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Abstract: 

Virtually all the known physico-chemical and biological techniques have been explored for 

treatment of extremely recalcitrant dye wastewater; none, however, has emerged as a 

panacea. A single universally applicable end-of-pipe solution appears to be unrealistic, and 

combination of appropriate techniques is deemed imperative to devise technically and 

economically feasible options. An in-depth evaluation of wide range of potential hybrid 

technologies delineated in literature along with plausible analyses of available cost 

information has been furnished. In addition to underscoring the indispensability of hybrid 

technologies, this paper also endorses the inclusion of energy and water reuse plan within 

the treatment scheme, and accordingly proposes a conceptual hybrid dye wastewater 

treatment system. 

 

KEY WORDS: dye wastewater, decolorization, hybrid treatment systems, energy and water 

reuse.   

 

I. INTRODUCTION 

 

Large amounts of dyes are annually produced and applied in many different industries, 

including the textile, cosmetic, paper, leather, pharmaceutical and food industries. 136 There 

are more than 100,000 commercially available dyes with an estimated annual production of 

over 7 x105 tons179, fifteen percent of which is lost during the dyeing process.70 The textile 

industry accounts for the two-third of the total dyestuff market 136 and consumes large 

volumes of water and other refractory chemicals for wet processing of textiles210. The 

chemical reagents used are very diverse in chemical composition, ranging from inorganic and 

low molecular weight organic compounds to polymers. 

 

The presence of even trace concentration of dyes in effluent is highly visible and undesirable. 
79 The release of colored wastewater in the ecosystem is a remarkable source of esthetic 

pollution, eutrophication and perturbations in aquatic life.70 Dye effluent usually contains 

chemicals, including dye itself, which are toxic, carcinogenic, mutagenic, or teratogenic to 

various microbiological and fish species.50 Concern arises, as many dyes are made from 
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known carcinogens such as benzidine and other aromatic compounds.179 Also azo- and nitro-

compounds have been reported to be reduced in sediments of aquatic bodies, consequently 

yielding potentially carcinogenic amines that spread in the ecosystem.211 The presence of 

dyes or their degradation products in water can also cause human health disorders such as 

nausea, hemorrhage, ulceration of skin and mucous membranes195, and can cause severe 

damage to kidney, reproductive system, liver, brain and central nervous system.94 These 

concerns have led to new and/or stricter regulations concerning colored wastewater 

discharges, compelling the dye manufacturers and users to adopt “cleaner technology” 

approaches, for instance, development of new lines of ecologically safe dyeing auxiliaries 

and improvement of exhaustion of dyes on to fiber. 79, 180, 210 

 

Concomitant with the in-house multi-dimensional pollution minimization efforts, a number of 

emerging material recovery/ reuse and end-of-pipe decolorization technologies are being 

proposed and tested at different stages of commercialization. However, due to their synthetic 

origin and complex structure deriving from the use of different chromophoric groups, dyes 

are extremely recalcitrant.179 Along with the recalcitrant nature of dye wastewater, the 

frequent daily variability of characteristics of such wastewater adds to the difficulty of 

treatment.77 Accordingly, despite the fact that virtually all the known physico-chemical and 

biological techniques have been explored for decolorization,79 none has emerged as a 

panacea. Cost-competitive biological options are rather ineffective while physico-chemical 

processes are restricted in scale of operation and pollution profile of the effluent. Table 1 lists 

the advantages and disadvantages of different individual techniques. It appears that a single, 

universally applicable end-of-pipe solution is unrealistic, and combination of different 

techniques is required to devise a technically and economically feasible option. In light of 

this researchers have put forward a wide range of hybrid decolorization techniques. Figure 1 

depicts a simplified representation of the proposed combinations.  

 

Although still mostly in laboratory stage of development, of late, a wealth of studies have 

been reported on implementation of advanced oxidation processes (AOPs) and their 

combinations for dye wastewater treatment. Many studies have focused on different 

combinations of physico-chemical treatments, which often have been employed by industries 

in simple, standalone manner. Combinations of conventional physico-chemical techniques 

with the AOPs have also appeared as attractive options. The biological systems, in addition to 

varieties of combinations among themselves, have also been explored in fusion with virtually 

all sorts of physico-chemical and advanced oxidation processes.  
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This paper offers a comprehensive review of the potential hybrid technologies delineated in 

literature for treatment of dye wastewater in general and textile wastewater in particular. 

Analogous to the aforementioned trends, the combinations have been outlined under three 

broad categories i.e., combination among AOPs, combination of physico-chemical treatments 

among themselves and those with the AOPs and, the one with the paramount importance, the 

combination of biological systems with conventional physico-chemical processes and AOPs 

(Fig.1). Before elaborating on the combinations, the basic principles and limitations of 

relevant individual techniques have been discussed briefly. Based on the array of potential 

hybrid technologies and the available cost information, a conceptual on-site textile dye 

wastewater treatment system integrated with energy and water recovery/reuse has been 

proposed.  

 

II. COMBINATION AMONG AOPs 

 

While advanced oxidation processes (AOPs) have been studied extensively both for 

recalcitrant wastewater in general and dye wastewater in particular, their commercialization 

has yet not been realized because of prevailing barriers.72,73 These processes are cost 

prohibitive and complex at the present level of their development.163 Additional impediment 

exists  in treatment of dye wastewater with relatively higher concentration of dyes, as AOPs 

are only effective for wastewater with very low concentrations of organic dyes. Thus, 

significant dilution is necessary as a facility requirement. The presence of dye 

additives/impurities such as synthetic precursors, by-products, salts and dispersing agents in 

commercial dye bath recipe causes further reduction in process efficiency. 11,149,152 Although 

the usual small-scale laboratory investigations reveal encouraging results, such studies are 

insufficient to cast light on practical feasibility of AOPs. For example, in case of 

photochemical/ photocatalytic decoloration, most of the investigations involve reactors 

ranging from as small as few tens of milliliters (e.g., 40 ml38) to several hundreds of 

milliliters (e.g., 250ml146) or at best few liters (e.g., 4L64), which are inadequate to explicitly 

address the light penetration issue, the inherent drawback of this technology. Only a handful 

of pilot plant explorations with less than persuasive192,193 or moderate187 results have been 

documented. Reports on full-scale application of sole AOP treatment of dye bath effluents are 

apparently lacking. 

Nevertheless, such processes generate a large number of highly reactive free radicals and by 

far surpass the conventional oxidants in decolorization. The conventional oxidants have more 

significant thermodynamic and kinetic limitations.46 For the AOPs, the basic reaction 

mechanism is the generation of free radicals and subsequent attack by these on the pollutant 
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organic species. Hence it is strongly believed that their combination will result in more free 

radicals, thereby increasing the rates of reactions.72,73 Moreover, some of the drawbacks of 

the individual AOPs may be eliminated by the characteristics of other AOPs. The cost/energy 

efficiency, however, will be dependent on the operating conditions and the type of the 

effluent. Table 2 furnishes a quasi-exhaustive list of typical examples of studies on 

combinations among AOPs for dye wastewater treatment. Information on type of associated 

dyes has been included wherever available. 

A. Different photochemical processes 

The photo-activated chemical reactions are characterized by a free radical mechanism 

initiated by the interaction of photons of a proper energy level with the chemical species 

present in the solution. Generation of radicals through UV radiation by the homogenous 

photochemical degradation of oxidizing compounds like hydrogen peroxide4, ozone39 or 

Fenton’s reagent152 has been frequently reported to be superior to sole UV radiation or sole 

utilization of such oxidants. Highly UV absorbing dye wastewater may inhibit process 

efficiency by limiting penetration of UV radiation, necessitating use of high-intensity UV 

lamps192 and/or a specifically designed reactor.119 One example of appropriate reactor is a 

reactor which generates internal liquor flow currents bringing all liquor components into 

close proximity to the UV source. Conversely a thin-channel coiled reactor may also be 

used.187 Arslan et al.8 proposed pre-ozonation to remove high UV-absorbing components, and 

thereby accelerate subsequent H2O2-UV treatment by increasing UV-penetration. 

Simultaneous use of UV/H2O2/O3 has also been reported to yield enhanced reaction kinetics. 

12 However, this entailed  additional cost as compared to UV/ H2O2 or UV/O3, and hence 

such use is recommended to be weighed against degree of removal required and associated 

cost. As activator of oxidants like O3 or H2O2, handful of studies have put forward other 

alternatives to UV, namely, reduced transition metals9, gamma irradiation 80,194, humic 

substances82 etc. 

 

An alternative way to obtain free radicals is the photocatalytic mechanism occurring at the 

surface of semiconductors i.e., heterogeneous photocatalysis. Various chalcogenides (oxides 

such as TiO2, ZnO, ZrO2, CeO2 etc. or sulfides such as CdS, ZnS etc.) have been used as 

photo-catalysts so far in different studies. However, titanium dioxide (TiO2) in the anatase 

form is the most commonly used photocatalyst, as it has reasonable photoactivity.143 

Moreover it also furnishes the advantages of being insoluble, comparatively inexpensive, 

non-toxic, together with having resistance to photocorrosion and biological immunity.6 The 

photocatalytic process can be carried out by simply using slurry of the fine catalyst particles 
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dispersed in the liquid phase in a reactor or by using supported/ immobilized catalysts. 

Limitations of slurry reactors are low irradiation efficiency due to the opacity of the slurry, 

fouling of the surface of the radiation source due to the decomposition of the catalyst 

particles and requirement of ultrafine catalyst to be separated from the treated liquid. On the 

other hand drawbacks of supported photocatalysis are scouring of films comprising 

immobilized powders of catalyst and reduced catalyst area to volume ratio. Recently 

fluidized bed reactors have been reported to take advantages of better use of light, ease of 

temperature control, and good contact between target compound and photocatalysts over 

slurry reactors or fixed bed reactors.  

 

Besides sole photocatalysis, reports on utilization of photocatalysis in presence of O3
146 or 

H2O2
200, exhibiting enhanced decoloration and mineralization, are also available. Considering 

the total mineralization of the compounds, the photocatalytic ozonation (UV/O3/TiO2) may 

show much lower specific energy consumption than the conventional photocatalysis 

(UV/TiO2) and ozonation (UV/H2O2/O3).
106 

 

Fenton reagent (a mixture of H2O2 and Fe2+) and its modifications such as thermal Fenton 

process201 or photo-Fenton reaction using Fe(II)/Fe(III) oxalate ion, H2O2 and UV light have 

received great attention as means for decolorization of synthetic dyes.190,202 In the case of 

photo–Fenton technique, H2O2 is utilized more rapidly by three simultaneous reactions 

namely direct Fenton action, photo-reduction of Fe(III) ions to Fe(II) and H2O2 photolysis. 

Thus this process produce more hydroxyl radicals in comparison to the conventional Fenton 

method or the photolysis.20,73 Certain reports suggest that in case of similar removal 

performance, Fenton’s process may be preferred to related advanced oxidation alternatives 

(e.g., UV/H2O2) in view of lower energy consumption, lower H2O2 consumption, lower 

sludge disposal cost (as compared to higher reagent cost), higher flexibility and lower 

maintenance requirement.24 However Fenton reagent necessitates use of a large amount of 

acidic and alkaline chemicals (ideal pH about 2.5). Compared to Fenton’s reagent, -FeOOH 

catalyzed H2O2 oxidation process takes advantage of its applicability over a wider pH range 

between 4 to 8, and moreover no sludge is produced.107 In order to take advantage of the 

oxidizing power of Fenton’s reagent yet eliminate the separation of iron salts from the 

solution, the use of ‘H2O2/ Iron powder’ system has been recommended. Such process may 

yield better dye removal than ‘H2O2/ Fe+2’ due to the chemisorption on iron powder in 

addition to the usual Fenton type reaction.203 Fenton-type reactions based on other transition 

metals (e.g., Copper), although less explored to date, have also been reported to be insensitive 

to pH and effective for degradation of synthetic dyes.211,212 
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Among the AOPs, the photo-Fenton reaction207 and the TiO2 mediated heterogeneous 

photocatalytic treatment38 processes are capable of absorbing near-UV spectral region to 

initiate radical reactions. Their application would practically eliminate major operating costs 

when solar radiation is employed instead of artificial UV light. The ferrioxalate solution that 

has long been being used as chemical actinometer may be used in photo-Fenton process to 

derive further benefit by replacing UV with solar radiation.7 Recently, several attempts have 

been made to increase the photocatalytic efficiency of TiO2; these include noble metal 

deposition, ion doping, addition of inorganic co-adsorbent, coupling of catalysts, use of 

nanoporous films and so on. Apart from that, new catalysts, such as polymeric 

metalloporphyrins, have been reported to be easily excited by violet or visible light, whereas 

available utilization of solar energy by commonly used TiO2 is only about 3%. 38 

 

B. Photochemical/ Electrochemical 

 

In electrochemical treatments, oxidation is achieved by means of electrodes where a 

determined difference of potential is applied. On this principle, several different processes 

have been developed as cathodic and anodic processes- direct and indirect electrochemical 

oxidation, electrocoagulation, electrodialysis, electromembrane processes and 

electrochemical ion exchange.40 Occasionally, combination of electrochemical technology 

and photocatalysis has been adopted to yield some unique advantages. For instance, chemical 

synergism of photocatalysis and electrochemical processes may yield enhanced decoloration 

and COD removal6 and added advantage may be derived from existence of salt in solution, 

which originally is detrimental for sole photocatalysis.238 Conversely, electro-Fenton process 

requires no addition of chemical other than catalytic quantity of Fe+2, since H2O2 is produced 

in situ, thereby avoiding transport of this hazardous oxidant.76,154 In pulsed high voltage 

electric discharge process, addition of oxidants such as H2O2 yields highly reactive free 

radical species through photo-dissociation of H2O2 and thereby enhances the whole 

process.200 

 

C. Sonolysis and other AOPs 

 

Acoustic cavitation due to ultrasound vibration within a liquid generates local sites of high 

temperature and pressure for short period of time, which gives rise to H2O sonolysis with 

production of radical species and direct or indirect (via free radicals) destruction of solute. 

However, stand alone application of sonolysis hardly results in complete mineralization of 

pollutant streams containing complex mixtures of organic and inorganic compounds73. In 

view of the substantial amount of energy employed in generating free radicals via acoustic 
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cavitation bubbles, efforts have been made to improve its efficiency. It has frequently been 

explored in association with other AOPs. For example, combined use of sono-photochemical 

process can prevent severe mass transfer limitation and reduced efficiency of photo-catalyst 

owing to adsorption of contaminants at the surface. On the other hand, such combination can 

alleviate the limitations of separate application of sonolysis.148,198 Similar advantage has been 

reported in case of concurrent sonolysis and MnO2 oxidation.68 Sonification has also been 

reported to bring about dramatic enhancement in oxidation efficiency of UV/H2O2 by 

improving oxygen uptake and transfer.63,64,216 Combined application of sonolysis and O3/ UV 

facilitates O3 diffusion and photolysis of ultrasound-generated H2O2.
 53,90,206 Such 

combination hence yields large number of free radicals. Addition of FeSO4 in solution may 

result in Fenton’s reaction with H2O2 evolved from simultaneous sonification and may 

achieve improved decoloration and TOC removal as compared to sonification only.93 

Simultaneous sonolysis has also been reported to enhance electro-oxidation of dye.135 

 

III. COMBINATION: AOPs AND OTHER PHYSICO-CHEMICAL PROCESSES 

 

Many studies have focused on different combinations among physicochemical systems for 

treatment of textile and dye wastewaters. Combinations of conventional physicochemical 

techniques with the AOPs have as well appeared as an attractive option. Table 3 encapsulates 

information derived from broad spectrum of typical studies dealing with such combinations.  

