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Abstract: Existing optical remote sensing image change detection (CD) methods aim to learn an
appropriate discriminate decision by analyzing the feature information of bitemporal images ob-
tained at the same place. However, the complex scenes in high-resolution (HR) remote images
cause unsatisfied results, especially for some irregular and occluded objects. Although recent self-
attention-driven change detection models with CNN achieve promising effects, the computational
and consumed parameters costs emerge as an impassable gap for HR images. In this paper, we utilize
a transformer structure replacing self-attention to learn stronger feature representations per image. In
addition, concurrent vision transformer models only consider tokenizing single-dimensional image
tokens, thus failing to build multi-scale long-range interactions among features. Here, we propose a
hybrid multi-scale transformer module for HR remote images change detection, which fully models
representation attentions at hybrid scales of each image via a fine-grained self-attention mechanism.
The key idea of the hybrid transformer structure is to establish heterogeneous semantic tokens
containing multiple receptive fields, thus simultaneously preserving large object and fine-grained
features. For building relationships between features without embedding with token sequences from
the Siamese tokenizer, we also introduced a hybrid difference transformer decoder (HDTD) layer to
further strengthen multi-scale global dependencies of high-level features. Compared to capturing
single-stream tokens, our HDTD layer directly focuses representing differential features without
increasing exponential computational cost. Finally, we propose a cascade feature decoder (CFD) for
aggregating different-dimensional upsampling features by establishing difference skip-connections.
To evaluate the effectiveness of the proposed method, experiments on two HR remote sensing CD
datasets are conducted. Compared to state-of-the-art methods, our Hybrid-TransCD achieved su-
perior performance on both datasets (i.e., LEVIR-CD, SYSU-CD) with improvements of 0.75% and
1.98%, respectively.

Keywords: change detection; deep learning; transformer; self-attention

1. Introduction

Change detection (CD) belongs to the important field of intelligent interpretation
of remote sensing images, which is aimed to identify the difference of the objects or
scenes between multi-temporal sequence images, playing an important role in land cover
monitoring, urban/mining land resource management, natural disaster assessment, and so
on [1]. The purpose of CD is to obtain a pixel-level change map by analyzing the registered
bitemporal remote sensing image, where each pixel is assigned a probability representing
changed and unchanged.

Concurrent change detection methods are mainly divided into pixel-level, semantic-
level, and feature-level CD. Pixel-level CD infers the classification prediction pixel by pixel,
in which the unchanged pixels are represented as 0, and the changed pixels are represented
as 1 [2,3]. Although these methods achieved competitive results by adopting some mod-
els to solve the semantic segmentation task, this inevitably caused the complete loss of

ISPRS Int. J. Geo-Inf. 2022, 11, 263. https://doi.org/10.3390/ijgi11040263 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi11040263
https://doi.org/10.3390/ijgi11040263
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0001-5267-0936
https://doi.org/10.3390/ijgi11040263
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi11040263?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2022, 11, 263 2 of 22

spatiotemporal relationship of among bitemporal images. For semantic-level methods,
the difference of object entities in the scene are compared to obtain the discriminative
information between bitemporal images, thus the salient regions are ignored including
both large-scale and small-scale objects. The feature-level CD methods usually introduce
learning-based models for representing image features, which were subsequently used as
yardsticks for classification [4,5], but most network structures severely rely on the feature
representing ability of different layers of CNN, thus completely ignoring the effect by
modeling context relationship in the feature extraction stage. Most modern CD works
applied deep convolutional neural networks (DCNN) to obtain a pixel-level change map,
but many of them only utilized effective CNN backbone (i.e., VGG [6], ResNet [7]) to
represent bitemporal features pairs, which are limited to the network structure. Although
abundant methods adopted attention mechanisms to enhance the global context of fea-
tures, the computational efficiency faces a significant drop. Therefore, our work introduces
a supervised model for binary change detection by introducing a feature-level network
integrating transformer.

Although many learning-based methods show a good performance on public HR
datasets, there remain two limitations: (1) Under complex scenes, the object’s appearance
in bitemporal images is not consistent; (2) the measure of difference is difficult to learn
by facial spectral behaviors. As in Figure 1, the objects inside the red dashed box have an
intrinsic offset in color and visual angle, leading to inconsistent distinguish features. In
the meantime, due to the differences caused by seasonal changes, extensive irrelevant local
changes representations emerge. Under these conditions, most CNN-based methods find it
difficult to perfectly locate the change regions of interest. Although many methods tried
to address the problem by introducing different kinds of attention mechanism, almost all
consume heavy computational and memory costs. The visual transformer inherited from
natural language translation improved the computational efficiency of modeling global
context in many visual tasks. Motivated by the vision transformer (ViT [8]), we introduce
a transformer-based layer replacing self-attention to build long-distance dependencies of
each temporal feature set. Attaching with the transformer encoder, multi-head attention
is engaged to construct patch-to-patch interactions. However, prior transformer modules
only adopted fixed embedded image sequences, ignoring the multi-scale image token
representations, which means that the receptive field within the transformer layer is limited
to regular scene objects, leading to a weak field for complex scenes that shows objects
varying with diverse sizes. Further, such incomplete feature granularity among each
temporal image inevitably causes irrelevant changes at different scales. In this work, we
propose a hybrid transformer structure via token aggregation strategy for HR remote-
image change detection, which creatively represents feature correlations in the manner of
coarse-grained and fine-grained within one transformer layer. Specifically, the multi-head
attentions in our hybrid transformer are split into several groups, each of which contains
attention information with different specific granularity. For the fine-grained groups, a
small amount of tokens containing more detailed local information are aggregated. For
most of the remaining coarse-grained groups, the corresponding attention heads show the
ability to selectively capture large objects by aggregating large-sized tokens.

