple load-balancing scheme in which, if a thread
finds its list empty when attempting to allocate a descriptor, it
“steals” some elements from another list. Programming this load
balancer was remarkably easy using transactions.

Figure 2(a) compares the original Berkeley DB (with statistics
disabled) to two configurations of the transactified version after
the modifications described above. For this and other microbench-
marks, we report throughput as operations per second (in this case,

a thread acquiring and releasing its lock is one operation); for the
SPLASH-2 benchmarks presented later, we report completion time.

When only one thread participated, the transactified version
performed roughly a factor of 20 worse than the lock-based version.
This is not surprising, as we have thus far avoided a number of
optimizations that we expect to considerably reduce overhead of
our HyTM implementation, and because with a single thread, the
disadvantages of the coarse-grained locking solution are irrelevant.
As the number of threads increases, however, the throughput of the
original implementation degrades dramatically, as expected with
a single lock. In contrast, the transactified version achieves good
scalability at least up to 16 threads. For four or more threads, the
transactified version beats the lock-based version, despite the high
overhead of our unoptimized implementation.

Initially, the rdcnt fields in our library had four bits, allowing
up to 15 concurrent readers per orec. With this configuration, the
transactified version did not scale past 16 threads. A short investi-
gation revealed that therdcnt field on some orecs was saturating,
causing some readers to wait until others completed. We increased
the number of bits to 8, allowing up to 255 concurrent readers per
orec. As Figure 2(a) shows, this allowed the transactified version
to scale well up to 32 threads. The decrease in throughput at 48
threads is due to a coincidental hash collision in the Berkeley DB
library; changing the hash function eliminated the effect, so this
does not indicate a lack of scalability in our HyTM prototype.

4.3 SPLASH-2 benchmarks

We took three SPLASH-2 [33] benchmarks—barnes, radiosity,
and raytrace—as transactified by Moore et al. [22], converted
them to use our HyTM prototype, and compared the transactified
benchmarks to the original, lock-based implementations.

In the original lock-based versions,barnes (Figure 2(b)) scaled
well up to 48 threads;radiosity (not shown) scaled reasonably to
16 threads and thereafter failed to improve performance and even
took longer with more threads above 32 threads; andraytrace
(Figure 2(c)) scaled well only to 6 threads, after which adding
threads only hurt performance.

In each case, the transactified version took about 30% longer
than the lock-based version with one thread. Forbarnes, the trans-
actified version tracked the original version up to about 24 threads,
albeit with noticeable overhead relative to the original version. At
higher levels of concurrency, performance degraded significantly.
This is because the number of conflicts between transactions in-
creased with more threads participating. We expect to be able to im-
prove performance in this case through improved contention man-



agement: we have not yet experimented extensively with contention
management policies, or with tuning those we have implemented.

The original lock-based implementations ofradiosity and
raytrace both exhibited worse performance with additional
threads at some point: above 24 threads forradiosity and above
6 threads forraytrace. The transactified versions performed qual-
itatively similarly to their lock-based counterparts, except that the
lack of scalability was more pronounced in the transactional ver-
sions, especially forraytrace. Again, this is likely due to poor
contention management. But it also demonstrates the importance
of structuring transactional applications to try to avoid conflicts
between transactions. Fortunately, avoiding conflicts in the com-
mon case, while maintaining correctness, is substantially easier
with transactional programming than with traditional lock-based
programming, as illustrated by our experience with Berkeley DB.

Our first transactified version ofraytrace yielded even worse
scalability than shown above. The culprit turned out to be our
mechanism for upgrading fromREAD to WRITE mode: transactions
in raytrace increment a globalRayID variable (therefore reading
and then writing it) to acquire unique identifiers. By modifying the
benchmark to “trick” HyTM into immediately acquiring the orec
associated with theRayID counter inWRITE mode, we were able to
improve scalability considerably. This points to opportunities for
improving the upgrade mechanism as well as compiler optimiza-
tions that foresee the need to write a location that is being read.

Even after this improvement,raytrace does not scale well,
largely due to contention for the singleRayID counter. Recently, a
number of research groups (e.g., [4]) have suggested tackling sim-
ilar problems by incrementing counters such as theRayID counter
“outside” of the transaction, either by simply incrementing it in a
separate transaction, or by using an open-nested transaction. While
this is an attractive approach to achieving scalability, it changes the
semantics of the program, and thus requires global reasoning about
the program to ensure that such transformations are correct. It thus
somewhat undermines the software engineering benefits promised
by transactional memory.