 

A. Coagulation based combinations 

 

Coagulation/ flocculation/ precipitation processes have been used intensively for decolorizing 

wastewater. For the pretreatment of raw wastewater before discharging to publicly owned 

treatment plants, these processes may be satisfactory with respect to COD reduction, and 

partial decolorization. Their stand alone application in treating textile/dye waste is, however, 

relatively ineffective79,101,163, for example, only 50% removal was achieved using either alum 

or ferrous sulfate for an azo reactive yellow dye.79 In the coagulation process, it is difficult to 

remove highly water-soluble dyes, and even more important, the process produces a large 

quantity of sludge.179  

 

Nevertheless, researchers are persistent in their pursuit of minimizing the limitations of this 

technology. For instance, Polyaluminium ferric chloride (PAFC), a new type of composite 

coagulant, was reported to have the advantages of high stability and good coagulating effect 

for hydrophobic as well as hydrophilic dyes. Its decoloration capacity surpassed that of Poly 

aluminium chloride and Polyferric sulfate.66 On the other hand, to avoid massive sludge 
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disposal problem, different novel approaches, such as, coagulation of low volume segregated 

dye bath (rather than that of colossal amount of mixed wastewater)74, alum sludge 

recycling41, coagulant recovery from textile chemical sludge122, reuse of textile sludge in 

building materials16, and processes like vermicomposting of textile mill sludge67, coagulation 

followed by activated carbon adsorption163, have been proposed. Coagulation followed by 

adsorption was reported to produce effluent of reuse standard, apart from cutting down the 

coagulant consumption by 50%, hence, lowering the volume of sludge formed, in comparison 

to coagulation only.163 

 

Coagulation in combination with advanced oxidation processes, either in sequential or in 

concurrent manner, has been reported for dye wastewater. For example, simultaneous 

application of coagulation and Fenton oxidation has revealed improved performance over 

their standalone applications.101 One of the limitations of Fenton oxidation process is that, 

large amounts of small, hard to settle flocs are consistently observed during the process. 

Chemical coagulation following Fenton’s treatment has been found to reduce floc-settling 

time, enhance decoloration and reduce soluble iron in effluent.131 Conversely photo-Fenton 

process subsequent to coagulation was reported to complete decoloration and yield better 

COD removal, with the added advantage of reducing load on the advanced oxidation process, 

thereby reducing chemical usage.18 Investigation on sequential use of coagulation and 

ozonation revealed the superiority of the scheme involving ozonation preceded by 

coagulation over the reversed scheme.209 Multistage application of  coagulation followed by 

ozonation was proved to be superior to their single pass sequential application (total 

ozonation time the same) 86. The advantage of the multistage application was more 

convincing in case of wastewater with more recalcitrant composition. 

 

B. Adsorption based combinations 

Adsorption techniques, specially the excellent adsorption properties of carbon-based supports 

have been utilized for the decolorization of dyes in the industrial effluents.60 Activated 

carbon, either in powder or granular form, is the most widely used adsorbent for this purpose 

because of its extended surface area, microporous structure, high adsorption capacity and 

high degree of surface reactivity.137 It is very effective for adsorbing cationic, mordant, and 

acid dyes and to a slightly lesser extent, dispersed, direct, vat, pigment and reactive dyes179. 

However, the use of carbon adsorption for decolorization of the raw wastewater is impractical 

because of competition between colored molecules and other organic/ inorganic compounds. 

Hence its use has been recommended as a polishing step or as an emergency unit at the end of 

treatment stage to meet the discharge color standards.79 The fact that activated carbon is 
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expensive and weight loss is inevitable during its costly onsite regeneration (10% loss in the 

thermal regeneration process)99, impedes its widespread use. Utilization of non-conventional, 

economical sources (industrial or agricultural by-products) rather than usual relatively 

expensive materials (coconut shell, wood or coal) as precursors for activated carbon has been 

proposed to achieve cost-effectiveness in its application.142,181 

There has been considerable interest in using low-cost adsorbents for decolorization of 

wastewater. These materials include chitosan, zeolite, clay; certain waste products from 

industrial operations such as fly ash, coal, oxides; agricultural wastes and lignocellusic wastes 

and so on.14,151 Each of non-regenerable economical adsorbents has its specific drawbacks 

and advantages, all, however, pose further disposal problem. To do away with the disposal 

problem, easily regenerable adsorbent is required.99  

 

As mentioned earlier, adsorption is a non-destructive method involving only phase change of 

pollutants, and hence imposes further problem in the form of sludge disposal. The high cost 

of adsorbent also necessitates its regeneration. Conversely some catalytic oxidation/ 

reduction systems appear to be more efficient when treating small volumes of concentrated 

dyes. So it appears attractive to combine adsorption with some other process in a system 

where contaminants are pre-concentrated on adsorbent and then separated from water. The 

contaminants thus separated may subsequently be mineralized, for example, by wet air 

oxidation191,223 or degraded to some extent, for instance, azo bond reduction by bisulfite-

mediated borohydride117 so as to regenerate the adsorbent and reuse. In this way an 

economical process coupling two treatment technologies eliminating their inherent 

drawbacks may be developed. If partial degradation is applied to regenerate the adsorbent, it 

will still leave behind a small volume of wastewater (as compared to the volume that existed 

before adsorption) to be treated. This again can be conveniently taken care of by applying 

some AOP. Ince et al.89 proposed a slightly modified version of the aforementioned so called 

“phase-transfer oxidation”. Their strategy comprised of simultaneous operation of adsorption 

and AOP followed by periodic on-site destructive regeneration of the spent adsorbent. 

Adsorption concurrent with ozonation132, UV-H2O2
91 or microwave induced oxidation132 has 

been reported to yield mutual enhancements like catalysis of AOP by adsorbent and 

simultaneous regeneration of adsorbent. A rather elaborate method involving solvent 

extraction and catalytic oxidation has been documented in the literature. 87,150  The method 

consists of dye extraction using an economical solvent followed by dye recovery through 

chemical stripping. In this way the solvent is also regenerated. Finally, treatment of the 

extraction raffinate can be achieved by catalytic oxidation. 

 



Hai, F. Ibney., Yamamoto, K. & Fukushi, K. (2007). Hybrid treatment systems for dye wastewater. 
Critical Reviews in Environmental Science and Technology, 37 (4), 315-377. 

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au) 
http://www.uow.edu.au/~faisal/ 
 

10

C. Membrane based combinations 

 

Membrane separation endows the options of either concentrating the dyestuffs and auxiliaries 

and producing purified water208, or removing the dyestuff and allowing reuse of water along 

with auxiliary chemicals110,172,174, or even realizing recovery of considerable portion of dye, 

auxiliaries and water all together.171 Such recovery/ reuse practice reduces many folds the 

recurring cost for the treatment of waste streams. The fact that the dyeing behavior of the 

residual dye should ideally be identical to that of the fresh dye, may restrict dye recovery and 

reuse to specific dye classes.35,65 Accordingly water and/or electrolyte recovery from dye bath 

effluent has become the focus of the contemporary  literature. However, concentrated sludge 

production and occurrence of frequent membrane fouling requiring costly membrane 

replacement impede widespread use of this technology36. Two distinct trends are hence 

noticeable among the reported studies which couple membrane separation with other 

technologies. Some studies mainly focus on alleviation of the membrane-concentrate disposal 

problem, while others seek to offer complete hybrid systems wherein elimination of the 

limitations of the membrane technology (e.g., fouling) and/ or those of the counterpart 

technologies (e.g., ultrafine catalyst separation in photocatalysis) may be expected. 

 

Hybrid processes based on membrane and photocatalysis have been reported to eradicate the 

problem of ultrafine catalyst to be separated from the treated liquid in case of slurry reactors, 

with the added advantage of membrane acting as selective barrier for the species to be 

degraded. On the other hand, in case of immobilized catalysis, membrane may play the role 

of support for photocatalyst145. For coupling with photocatalysis, membrane distillation, 

however, has been reported to be more beneficial in comparison with pressure driven 

membrane process, as significant fouling may be associated with the latter. Tay et al. 204 

proposed a photo-oxidative (UV/TiO2/H2O2) pretreatment prior to membrane filtration to 

partially break down the high molecular weight compounds which cause membrane fouling. 

The relatively smaller fragments produced there from were still retainable by membrane, and 

unlike the parent compounds, they did not affect the charge of the membrane surface. 

 

Membrane contactors, involving mass transfer in the pores by diffusion (avoiding gas 

dispersion as macroscopic bubbles as in traditional ozonation systems), offer the advantages 

of higher contact surface (equal to membrane surface, which may reach up to 30 km2/m3H2O 

for hollow fiber membranes), easy scale-up, no foam formation, and lower process cost (no 

requirement of ozone destruction, lower ozone loss).42,45 
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Numerous studies have reported on application of membrane filtration (UF/NF) following 

coagulation/ flocculation to produce reusable water.25,26,139  Such application has the added 

advantage of minimizing membrane fouling. In this context, hybrid coagulation-membrane 

reactor may offer another viable option. This treatment scheme may also be placed 

subsequent to advanced oxidation processes in order to remove soluble degradation 

products.88  

 

Application of separate technologies for segregated streams has been recommended by 

different researchers. For instance, Wenzel et. al.219 recommended hot water reuse in rinsing 

after reclamation by membrane and reuse of dye bath water and salts after adsorption of 

dyestuff and COD on activated carbon. Conversely, hybrid adsorption-membrane reactor, 

offering synergism in that the compounds too large to be adsorbed onto adsorbent are 

successfully retained by the membrane while low molecular weight organics are well 

adsorbed on adsorbent, is also worth mentioning.168  

 

Considerable number of studies have been devoted to eradication of the major drawback 

associated with membrane separation i.e., concentrated residue remaining for disposal. As 

mentioned earlier, dyes in the concentrate from the membrane separation unit, because of the 

usual quality requirements of the color shades in the dyed products, cannot be reused and 

must be treated before discharge. In this respect, catalyzed wet air oxidation (WAO) has 

emerged as an efficient system.55,118 Sonification was found essential to make membrane-

retentate from actual wastewater to be amenable to subsequent WAO.54 On the other hand, 

augmentation of advanced oxidation process (e.g., ozonation) subsequent to membrane 

filtration has been envisaged as a scheme yielding several advantages such as reducing waste 

volume for oxidation while simultaneously recovering salt, and in addition, limiting 

concentrated waste for disposal.222 A novel membrane-based integrated water management 

system for exhausted dye bath and rinsing bath was proposed by Bruggen et al.34 The 

proposed scheme involved, in order of application, microfiltration membrane (pretreatment), 

loose nanofiltration membrane (NF-1, for organics removal) and another tighter NF 

membrane (NF-2, salt retention). According to that scheme, further separation of organic 

fraction may be achieved by membrane distillation units, while retained salt may be 

recovered through membrane-crystallization. Finally the organic sludge of high calorific 

value from the membrane distillation unit may be incinerated. 

 

IV. BIOLOGICAL TREATMENT BASED COMBINATIONS 
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A. Combination among biological processes 

 

Conventionally a chemical coagulation step, preceded by229 or antecedent to57 biological 

treatment, is applied for dye wastewater. Combined treatment with municipal wastewaters is 

usually favored75 wherever applicable. A variety of biological treatment processes including 

activated sludge, fluidized biofilm229, different fixed film systems3 or combinations theirof 230 

have been employed. Although in case of aerobic bacteria co-metabolic reductive cleavage of 

azo dyes as well as utilization of azo compounds as sole source of carbon and energy (leading 

to mineralization) have been reported, dyes are generally very resistant to degradation under 

aerobic condition.19,199 Toxicity of dye wastewater and factors inhibiting permeation of the 

dye through the microbial cell membrane reduce the effectiveness of biological degradation. 

Dyestuff removal, hence, currently occurs in the primary settling tank of a wastewater 

treatment plant for the water-insoluble dye classes (disperse, vat, sulphur, azoic dyes), while 

the main removal mechanism for the water-soluble basic and direct dyes in conventional 

aerobic systems is adsorption to the biological sludge. Reactive and acid dyes, however, 

adsorb very poorly to sludge and are thus major troublemakers in relation to residual color in 

discharged effluents.160  

 

Since reduction of azo bond can be achieved under the reducing conditions prevailing in 

anaerobic bioreactors31 and the resulting colorless aromatic amines may be mineralized under 

aerobic conditions32, so a combined anaerobic-aerobic azo dye treatment system appears to 

be attractive. Trials with varieties of combinations including simultaneous anaerobic/ aerobic 

process (microbial immobilization on a matrix providing oxygen gradient113 or an anaerobic-

aerobic hybrid reactor95), anoxic plus anaerobic/ aerobic process162, anaerobic/ oxic system5, 

aerobic (cell growth)/ anaerobic (decolorization) system37 have all been explored involving 

fed-batch, sequencing batch or continuous feeding strategies with encouraging results. Both 

cytoplasmic184 and membrane114-bound unspecific azo-reductase activities under anaerobic 

condition have been reported. Glucose, raw municipal wastewater and yeast extract, among 

others, have been reported as examples of an essential co-substrate needed to obtain good 

anaerobic color removal.52 Different abiotic processes involving derivatives generated during 

bacterial metabolism (e.g., sulfide, amino acid cysteine, ascorbate) may contribute in 

decolorization under anaerobic conditions227. The biotic process, however, dominates in high-

rate anaerobic bioreactors.233 Addition of redox mediating compounds like anthraquinone 

sulphonate, anthraquinone di-sulphonate has been reported to greatly enhance both the biotic 

and abiotic processes233. However, during post-treatment of anaerobically treated azo dye 

containing wastewater, there will be competition between biodegradation and autoxidation of 

aromatic amines. This may be problematic not only because the formed products are colored 
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but also because some of these compounds, e.g., azoxy compounds, may cause toxicity.232 It 

should be emphasized that in high-nitrogen waste waters it makes little sense to remove part 

of COD by anaerobic treatment in the first step when COD has to be added again to the 

effluent afterwards in order to achieve nitrogen removal.52 

 

Biological treatment is a cost-competitive and eco-friendly alternative. Researchers are hence 

persistent in their pursuit of minimizing the inherent limitations of biological dye wastewater 

treatments. Several innovative attempts to achieve improved reactor design and/or to utilize 

special dye-degrading microbes or to integrate textile production with wastewater treatment 

have been documented in literature. Some of such innovative endeavors include- two stage 

activated sludge process (high load first stage, achieving biosorption and incipient 

decomposition of high molecular organic compounds, followed by a low load polishing 

stage) 104; high-rate anaerobic systems uncoupling hydraulic retention time from solids 

retention time125; two phase anaerobic treatment wherein acidic phase bioreactor is also 

shared for textile production (integration of production with wastewater treatment)59; 

activated sludge pretreatment, to reduce organic nitrogen, before fungi decoloration144; fungi 

pretreatment before anaerobic treatment58; combined fungi (biofilm) and activated sludge 

culture98 for decoloration; activated algae reactor (with mixed population of algae and 

bacteria)13; activated sludge followed by over land flow185 etc.  