Figure 1. Changes of unrelated attributes in objects between bitemporal high-resolution remote
sensing images under complex scenes.
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The early late-fusion-based CD methods [9–11] applied either channel-wise concatena-
tion or spatial-level difference operations into feature pair fusion, thus producing high-level
semantic feature maps. In our proposed baseline, two manners, named Late-Diff (LD)
and Early-Diff (ED), are proposed for producing distinguished features augmented by self-
attention: (1) Dual-pair sequential tokens from a hybrid-transformer encoder (H-TE) are
followed, re-projected by a Siamese hybrid-transformer decoder (H-TD), and the generated
token pair is performed with an absolute difference operation; (2) instead of separately
reprojected per temporally encoded tokens from previous H-TE with H-TD, the ED method
differentiates between the enhanced token pair in the earlier stage for directly obtaining
discriminative difference features to be reprojected. Compared with concurrent attention-
based change detection methods, our model fully captures global long-range dependencies
in a hybrid manner, making the high-level semantic features from CNN contain richer
contextual representations.

To fully restore feature resolution in the decoder, prior methods [12] focused on adding
skip-connections from shallow-layer features to high-level layers, thus obtaining features
containing detailed texture and highly representative semantic information. U-Net++ [13]
adopted a multiple side fusion strategy for generating dense multi-level semantic change
maps, but nevertheless occupied a high computation complexity. Ref [14] proposed a scale-
selection module to adaptively aggregate the final maps from different levels of features.
However, extensive change details are neglected along with the progressive upsampling
stages in the decoder, so a cascade feature decoder was proposed to mitigate the absence of
various scale representations.

On the whole, in this work, we introduce an improved bitemporal image transformer
network to model long-range context within the bitemporal image in a multi-scale manner.
The key is that high-level representations of related changes could be represented into
serialized visual words. Our contributions can be summarized as follows:

(1) We proposed a transformer-based change detection network (Hybrid-TransCD),
which fully alleviates the extremely complex computations caused by early self-attention.
The long-range interactions captured by transformer module promoted strengthened
feature representations.

(2) A hybrid-transformer encoder (H-TE) and a hybrid-transformer decoder (H-TD)
were designed to produce stronger difference tokens (features), both of which captured
multi-scale tokens’ context within one self-attention block via token aggregation. The
proposed transformer structure merges hierarchical tokens among large-scale regions and
small-scale objects while maintaining lightweight computational and memory costs.

(3) By building relations between encoded token sequences and the original resid-
ual token, we proposed two manners for representing discriminative features between
bitemporal images, both of which captured promising difference context containing multi-
granularity information. Compared with the traditional CNN that fuses features in the
final stage to generate differential features, our designed structures improve the trans-
former layer so that the discriminative features can be directly obtained when modeling
spatiotemporal context.

(4) To utilize richer coarse-grained and fine-grained features among high and shallow
layers, a cascade feature decoder was introduced to achieve dense change prediction.

(5) The abundant experiments demonstrate that the proposed approach performs
better than other attention-based and learning-based change detection methods concerning
F1 and parameters cost. In particular, we achieve an improvement of 0.75 and 1.98 points
on the LEVIR-CD and SYSU-CD datasets, respectively, compared to the state-of-the-art
methods.

2. Related Work
2.1. Attention-Based Methods

Recently, global context modeling and long-range dependencies grasping have at-
tracted increasing attention in remote sensing image change detection, and many attention-
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based mechanisms, including channel-attention, spatial-attention, and self-attention, are
being gradually applied to multi-temporal spatiotemporal correlation modeling [15–17].
However, these methods only establish the long-range context of each temporal image
separately, or directly update the initially fused image by reweighting in spatial and
channel spaces. Some works [18,19] achieved promising performance by dense no-local
operations to construct pixel-to-pixel semantic difference correlation between bitemporal
images, but the majority have loaded computational/memory cost, causing an inefficient
learning process for HR remote sensing images. Zhang [20] pointed out that the current
deep-learning-based change detection methods have certain limitations in deep feature
fusion and supervision, so they proposed a deep supervised image fusion network with
a dual-branch architecture, improving the ability to distinguish differences by inserting
a spatial attention module and a channel attention module into multi-level feature lay-
ers. Raza [21] proposed ultimate fusion strategies based on spatial/channel attention by
repeating multiple times, thus acting to refine the multi-scale features.

2.2. Vision Transformer

Motivated by ViT, BiT [22] firstly proposed a bitemporal image transformer network
for effectively modeling spatial–temporal contexts, which innovatively proved the enhanc-
ing ability by combining a CNN and a transformer. TransCD [23] considered the limitation
of local receptive field of traditional CNN networks, so they incorporated a Siamese vision
transformer (SViT) in a feature difference SCD framework to solve the scene change detec-
tion task. However, these mentioned transformer-based CD frameworks are merely capable
of capturing global interdependencies of single-scale objects within each transformer layer,
which tend to lose robustness in rich spatial scenes of remote sensing images.

Recent versatile vision transformer models such as PVT [24] and swin transformer [25]
proposed effective solutions to heavy computational cost existing in a pure transformer-
based network: the former considered representing high-resolution features by replacing
coarse-grained image patches with fine-grained ones, and the token lengths were sub-
sequently reduced, adopting a progressive pyramid strategy. The latter introduced a
hierarchical structure to reduce the heavy computational cost existing in token-level self-
attention, and the shifted windows method facilitates interaction between adjacent patch
groups. Although both of them alleviated the computational and memory costs caused by
large-resolution feature maps, the transformer encoder blocks either merely modeled local
context within the narrow region or captured mixed fine-grained information between
objects and irrelevant backgrounds. To solve the above limitations, we introduce a hybrid
transformer structure for maintaining multi-granularity global dependencies among pro-
jected token pairs, thus acquiring difference representations between bitemporal images
for both large and small objects. The effect comparisons are shown in Figure 2.

ViT PVT Ours

Figure 2. Comparison of recent attention mechanisms in change detection. The areas connected by
the yellow dotted line represent the difference in token information between the multi-temporal
image regions, where the number of yellow circles reveals the number of computations required for
self-attention while the size of the circle represents the receptive field where the token is located.
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Other works [26] built multi-scale feature interactions by constructing progressive
cross-scale self-attention within one layer, or combined the patch-wise attention to con-
structing hierarchical reception field (RF) [27]. They represent multi-granularity features
at the cost of increasing redundant branches for large-scale patches, causing yet imper-
fect computational efficiency. In this work, we design a hybrid vision change detection
transformer module for enhancing not only large change regions (e.g., building) but also
elaborate small objects (e.g., car). Significantly, we propose two transformer-based modules
(transformer encoder and difference transformer decoder) to model the semantic context
of bitemporal tokens and pixel-level difference tokens respectively, both of which are
composed with the various number (N and M) of hybrid transformer blocks.