Note that, with up to 255 concurrent readers per orec, the perfor-
mance of the transactional version ofraytrace degraded signifi-
cantly above 16 threads. This indicates that the original limitation
of 15 concurrent readers per orec was acting as a serendipitous con-
tention management mechanism: it caused transactions to wait for
a while before acquiring the orec, whereas when all readers could
acquire the orec without waiting, the cost of modifying the orec in-
creased because doing so caused a larger number of transactions to
abort. This points to an interesting opportunity for contention man-
agement, in which read sharing is limited by policy, rather than
by implementation constraints. Whether such a technique could be
used effectively is unclear.

4.4 rand-array benchmark

In this section, we report on our simulation studies, in which we
used the simplerand-array microbenchmark to evaluate HyTM’s
ability to mix HTM and STM transactions, and to compare its
performance in various configurations against standard lock-based
approaches. In therand-array benchmark, we have an array of
M counters. Each ofN threads performs 1,000 iterations, each of
which chooses a set ofK counters, and increments all of them in
a single transactional section. We implemented three versions: one
that uses a single lock to protect the whole array; one that uses one
lock per counter; and one that uses a transactional section to per-
form the increments. To avoid deadlock, the fine-grained locking
version sorts the chosen counters before acquiring the locks.

In our initial software-only experiments with therand-array
benchmark, even theK = 1 case did not scale well for the
software-only transactified version. We quickly realized that the

address of the array was stored in a global shared variable: because
the STM did not know it was a constant, every transaction acquired
read ownership of the associated orec, causing poor scalability. We
fixed this problem by reading the address of the array into a local
variable before beginning the transaction. There are two points
to take away from this. First, some simple programming tricks
can avoid potential performance pitfalls transactional programmers
might encounter. Second, the compiler should optimize STM calls
for reading immutable data.

We used the simulators described in Section 4.1 to compare the
performance of therand-array benchmark implemented using
coarse-grained locking, fine-grained locking, HyTM in software-
only mode, HyTM with HTM support, and LogTM. For HyTM
with HTM support, we tested two simple schemes for managing
conflicts. In the “immediate failover” scheme, any transaction that
fails its first HTM attempt immediately switches to software and
retries in software until it completes. In the “backoff” scheme, we
employ a simple capped exponential backoff scheme, resorting to
software only if the transaction fails using HTM 10 times.

Experiments using the neutered simulator (not shown) showed
no noticeable difference to the unneutered ones. This is not sur-
prising, as this benchmark consists of small transactions that al-
most always fit in the cache. The neutered tests will be more mean-
ingful when we experiment with more realistic application codes.
Based on studies in the literature [3, 7, 23], we expect that in many
cases almost all transactions will not overflow on-chip resources,
and thus neutered performance will closely track unneutered per-
formance, even for more realistic codes.

We present simulation data based on therand-array bench-
mark with K = 10; that is, each operation randomly chooses 10
counters out ofM and increments each of them. For a “low con-
tention” experiment we choseM=1,000,000 (Figure 3(a)), and for
“high contention” we choseM=1,000 (Figure 3(b)). In each ex-
periment, we varied the number of threads between 1 and 32, and
each thread performed 1,000 operations. Results are presented in
terms of throughput (operations per second). The graphs on the
right show a closer look at the graphs on the left for 1 to 4 threads.

First, we observe that with one thread, coarse-grained locking
and LogTM provide the highest throughput, while the fine-grained
locking and HyTM versions incur a cost without providing any
benefit because there is no concurrency available. We explain in
Section 4.5 why we expect that HyTM with HTM support can
ultimately provide performance similar to that of coarse-grained
locking and LogTM in this case.

Next, we observe that LogTM provides good scalability in the
low-contention experiment (Figure 3(a)), as any respectable HTM
solution would in this case (low contention, small transactions).
The throughput of the coarse-grained locking implementation de-
grades with each additional thread, again as expected. Even unop-
timized, the software-only HyTM configuration scales well enough
to outperform coarse-grained locking for 4 or more threads.

The fine-grained locking approach rewards the additional pro-
gramming effort as soon as more than 1 thread is present, and
consistently improves throughput as more threads are added. The
HTM-assisted HyTM configurations provide this benefit with-
out additional programming effort, and outperform even the fine-
grained locking implementation for 8 or more threads. In this low-
contention experiment, conflicts are rare so the difference between
the immediate-failover and backoff configurations is minimal.