 

B. Hybrid technologies based on biological processes 

 

Table 4 summarizes a broad spectrum of intriguing reports on hybrid technologies having 

biological processes as the core.  

 

1. Biological/ Physico-chemical 

 

As mentioned earlier, literature is replete with examples of use of coagulation complementary 

to biological decoloration. The choice between coagulation-biological or biological-

coagulation scheme depends on type and dosage of coagulant, sludge quantity, and degree of 

inhibitory and nonbiodegradable substances present in wastewater. Coagulation prior to 

biological treatment may be advantageous for alkaline wastewaters. After biological 

treatment ferrous sulfate cannot be used because pH is close to neutral. On the other hand, the 

dose of coagulants and consequently the quantity of the chemical sludge after biological 

treatment are smaller compared to those in coagulation followed by biological 

treatment.57,75,100 
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Besides coagulation, a variety of other treatment processes may be combined with biological 

treatment. Very often certain physico-chemical process is placed before129 and/or after130 an 

advanced oxidation process. The biological process is applied either as the very first100, 

penultimate3 or as the last129 treatment unit. In view of the abundance of bioresistant and 

toxic contaminants in dye wastewater, physico-chemical and advanced oxidative pretreatment 

prior to biological treatment appear to be a rational option. The choice between physico-

chemical and oxidative pretreatment however depends on the specific wastewater; and 

usually an astute stream-separation would facilitate application of appropriate treatment 

system for different streams.3 On the contrary, especially isolated/ acclimatized microbes are 

usually required for effective biological pretreatment.100,115 In order to obtain reusable water, 

an elaborate treatment train composed of conventional physico-chemical and advanced 

oxidation processes may be placed after biological pretreatment. While numerous such 

combinations have been reported in literature, the common underlying principle is to choose 

a combination so as to furnish a complete system eliminating limitations of the individual 

techniques. For instance, the fact that high concentrations of suspended or colloidal solids in 

the wastewater may impede the advanced oxidation processes, necessitates sufficient prior 

removal of these materials by physico-chemical treatment.43,100 Conversely, enhancement of 

COD removal (e.g., after ozonation)127 or improvement of settleability of sludge (e.g., after 

electrofloatation)43,130 may require physico-chemical treatment subsequent to AOPs. 

 

2. Integrated Partial oxidation/ Biodegradation 

 

In contrast to the conventional pre or post treatment concepts, where process design of 

different components is independent of each other, a rather innovative approach is the so 

called “integrated- processes” where the effectiveness of combining biological and other 

treatments is specifically designed to be synergetic rather than additive.134 A typical example 

of such processes is combination of advanced oxidation with an activated sludge treatment 

where the chemical oxidation is specifically aimed to partially degrade the recalcitrant 

contaminants to more easily biodegradable intermediates, thereby, enhancing subsequent 

biological unit and simultaneously avoiding the high costs of total mineralization by AOP. 

During the recent years myriad studies dealing with partial pre-oxidation of dye wastewater, 

involving virtually all sorts of AOPs, have been reported. Some of these studies include 

partial oxidation by ozonation39, H2O2
46, photocatalysis178, photo (solar)-fenton207, wet air 

oxidation169, combined photocatalysis and ozonation/ H2O2
146,200, photoelectrochemical 

process6, sub and super critical water oxidation103 and electron-beam treatment.81 Bulk of 

such studies report on improvement of biodegradability (as revealed by BOD/COD ratio or 

partial oxidation parameter92) and reduction of toxicity (using bioassay, e.g., bioluminescence 
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test) following some AOP treatment without involving actual experiment in biological reactor. 

However, complete results from actual investigation in biological system following partial 

oxidation, as listed in table.4, are also available. Careful consideration of characteristics of 

each AOP would facilitate selection of a proper pre-oxidation process for rendering 

wastewater more amenable to biological treatment. For instance, Fenton-like treatment using 

Nafion-Fe+3 membrane, rather than direct addition of iron salt17, or immobilized TiO2 

photocatalysis rather than photo-Fenton process164 would facilitate further biological 

treatment under biocompatible pH making neutralization redundant. Mantzavinos et al.138 

have proposed a step-by-step approach to evaluate chemical pretreatment for integrated 

systems. 

 

The combined oxidation and subsequent biodegradation make it necessary to set the optimal 

point of oxidative treatment. Further oxidation may not lead to any significant changes in the 

molecular weight distribution, but results in an increasing mineralization of low molecular 

weight biodegradable substances.92 Hence it is rational to adopt shortest possible pre-

oxidation period and remove the biodegradable portion using cost-effective biological 

process. Nonetheless, the extent of combined COD removal achievable with this strategy may 

be limited in some cases, making utilization of a longer oxidation period necessary and the 

following biological process redundant.170 An internal recycle between the oxidation and 

biological stage have been recommended for reducing chemical dose in such 

circumstances.124 Dogruel et al56, pointed out to the selective preference of ozone for simpler 

readily biodegradable soluble COD fractions, which leads to unnecessary consumption of the 

chemical. They suggested pre-ozonation of segregated recalcitrant streams from dye house   

prior to biological treatment of the mixed whole effluent. If considerable amount of 

biodegradable compounds originally exist in the wastewater, pre-oxidation step obviously 

will not lead to a significant improvement of biodegradability, rather will cause unnecessary 

consumption of chemicals. In such a case a biological pre-treatment (removing biodegradable 

compounds) followed by an AOP (converting non-biodegradable portion to biodegradable 

compounds with less chemical consumption) and a biological polishing step, may prove to be 

more useful.85,213 

 

3. Biodegradation/ Adsorption 

 

Owing to limited effectiveness of conventional biological treatment for recalcitrant textile 

wastewater composed of recalcitrant textile chemicals and dyes, various adsorbents and 

chemicals161, predominantly activated carbon, have been directly added into the activated 

sludge systems in certain studies. The fact that the additional removal of soluble organic 
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matter (COD and TOC) in such a system over that in a conventional system cannot be 

explained by probable contribution of adsorbent as predicted by adsorption isotherms141, has 

persuaded researchers to hypothesize a synergistic relationship between activated carbon and 

microorganism (‘enhanced microbial degradation and bioregeneration of adsorbent’).167 

Enhanced biodegradation has been attributed to ability of adsorbent to act as a modulator, by 

immediately adsorbing high concentrations of the toxic compounds, and thus regulating the 

concentration of the free toxic material; together with providing an enriched environment for 

microbial metabolism on the liquid-solid surface, on which microbial cells, enzymes, organic 

materials and oxygen are adsorbed.1 Conversely, bioregeneration of activated carbon has 

been explained by extracellular biodegradation of adsorbed organics by microbial enzymes 

excreted into carbon micropores.197,225 The main step in dye removal for activated carbon 

amended biological process is microbial degradation, which is higher than adsorption on both 

activated carbon as well as on biomass.49 Accordingly although the dye removal in that 

process has frequently been reported to be better than in the conventional activated sludge 

process161,197, mode of COD removal may be the same.49 Under a higher biomass 

concentration (> 3g/l), the carbon particles are, however, trapped in the floc matrix and lose 

their properties of adsorption, thereby, hindering microbial growth and dye removal.141 

Although simultaneous adsorption and biodegradation treatment occasionally has been 

demonstrated as a mere combination of adsorption and biodegradation without any mutual 

enhancement159 and has controversies in bioregeneration hypothesis225, application of this 

process to the treatment of textile wastewaters is an important economic improvement. It 

allows the removal of COD and color from textile wastewater in a single step with no 

additional physicochemical treatment141. To minimize reactor volume, a hydraulic retention 

time as low as possible is practically expected. This, in turn, however, renders powdered 

activated carbon (PAC) partially loaded. Its optimum use may be realized by recirculation of 

PAC.156 In addition to its adsorption capacity, activated carbon has also been reported to 

enhance anaerobic azo dye reduction234 by acting as a biologically regenerable redox 

mediator due to quinone surface group on it. Zhang et al.235 documented an innovative 

approach involving fluidized bed reactor containing complex pellets of white rot fungus and 

activated carbon. The reactor, by retaining necessary fungal metabolites, surpassed 

standalone application of fungi or activated C. The process was claimed to be superior to 

simple addition of activated C in fungi reactor. 

 

Fixed granular activated carbon (GAC) bed inoculated with special chromophoric bond-

cleaving and aromatic ring- cleaving bacteria, after initial acclimatization period, have been 

reported to outperform conventional GAC bed. 218 However, the bacterial activity in GAC 

bed may decrease after certain period due to lack of nutrient and/or dissolved oxygen. 
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Maintenance of high DO level by a pressurized system may ensure achievement of stable 

removal (color and COD) with concurrent prolonged carbon-bed life.177 A novel approach 

entailing partial bioregeneration (physical adsorption on fluidized biological GAC followed 

by biodegradation and desorption), coupled with complementary periodic physical 

regeneration of 50% of total GAC, has been reported by Vuoriranta et al.217 The system was 

observed to achieve an improved COD and color removal apart from reduction in 

regeneration cost and weight loss of GAC. Moreover, the system has the added advantage of 

allowing biological activity in GAC medium for subsequent use. Some means of 

improvement of biodegradability, be it biological177 or advanced oxidation process221, will 

certainly fortify biological activity in the subsequent biological GAC. However, in case of 

oxidative degradation, subsequent substrate adsorption on carbon may plummet23. Carbon-

biocatalyst amalgamation in adsorption cartridges for decoloration has been commercialized 

(‘BIOCOL’) in UK.48 

 

4. Biodegradation/ Membrane filtration 

 

a. Chronological application  

 

For reusable water production, researchers have recurrently referred to nanofiltration (or low 

pressure reverse osmosis) of biologically treated colored wastewater since this option 

involves less fouling as compared to that for direct nanofiltration of dye baths.33 Some 

references have put forward inclusion of sand filtration/ multimedia filtration and/or 

microfiltration in between biological treatment and nanofiltration139,182. Site-specific techno-

economical analysis is usually recommended to ascertain the best combination183. 

Notwithstanding the disposal problem of reject stream emanating from membrane separation, 

it may be preferred to ozonation as a post treatment to derive reusable water from secondary 

wastewater, in view of the fact that the latter would realize negligible conductivity removal.27 

Conversely, provision of advanced oxidation of biologically treated wastewater before 

sending it for nanofiltration has been reported to yield further increased membrane life.28,96 

Addition of facility for partial oxidative degradation (e.g., ozonation) of membrane-

concentrate to the aforementioned treatment train of nanofiltration of secondary wastewater 

may furnish a quasi-‘close loop’ system, in that, the partially oxidized products (detoxified) 

may be recycled to biological treatment. 120,134 Such practice may, however, give rise to 

concern about salinity increase in biological plant. Wu et al.224 reported a cost-competitive 

dye wastewater reclamation system involving deep aeration activated sludge prior to bio-

activated carbon and nanofiltration, which, in addition to yielding prolonged membrane life 

and recovery/reuse potential, allowed direct discharge of concentrated membrane-retentate. 
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Illustrations of chronological application of membrane and biological treatment in case of 

segregated textile wastewater streams are also available. Rinsing water may be reused after 

reclamation by membrane while the concentrated waste may be degraded in anaerobic 

digester.219 This example may be further extended to filtration of segregated dye bath effluent 

utilizing membrane of appropriate molecular cut off size which allows passage of salt but 

retains dye. Consequently dye bath water containing salt may be reused for dye bath 

reconstruction, while the membrane- concentrate may be degraded in anaerobic digester. 

 

b. Membrane bioreactors 

 

Membrane bioreactor (MBR), a remarkable improvement over the conventional activated 

sludge treatment214, has been set forth as a promising option in colored wastewater treatment. 

MBR for decoloration has often been envisioned in conjunction with simultaneous 

adsorption.189 A treatment scheme comprising activated carbon amended anaerobic reactor 

preceding aerobic MBR realizes stable decoloration along with high TOC removal, with 

concurrent improvement in activated sludge dewaterability and reduction in filtration 

resistance.157 For reuse purpose MBRs have occasionally been envisaged as the main 

treatment process prior to a polishing nanofiltration step188, or even as the core of a rather 

elaborate treatment train including anaerobic/ aerobic pretreatment prior to MBR and 

ozonation following it.112 An innovative approach noticeable in contemporary literatures 

involves membrane (submerged78/ sidestream62,102) separated fungi reactor which couples the 

excellent degradation capability (due to non-specific extracellular oxidative enzymes) of 

white-rot fungi with the inherent advantages of membrane bioreactor. The MBR system has 

been envisaged to be capable of coping with the impedances in implementation of white-rot 

fungi in large scale industrial waste treatment, such as, rather slow fungal degradation147, loss 

of the extracellular enzymes and mediators with discharged water235, and excessive growth of 

fungi236. Development of such a system offering stable 99% decoloration and 97% TOC 

removal from synthetic textile wastewater along with avoidance of membrane fouling has 

been recently documented.78 
 

V. COST ANALYSIS 

 

The overall costs are represented by the sum of the capital costs, the operating costs and 

maintenance costs. Most costs are very site-specific, and for a full-scale system these costs 

strongly depend on the flow rate of the effluent, the configuration of the reactor, the nature 

(concentration) of the effluent as well as the pursued extent of treatment. The location is also 

important, not only for its obvious influence on land-price but also due to its climatic 
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influence, for example, duration and intensity of sunlight influencing efficiency of solar-

fenton process.187 Table 5 lists some cost values quoted in different studies.  

 

Studies generally show that AOPs and membrane processes are more costly than biological 

processes.  However, because of the numerous site-specific factors and assumptions 

inevitably made in such estimates, a direct comparison is difficult. Especially, indiscriminate 

comparison of costs (in per m3 or per kg contaminant) of segregated vs. mixed streams would 

be simply misleading as the latter removes significantly less contaminant due to dilution. The 

fact that treatment schemes based on segregated waste streams coupled with process water 

recycling have the potential to save quite a bit of money even with high costs per m3, should 

be considered while evaluating process viability.124 Nevertheless the importance of reporting 

such values cannot be overlooked as they always give some rough idea on different scenarios 

and may as well form the base for further improved cost estimation. Plausible analyses of the 

cost data follow in the next paragraph. 