3. Materials and Methods
3.1. Network Overview

Similar to most late-fusion methods, the proposed method constructs a discriminative
difference feature map in the highest layer, which means the extracted features pair from
CNN backbone are enhanced by the hybrid transformer first. Then, the produced difference
feature maps are forwarded into the decoder to restore context change representation with
initial size. Significantly different from the general CD pipeline, which treats fused features
of bitemporal images from the highest layer as change semantic representations, here,
we introduced transformer structure into the feature fusion stage to obtain pixel-level
discriminative features with the compact tokens pair.

The overall network flow is shown in Figure 3. A hybrid transformer module is
incorporated into the general CNN-based pipeline to leverage an elaborate bitemporal
feature pair extracted by the Siamese backbone expressed as f i ∈ RC×H×W , i = 1, 2,
and global context enhanced by the transformer, thus generating an encoded token pair
denoted as Ti ∈ R(P×C)×D, i = 1, 2, where P represents the embed patch number, while the
D represents the predefined parameter of token hidden dimensions to be projected.

Linear 
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Figure 3. Overall architecture of our Hybrid-TransCD.

Specifically, regarding each temporal feature, a hybrid-transformer encoder (H-TE) is
employed for building coarse-grained and fine-grained patch embeddings. The generated
semantic tokens pair Ti

enc ∈ RP×DL , i = 1, 2 together with corresponding residual patch
embeddings Ti

res ∈ RP×DL ; i = 1, 2 are forwarded into the hybrid-transformer decoder
(H-DE) layer to leverage dependencies between encoded semantic tokens and original pixel-
level features, the generated difference tokens Tdi f f ∈ RP×D are subsequently restored into
a feature-dimensional tensor represented as fdi f f ∈ H×W×D by performing permutation
and reshaping operations, where D is the predefined number of hidden channels. As the
absolute difference is first taken from the encoded token pair and then decoded (early
difference), or the token pair is decoded first and then made (late difference), the produced
features contain abundant semantic change information. Subsequently, the fused features
accompanied by skip-connections from CNN backbone are upsampled to restore original
resolution by the proposed cascade feature decoder. The prediction head composed of a 1×
1 convolution is employed for generating a predicted change probability map P ∈ R2×H×W .
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Significantly, the hybrid ResNet [7], rather than a pure transformer extractor, is em-
ployed for leveraging CNN-transformer strength. The Siamese H-TE is constructed by a
multiple hybrid encoder transformer block (M) while the H-TD is composed of N hybrid
decoder transformer blocks, thus stabilizing appropriate computation efficiency.

3.2. Hybrid-Transformer Encoder

As the major component of ViT, the transformer encoder module is used to extract
image features. Specifically, the original two-dimensional image is converted into a one-
dimensional embedding sequence, that is, the input X ∈ H ×W × C is divided into block
sequences of size P× P, and the sequence length is HW/P2. At the same time, position
embedding is added to encode the position information of tokens, avoiding the model,
to learn absolute position information with the semantics of image patches. As can be
seen from Figure 4, the transformer encoder contains a multi-head attention (MHA), two
normalization layers (Norm) and a multi-layer perceptron layer (MLP), performing with the
scaled dot product attention, as shown in Figure 5. The query, key, and value are produced
by 1× 1 convolution, where key and value are paired. According to self-attention, the inner
product is calculated by matching k key vectors (K ∈ Rk×d) with query vector (Q ∈ Rd),
which is then normalized by So f tmax. For multi-head attention MHA (Figure 6), h attention
heads act on the input sequence, respectively, and in practice, the image sequence patches
are divided into h subsequences with the size of N × d, and the outputs from h different
attention heads are concatenated together. Finally, a linear transformation is performed to
obtain the ultimate output, which is expressed as

MSA(X) = Concat(head1, . . . , headh)W0) (1)

where,
headi = Attention(XWQ

i , XWK
i , XWV

i ) (2)

For each MSA, a feedforward network (FFN) is followed for nonlinear mapping.
Given the high-level feature f i ∈ RC×H×W , i = 1, 2 represented by CNN, the tokeniza-

tion operation is firstly performed to obtain two-dimensional patch sequences denoted as
xj

i ∈ RP×C|i = 1, 2; j = 1, . . . , N, where the patch size is P× P, and N = HW
P means the

length of patches.
Then, the serialized patches are embedded into latent high-dimensional space (D)

using learnable linear projections. Specifically, we take a convolution with a P× P kernel
size and the stride of P. To learn patch position information, we added trainable position
embedding as follows:

Ti = [x1E; x2E; . . . ; xN E] + Epos, i = 1, 2 (3)

where E ∈ R(P2·C)×D is the projection weight of patch embeddings, and Epos ∈ RN×D

encodes the space–time dimensional absolute positions of tokens.

Figure 4. Overall architecture of the ViT encoder.
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Figure 5. The illustration of scaled dot product attention.

Figure 6. The structure of multi-head attention.