Next we turn to theM=1,000 experiment (Figure 3(b)). First, all
of the implementations achieve higher throughput for the single-
threaded case than they did withM=1,000,000. This is because
choosing from 1,000 instead of 1,000,000 counters results in better
locality in the 16KB simulated L1 cache. However, due to the
increased contention that follows from choosing from a smaller
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Figure 3. rand-array experiments: (a)M=1,000,000 (b)M=1,000 (Closeups on right.)

set of counters, all of them scale worse than they did in the low-
contention experiment. Indeed, from 8 threads onwards, adding
more threads significantly degrades performance for both coarse-
grainedand fine-grained locking! Meanwhile, the software-only
HyTM configuration manages to maintain throughput—though not
increasing it much—up to 32 threads. Again, we believe that the
lack of scalability is due to poor contention management, and we
expect to be able to improve it.

That our unoptimized STM scales better than the hand-crafted
fine-grained locking implementation demonstrates the advantages
of transactional programming over lock-based programming, even
without HTM support. As discussed below, we also see the perfor-
mance benefits offered by HTM support; with the HyTM approach,
we can use simple transactional code in existing systems today, and
get the benefit of best-effort HTM support when it becomes avail-
able, without changing application code.

LogTM provides the best performance and scalability, as ex-
pected. But we also see that the HTM-assisted HyTM configuration
with backoff tracks LogTM’s scalability well, quickly reducing the
performance gap exhibited in the single-threaded case.

We used the immediate-failover HyTM configuration to explore
the consequences of the so-called “cascade effect”, in which trans-
actions that fail and resort to software then conflict with other
transactions causing them too to resort to software, potentially se-
riously impacting performance. While we do not deny the poten-
tial for such a scenario, we believe it can be effectively managed

through good contention management policies. This experiment
clearly shows the benefit of a simple backoff scheme for HTM
transactions, for example. Furthermore, in this high-contention ex-
periment (M=1,000), many transactions conflict, so many trans-
actions resort to software, and therefore scalability is largely de-
termined by that of the software transactions which, as we have
already observed, is not yet very good under contention. Our re-
sults therefore demonstrate that, even when we forceall retries to
software, and the software contention management is poor, HyTM
with best-effort HTM can provide significantly better performance
than existing software techniques.

On the surface, it may be surprising that software-only HyTM
outperforms the hand-crafted fine-grained locking implementation,
as it might be viewed as doing essentially the same thing “under
the covers” while adding overhead. However, there is an important
difference that is ignored by this simplistic view. When the fine-
grained locking implementation encounters a lock that is already
held by another thread, it waits, and holds all of the locks it has
already acquired. If another thread meanwhile attempts to acquire
one of these locks, then it too waits. In this way, long waiting
chains can form, essentially serializing the operations involved.
As the chains become longer, they become more likely to attract
new participants, and eventually we have a “convoy effect”, causing
the fine-grained implementation to perform little better than the
simple coarse-grained one. In contrast, when a software transaction
encounters a location that is already held by another transaction,



its contention manager can choose to abort the other transaction
and proceed, or to abort itself to avoid impeding other transactions.
Even our untuned default contention management policy (adapted
from the Polka policy of [28]) is at least somewhat effective in
avoiding this effect. We expect that scalability could be improved
further by better contention management, and this is an area for
further investigation.

There is, of course, a huge space of transactional workloads,
ranging over different mixes of transaction sizes, frequency of con-
flicts between them, mix of reads and writes, etc. We have only
scratched the surface, but nonetheless we believe that our exper-
iments demonstrate the viability of the HyTM approach. They
also support some useful observations, establish a baseline against
which to evaluate future improvements, and point to some direc-
tions for future research.

4.5 Discussion

Our main focus to date has been the scalability of HyTM with best-
effort HTM support. This has led us to design decisions that com-
promise on single-threaded performance, as well as on software-
only HyTM performance. Ideally, we would like good performance
at low contention levels and good scalability, with and without
HTM support. Below we discuss some of the tradeoffs, and some
of the avenues we think are promising for achieving this goal.

Our use of semi-visible reads (see Section 3.2) requires each
software transaction that reads a location to modify its orec in
order to allow hardware transactions to detect conflicts in a read-
only manner, and also to enable fast validation, as described in
Section 3.3. However, if software transactions are frequent (if there
is no HTM support, for example), and such reads are frequent, this
may impede scalability. A different policy is for HTM transactions
(if any) to modify the orecs for locations they modify and to use
use “invisible” reads in software transactions, which simply record
a snapshot of the orec to be validated later. The tradeoff is that
conflicts for locations read this way cannot be detected using the
fast validation optimization. These policies can be dynamically
mixed; the challenge is in deciding between them.