 

Treatment trains composed of conventional physico-chemical and biological systems involve 

sustainable cost155, however, their removal performance may not satisfy contemporary stricter 

regulations. Membrane filtration of biologically pretreated dye wastewater109 has been 

occasionally reported to require less cost than that for direct membrane filtration108 of dye 

bath, presumably as the former involves less membrane fouling. However, both the processes 

furnish potential of water reuse, thereby, achieving further cost savings. Membrane based 

other combinations, especially, membrane bioreactor78,228, are potential contenders among 

present-day dye wastewater treatment processes. At the present stage of development of 

AOPs, sole application of AOP or even combinations among AOPs themselves are unlikely 

to yield satisfactory effluent with reasonable cost.12 AOP pretreatment prior to biological 

treatment is certainly cost-effective than complete mineralization by AOP. Conversely, 

according to the examples in Table 5, AOP as a post treatment incurs less cost as compared to 

that as pre-treatment.109,187 Notwithstanding this fact, it should be emphasized that application 

of AOP pretreatment on segregated recalcitrant stream may avoid unnecessary consumption 

of chemicals by biodegradable compounds, thereby, imparting cost-effectiveness to the 

integrated system.124 Combination of AOP with adsorption91, membrane separation139 or 

other physico-chemical86 systems may be cost-competitive.  It is intriguing to notice that 

integrated systems combining wide variety of technologies, for instance, membrane, AOP, 

WAO and biological process, when accomplish water and/or auxiliary chemicals reuse, 

appear to be feasible, in that, capital cost can be recovered within a few years.43,120,139 
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VI. PROPOSED HYBRID PROCESS 

 

Based on the array of potential hybrid technologies and the available cost information, a 

conceptual on-site textile dye wastewater treatment system, as presented in figure 3, may be 

proposed. Two distinct cases have been considered here- i) an integrated textile processing 

plant involving essentially all steps of textile processing, starting from conversion of fiber to 

cloth and extending up to dyeing and finishing, and, ii)  a segregated plant concerning only 

dyeing and finishing. Additionally, an ideal state of practice of recovery and reuse of textile 

chemicals (sizing agent, detergent, lanolin from raw wool scouring, caustic for cotton 

mercerizing, dye bath electrolyte), energy (heat) and water by using appropriate membranes 

has been assumed (Fig.2). This assumption was prompted by the fact that such practice 

realizes cost-savings through reduction in production of waste and consumption of fresh 

chemicals/water, and consequently the usual payback period of the high capital investment 

associated with it is 2-3 years or less.151,180 Furthermore, available technoeconomical analyses 

indicate that inclusion of comprehensive energy and water reuse plan within the treatment 

scheme would be more viable as compared to full end-of-pipe treatment with limited or no 

recovery/reuse strategy.51 Nevertheless, initial investment costs and site-specific conditions 

will obviously play a role in whether or to what extent a plant decides to proceed with 

recycling concept. It is worth mentioning here that recovery/ reuse of both chemicals and 

water is different from that of only water, in that, the former entails handling of the point 

sources separately, while the latter may be achieved by following usual end-of-pipe strategy 

(mixing different streams). 

A submerged microfiltration membrane bioreactor (MBR) implementing a mixed microbial 

culture predominantly composed of white-rot fungi constitutes the core of the proposed 

hybrid dye wastewater treatment scheme. The fungi- MBR78 couples the excellent recalcitrant 

compound degradability of white-rot fungi with the inherent advantages of an MBR. To 

sustain an uninterrupted supply of non-specific extra cellular enzyme by fungi, the reactor 

requires to be operated under a quasi-controlled environment (acidic pH) with simultaneous 

supply of an easily biodegradable carbon source (e.g., starch used in textile sizing). In case of 

an integrated textile plant, after the chemical and water recoveries as indicated in figure 2, the 

concentrates and discarded streams may be fed to the MBR. Depending on the case-specific 

requirement, the MBR may be augmented by a subsequent advanced oxidation facility (e.g., 

solar photocatalysis187). An internal recycle strategy in between the MBR and the photo 

reactor may prove to be further beneficial. Depending on the site-specific quality 

achievement, the final effluent may be reused with or without mixing with fresh water. In 

case of a plant dealing only with dyeing and finishing, however, a slightly changed approach 

of water and electrolyte recovery is recommended. In this case since other streams except the 
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dyeing and finishing streams are absent, so the concentrated reject-stream generated after 

water and salt recovery from segregated dye bath effluent and rinse water can not be diluted. 

Under this condition, the dye bath effluent and rinse water may be directly fed to the MBR-

AOP sequence, and then desalinated by membrane (RO/NF), with the concentrate (salt) and 

permeate (water) being reused.  

 

Due to declining membrane costs34, recovery and reuse of chemicals and water using 

membrane is expected to gain rapid acceptability in near future. The concentrates generated 

there from and discarded streams (including dye), however, entail further effective 

economical treatment. This may be realized by an on site membrane separated fungi reactor. 

Requirement of small plant size is one of the inherent advantages of MBR process. The 

fungi-MBR78, in addition, can achieve excellent effluent quality. Besides, post treatment of 

the MBR-permeate by an AOP will ensure complete decoloration. Moreover, use of the AOP 

for post treatment will minimize its light penetration limitation, which would be significant if 

it were used for pre-treatment. Last but not least, the approach to utilize solar-light for 

photocatalysis adds to the effort to conserve energy sources.  Based on this reasoning, the 

proposed conceptual integrated treatment scheme appears to be attractive.  

 

This paper intends to underscore the indispensability of hybrid technology for dye wastewater 

treatment and endorses the inclusion of energy and water reuse plan within the treatment 

scheme. However, the proposed layout is certainly not claimed to be a panacea for textile dye 

wastewater. It is rather a demonstration of one of the probable suitable combinations. In line 

with the broad spectrum of hybrid technologies portrayed in this paper, some 

additions/modifications to the proposed scheme may also be considered. For instance, 

simultaneous addition of adsorbent in the MBR189, utilization of concurrent AOP-adsorption 

system91,132 etc., are worth exploring.  

 

Other approaches may enjoy case-specific superiority over the proposed scheme. For 

example, with more advancement in the reactor design for AOPs, the partial pre-oxidation by 

AOP (may be combination among AOPs themselves) prior to MBR treatment may appear to 

be more appropriate in near future. Conversely, incineration/ wet air oxidation of dye bath 

concentrate (possessing high calorific value34) remaining after material and water recovery by 

membrane may also furnish an attractive solution. 

 

VII.CONCLUSION 
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Residual dyes along with other auxiliary chemical reagents used for processing, impurities 

from the raw materials and other hazardous materials applied in the finishing process impose 

massive load on wastewater treatment system. This eventually leads to a poor color and COD 

removal performance. The release of colored wastewater in the ecosystem is a remarkable 

source of esthetic pollution, eutrophication and perturbations in aquatic life. These concerns 

have led to new and/or stricter regulations concerning colored wastewater discharges, 

rendering the decolorization process further difficult and costly. To combat this problem, 

researchers have put forward a wide variety of hybrid decolorization techniques. Based on the 

array of potential hybrid technologies and the available cost information, it can be concluded 

that hybrid technologies having biological processes as the core appear to be the most 

prospective ones. It should also be emphasized here that inclusion of energy and water reuse 

plan within the treatment scheme is an imperative. In this context membrane technology has 

an immense role to play. Membrane bioreactor implementing special dye-degrading 

microorganism and involving simultaneous addition of adsorbent in MBR may surface as a 

potential contender among present-day dye wastewater treatment processes. The MBR 

technology may as well be combined with advanced oxidation facilities. Case-specific 

selection of the appropriate hybrid technology is the key to realization of a feasible system. 
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Figure 1: Simplified representation of broad spectrum of combinations proposed in the litera-

ture
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Table: 1 Advantages and shortcomings of individual dye wastewater treatment techniques    
Process Advanatges Disadvanatges Selected 

Ref. 
Biological Cost-competitive option. Direct, disperse and basic dyes have high level 

of adsorption on to activated sludge.
Dyes are generally toxic and very resistant to biodegradation. Acid and reactive 
dyes are highly water-soluble and have poor adsorption on to sludge.

160

Coagulation Economically feasible; satisfactory removal of disperse, sulphur and vat 
dyes. 

Removal is pH dependent; produces large quantity of sludge. May not remove 
highly soluble dyes; unsatisfactory result with azo, reactive, acid and basic dyes. 

61,79,179 

Activated C  
adsorption 

Good removal of wide variety of dyes, namely, azo, reactive and acid 
dyes; especially suitable for basic dye. 

Removal is pH dependent; unsatisfactory result for disperse, sulfur and vat dyes.
Regeneration is expensive and involves adsorbent loss; necessitates costly dis-
posal. 

61,79,179 

Ion exchange Adsorbent can be regenerated without loss, dye recovery conceptually 
possible. 

Ion exchange resins are dye-specific; regeneration is expensive; large-scale dye 
recovery cost-prohibitive.

179,196 

Membrane filtra-
tion 

Appropriate membrane may remove all types of dyes and thus realize 
reusable water from dye-bath effluent. 

Concentrated sludge production and costly membrane replacement impede 
widespread use. 

36

Chemical oxida-
tion 

Initiates and accelerates azo-bond cleavage. Thermodynamic and kinetic limitations along with secondary pollution are as-
sociated with different oxidants. Not applicable for disperse dyes. Negligible 
mineralization possible, release of aromatic amines and additional contamina-
tion with chlorine (in case of NaOCl) is suspected. 

179,196 

Advanced oxida-
tion processes, 
AOPs 

Generate a large number of highly reactive free radicals and by far sur-
pass the conventional oxidants in decolorization. 

AOPs in general may produce further undesirable toxic by products and com-
plete mineralization may not be possible. Presences of radical scavengers reduce 
efficiency of the processes some of which are pH dependent. Cost-prohibitive at 
their present stage of development. 

UV/O3 Applied in gaseous state, no alteration of volume. Good removal of al-
most all types of dyes; especially suitable for reactive dyes. Involves no 
sludge formation, necessitates short reaction times.  

Removal is pH dependent (neutral to slightly alkaline); poor removal of disperse 
dyes. Problematic handling, impose additional loading of water with ozone. 
Negligible or no COD removal. High cost of generation coupled with very short 
half-life and gas-liquid mass transfer limitation; suffers from UV light penetra-
tion limitation. Increased level of turbidity in effluents. 

61,73,79, 
90,140, 
179 

UV/H2O2 Involves no sludge formation, necessitates short reaction times and re-
duction of COD to some extent may be possible.  

Not applicable for all dye types, requires separation of suspended solid and suf-
fers from UV light penetration limitation. Lower pH required to nullify effect of 
radical scavengers. 

73,140 

Fenton’s  
reagent  

Effective decolorization of both soluble and insoluble dyes; applicable 
even with high suspended solid concentration. Simple equipment and 
easy implementation. Reduction of COD (except with reactive dyes) pos-
sible. 

Effective within narrow pH range of <3.5; and involves sludge generation. 
Comparatively longer reaction time required 

79,140, 
179, 203 

Photoca-
talysis 

No sludge production, considerable reduction of COD, potential of solar 
light utilization. 

Light penetration limitation, fouling of catalysts, and problem of fine catalyst
separation from the treated liquid (slurry reactors) 

105

Electro-
chemical 

Effective decolorization of soluble/insoluble dyes; reduction of COD 
possible. Not affected by presence of salt in wastewater. 

Sludge production and secondary pollution (from chlorinated organics, heavy 
metals) are associated with electrocoagulation and indirect oxidation, respec-
tively. Direct anodic oxidation requires further development for industrial ac-
ceptance.   High cost of electricity is an impediment. Efficiency depends on dye 
nature. 

40,179 
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Sonolysis  Addition of chemical additives not required and hence does not produce 
excess sludge. 

Requires a lot of dissolved gas (O2); complete decoloration and mineralization 
by sonification alone are not economical at present level of reactor develop-
ment. 

2,11

 Ionizing  
Radiation 

No sludge production; effective oxidation at lab scale. Requires a lot of dissolved O2; complete decoloration and mineralization by 
stand alone application not possible. Energy efficient scale-up yet to be 
achieved. 

179

Wet air  
Oxida-
tion, 
WAO 

Well-established technology especially suitable for effluent too dilute for 
incineration and too toxic and/or concentrated for biological treatment.  

Complete mineralization not achieved, as lower molecular weight compounds 
are not amenable to WAO. High capital and operating costs are associated with 
elevated pressure and temperature employed. 

10,11 
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Table 2. List of typical examples of combinations among AOPs for dye wastewater treatment 

Different dye chromophores: N=N: Azo, AQ:Anthraquinone, TPM: Triphenylmethane dye, TH: Thiazine; XN: Xanthene; C=C:Stilbene dye; TC: Phthalocyanine 
Technology Dye/  Wastewater Details Ref.

(Year) 
UV/ O3 2-naphthalenesulfonate [Azo Dye inter-

mediate] 
Mineralization of 2-NS via  ozonation  (40 mg/l) is remarkably enhanced by UV radiation (60.35 W/m2, 254 nm), 
tripling the rate. Not much difference in 2-NS decomposition. 

39
(2002) 

UV/O3, UV/H2O2 
 

Acid N=N - red 1/ black 1/ red14/ red 18/ 
orange 10/ yellow 17/ yellow 23; Direct 

N=N yellow 4 

Decoloration (20 mg/l dye): 100% in 10 min. by O3 (6 l/min. O2) with/without UV; 80% in 25 min. by H2O2–UV. 
Negligible enhancement of ozonation by UV (low power) due to absorption of most UV by dye. Dilution of sample 
and/or optimum reactor design recommended. 

192
(1995) 

UV/H2O2 
 

Hispamin Black CA [Direct N=N Black 
22] 

UV (125 W)- H2O2 (565.8 mg/l, 16.6 mM): Complete decoloration (35 min.) & 82% TOC removal (60 min.) for 40 
mg/l dye at natural pH (7.5), although subsequent toxicity test recommended. 

46
(2002) 

UV/H2O2 Acid dye [orange 8N=N/ blue 74C=C, Me-
thyl orangeN=N] 

Removal by Only UV (15W, 253.7 nm, incident photon flux = 6.1x10-6 Einstein s-1, 4.54pH5.5) and only H2O2 in 
absence of UV was negligible. Combined: Decolorization rate rises by increasing the initial dosage of H2O2 up to a 
critical value ([H2O2]/[dye]=50-70) beyond which it is inhibited. 

4
(2003) 

UV/H2O2 Reactive- red 120 N=N / black5 N=N / yel-
low 84 N=N 

UV (15 W)/ H2O2 (optimum dose 24.5 mmol/l): 15 min.: [Decolorization>65%, COD removal= 40-70%], 60 min.: 
[Decolorization> 99%]; Degradation by products unobjectionable.

152
(2002)

UV/H2O2 and solar/H2O2 
 

 

Chlorotriazine Reactive N=N Orange 4 Dye removal (0.5 mmol/l), 150 min., pH 3: UV (64W, 365nm)-H2O2 (10 mmol)= 88.68% decolourisation , 59.85% 
degradation. Sunlight–H2O2= 80.15% decolourisation, 50.91% degradation. Dye auxiliaries like Na2CO3, NaOH 
seriously retard decoloration rate while NaCl does not. 