The linearly projected tokens pair is fed into the Siamese encoder containing mul-
tiple hybrid transformer encoder blocks for producing richer semantic context among
per-temporal image. For each hybrid transformer encoder block, the forwarded input is
normalized by the pre-norm residual unit (PreNorm) [8] at first. Then, the output sequences
are projected into query (Q), key (K), and value (V). Next, an improved hybrid multi-head
self-attention (H-MSA) operation is adopted to parallelly compute hybrid self-attention
(Figure 7). Different from the swin [25] that splits broader Q, K, V into multiple small
regions, we follow the SRA layer in PVT [24] to adopt a hybrid spatial–reduction attention
strategy, to mitigate the computational cost and capture multi-granularity semantic infor-
mation in the meantime. The comparisons between different self-attention manners are
depicted in Figure 8. Instead of applying self-attention globally on final downsampled fea-
ture maps or local self-attention on large-scale feature maps within divided small regions,
our hybrid self-attention employs token aggregation among multiple key–value pairs,
where each key–value pair is generated by downsampling to different sizes. Specifically, at
each block b, the K and V from different heads are represented as

Qi = T(b−1)WQ
i ,

Ki,Vi = MTA(T(b−1), ri)WK
i , MTA(T(b−1), ri)WV

i ,

Vi = Vi + LA(Vi)

(4)

where WQ
i , WK

i , and WV
i are learnable linear projection weights for the previous output

T(b−1) in the i-th head. The MTA(.; ri) perform a multi-scale token aggregation operation
with the downsampling rate of ri in the i-th head. Here, a convolution layer with kernel
size 1× 1 and stride of ri is implemented. In actuality, various ri within one layer among
multiple heads brings multi-scale self-attention computed by K and V. LA(·) is the local
augment stage of MTA, implemented by a depthwise convolution for V. Compared with
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the SRA module in PVT, the transformer encoder learns complementary fine-grained and
coarse spatiotemporal spectrum information. The i-th attention head is calculated by

headi = σ(
QiKT

i
2
√

Dh
)Vi (5)

where Dh represents projected channel dimension and σ is the softmax function. The multi-
head self-attention (MSA) then perform a concatenation operation to fuse representation
information from different dimension spaces. Specifically,

T(b−1)
enc = MSA(LN(Concat(head1, . . . , headh)W)) + T(b−1)

enc ,

T(b−1)
enc = MLP(LN(T(b−1)

enc )) + T(b−1)
enc

(6)

where W ∈ RhDh×C is the linear projection weight matrix while h denotes the head number.
The MLP is the feedforward layer to reproject tokens normalized by layer norm (LN);
here, we give an improved detail-enhancement (DE) feedforward layer to complement
local representations specified for details. As in Figure 9, compared with traditional ViT
and PVT, we add a DE layer between two fully connected layers, thus preserving fine-
grained local details, where DWConv and GELU are depthwise separable convolution and
nonlinear activation functions. The formula is

MLP(T(b−1)) = σ(T(b−1)W1 + DE(T(b−1)W1))W2 (7)

where W1 and W2 are learnable weight parameters of FC.
From above, our hybrid transformer block is capable of capturing objects of different

scales. By controlling the downsampling rate r, we can achieve the available performance
at the cost of efficient computational costs. Specifically, the larger r is, the more short tokens
(K, V) are merged, thus producing richer semantic tokens for large regions in a lightweight
manner. On the contrary, the smaller r preserves more local details for small objects. The
integration of multiple r within one attention block learns multi-granularity features. In
our work, we construct Siamese H-TE with different numbers of hybrid transformer blocks,
generating encoded semantic tokens Ti

enc, i = 1, 2 among bitemporal images.

Embeded 

Patches

LayerNorm

Hybrid 

Multi-Head

Self Attention

MLP

LayerNorm

N

iii xxx ,,,
21
L

i

encT

M´

q k v

Figure 7. The architecture of the hybrid-transformer encoder block. The embed patches of each
temporal feature are encoded by our improved hybrid multi-head self attention and MLP.
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Figure 9. Comparisons of the feedforward layer between different transformer-based models. The
GELU and DWConv represent Gaussian error linear units function and depthwise convolution,
respectively.

3.3. Hybrid-Transformer Decoder

In this section, we introduce the improved hybrid-transformer decoder. The MLP,
LayerNorm, and self-attention operation here are identical to the hybrid-transformer
encoder, except the MHA is replaced by MA.

In order to capture strong discriminate semantic information, the hybrid-transformer
decoder (H-TD) layer containing two H-TD structures is proposed for projecting encoded to-
kens back to pixel-space, thus producing refined change features. Specifically, the projected
tokens pair Ti

res, i = 1, 2 from original features pair f i, i = 1, 2 together with context-
encoded tokens pair Ti, i = 1, 2 are forwarded into the H-TD layer to exploit separate
relations between each pixel per features and corresponding encoded token Ti

enc (Figure 10),
or change relations between each pixel of difference features and encoded difference
token (Figure 11).

Given feature tokens pair Ti
res ∈ RB×n_patch×D, i = 1, 2 and rich context tokens pair

Ti
enc ∈ RB×n_patch×D, i = 1, 2, the first decoder structure adopts the Siamese hybrid-

transformer decoder to obtain decoded representations Ti
dec ∈ RB×n_patch×D, i = 1, 2 for

each temporal image, which then perform reshape and permute operations to restore into
the final pixel-level features pair fi ∈ RB×D×H×W , i = 1, 2. Finally, the change discrim-
ination feature maps are generated by performing absolute difference between f1 and
f2. Different from the first late-difference (LD) manner, the second early-difference (ED)
structure performs the difference operations in a earlier stage. In practice, the residual
tokens pair T1

res, T2
res and encoded tokens pair T1

enc, T2
enc subtract, respectively, the outputs
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that are efficiently exploited with the H-TD. By difference relations modeling directly, the
produced token sequence represents a pixel-level semantic change discrimination. The
permutation and reshape operations are also accomplished to obtain high-level change
features.

........ .......

..... .......

Hybrid-Transformer 

Decoder

Hybrid-Transformer 

Decoder

... ...

... ...

DpatchnBTres ´´Î _
1

DpatchnBTres ´´Î _
2

DpatchnBT ´´Î _
1

enc

DpatchnBT ´´Î _
2

enc

... ...

... ...

reshapepermute&permutepermutepermute

reshapepermute&

WHDBf ´´´Î1

WHDBf ´´´Î2

AbsSub&

WHDBfdiff ´´´Î

Siamese

Figure 10. The late-difference structure of the hybrid-transformer decoder.

.......... ......... .......... .........

Hybrid-Transformer 
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... ... ... ...

DpatchnBTres ´´Î _
1 DpatchnBTres ´´Î _

2

DpatchnBT ´´Î _
1

enc DpatchnBT ´´Î _
2

enc

reshapepermute&

AbsSub&

WHDBX diff ´´´Î

... ...

... ...