The performance difference between LogTM and HTM-assisted
HyTM in our experiments is due to several factors, some of which
can be eliminated by simple techniques like compiler inlining, dis-
abling statistics counters, etc. However, some simple measurements
indicate that the difference is dominated by the cost of checking for
conflicts with software transactions on each memory access. We
see numerous obvious and not-so-obvious optimization opportuni-
ties for reducing this overhead.

As explained in Section 3.4, at the risk of impeding scalabil-
ity when software transactions are frequent, HTM transactions can
be made substantially faster by checking a global count of software
transactions onceper transaction(in contrast to per-location check-
ing, or even per-access checking, as in our unoptimized prototype).
We plan to try to get the best of both worlds by adaptively choosing
between these two conflict detection mechanisms.

To the extent that the performance gap between HTM-assisted
HyTM and an unbounded HTM implementation such as LogTM
cannot be closed, the remaining difference would be the price paid
for the simplification achieved by requiring only best-effort HTM.

We believe that the performance and scalability of software
transactions can also be significantly improved through various op-
timizations and contention management techniques we have not
applied to date. Thus, even before HTM support is available, pro-
grammers can begin to realize the software engineering and scal-
ability benefits of transactional programming, with the promise of
substantial performance gains when HTM support appears.

5. Concluding remarks
We have introduced the Hybrid Transactional Memory (HyTM)
approach to implementing transactional memory so that we can
execute transactional programs in today’s systems, and can take
advantage of future “best-effort” hardware transactional memory
(HTM) support to boost performance.

We have demonstrated that HyTM in software-only mode can
provide much better scalability than simple coarse-grained lock-
ing, and is comparable with and often more scalable than even
hand-crafted fine-grained locking code, which is considerably more
difficult to program. While our prototype would benefit from bet-
ter contention management and from optimizations that improve
single-thread performance, it already performs well enough that
transactional applications can be developed and used even before
any HTM support is available. Such applications will motivate pro-
cessor designers to support transactions in hardware, and the fact
that HyTM does not require unbounded HTM makes it much eas-
ier for them to commit to implementing HTM.

Our work also demonstrates that future best-effort HTM sup-
port will significantly boost the performance of transactional pro-
grams developed using HyTM today. We hope that this expectation
will motivate programmers to consider transactional programming
even before HTM is available. HyTM thus creates a synergistic re-
lationship between transactional programs and hardware support
for them, eliminating the catch-22 that has prevented widespread
adoption of HTM until now, and allowing performance to improve
over time with incremental improvements in best-effort HTM sup-
port. We therefore believe that the time is right for the revolution in
concurrent programming that TM has been promising to begin.

To demonstrate the flexibility of the HyTM approach, we have
made minimal assumptions about the functionality and guarantees
of HTM support it can exploit. But the HyTM approach is not con-
fined to such simple HTM support. In particular, HTM functional-
ity such as nesting [4, 24], event handlers [19], etc., can be used
in HyTM systems, and again, the ability to fall back to software
may simplify designs for such features. For one example, hardware
might support only a certain number of nesting levels using on-chip
resources, and leave it to software to execute deeper nested transac-
tions. The HyTM approach gives maximal flexibility to designers
to choose which functionality to support efficiently in hardware and
up to what limits, and which cases to leave to software.

Whether unbounded HTM designs will ever be able to provide
all functionality required by transactional programs, and whether
they will provide sufficient benefit over HyTM implementations to
warrant the significant additional complexity they entail is unclear.
We encourage designers of future processors to consider whether
robust support for unbounded TM is compatible with their level of
risk, resources, and other constraints. But if it is not, we hope that
our work convinces them to at least provide their best effort, as
this will be enormously more valuable than no HTM support at all.
Apart from boosting the performance of HyTM, best-effort HTM
also supports a number of other useful purposes, such as selectively
eliding locks, optimizing nonblocking data structures, and optimiz-
ing the Dynamic Software Transactional Memory (DSTM) system
of Herlihy et al. [10], as explained elsewhere [20, 21].

Ongoing and future work includes improving the performance
and functionality of our prototype, and better integration with lan-
guages, debuggers (see [14]), and performance tools.
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