149
(2004) 

O3 followed by UV/ H2O2 
 

Wastewater from cotton & polyester fi-
ber dyeing textile mill 

Under natural pH (10.66) 5 min pre-ozonation (293 mg/l), removing high UV-absorbing components (60% reduction 
in UV254), accelerated subsequent 55 min. H2O2(50 mmol/l)-UV(25W) treatment, enhancing its COD & TOC remov-
al efficiency by a factor of 13 & 4, respectively; the combined treatment yielding 25% COD, 50% TOC & complete 
color removal (Initial COD=1476 mg/l; TOC= 336mg/l). 

8
(2001) 

UV /H2O2/O3 
 

Wastewater containing disperse dyestuff 
& pigments 

99% COD (Initially 930 mg/l) and 96% color removal in 90 min. [pH=3; H2O2=200 mg/l; O3= 2 g/h; 15 W lamp, 
254 nm]. Over 90% removal by UV/O3 with less cost due to no requirement of pH adjustment and H2O2. 

12
(2004) 

Fe+2 /O3 
 

Simulated disperse dye bath ( CI dis-
perse- violet 931, blue 291; two more 
azo dyes and compounds) 

95% color (Dyes= 0.5 g/l), 48% COD (initially= 3784 mg/l) removal and 10 times improvement in BOD5/COD ratio 
at natural acidic pH of dye bath ( 3.6 mM Fe+2;  [Fe+2]: [O3]= 1:14; FeSO4.7H2O= 1000 mg/l). Negligible TOC re-
moval is due to low O3 dose of 14 g/l. 

9
(2001) 

UV/Fenton 
 

Disperse N=N red 354  85% color removal (Dye=100 mg/l) & 90% COD removal within 10 mins. with 24.5 mmol H2O2/l and 1.225 mmol 
FeSO4/l at pH=3, resulting effluent having only 7.29% inhibition in bioluminescence test. Presence of dispersing 
agent reduces removal efficiency. 

153
(2003) 

UV/Fenton 
 

Reactive N=N brilliant red X-3B Stable decoloration (Dye= 7.7x10-5 M) within 20 min. with [H2O2]= 18x10-4M, [Fe+2] or [Fe+3]=1.1x10-4M, 75W UV 
(<320nm) lamp. Use of Fe+2 is preferable to Fe+3 because of faster reaction rate with H2O2 and evolution of  HO. 
instead of  HO2. 

226
(2001) 

Solar/Fenton 
 

Orange II (Acid N=N orange 7) Decoloration of highly concentrated (2.9 mM  0.8g/l) dye in less than 2 hr and 95% mineralization within 8hr by a 
solar simulator (90 mW cm-2) and also by natural sunlight (80 mW cm-2) with 0.92 mM Fe+3 and 10 mM H2O2/hr 
[pH=2]. 

20
(1996) 

Solar/Fenton 
 

Monoreactive N=N Procion red H-E7B, 
Hetero-bireactive N=N Red cibacron FN-
R, Standard trichromatic mixture 

Sunlight, supplying higher number of photons (3-4x10-3 W cm-2) than the low power artificial source (350 nm, 6W, 
1.3x10-4 W cm-2), resulted in faster complete decoloration (15-30 min.) and complete (or near) TOC removal (20-60 
min.) for dye concentration of 100 mg/l with 10 mg/l Fe+2 and 100-250 mg/l H2O2 [pH=3]. 

207
(2004) 

Cu(II)/Gluaric acid/H2O2 Direct Chicago sky blue N=N, Methyl or- Over 90% decolorization of 100 ppm dye within 24 hr. (70-80% within first 6 hr.) with 10 mM CuSO4, 200 mM 212
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 ange N=N, Reactive N=N black 5; Poly AQ

B-411, Reactive AQ blue 2, RBBR AQ, 
Acridin (Basic) AQ orange; Azure 

blue
TH

, Crystal violet
 TPM

 

H2O2 and low dose of glucaric acid (15 mM). Insensitive to pH, unlike fenton reaction. (2004)

UV/ O3/TiO2 Textile effluent containing ReactiveN=N

dye 
Removals (60 min.)- Photocatalysis (0.1 g/l anatase TiO2, 125 W, fluency rate 31.1 J m2 s-1, pH=11): Color= 90%, 
TOC= 50%; Ozonation (pH=11, 14 mg/l): Color= 60%, TOC= negligible; Combined: Color=100%, TOC> 60%, 
Toxicity=50% 

146
(2000) 

UV/ H2O2/TiO2 Eosin Y
XN

   Enhanced decoloration (100% for 50 mg/l dye) & mineralization (95%) in 1 hr (19W lamp, 1g/l TiO2, 100 mg/l 
H2O2, pH=5.4) along with 85% reduction in toxicity. 

173
(2003) 

Solar/ H2O2/ Polymeric 
metalloporphyrins  

 

Acridin (Basic) AQ orange % [Decoloration, Degradation]: Hg lamp (450 W, 8hr) Catalysis (3mg/35ml) with H2O2 (0.4 g/l) = [87, 92]; without 
H2O2=[77, 86]. Solar light ( 3hr) Catalysis without H2O2= [77, 90]. Dye= 13.3 mg/l, high pH favourable. 

38
(2002) 

Pulsed streamer corona dis-
charge (electrical)/ H2O2 

 

Rhodamine B XN (Basic), AcidN=N Me-
thyl orange, Direct N=N Chicago sky blue  

Pulsed high voltage (20 kV, 25Hz) electrical discharge in water, yielding photo-dissociation of added H2O2 (8.8x10-

4mol/l), showed enhanced decoloration rate (100% for 10 mg/l dye in 60 min.) as compared to individual process- 
performances. 

200
(2002) 

Photoelectrochemical 
 

Methylene blue
 TH

 Chemical synergism of photochemical & electrochemical processes yielded enhanced decoloration (95%), COD re-
moval (87%) & TOC removal (81%) in 30 min [Dye=1 mmol/l; 500W lamp, 6.64 mWcm-2; 1gTiO2/200 ml; 30 V 
DC; Natural pH(6.6)]. 

6
(2002) 

Microwave (MW)/ Photoca-
talysis 

 

Rhodamine B XN (Basic) In contrast to negligible removal by MW (300W), or less removal by photocatalysis (75W, 0.3mW cm-2; 30 mg 
TiO2/30 ml) alone, combined process achieved 97% decoloration (Dye= 0.05 mM) and 73% TOC removal within 3 
hrs at pH=5.5. 

84
(2002) 

Photoelectrocatalysis 
 

Reactive
N=N

 brilliant orange K-R Decoloration and TOC removal of dye (0.5 mM) in 0.5 mmol l−1 NaCl solution within 60 min. (Natural pH) : i) Ad-
sorption on packed material: 9%, -- ; ii)Photocatalysis [TiO2 (antase= 70%)-coated quartz sand, 500 W high-pressure 
mercury lamp]: 70%, 20%; iii) Electro-oxidation [30.0 V DC cell voltage, reaction flow rate=190 ml min−1, 
0.05 MPa airflow]: 77%, 7%; iv) Photoelectrocatalysis: 96%, 38%. Obvious enhancement effect (unlike photoca-
talysis) of salt in solution. 

238
(2003) 

UV/Electro-Fenton 
 

Reactive
N=N

 Red 120 TOC removal [180 min.]: 30%; Decoloration [30 min.]: 75-85% for 60-100 mg/L concentration; Low efficiency 
due to radical scavenging by the graphite cathode.  Detoxification [90 min]: Safely disposable.  

116
(2004) 

Gamma irradiation/ H2O2 Reactive
 TC

 blue 15 (Chrozol turquose 
blue G), Reactive N=N black 5 (Chrozol 
black 5) 

H2O2, yielding .OH by reacting with hydrated electron formed in radiolysis of water, achieved enhanced decoloration 
(100%, 50 ppm dye) and COD removal (76-80%) with 1 and 15 kGy doses for RB5 and RB15, respectively, decolor-
ation (%) being the highest at the lowest dose rate (0.14 kGy/h). 
 

194
(2002) 

 
Sonolysis/ MnO2 

Acid N=N red B  Sonication (50 kHz, 150 W) enhanced oxidation property of MnO2 (1 g/l) by improving mass transfer, removal of 
passivating outer oxide layer & production of H2O2, eventually realizing 94.93% decolorization (argon atmosphere) 
and 48.12 % TOC removal (oxygen atmosphere) [initial pH=3, 240 min.]. 

68 
(2003) 

Sonolysis / Fenton’s reac-
tion 

Acid N=N Methyl orange  Addition of FeSO4 ([Fe+2]= 0.1-0.5 mM) resulted in Fenton’s reaction with H2O2 evolving from simultaneous sonifi-
cation (500 kHz, 50W) and achieved 3-fold increase in decoloration (15 min., 10M dye) and TOC removal (50%, 
20 min.) as compared to sonification only.  

93
(2000) 

Sonolysis/O3 C.I Reactive N=N black 5 (RBB) Combined sonolysis (520 kHz) and ozonation (irradiation intensity, O3 input and volume were 1.63 W cm-2; 50 l h/1; 
and 600 ml) showed synergistic effect, doubling the decolorization (100%, 15 min.) and mineralization (76%, 1hr) 
rate. 

90
(2001) 

Sonolysis/O3 

 
Acid N=N Methyl orange Combined sonolysis (500 kHz, 50 W) and ozonation (50V) showed synergistic effect (dead end byproducts of one 

process being degraded by the other) yielding instant decoloration (10M dye) and 80% mineralization (3 hr) as 
compared to 20-30% by stand-alone application. 

53
(2000) 

Sonolysis/UV /O3 
 

C.I Acid N=N orange 7 Enhanced O3 (40 g/m3) diffusion by mechanical effects of ultrasound (520 kHz, 600 W) & the photolysis (108W) of 
ultrasound-generated H2O2 to produce .OH led to complete decoloration (Dye= 57M), 40% TOC removal & an im-

206
(2004) 
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provement of BOD5/TOC from zero to 0.45 within 60 min (initial pH=5.5).
Sonolysis /H2O2 Vinylsulphone reactive dyes [C.I Reac-

tive- Yellow 15 N=N, Red 22 N=N, Blue 
28, Blue 220, Black 5 N=N; Remazol dark 
black N 150%]  

Combined sonolysis (20 kHz) and H2O2 (3.49 mol/l) showed synergistic effect, doubling the decolorization (90-99% 
depending on dye, 4 hr.) rate. 

216
(2003) 

Sonolysis/UV/H2O2 
 

Cuprophenyle yellow RL C=C 

(Acid!) 
Sonication (320 kHz) dramatically enhanced oxidation efficiency of UV(6@11W)+H2O2( 0.1 ml/l) system (pH=11) 
by improving oxygen uptake & transfer, the combined process achieving 94% dye (0.1 g/l) removal in 60 min. fol-
lowing pseudo 1st order kinetics. 

63
(1999) 

Sonolysis /UV/TiO2 
 

Naphthol blue back N=N Simultaneous or sequential sonolysis (640 kHz, 240 W) and photocatalysis (1g/L TiO2) showed additive effect on 
decoloration (100% in 200 min.; 50M dye) while, in terms of mineralization, simultaneous application (50%, 4hr; 
80%, 12 hr), due to mass transfer improvement of reactants & products to and from TiO2 surface, performed better 
than sequential application (<20%, 4hr; 50%, 12hr). 

198
(2000) 

Sonolysis/UV/TiO2 
 

Acid N=N - red 1, Orange 8 Simultaneous sonolysis (20 kHz, 15 W) and photocatalysis (0.1g/L TiO2) showed synergistic effect on decoloration/ 
degradation (2.5 x10-5 M dye) due to promoting de-aggregation of TiO2, desorption of reactants & products from 
TiO2 surface & mainly by scission of produced H2O2, thereby, increasing oxidizing species in aqueous phase. 

148
(2003) 

Sonolysis UV/ H2O2 
 

C.I reactive N=N red 120 Sonification (320 kHz) significantly enhanced the decoloration (Dye= 0.1 g/L) efficiency of UV/ H2O2. Higher flow 
rate (insufficient irradiation) necessitated higher dosing rate of H2O2.  

64
(2001) 

Sonoelctrolysis 
 

Acid N=N Sandolan Yellow Electro-oxidation of dye (50 mg/L) in saline solution (0.01 mol/L NaCl) involving insitu generation of hypochlorite 
ion was enhanced using ultrasound (20 kHz, 22 W) when carried out in a semi-sealed cell, which minimized the ef-
fects of ultrasonic degassing. 

135
(2000) 
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Table 3. List of typical examples of combinations between conventional physico-chemical processes and AOPs  

Different dye chromophores: N=N: Azo, AQ:Anthraquinone, TC: Phthalocyanine 
Technology Dye/ Wastewater Details Ref.

(Year)
Fenton/ Chemical coagulation 

 
C.I direct N=N blue 202, C.I reac-
tive N=N black 5; PVA 

81-86% COD (Initially> 1000 mg/l) removal & decoloration (Dye= 200 mg/l) in 2 hrs. with [H2O2]/[FeSO4]= 
1000/400 at pH=3, while subsequent coagulation at pH=7-10 with 100 mg/l PAC & 2mg/l polymer reduced floc set-
tling time, enhanced decoloration and reduced soluble Fe in effluent.

131
(1997) 

Fenton+ Chemical coagulation 
 

Disperse- Blue N=N 106, Yellow
AQ 54; Reactive- Blue AQ 49, Yel-
low N=N 84 

Coagulation (pH= 5-7): Removal per mol Fe+3 [COD, DYE]: Disperse (0.74-0.93mM FeCl3) =[460.2-477g, 525.7-
672.7]; Reactive (1.85-2.78 mM FeCl3) =[37.4-86.5g, 109.5-192.7g]. Fenton (pH= 3; 30 min; [Fe+2]: [H2O2]=1:0.2-
1:0.37): Removal per mol Fe+2 [COD, DYE]: Disperse=[14-80g, 3.7-20.8g]; Reactive=[114.2-199.6g, 118.9-489.2g]. 
Combined: Both dyes, 90%COD & 99% dye removal. 

101
(2004) 

O3/ Coagulation 
 

Azo dye manufacturing 
wastewater (subjected to chlo-
rination) 

REMOVAL: After Ozonation [70 min.; 56 mg O3 /min.; 1.6 l/min.; pH= 10.3]  COD= 25%, Color= 43%.. After 
subsequent Ca(OH)2 coagulation [787 mg/l, pH= 12]  COD= 50%, TOC= 42%, Color= 62%.; effective removal of 
chloroorganics after two stages. 

186
(1998) 

Coagulation/ O3 

 
Textile wastewater Coagulation [Al2(SO4)3, 60 ppm; polyelectrolyte 0.6 ppm]  resulted in 65-75% & 20% reduction of COD & absorb-

ance (initial COD=890 mg/l), while subsequent ozonation (3 mg/min, 10-15 min.) gave a further 90% & 20-25%  
reduction of residual color & COD. Ozonation preceded by coagulation gave worse result.  