AbsSub&

... ...

DpatchnBTdiff ´´Î _

Figure 11. The early-difference structure of the hybrid-transformer decoder.

Significantly, our H-TD consists of N blocks of the hybrid transformer decoder block,
each of which constructs improved hybrid multi-head attention (H-MA) and DE feedfor-
ward layers. Rather than build self-attention within encoded tokens, the MA strongly
builds mutual attention between encoded tokens and the original unprocessed ones. In
addition, both ED and LD capture multi-scale representations thanks to the multiple values
of ri, thus capturing small-change objects surrounded by large background regions. The
specific structure of the hybrid transformer decoder block is illustrated in Figure 12; the
only difference from the H-TD block is that the queries in MA are derived from

{
T1

res, T2
res
}

or |T1
res − T2

res| rather than the pure tokens Ti
enc, i = 1, 2. The formulations are defined as

Qi = T(b−1)
res WQ

i ,

Ki,Vi = MTA(T(b−1)
enc , ri)WK

i , MTA(T(b−1)
enc , ri)WV

i ,

Vi = Vi + LA(Vi)

(8)

to obtain decoded tokens, formulated as

T(b−1)
dec = MSA(LN(Concat(head1, . . . , headh)W)) + Tb−1

dec ,

T(b−1)
dec = MLP(LN(Tb−1

dec )) + Tb−1
dec ,

where headi = σ(
QiKT

i
2
√

Dh
)Vi

(9)
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Figure 12. The architecture of the hybrid-transformer decoder block. The encoded tokens pair is
decoded by the Siamese transformer decoder, and the self-attention is replaced by hybrid multi-
head attention.

The decoded difference tokens set Tdi f f ∈ Rn_patch×D is finally unfolded into three-
dimensional features fdi f f ∈ D× H ×W.

3.4. Cascaded Feature Decoder

Concurrent vision works demonstrate the efficiency of multi-scale feature fusion in
encoded low-level and high-level layers; skip-connections in decoder stages powerfully
mitigate the missing details caused by global upsampling processes. Here, we propose a
cascaded feature decoder (CFD) to aggregate semantic features varying multiple scales in a
dense manner. As in Figure 13, the feature maps enhanced by our hybrid transformer are
upsampled to the common scale from the highest layer of CNN backbone, and the output
together with previous skip-connection acts as the input of the next decoder block. The
features in the n-th decoder stage can be formulated as

Fn = Concat(gn(Fn−1), un(Fn−1)) (10)

where g(·) and u(·) are 3× 3 convolution and upsampling operations, respectively. In our
work, four decoder blocks are employed for generating decoded features, where each block
contains upsampling with bilinear interpolation, concatenation, and two convolutions
with kernel size of 3× 3. For multiple decoder stages, the decoded channel numbers are
[256, 128, 64, 16].

Until now, we have obtained upsampled feature maps f ∈ RC×H×W , where the spatial
size is identical to the input image. To obtain change probability maps P ∈ 2× H ×W,
a prediction head composed of a light convolution and a softmax function are utilized
to map dense prediction result, where the convolution kernel size is 3× 3 and padding
is 1. The pixel-wise probability map among each channel of P represents the changed
and unchanged probability corresponding to this pixel, where the higher value will be
determined. In the inference stage, a pixel-wise Argmax operation is adopted for producing
a visual prediction map.
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Figure 13. The architecture of the cascaded feature decoder. The upsampling is achieved by
bilinear interpolation.

4. Experiments
4.1. Datasets and Implementation Details

In this work, we conduct experiments on two HR remote images change detection
datasets. The first is LEVIR-CD [16], which was publicly collected from Google Earth (GE)
covering multiple regions at different times (2002 to 2018). It contains 637 bitemporal
image patch pairs of size 1024× 1024, where the great majority of land-cover changes focus
on manmade building changes. Following the default split ratio, 445:64:128 images are
obtained as training/validation/test set. Considering the GPU memory consumption, all
the images are cut into small patches of size 256× 256. Therefore, 7120/1024/2048 pairs
of patches are generated for training/validation/test. Another is SYSU-CD [28], which
contains 20,000 pairs of 0.5/pixel aerial images of size 256× 256 within the time period from
2007 to 2014 in Hong Kong. Different from the former, SYSU-CD constructs fine-grained
change types including the new construction and destruction of buildings, the replacement
of urban ground, seasonal changes in vegetation and oceans, and the road expansion. The
default training/validation/test split is 12,000/4000/4000.

To demonstrate the effectiveness of our Hybrid-TransCD, some basic models are set
for ablation comparison.

• Baseline: A light CNN backbone (ResNet18) with a single-level decoder sub-network.
The decoder sub-network comprises four upsampling blocks for progressively restor-
ing the image scale, and the fusion among multiple outputs is used to predict the final
change map.

• H-Res-E4-D4-ED-CFD: The CNN backbone with the proposed hybrid transformer
layer including four H-TE and four H-TD blocks, the ED decoder structure performs
as the H-TD layer. In the feature decoder stages, the cascaded feature decoder is
utilized.

• H-Res-E4-D4-LD-CFD: The same as H-Res-E4-D4-ED-CFD, except that the ED de-
coder is replaced by LD.

• H-Res-E1-D1-ED-CFD: The numbers of H-TE block (M) and H-TD block (N) are both
reduced to 1.

• H-Res-E1-D1-LD-CFD: Identical to the previous one except the ED decoder structure
is replaced by LD.

• H-Res-E4-D0-LD-CFD: The H-TD behind H-TE is removed by setting N to 0 while
M is 4.

• H-Res-E0-D4-LD-CFD: The H-TE is removed by setting M to 0 while four H-TDs
are employed.

• H-E4-D4-LD-CFD: Different from the above, which combines CNN-based and
transformer-based features, the input here is directly processed by our hybrid trans-
former network. Specifically, the bitemporal images Ii ∈ R3×H×W,i=1,2 are linearly
projected rather than f i.



ISPRS Int. J. Geo-Inf. 2022, 11, 263 13 of 22

• H-Res-E4-D4-LD-Single: Compared to H-Res-E4-D4-LD-CFD, the cascade feature
decoder is not applied to this structure. Specifically, the feature maps from the last
decoder stage are concatenated with skip-connections for producing final features.