209
(1994) 

Multistage (Coagulation/ O3) 
 

Dye manufacturing wastewater Single stage coagulation (2.5%, v/v, FeCl2; 35 mg/l polymer; pH=8.5) followed by ozonation (pH=11; 90 min.) 
achieved [19% COD, 88% color] and [67% COD, 99.3% color] removal, respectively (initial COD=7700mg/l; Col-
or=67000 ADMI). Three times repetition of the sequence while keeping total ozonation time same (3@30 min.) 
achieved >90% COD & 99.99% color removal, the superiority of multistage treatment being less convincing for 
wastewater with simpler composition. 

86
(1998) 

Coagulation/ UV-Fenton 
 

Integrated plant containing varie-
ty of processes ranging from 
desizing to dyeing and ultimate 
finishing 

UV (20W)/TiO2 (1 g/L)/ H2O2(10mM)/Fe+2 (1mM) treatment (pH=4) following coagulation treatment achieved com-
plete decoloration (30 min.) & a maximal 48% (over that achieved by coagulation) COD removal (1 hr.), the COD of 
raw, coagulated and oxidized sample being 1063, 556 & 269 mg/L, respectively. 

18
(2003) 

Coagulation / Carbon adsorption 
 
 

C.I reactive N=N red 45, C.I reac-
tive N=N green 8 

Removal (Dye= 1g/l): After AlCl3.6H2O coagulation [0.8 g/l; pH= 3.5]: RR 45 [ Color 98.8%, TOC 98.1%, COD 
93.4%]; RG 8 [Color 99%, TOC 96.9%, COD 83.8%]. After carbon adsorption [0.24 & 0.84 g/l; 2 hr]: RR 45 
[Color 99.9%, TOC 99.7%, COD 95.7%]; RG 8[Color 99.9%, TOC 99.2%, COD 91.3%]. Half the coagulant con-
sumption and lower volume of sludge formation in comparison to dye removal by coagulation only.  

163
(2004) 

Photocatalysis/Adsorption (Pow-
dered activated carbon, PAC) 

 

Humic acid (Natural coloring 
matter) 

3-4 hrs irradiation induced decrease in UV280, UV254, TOC and COD and simultaneous improvement of biodegra-
dability  with no significant decrease in adsorptivity of subsequent PAC. 

22
(1996) 

Solvent extraction (& dye recov-
ery) / Fenton’s reagent 

 

1-diazo-2-naphthol-4-sulfonic 
acid (acid dye intermediate) 

82% extraction using solvent (trialkylamine N235) and subsequent dye recovery by stripping led to 95% decoloration
of the original effluent.  Subsequent raffinate treatment (after lime neutralization) by Fenton’s reagent achieved 
achromatic effluent with COD< 100 mg/L.

87
(2004) 

O3/Ion exchange 
 

Cu-complex Direct N=N Blue 80 Concurrent decoloration & metal release by 0.2 mg O3/mg dye and subsequent metal removal by strong acid cation-
exchange resin at pH=2 achieved Cu-concentration below detectable limits in the effluent. 

97
(1996) 

Adsorption (Fluidized GAC) +O3 Acid blue 9, Mordant N=N black 
11, Reactive AQ blue 19, Reactive 

N=N orange 16 

Influent: pH=5.1-9.2, COD=250-1800 mg/1, SS= 45-320 mg/1, turbidity (NTU)=50 –210. Combined ozonation and 
GAC adsorption (4l O3/min per 100 gm GAC) offers mutual enhancement namely regeneration of GAC & catalysis 
of O3.  

132
(2000) 

Adsorption (GAC) +UV/ H2O2 

 
Reactive Everzol Black-GSP Simultaneous adsorption (8g/L) & UV- H2O2 oxidation (0.009 M) achieved synergistic decoloration & TOC removal 

(complete & 50%, 30min.) for the originally poorly adsorbable dye (36 ppm) concurrent with cost saving due to re-
use of adsorbent. 

91
(2002) 

Adsorption (-FeOOH)/ oxidative C.I. Reactive N=N Red 198 Adsorption onto granulated -FeOOH (170mg/g) and its repeated reuse (6 cycles) following regeneration by catalytic 107
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(H2O2) regeneration oxidation using H2O2 (7mg dye/mg; 6hr@24.5 ml/min.); selective adsorption/oxidation, lower oxidant dose and no 
conventional concentrate treatment. Simultaneous treatment recommended for high salt containing w.water. 

(2002)

Ion-exchanger (Quarternized am-
monium cellulose) / Chemical re-
duction (Bisulfite-mediated boro-

hydride) 

Orange II (Acid N=N Orange 7), 
Reactive N=N red 180 

Anion exchanger bound 383mg/g of Orange II & 272 mg/g of reactive dye while subsequent KBH4/NaHSO3 (2mM/ 
10mM) reduction of dye (1mM solution) followed by salt or base extraction resulted in almost complete regeneration 
of the costly ion-exchanger, establishing a feasible process coupling two technologies with limited potential alone. 

117
(1997) 

Adsorption (PAC)/ Wet air oxida-
tion (WAO) 

 

Chemictive  Brill. Blue R (Reac-
tive AQ); Cibacorn Turquoise Blue 
G (Reactive TC) 

Efficient treatment of lower concentrations of unhydrolized reactive dyes by first adsorbing on PAC, and subsequent-
ly, regenerating (>98% after consecutive 4 cycles with only 8% total weight loss) spent PAC by WAO (150-250C, 
O2 partial pressure 0.69-1.38 Mpa), and recycling the regenerated carbon. 

191
(2002) 

Adsorption(CuFe2O4)/ Catalytic 
combustion 

 

Acid N=N Red B Dye, pre-concentrated on adsorbent/catalyst CuFe2O4 (>95% removal from 100mg/l; pH<5.5, dose= 0.1g/50ml), after 
magnetic solid/liquid separation, was subject to complete combustion at relatively low temp (300C) without evolu-
tion of harmful products; and in the process, CuFe2O4 was regenerated allowing efficient reuse over extended cycles.  

223
(2004) 

Adsorption (ferrous modified 
GAC)+ Microwave (MW) induced 

Oxidation 
 

Argazol Blue BF-BR 150% (Bi-
functional N=N reactive dye) 

98.3% decoloration and 96.8% COD removal was achieved when dye solution (50ml, 300mg/L) containing ferrous 
modified GAC (2 g) was subject to MW irradiation (5 min., 500W, 2450 MHz), the removal mechanism involving 
GAC adsorption & subsequent combustion (induced by MW) on its surface. Negligible stripping of Fe+2 from GAC 
surface under reuse for many times. 

166
(2004) 

Adsorption (GAC)/ Microwave 
(MW) regeneration 

 

C.I Acid N=N Orange 7 Dye (500 mg/L)- exhausted GAC could be successfully regenerated by microwave irradiation (2450 MHz, 850 W, 5 
min.) for repeated cycles involving low GAC loss (6.5%, 4 cycles) and adsorption rate even higher than that of virgin 
GAC due to pore-size distribution & surface chemistry modification. 

176
(2004) 

 Sonication/ Fe0 reduction 
 

C.I Acid N=N Orange 7 Pulsed sonication (20 kHz, 250W), by improving mass transfer & also increasing active sites on Fe-surface, dramati-
cally enhanced dye (50 mg/L) decoloration efficiency of mild reducing agent Fe0 (1 g/l, pH=3), the combined process 
achieving 91% dye removal in 30 min. following 1st order kinetics. 

237
(2005) 

Membrane-based ozonator 
 

Blue 19 reactive dye; Untreated 
exhausted dye-bath 

Thin coating of TiO2 & -Al2O3 on ceramic membrane (ZrO2, -Al2O3) eliminated defects & hence allowed opera-
tion at high gas pressure with substantial ozone transfer improvement, eventually yielding 100% & 62% decoloration 
of pure dye (0.072 mmol/L) & untreated dye bath, respectively, in 2 hrs. 

45
(2003) 

Photocatalytic membrane reactor 
 

Congo red N=N, Patent blue N=N The continuous photocatalytic membrane  (NF; 30-70 L/m2h) reactor with suspended TiO2 (1g/l) & immersed UV 
lamp (125W) outperformed its counterpart with TiO2 entrapped on membrane and irradiated with external lamp 
(500W), achieving almost complete photodegradation of dyes (500 mg/l) with higher rate. 

145
(2004) 

Membrane/ Wet air oxida-
tion,WAO 

Disperse N=N blue CI 79 NF membrane achieved >99% color and 97% COD rejection of dye compound while the homogeneous copper sul-
fate catalyzed WAO (160-225C, O2 partial pressure 0.69-1.38 Mpa) reduced 90% COD from concentrate (120 
min.). 

55
(2000) 

Membrane/ Wet air oxida-
tion,WAO  

Dyeing wastewater containing 
Reactive blue, Indigo, Sulphur 
black & other process chemicals 

Replacing O2 with stronger oxidant H2O2 (50% of stoichiometric amount) & adding Cu-AC catalyst (2g/l), 80% TOC 
& 90% color was removed from membrane-concentrate by WO under mild condition (110C ,Total P= 50 kPa) in 30 
min. 

118
(1998) 

Membrane/ Sonication/ WAO  Reactive
 TC

 Turquoise blue CI25 NF membrane (1.5 Mpa; flux=0.084m/h) removed 90.3% COD & 98.7% color from pure dye solution (COD=1500 
mg/l), while WO (190C, O2 pressure=0.69 Mpa; pH=7) reduced 90% COD from diluted (COD= 500-700 mg/l) con-
centrate (120 min.). Sonication (150/350 W, avg./peak; 40 kHz; 30 min) was essential to make membrane-retentate 
from actual wastewater to be amenable to subsequent WO. 

54
(1999) 

Membrane/ O3 

 
Reactive (Remazol blue BB , In-
tracorn golden yellow VS-GA, 

Remazol red RB) & salt 

NF membrane (9.41L/min.; Re=838) generated reusable permeate (85% of original volume) with >99% of color & 
Cu, and only 15% of salt removal while subsequent ozonation (7.73 mg/l.min, pH=11) removed color from the con-
centrate following 1st order kinetics, the rate decreasing with increasing initial dye color. 

222
(1998) 

UV-Fenton/ Coagula-
tion/Membrane 

 

Reactive N=N  (Procion Red 
HE7B) 

Complete color removal (Dye= 50 mg/l) and 79% TOC removal within 20 min. by photo-fenton (PH=3; [H2O2]/ 
[Fe+2]= 20:1; 4@ 15W UV lamp). However 9 times increase in dissolved solids warrants subsequent coagula-
tion/membrane system for reuse in dye/rinse process. 

88
(1999) 

Physico-chemical / Membrane 
(UF/ NF) 

Synthetic textile manufacturing 
wastewater 

Raw water: Conductivity (mS/cm) 2.06; S.S. (mg/L) 82.6; COD (mg/L) 1640; Turbidity (NTU) 15.65; In order to 
reuse the water in rinse processes, it is necessary a negligible COD and a conductivity lower than 1 mS/cm. Physico-

25
(2002) 
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chemical (pH = 8.5, CDK-FER20 = 200 mg/L, Cnalco,flocculant = 1 mg/L): 50% COD removal; NF membrane (flow rate 
=400 L/h, TMP=1 MPa): 100% COD removal, 85% conductivity retention.[Reusable] 
 

Physico-chemical / Membrane ( 
NF) 

Textile wastewater Raw water: Conductivity (mS/cm) 4.53; COD (mg/L) 1630. Physico-chemical (pH = 12, Fe+2= 700 mg/L): 72.5% 
COD removal; NF membrane (flow rate =200 L/h, TMP=20 bar, flux= 8-10 L/m2h): COD<100mg/l; Conductivity 
<1 mS/cm 

26
(2003) 

Clariflocculation/Ozonation/ 
Membrane (UF) 

 

Wastewater from carbonizing 
process, from dyeing and fulling 

49% turbidity & 71% color removal by clariflocculation & ozonation, respectively, and high turbidity (27%) & TSS 
(30%) removal by the subsequent UF membrane contributed to achievement of final 66% COD and 93% color re-
moval, making reuse, after 50% dilution with well water, possible. 

139
(2002) 

Activated C/ Membrane (NF/ RO) Reactive dye for cotton Hot water reuse in rinsing after reclamation by membrane (degradation of filtration remanence in anaerobic digest-
ers); and reuse of dye bath water and salts after adsorption of dyestuff and COD on activated carbon.  

219
(1996) 

Membrane (UF)/ Adsorption (Ac-
tivated Carbon cloth, ACC) 

Acid N=N Orange II, Acid N=N Bril-
liant Yellow (color) & Bentonite 

(turbidity) 

Both process are complementary in that compounds too large to be adsorbed onto ACC are successfully retained by 
the membrane (>98% turbidity & 15-40% dye removal), while low molecular weight organics are well adsorbed by 
the ACC (38-180mg/g, dye-specific). Replacing UF with NF, or UF membrane wrapped up in a pleated ACC rec-
ommended to avoid early breakthrough of ACC. 

168
(2000) 
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Table 4. List of typical examples of combinations between biological treatment and other technologies 

Different dye chromophores: N=N: Azo, C=C:Stilbene. 
Technology Dye / Wastewater Details Ref.

(Year)
Chemical (NaOCl)/ Bio (Anaero-

bic) 
 

Kraft E1 effluent (containing lig-
nin and other colored compounds 
like quinones, chalcones, stil-
benes) 

NaOCl (0.1 kg Cl/kg color; pH=10) achieved 90% color removal with 50% increase in low molecular mass AOX 
which was amenable to subsequent anaerobic treatment, although a simultaneous small amount of color reversion 
occurred during anaerobic stage. A short term solution for combined decoloration & dechlorination. 

47
(1994) 

Polyurethane immobilized fluidized 
biofilm/ coagulation (Alum) 

Dyeing wastewater from polyester 
deweighted process 

92% CODMn (initially 824 mg/l) removal by biological (0.16-0.32 kgCODMn/kgVSS.day) followed by coagula-
tion (600 mg/l alum, pH=6) process. Coagulation (1000 mg/l alum, pH=6) followed by biological (0.09-0.19 
kgCODMn/kgVSS.day) process achieved similar removal, but with 20% more excess sludge due to more dissolved 
(in addition to suspended) substance removal during coagulation. 

229
(1996) 

Coagulation (Na-bentonite)/ Acti-
vated sludge 

 

Wastewater from plants dyeing & 
finishing natural/ synthetic fibers 

Chemical pretreatment (2g/L) prior to biological process reduced 40% of initial biodegradable as well as inert sol-
uble COD, thereby reduced potential of ‘residual inert COD (products from biodegradable COD)’, while chemical 
post treatment following biological, achieved, despite better decoloration, only 20% residual soluble COD remov-
al. 

57
(2002) 

Fluidized biofilm/ coagulation/ 
electrochemical oxidation 

Synthetic textile dyeing 
wastewater 

Biofilm of specially isolated microbes on support media achieved 68.8% CODcr (initial= 800-1000 mg/l) and 
54.5% color removal while those achieved by overall combined system (FeCl3.6H2O dose of 3.25x10-3 mol/l; 
Electrooxidation: 2.1 mA/cm2 of current density and 0.7 l/ min flow rate) were 95.4% and 98.5%, respectively.   

100
(2002) 

Fenton or Powdered activated C 
(PAC)/Fixed bed biofilm/ Fenton 

 

Disperse dyestuff wastewater Enhanced removal by previously acclimatized biomass on fixed bed due to increased biodegradability (BOD5:COD
from 0.06 to 0.432) by fenton (H2O2: FeSO4·7H2O = 700:3500, mg/l) or PAC pretreatment. COD removal (initially 
17200 mg/l) separately at pretreatment, biological & post treatment were 50%, 85% & 85%, respectively. 

3
(1999) 

Coagulation/ Electrochemical oxi-
dation/ Activated sludge 

 
 

15 dyes used in a plant making
primarily cotton and polyester fi-
bers and small quantity of wool 

Influent: COD=800-1600 mg/l, Transparency <4cm, Conductivity= 2000 mho/cm, pH= 6-9. COD concentration 
(100 mg/l) and transparency (30) amply satisfies the government safe discharge standard by employing Poly alu-
minium chloride (40 mg/l, with polymer concentration 0.5mg/l), electrochemical oxidation (pH7, current densi-
ty= 53.4 mA/cm2, 1 l/ min of flow rate) and the subsequent activated sludge process. 

129
(1996) 

Bio/ Electroflocculation/ Flotation/ 
Filtration 

 

Wastewater from plants dyeing & 
finishing natural/ synthetic fibers 

Although electroflocculation is effective without biological pretreatment, the same enhanced its performance, 
while subsequent flotation and bentonite filtration completed sludge removal & lowered Fe concentration, the 
combined system achieving complete color, 69% COD & appreciable salt removal. Al-electrode should be pre-
ferred to Fe-electrode to avoid residual Fe interfering reuse of wastewater for dyeing light colors. 

43
(2001) 

O3/ Coagulation/ Activated sludge 
 

Textile wastewater Complete decolorization of the textile effluent (COD=1800 mg/l, JTUtransparency=2 cm) accomplished with 10 min. 
ozonation (rate 13.25 g/h). Without/With coagulation (3 ml PAC) only 5% and up to 70% COD reduction, respec-
tively. 

127
(1993) 

Coagulation/ Activated sludge/ 
Overland flow 

Cotton textile wastewater Input COD, TDS and Turbidity (2009 mg/l, 2987 mg/l, 102 NTU) reduced as follows: After Physicochemical  
[Alum416 mg/l, lime213 mg/l, polyelectrolyte11 mg/l]: (1054 mg/l, 1540 mg/l, 52 NTU); After Activated sludge 
[HRT=20 hr, COD loading-0.9 kg COD/m3, MLSS-3073 mg/L, sludge recycle-20%]: (488 mg/l, 772 mg/l, 49 
NTU); After land treatment: (89 mg/l, 239 mg/l, 20 NTU);  

185
(1996) 

Bio/ Electrochemical+H2O2 / Coag-
ulation/  Ion exchange 

 

Dyeing & finishing wastewater Electrochemical (DC 2.5A; 200 mg/l H2O2; pH=3; 10 min) & coagulation (100 mg/l PAC, 1mg/l polymer) on bio-
logically pretreated wastewater (COD= 111mg/l; Conductivity=4850 mho/cm) achieved 72.8% COD & 97.3% 
color removal, while subsequent ion exchange (cationic=40, anionic=20g/l) reduced conductivity & COD to 10 
mho/cm & 10mg/l. [Reusable] 

130
(1996) 

Coagulation/ Activated sludge, AS/ 
Filtration/ Disinfection 

 

Textile wastewater [BOD5 (mg/l), COD, Conductivity (s/cm)]: Influent= [940, 2560, 3500]; After chemical treatment (FeSO4. 
7H2O= 0.72 kg/m3, Polyelectrolyte= 0.2 g/m3)= [512, 1250, 2940]; After tertiary =[15, 310,2800], reusable for ir-
rigation. 

155
(1992) 
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Bio (Phanerochaete chrysosporium 
fungi) /O3 

Textile wastewater Decrease in high molecular mass fraction of textile effluent in the biological process (pH=4.5) & low molecular 
mass fraction during subsequent O3 treatment (pH=11, 15 l/h, 80 min.) accompanied by 40% decoloration in each 
step, the final effluent showing no toxicity. 

115
(2001) 

Bisulfite-catalyzed Na-borohydride 
reduction / Bio 

 

Direct N=N red 23, Disperse N=N

yellow 5, Acid N=N yellow 17, 
Basic N=N blue 41, Reactive N=N 
orange 13 

DYE: Depending on dye (200 mg/l), 85-98% decoloration within 10-30 min. by chemical reduction. Actual 
wastewater (COD= 770 mg/l): [COD & color removal]: i) Na2S2O5 (200-250 mg/l)- catalyzed NaBH4 (50-60 mg/l) 
reduction= [73-86%, 8-12%]; ii) Subsequent biological oxidation=[74-87%, 74-76%]. 

71
(2003) 

Bio/ Photoreactor Reactive (Cibacron red FB), Dis-
persal Yellow C-4R, Direct (Solo-
phenyl Orange T4RL) 

[COD removal, yellow/red color removal]: Only biological [HRT 3 days, SRT 20 days]: [60%, 10-15%/not significant]; 
Only photoreactor[4g TiO2/150 g zeolite, Light (365nm) intensity 30W/m2, 200hrs] : [>90%, completely decolorozed], Bio-
photoreactor[24 hr illumination]: [>90%; complete decolorization] 

121
(1997) 

Photochemical/ Bio (Fungi) Kraft E1 effluent (containing lig-
nin and colored compounds like 
quinones, chalcones, stilbenes) 

Only Photocatalysis [50 mg sand-immobilized ZnO (10%,w/w) / 10ml effluent; Light (254nm) intensi-
ty=108W/m2; pH=6.5; 2hr]: 100% decoloration, 80% CO2 formation, 90% COD reduction; Only Bio= 57% decol-
oration; Photo (10min)-Bio(Lentinula edodes fungi, 96hr): 73% decoloration,; Bio (5d+3d, 2 cycles)-Photo 
(20min): 100% decoloration 

178
(1998) 

Thin-film photo-reactor containing 
photosynthetic bacteria 

 

Acid N=N blue 92 TiO2-coated reactor irradiated with UV and fluorescent light (3 of each type @ 6W) facilitated decolorization effi-
ciency (80%; 15 mg dye/gMLSS/d) of photosynthetic bacteria (without any inhibition induced by UV- radiation) 
by avoiding algal growth and its adhesion on reactor. 

83
(2003) 

Fe(III)/ photo (solar) assisted bio-
logical system 

 

5-amino-6-methyl-2-
benzimidazolone (AMBI); dye 
intermediate 

The 300 min. (shortest possible to yield the best combined result) aerated, Fe (III)/light pretreatment 
(Fe+3=1mmol/l; 400W; 80mWcm-2) achieved 100% AMBI (1mmol/l) degradation and 40% DOC removal, while 
subsequent immobilized biological column (6 l/h) completed the mineralization. Pilot scale investigation under 
solar radiation recommended Fe (III)/H2O2/light for 10 times faster reaction. 

187
(2003) 

Electron-beam treatment/Bio 
 

Mixed raw wastewater predomi-
nately from dyeing process & 8% 
from polyester fiber production 

Pilot plant investigation (flowrate=1000 m3/d) involving low dose (1 kGy) E-beam pretreatment revealed enhanced 
bio-treatment performance requiring reduced (half) residence time (HRT) for same degree of removal. With the 
wastewater being originally biodegradable, the role of E-beam was, in contrast to usual anticipation of conversion 
of non-biodegradable portion, to convert the biodegradable portion to further easier forms. 

81
(2004) 

AOP (Peroxon, O3+H2O2; Photo-
fenton with Ozone, 

O3+H2O2+UV+Fe+2) / Bio 

4,4’-dinitrostilbene-2,2’-
disulphonic acid (DNS)C=C, fluo-
rescent whitening agent precursor 

[Initial: COD= 2840 mg/l; BOD28/COD=0.04]. Peroxon (Molar ratio, DOC:O3:H2O2=1:1:1/3) or Photo-fenton 
with Ozone (DOC:O3:H2O2: Fe+2=1:0.3:1:1/20; UV 150w) realized similar 60% COD, 50% DOC & 60% AOX 
removal, while the biodegradation of the 5 times diluted pre-oxidized sample achieved overall 80% COD removal. 
Sole ozonation, however, achieved better decoloration than the above two. In situ .OH formation without need of 
UV recommended due to strong UV-absorbing compounds in this wastewater. 

85
(2003) 

Bio/ AOP (Peroxon, O3+H2O2)/ Bio 
 

StilbeneC=C-based fluorescent 
whitening agent 

[Initial: COD= 1980 mg/l; BOD28/COD=0.44]. AOP pretreatment prior biological treatment did not have any im-
provement effect over sole biodegradation; hence a reversed sequence was adopted. Biological pretreatment re-
moved 60% COD & 55% DOC, while the final biodegradation following the intermediate AOP (Molar ratio, 
DOC:O3:H2O2=1:1:1/3) treatment achieved an overall 84% COD & 71% DOC removal.  

85
(2003) 

Clariflocculation/Bio/AOP 
(H2O2/UV) 

 

Wool scouring effluent Clariflocculation followed by aerobic biological treatment removed >90% COD & all BOD; however, remaining 
COD (1000mg/l) & intense color warranted subsequent H2O2/UV [Molar ratio, COD: H2O2 =1:1; 40w] treatment 
which, despite presence of strong UV absorbing compounds, achieved 100% decoloration (30 min), 75% COD & 
85% TOC removal (60 min.) irrespective of pH.  

170
(2004) 

Bio/ Flocculation/ O3+ H2O2 

 
Textile wastewater Activated sludge treatment followed by flocculation realized 85%, 99.5% & 85% DOC, BOD & CODcr removal 

(Initial values, mg/L, 277, 220, 780), while subsequent O3+ H2O2 treatment (60 min.; [H2O2]:[DOC]=1:1) achieved 
complete removal of BOD & over 50% removal of residual DOC, CODcr. Conversely, single ozonation resulted in 
lower COD removal and increased BOD (biodegradability). 

126
(2004) 

[O3]/Bio/ [O3] 
 

Wastewater from plants dyeing & 
finishing natural/ synthetic fibers 

Pre-ozonation, due to selective preference of O3 for simpler organic compound, significantly decreased readily bi-
odegradable COD without appreciably affecting soluble inert COD. Post-ozonation achieved higher color and inert 
COD removal involving 50% less ozone dose compared to pre-ozonation at same contact time & ozone flux rate. 

158
(2002) 

Bio/ Sand filter (SF)/ O3 Wastewater from plants dyeing & Removal of suspended solid (& hence COD) by biological & SF pretreatment enhanced subsequent two sequences 43
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 finishing natural/ synthetic fibers of ozonation (30 min., 40 g/m3), achieving, in contrast to 60% COD removal by ozonation alone (without pre-
treatment), a combined 65% & 78% COD removal after 1st & 2nd ozonation cycle, respectively. Complete decolor-
ation allowed wastewater reuse in dyeing even light colors. 

(2001)

Bio (Anaerobic/Aerobic)/O3/ Bio 
(Aerobic) 

 

Segregated concentrated dyebath 
containing C. I reactive Black 5 & 
high salt concentrations. 

Although biological pretreatment achieved >70% decoloration, and ozonation increased biodegradability in follow-
ing aerobic reactor, high ozone dose of 6gO3/gDOC was required to achieve combined >95% decoloration & 80% 
DOC removal while not more than 30% DOC was removed by biological reactor; internal recycle between ozona-
tion & aerobic stage recommended for reducing ozone dose. 

124
(2003) 

Bio (anaerobic-aerobic)/ O3 Colored wastewater containing 
melanoidins 

Ozonation (1.6 g/h- 11.5 g/h) of biologically (anaerobic-aerobic) pretreated wastewater (COD= 4580, TOC= 1000, 
mg/l) achieved 71-93% decoloration & 15-25% COD removal in 30 min. 

165
(2003) 

Bio (Anoxic/ aerobic) /O3 Reactive N=N black 5 (vinyl sul-
fonic acid), Reactive N=N red 198 
(vinyl sulfonic acid & triazine), 
Remazol Dunkelblau HR (Metal-
lized azo) N=N, Remazol Goldgelb 
RNL N=N, Reactive N=N yellow 25 
(Dichloroquinoxaline), Reac-
tiveN=NRed159 (Dichlorofluro-
pyrimidine) 

Sequencing anoxic/ aerobic process along with partial oxidation by ozonation (concurrent with aerobic phase) in a 
recirculated system yielded complete decoloration and showed synergistic enhanced biological DOC removal 
(90%) as well as lower consumption of O3 (5 mg/ mg DOC).  

111
(1998) 

Biological+physico-chemical/ O3 

 
Jeans finishing plant wastewater 
mixed with domestic WW (<30%) 

Pretreatment involving GAC (200g/8L) & polyelectrolyte addition in anaerobic reactor restored nitrification activi-
ty & improved sludge settleability of the subsequent aerobic reactor with a cumulative 96% COD & 88% color re-
moval, while following ozonation achieved 70% reusable water. 

205
(1999) 

Bio /O3 

 
Naphthalene-1,5-Disulphonic Acid 
(NADSA), a dye precursor 

Combined fixed-bed bioreactor (equipped with a 1.5m membrane for solid/liquid separation) and ozonation 
treatment in semi-continuous fashion achieved ca. 80% DOC removal (Initial= 170-340 mg/l) with >50% reduction 
in ozone consumption (0.8 mol O3/mol DOC) as compared to single use of ozonation only. 

30
(2003) 

Bio/O3/Granular activated C(GAC) Domestic + Textile industry (50-
70%) wastewater 

Feed water [on GAC]: COD= 128-135 mg/l, TOC=16-18 mg/l; C-adsorption is less effective after the ozonation, 
residual COD (> 70) & color (over optical detection) unsuitable for reuse; “Bio+Flocculation+O3+GAC” proposed. 

23
(1999) 

O3/Biological activated C (BAC) Natural coloring matter (Humic 
substances) 

Biodegradable DOC increased by pre-ozonation was subsequently biodegraded rather than being simply adsorbed 
on BAC and, thereby, increased BAC service time.   

221
(1997) 

Coagulation or Catalytic H2O2/ Bio 
 

Basic dye Chemical precipitation (FeCl3= 400 mg/l; pH=9.5), despite resulting in 41% COD removal from raw wastewater, 
could not improve biodegradability. After partial oxidation (H2O2/COD=1; Fe+3= 500 mg/l; pH= 3.5; 1day) 63% 
COD removal & wastewater-biodegradability was achieved. 

15
(1999) 

Biological fixed GAC bed AcidN=N (Tectilon Red 2B, Tecti-
lon orange 3G) 

GAC bed inoculated with special chromophoric bond-cleaving & aromatic ring- cleaving bacteria, after initial ac-
climatization period, outperformed conventional GAC bed; the bacterial activity, however, decreased after certain 
period due to lack of nutrient and/or dissolved oxygen. [Dye= 100 mg/l]. 