Our work is implemented by PyTorch with a single NVIDIA 3090 GPU of 24 GB
memory. The generic data augmentation operations, including crop, flip, rotation, and
Gaussian blur are adopted to avoid overfitting. The Adam solver [29] is utilized as the
model optimizer with β1 = 0.5 and β2 = 0.999. The initial learning rate is 0.0005 and
linearly decays according to the training iterations. For both LEVIR-CD and SYSU-CD
datasets, our default training epochs is 100. The backbone ResNet (i.e., ResNet18) or hybrid-
ViT are pretrained on ImageNet [30]. In the training stage, we use cross entropy function as
the loss function of the model, which is defined as

L=
1

H ×W

H×W

∑
i=1

[yi · log(pi)+(1− yi) · log(1− pi)] (11)

To verify the effectiveness of our method, six metrics are used, as follows:

OA =
TP + TN

TP + FP + TN + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 =
2 · Precision · Recall
Precision + Recall

(15)

IoU =
TP

FP + FN + TP
(16)

Kappa =
(OA− P)
(1− P)

, (17)

where P =
(TP + FP)(TP + FN) + (FN + TN)(FP + TN)

(TP + FP + TN + FN)2 (18)

where true positive (TP) indicates the number of pixels predicted correctly as changed,
true negative (TN) represents the number of pixels predicted correctly as unchanged, false
positive (FP) denotes the number of pixels predicted incorrectly as changed while false
negative (FN) means the number of pixels predicted incorrectly as unchanged. F1 compre-
hensively considers the precision and recall, thus performing the main index. In addition,
most public change detection datasets inherently have class-imbalanced characteristics,
making the model partial to a single category. Therefore, Kappa achieves penalizing the
“bias” index by replacing OA, which means the more unbalanced the confusion matrix is,
the higher the p and the lower the Kappa, thereby giving a low score to the model with
strong “bias”.

4.2. Ablation Study of Existing Methods

Here, we experiment on two datasets to compare the proposed method with re-
cent change detection methods, which include pure CNN-based, attention-based, and
transformer-based models. As is shown in Table 1, the first four items only build end-
to-end deep convolution neural networks without considering feature global contexts,
where the fourth item proposes a more complex multi-level resolution fusion network
framework. Although U-Net++ achieves a higher F1 (4.22%) and IoU (0.98%) compared to
FC-Siam-Conc, the computational cost is comparatively huge. Our Hybrid-TransCD out-
performs the FC-Siam-Conc by 6.37/1.96/3.58 points of F1, IoU, and Kappa, while the OA
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(99.00%) achieves insignificant improvement. The next two items are all attention-based CD
methods, where DASNet introduces spatial attention and channel attention modules based
on metric learning, but for the dual features pair, rather discriminative change features
are utilized, resulting in 3.78 points of F1 and 5.31 points of IOU reduced compared with
FC-Siam-Conc. BiT firstly introduced a transformer into a change detection deep network
and achieved the highest F1, OA, and Kappa compared with earlier CNN-based methods.
However, BiT merely adopted single-scale ViT within one transformer layer, causing weak
Precision (89.24%) and IoU (80.68%), which are 1.42% and 0.26% lower than U-Net++,
respectively. Our Hybrid-TransCD performs with hybrid ViTs to model multi-scale atten-
tions per layer, so multiple objects of different scales in the scene are effectively captured.
Compared with U-Net++, our method achieves an improvement by 2.15 points of F1 and
0.98 points of IoU. Compared with attention-based methods such as STANet, we are
slightly worse on Recall by 2.3%, but the IoU (81.92%) and Kappa (89.54%) are 3.28 points
and 2.88 points higher, respectively. Due to the high-resolution nature of implicit change
regions inherent in this dataset, all the methods achieve high OA. The visual comparison
results of LEVIR-CD are shown in Figure 14.

Table 1. Comparison results of the LEVIR-CD dataset.

Method Precision Recall F1 IoU OA Kappa

FC-EF 81.26 80.17 80.71 71.53 98.39 84.10
FC-Siam-Conc 90.99 76.77 83.69 79.96 98.49 85.96
FC-Siam-Diff 89.64 82.68 86.02 78.86 98.65 85.78

U-Net++ 90.66 85.32 87.91 80.94 98.24 86.79
DASNet 80.76 79.53 79.91 74.65 94.32 85.14
STANet 83.81 91.02 87.27 78.64 98.87 86.66

BiT 89.24 89.37 89.31 80.68 98.92 88.97
Hybrid-TransCD (ours) 91.45 88.72 90.06 81.92 99.00 89.54

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 14. Visualizing comparison results of LEVIR-CD. Red indicates unchanged pixels predicted
by error, and green indicates ignored changed pixels. (a) Image T1. (b) Image T2. (c) Ground
truth. (d) FC-EF. (e) FC-Siam-Conc. (f) U-Net++. (g) DASNet. (h) STANet. (i) BiT. (j) Hybrid-
TransCD (ours).

Similarly, the quantitative comparison results of SYSU-CD are shown in Table 2. Our
Hybrid-TransCD achieves superior F1 (80.13%), IoU (66.84%) and Kappa (74.27%) among
state-of-the-art learning-based CD methods. Compared to the lightweight networks listed
in the first three items, our method acquires significant improvement in all metrics. As for
better model FC-Siam-Conc, the 3.78/5.09/1.94 points on F1, IoU and Kappa are improved.
Although U-Net++ achieved slightly inferior Precision (81.36%), which is 7.77 points lower
than FC-Siam-Diff (89.13%), the Recall (75.39%) is significantly improved by 14.18 points.
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Compared to our model, 1.87 points of F1 and 4.7 points of IoU are improved. The STANet
achieves the best Recall (85.33%), and the Precision is much lower than our 12.29%, causing
a 2.76-point drop. The BiT gained an improvement on F1 and kappa, and the improvement
of Recall in complex scenarios is still not stable. The visual comparison results on SYSU-CD
are shown in Figure 15.

Table 2. Comparison results of the SYSU-CD dataset.

Method Precision Recall F1 IoU OA Kappa

FC-EF 74.32 75.84 75.07 60.09 86.02 72.14
FC-Siam-Conc 82.54 71.03 76.35 61.75 86.17 72.33
FC-Siam-Diff 89.13 61.21 72.57 59.96 82.11 71.04

U-Net++ 81.36 75.39 78.26 62.14 86.39 72.36
DASNet 68.14 70.01 69.14 60.65 80.14 68.37
STANet 70.76 85.33 77.37 63.09 87.96 71.24

BiT 82.18 74.49 78.15 64.13 90.18 73.14
Hybrid-TransCD (ours) 83.05 77.40 80.13 66.84 90.95 74.27

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 15. Visualizing comparison results on SYSU-CD. (a) Image T1. (b) Image T2. (c) Ground
truth. (d) FC-EF. (e) FC-Siam-Conc. (f) U-Net++. (g) DASNet. (h) STANet. (i) BiT. (j) Hybrid-
TransCD (ours).

The computational efficiency comparison of different algorithms is shown in Table 3,
where our model uses four hybrid encoding blocks and four hybrid decoding blocks. As
can be seen, compared with UNet++, our model only increases 35.31 M parameters, but we
obtain better results. The attention-based method STANet consumes 116.93 M parameters
due to more matrix multiplication operations. Although we only increase parameters of
46.97 M, the effect is significantly improved. BiT adopts the traditional ViT model, but
ignores multi-scale representations, so we achieve multi-granularity context capture by
improving multi-head attention, and the parameters are only increased by 44.72 M.

Table 3. Comparison of computational efficiency of different methods.

Method Params (M) FLOPs (G)

FC-EF 81.35 20.36
FC-Siam-Conc 81.54 21.58
FC-Siam-Diff 81.35 21.42

U-Net++ 131.26 47.35
DASNet 108.69 31.33
STANet 116.93 36.58

BiT 121.85 42.99
Hybrid-TransCD (ours) 166.57 51.38
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4.3. Ablation Study of Proposed Modules

To assess the effectiveness of the introduced hybrid-transformer, multiple model
structures in Section 4.1 were used to experiment on the test data of LEVIR-CD and
SYSU-CD datasets. As in Table 4, the necessary metrics including F1, Kappa, and OA are
given among multiple methods. In addition, the numbers of model parameters (Params)
and computational cost (FLOPs) indicate the complexity of the corresponding structure.
By comparing the first three items, we can observe that both ED and LD transformer
decoder manners are effective to our CD task, where ED and LD mean early-difference
and late-difference structures of the hybrid-transformer decoder, respectively. The H − Res
indicates whether the ResNet backbone is utilized for representing shallow semantic
features. The E(i)− D(j), i, j = 0, . . . 4 represents the numbers of H-TE block and H-TD
block, where 0 means that the transformer operation is not adopted to the corresponding
encoder and decoder. We can observe that H-Res-E4-D4-ED-CFD achieves the highest
F1, Kappa, and IoU on both datasets but occupies slightly larger computational costs.
Compared with baseline, H-Res-E4-D4-LD-CFD improved by 2.94 and 4.71 points on F1
and IoU, respectively, while FLOPs (55.18 G) merely about doubled. By comparing H-Res-
E4-D4-LD-CFD and H-Res-E1-D1-LD-CFD, more hybrid transformer blocks demonstrate
the improvement by 0.83%/0.29% of F1 and 0.45%/0.41% of IoU on LEVIR/SYSU, and
the comparison between H-Res-E1-D1-ED-CFD and H-Res-E4-D4-ED-CFD is similar. By
comparing H-Res-E4-D4-LD-CFD and H-Res-E0-D4-LD-CFD, H-Res-E4-D4-LD-CFD, and
H-Res-E4-D0-LD-CFD, respectively, it is clearly proved that both H-TE and H-TD can
effectively improve the ability to capture global dependencies of our model. In addition,
the experiment is also performed with a pure transformer model method (H-E4-D4-LD-
CFD) based on the primary bitemporal images to gap the effect of extracted features by
CNN. It demonstrates that the designed hybrid-transformer structure strongly represents
discriminative semantic features for the CD task loading with lighter computational costs,
but there still exist gaps with pure CNN-based structure. Finally, the method (H-Res-E4-
D4-LD-Single) of replacing the CFD with a simple single-stream decoder is conducted
to verify the efficiency of the CFD. The visualized ablation experiment results are shown
in Figure 16, from which we observe that the low-level features from the shallow layers
of the CNN are powerfully merged with high-level semantic features enhanced by the
hybrid transformer module. In addition, many scenes where objects of different scales
are interlaced are accurately distinguished as the changing area, demonstrating the high
robustness of the proposed transformer model.

Table 4. Quantitative comparisons of different model structures.

Method
LEVIR-CD SYSU-CD

F1 Kappa IoU F1 Kappa IoU Params (M) FLOPs (G)

Baseline 86.99 86.35 76.99 75.25 67.92 62.87 16.64 26.86
H-Res-E4-D4-ED-CFD 90.06 89.54 81.92 80.13 74.27 66.84 183.83 67.58
H-Res-E4-D4-LD-CFD 89.93 89.41 81.70 79.53 73.37 66.02 173.73 55.18
H-Res-E1-D1-LD-CFD 89.10 88.36 81.25 79.24 72.72 65.61 27.69 27.72
H-Res-E1-D1-ED-CFD 89.73 89.24 81.44 77.46 70.90 63.22 27.69 27.44
H-Res-E0-D4-LD-CFD 89.21 88.65 81.33 79.05 72.97 65.36 106.08 60.63
H-Res-E4-D0-LD-CFD 88.23 87.63 78.93 71.94 64.00 56.18 106.08 60.63

H-E4-D4-LD-CFD 84.40 83.60 73.01 78.13 71.84 64.12 23.11 8.66
H-Res-E4-D4-LD-Single 88.87 88.65 80.84 78.68 72.68 65.47 166.57 51.38



ISPRS Int. J. Geo-Inf. 2022, 11, 263 17 of 22

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 16. Visual ablation results of different model structures. Panels (a)–(d) represent the results of
LEVIR-CD, and (e)–(h) represent the results of SYSU-CD. Each column, from top to bottom, represents:
baseline, H-Res-E4-D4-ED-CFD, H-Res-E4-D4-LD-CFD, H-Res-E1-D1-ED-CFD, H-Res-E1-D1-LD-
CFD, H-Res-E4-D0-LD-CFD, H-Res-E0-D4-LD-CFD, H-E4-D4-LD-CFD, H-Res-E4-D4-LD-Single.
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As our hybrid transformer structure proposes a new strategy for aggregating multi-
scale tokens, the comparisons of different token aggregation operations are given in Table 5.
Compared with linear and convolution aggregation functions, our operation obtains more
improvements with similar computation costs. Especially for those complex scale objects,
the proposed method adaptively preserves both global and local information. The visual
comparison results are given in Figure 17d,e,h, where the first four lines and the last four
lines are the results of LEVIR-CD and SYSU-CD.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 17. Visual ablations results of different token aggregation operations and different feedforward
layer, where the first four lines and the last four lines are the results of LEVIR-CD and SYSU-CD,
respectively. (a) Image T1. (b) Image T2. (c) Ground truth. (d) Linear token aggregation operation.
(e) Convolution token aggregation operation. (f) Traditional feedforward layer. (g) DW-feedforward
layer. (h) Multi-scale token aggregation operation + DE-feedforward layer.

In ViT [8], the feedforward layer simply conducts MLP operation with two linear func-
tions, causing the negligence of pixel-level information. Subsequent depthwise separable
convolutions demonstrate the global information integration capability in the feedforward
layer [25], but there is still no interaction of different token information. Therefore, we
conduct experiments on our detail-enhanced feedforward layer to demonstrate the abil-
ity of global and local token information to complement each other. From Table 6, the
traditional feedforward layer, depthwise feedforward layer, and ours are compared. The
detail-enhanced feedforward layer achieves the top performance on both datasets, while
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the model parameters (173.73 M) and FLOPs (55.19 G) are identical to the DW-feedforward
layer. The visual comparison results are given in Figure 17f–h.

Table 5. Comparisons of different token aggregation operations.

Aggregation
LEVIR-CD SYSU-CD

F1 Kappa IoU F1 Kappa IoU Params (M) FLOPs (G)

Linear 89.77 89.24 81.44 76.16 70.04 61.50 147.6 42.18
Convolution 89.82 89.27 81.52 77.17 69.73 62.82 171.71 53.47

Ours 89.93 89.41 81.70 79.53 73.37 66.02 173.73 55.18

Table 6. Comparisons of different feedforward layers.

Layers
LEVIR-CD SYSU-CD

F1 Kappa IoU F1 Kappa IoU Params (M) FLOPs (G)

FeedForward 87.84 87.24 78.32 76.57 69.80 62.03 173.65 55.14
DW-FeedForward 89.08 88.52 80.30 77.44 70.07 63.18 173.73 55.19
DE-Feedforward 89.93 89.41 81.70 79.53 73.37 66.02 173.73 55.19

5. Discussion

As proposed, the transformer module strongly represents rich semantic features
that reveal complex change objects or regions, where tokens containing both global and
local concepts effectively model multi-scale attentions. In addition, the cascade feature
decoder complements the offset gap between low-level features from CNN and high-level
features from the transformer, thus learning elaborate pixel-level semantic information.
As in Figure 18, we visualize the bitemporal feature maps generated by our hybrid
transformer and the final stage of the decoder on both datasets, where Figure 18b,e
represent the attention maps superimposed on the original T1 and T2 respectively, and
Figure 18h visualizes the heatmap from UP4. Red represents higher attention factor and
blue denotes lower factor. From Figure 18 we can observe that features enhanced by the
hybrid transformer actively learn representations related to change regions. Especially for
the building changes in the LEVIR-CD dataset, the model even distinguished the delicate
object edge. Although the SYSU-CD dataset contains large fuzzy forest and grassland
changes, the model still better emphasizes the main changes, except for some unpredictable
multi-view changes (e.g., shadows of buildings and trees). To further analyze the semantic
information of tokens, Figure 18c,f show the attention maps of tokens for bitemporal
images. As can be seen, these tokens fully capture long-range dependencies of per-image
patches, thereby discriminating changes in various categories and scales, where strips of
different colors represent different token information.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 18. Results of model visualization, where the first three lines and the last three lines are
the results of LEVIR-CD and SYSU-CD, respectively. (a) Image T1. (b) Attention map of Image 1.
(c) Attention map of Token 1. (d) Image T2. (e) Attention map of Image 2. (f) Attention map of
Token 2. (g) Ground Truth. (h) Heatmap of features from UP4.

6. Conclusions

In this work, we propose a new transformer-based network Hybrid-TransCD for HR re-
mote sensing image change detection. Compared to early CNN-based and attention-based
methods, our model achieved superior performance without increasing heavy computa-
tional costs. In the meantime, we introduced a hybrid transformer structure for capturing
multiple granularity global context dependencies. Improving on generic ViT and PVT, we
designed a new multi-scale self-attention, and the tokens representing fine-grained change
detail of small objects and coarse-grained change regions information are aggregated in
a hybrid manner, thus effectively preserving spatial–spectral features of complex scenes.
Two hybrid-transformer decoder structures are proposed to perform a backprojection on
encoded tokens, thus further obtaining context-enhanced difference discriminate features.
Both H-TE and H-TD layers are performed multiple times to represent hierarchical differ-
ence token information, where self-attention within one block is capable of capturing local
and global representations with the cost of lightweight matrix multiplication operations.
As low-level features represent rich texture details, we designed a cascade feature decoder
for progressive fusion of low-level features and semantically-rich high-level features while
restoring features resolution. The experiments on two public HR remote-image change
detection datasets demonstrate the efficiency of our method, and the training time is greatly
reduced compared with concurrent learning-based methods. In the future, we will be com-
mitted to researching more lightweight pure transformer-based change detection models,
and further improving the generalization of the model on more datasets.
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