218
(1996) 

Bio (Anoxic/ aerobic) /Oxygen en-
riched BAC 

 

Mixed textile dyeing-printing (Re-
active blue dye) and alkali peeling 
wastewater 

The initial contact bio-film system improved biodegradability while subsequent BAC system, due to enhanced bio-
degradation induced by high DO level maintained by high pressure (0.4 Mpa), achieved high turbidity, color, 
COD, & NH3-N removal with concurrent prolonged carbon-bed life, the performance essentially being better than 
normal BAC or pure GAC process. 

177
(2004) 

Biological fluidized GAC bed 
 

Bleached kraft mill secondary ef-
fluent containing refractory organ-
ics like lignin, which may be con-
sidered to be representative of dye 
structure. 

57% DOC removal (initial = 280-330 mg/l; 0.9 g DOC/ kg AC. d) by physical adsorption on GAC and biomass 
followed by biodegradation & desorption achieving partial bioregeneration of GAC was observed. Combined ‘bio-
regeneration/ physical (US-IR)-partial regeneration (50% of GAC volume)’ achieved 30-40% improved removal 
with 2% weight loss/regeneration, which is smaller than loss due to sole regeneration by physical method. 

217
(1994) 

Bio+ Recirculated Powdered acti-
vated C (PAC) / Flocculation 

Domestic effluent mixed with Re-
active dye (Cibacorn yellow 
CR01, Cibacorn yellow F3R, Ci-

[Initial COD= 775-4035, pH= 9-12]; Recirculation of PAC (13 mg/l) resulted in effective removal of dyes and hal-
ogenated /refractory organics along with optimum use of PAC which is only partially loaded if not recycled. 

156
(1999) 
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bacorn red C2G, Cibacorn red CR, 
Cibacorn Red FB, Cibacorn blue 
FB, Levafix yellow KR, Levafix 
red KGR, Remazol red, Remazol 
black) /salts/auxiliary chem. 

Powdered activated carbon or or-
ganic flocculant addition in biologi-

cal system 

Cotton textile wastewater Only Bio (SRT= 30 days, HRT=16 days): 94% COD removal, 36% decoloration. Combined (PAC=200 mg/l or 
Organic flocculant= 120 mg/l): Decoloration improved up to 78%, the organic flocculant producing less excess 
sludge than PAC.

161
(2002) 

Powdered activated carbon addition 
in biological system (PACT) 

Acid N=N orange7, C.I. 15510 The behavior of COD removal was the same but the dye removal was better in the PACT than in the conventional 
activated sludge process.  

49
(1997) 

Powdered activated carbon addition 
in biological system 

Acid N=N orange7, C.I. 15510 Under a higher biomass concentration (> 3g/l), the carbon particles are trapped in the floc matrix and lose their 
properties of adsorption hindering microbial growth and dye removal. 
 

141
(1997) 

Powdered activated carbon addition 
in biological system 

Dispersed, direct, acid & basic 
dyes; anionic/nonionic detergents. 

Removal efficiency rises from 55.8 to 75.6% (COD) and from 78 to 98.5% (TOC). The nitrification- denitrification 
capacity of the system also increases, probably due to high concentration of nitrifying-denitrifying bacteria on the 
PAC surface. 

197
(1984) 

Fluidized bed reactor containing 
complex pellets of white rot fungus 

& activated carbon 
 

Acid N=N violet 7 Complex mycelium pellets with a black core of activated carbon (preparation: 5ml inoculum+ 0.6 g A.C+200ml 
medium), by retaining necessary fungal metabolites, outperformed standalone application of fungi or activated C, 
or even simple addition of activated C in fungi reactor; the decoloration (95%) being better in repeated batch reac-
tor (50 g wet complex pellet/L; 20 hr retention; 500 mg/L dye) than in continuous reactor.

235
(2000) 

Activated Carbon (AC)- amended 
anaerobic bioreactor 

 

Hydrolyzed reactive N=N red 2, Ac-
id N=N orange 7 

AC, in addition to its adsorption capacity, as a biologically regenerable redox mediator due to quinone surface 
group on it, enhanced azo dye reduction, achieving 97-90% decoloration for 130 days [42 mg/L dye; 35g/L VSS; 
HRT=5.5 hr; 10 g/L AC]. 

234
(2003) 

Bio/ NF 
 

Diluted wool dyeing bath contain-
ing metal complex & acid dye 
(original dye concentration 8g/L) 

Diluted dye bath (COD=2 g/L) after activated sludge treatment (COD= 200 mg/L) was subjected to nanofiltration 
that resulted in reuse standard permeate (further 99% color & 88% COD removal) with less fouling as compared to 
that for direct nanofiltration of dye baths. Ozonation of membrane-retentate before recycling to activated sludge 
process was recommended. 

33
(2001) 

Bio/Membrane(+Aluminum poly-
chloride) 

Domestic + Textile industry (80% 
by organic load) wastewater 

Microfiltration (300,000 D, crossflow) followed by nanofiltration (150D, 10 bar, spiral wound) along with Alumin-
ium polychloride (70 mg/l) produced recyclable water (COD<10 mg/l, conductivity < 40us/cm, negligible residual 
color) from the secondary effluent; alternately “Clariflocculation (Dose: 4ppm, vol.) + Multimedia filtration+ Low-
Pressure RO (58 D,4 bar, 10L/m2.h, spiral wound)” seemed preferable  in techno-economical analysis. 

183
(1999) 

‘Bio+ Powdered activated C, 
(BPAC)’/ Microfiltration 

Secondary sewage effluent con-
taining refractory organics like 
lignin which may be considered to 
be representative of dye structure. 

PAC dose of 0.5g/l. 52% TOC removed in BPAC contactor (higher than PAC only), additional 16.8% was rejected 
by membrane. 

189
(1997) 

Bio/ NF or O3 Wastewater from printing, dyeing 
& finishing textile plant 

Biologically treated: Conductivity (mS/cm) 2.8-3.33; COD (mg/L) 200-400.    Folowing biological treatment i) 
Nanofiltration (flow rate =200-400 L/h, TMP=20 bar): COD<50 mg/l; Conductivity =0.39-0.51 mS/cm. ii) O3: 
COD=286 (30 min.), 70 (210min.) iii) O3+UV: COD <50 (30 min.), <50 (210 min.). Ozonated (with/without UV) 
wastewater can’t be reused for rinsing due to negligible conductivity removal although the process is free from re-
ject stream generation.

27
(2003) 

Bio/ NF/ O3 

 
Textile wastewater mixed with 
domestic (20%) wastewater 

Ozonation (12 ppm, 2hrs.) of membrane-concentrates (COD= 595, TOC=190, Conductivity=5ms/cm, BOD5=0, 
EC20=34%, pH=7.9) resulting from nanofiltration (10 bar, 300 l/h) of biologically treated secondary textile effluent 
achieved 30%, 50% and 90% reduction in TOC, COD, and toxicity, respectively, making the effluent recyclable to 
biological treatment. 

134
(1999) 

Bio/ NF/ Photocatalytic membrane 
reactor 

Textile wastewater Visible Light mediated Fenton (Nafion-Fe+3 membrane, 1.78%; H2O2, 10mM) treatment (3 hrs.) of membrane-
concentrates (COD= 496, TOC=110, pH= 8) resulting from nanofiltration of biologically treated secondary textile 

17
(1999) 
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effluent resulted in 50%, 20-50% and 50% reduction in TOC, absorbance and toxicity, respectively. Further degra-
dation through biological treatment possible at low cost due to biocompatible pH of the effluent. 

Bio/Clariflocculation/GAC or 
Bio/Membrane (MFNF)/O3 

Textile wastewater mixed with 
domestic (25-30%) wastewater 

Due to cost of membrane and, COD & salinity increase in biological plant by membrane retentate, techno-
economical analysis favored post treatment of biologically treated effluent by ‘clariflocculation followed by GAC 
adsorption’ over ‘membrane filtration (MF followed by NF) followed by ozonation’, although the latter produced 
better & constant quality (softened, colorless) recyclable effluent.  

182
(1999) 

Bio/ Sand filtration (SF)/ Membrane 
(MF followed by NF) 

 

Dyeing wastewater 100% SS, 78% turbidity & 30% COD removal by SF (2 bar) & MF (3.5 bar; 400 l/h); 13% color removal by MF,
and remaining COD & color removal by NF (6.5-7 bar) contributed to overall 94% color & 82% COD removal 
along with conductivity removal making the treated water reusable for dyeing. 

139
(2002) 

Membrane filtration (NF)/ UV-
H2O2/Wet Air Oxidation (WAO)/ 

Bio (Immobilized) 

Textile wastewater Reuse of wastewater after membrane filtration and advanced oxidation process, concurrent with reuse after mem-
brane concentrate treatment by WAO and Biological treatment, thereby enabling an affordable zero-discharge sys-
tem. 

120
(2001) 

PAC+MBR (Rotating UF Mem-
brane) 

Wastewater in a sewage treatment 
plant with humic substances as 
major component of color. 

PAC (50 mg/l, retention time of 4.5 hrs.) addition in anaerobic reactor followed by an aerobic reactor coupled with 
a rotating type UF membrane resulted in a color of less than 5 deg., BOD=0, TOC<10 with simultaneous im-
provement in activated sludge dewaterability and reduction of filtration resistivity. 

157
(1998) 

Anaerobic/ Aerobic 1/ Aerobic 2 ( 
MBR) / Ozonation 

Reactive azo dye containing 
wastewater [Stream a (40%)- dye-
ing/ color preparation/ printing; 
Stream b (60%)- fiber pre-
treatment, washing] 

Stream-a, after anaerobic/aerobic pretreatment, was discharged into municipal wastewater. For Stream-b, the mean 
combined DOC & color removal after anaerobic, aerobic 1, MBR and ozonation (1g O3 m-3m1) were [53%, 65%, 
87%, 87%]DOC & [67%,65%,72%,87%]color, respectively and hence could be reused.  

112
(2004) 

Sidestream UF membrane fungi 
reactor 

 

Colored wastewater containing 
melanoidins 

With a HRT of 2d in a 1-d cycle sequencing batch mode, under a pH of 4.5, temperature of 30C and otherwise 
non-sterile condition, about 70% decolorization was achieved using the entire system (fungi+UF) while fungi reac-
tor alone contributed 45%.

62
(2000) 

Submerged MF membrane fungi 
reactor 

Synthetic wastewater containing 
Poly N=N S 119 

With a HRT of 15 hrs., under a pH of 4.5, temperature of 28C and otherwise non-sterile condition, stable 98% 
decoloration and 97% TOC removal was achieved. Tremendous membrane fouling problem was solved by using 
innovative fouling amelioration techniques.  

78
(2005) 

Prefiltration (8000 Da, 1 Mpa) fol-
lowed by airlift fungal reactor 

equipped with submerged coarse 
filter (50m) 

Kraft mill bleaching effluent (acid-
ic, C+D; alkaline, E) 

C+D-stage effluent mixed with membrane filtrate of E-stage effluent in 4:1 ratio (Net 13% AOX, 32% COD, 27% 
TOC, 44% color removal, after mixing) was submitted to subsequent fungi treatment (HRT=22 h; 0.77 kgTSSm-3) 
which achieved a combined 39% AOX, 62% COD, 56% TOC, 56% color removal. Unexpected inferior perfor-
mance of fungi reactor was ascribed to use of biomass not adapted long enough. 

29
(1991) 
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Table 5.Cost information pertaining to different combinations  
Purpose & Technology Cost Dye / Wastewater Remarks Ref.

(Year) 
Direct nanofiltration for reuse 
 

US$ 0.53-
1.19a  m-3 

Segregated dyeing and rinsing 
wastewater 

Running cost (15 bar, flow rate= 4.5 m/s, flux= 0.2-1.1 m3/h) only; saving of water supply cost due to 
recycling not considered.  

215
(2001) 

Direct nanofiltration for reuse 
 

US$ 
0.81 m-3 

Wastewater from dye bath 
containing acid, disperse and 
metal complex dye 

Cost includes both capital & operating cost (Flow rate= 1000 m3/d). Saving of water supply cost (2-3 
US$m-3) due to recycling not considered. 

108
(2001) 

Direct nanofiltration for reuse of 
water and dye bath salt 

US$ 
1.36 m-3 

Reactive dye bath wastewater 
containing high amount of 
NaCl 

Flowrate = 200 m3/d; quoted cost has been calculated using the operating and investment cost men-
tioned in the reference (assuming 10 yr investment). A payback of investment cost may be expected 
in less than 2 yrs with the saving of water supply cost, wastewater disposal cost, NaCl and heat ener-
gy. 

110
(2004) 

Reuse of water and chemical resi-
dues by (i) Membrane filtration, (ii) 
Chemical precipitation, (iii) Acti-
vated C, (iv) Counter-current evap-
oration 

US$ m-3 
(i)1,  
(ii)1-2, 
(iii)10-15,  
(iv) 10-15 

Reactive dyeing of cotton Cost includes operating and investment cost. 219
(1996) 

Electrocoagulation as sole treat-
ment 

US$ 0.1-
0.3 (kg 
COD re-
moved)-1 

Mixture of exhaust dyeing 
solutions 

Operating cost (including energy and material cost) for iron and aluminium electrode, respectively. 
Labour, maintenance and solid/liquid separation cost not considered. [Wastewater COD= 3422 mg/l; 
around 70% removal.] 

21
(2004) 

Combined treatment with 
H2O2/O3/UV 
 

US$ 
6.54 m-3 

Wastewater containing dis-
perse dyestuff & pigments 

Cost of consumables only. Less yet satisfactory (>90%) COD removal by Fenton’s reagent at a lower 
(0.23 US$) unit cost. 

12
(2004) 

Combined treatment with 
O3/Electron beam to meet discharge 
standard 

US$ 
3.17 m-3 

Molasses processing 
wastewater (intensely colored 
and recalcitrant) 

Cost includes both capital & operating cost (Flow rate= 50 m3/hr). 69
(1998) 

Combined treatment with multi-
stage Coagulation/ O3 

1.57c US$ 
ton-1h-1 

Dye manufacturing 
wastewater 

Approximate cost considering electricity cost of ozone generation only (chemical cost made small 
contribution). 

86
(1998) 

Combined treatment with adsorp-
tion +UV- H2O2 

US$ 
1 m-3 

Reactive Everzol Black-GSP Operating cost (consumables and maintenance) for decoloration & 50% TOC removal from 36 ppm 
dye solution. 

91
(2002) 

Combined treatment with Clari-
flocculation/Ozonation/ Membrane 
(UF) for reusable water 

US$ 0.52b 
m-3 

Wastewater from carbonizing, 
dyeing and fulling process 

Flowrate = 1500 m3/d; Cost includes operating and investment cost. A payback of investment cost 
may be expected in 3 yrs with the saving of water supply cost. 

139
(2002) 

Photo (solar)-fenton pretreatment 
(for subsequent biological treat-
ment) 

US$ 
22 m-3 

Dye-intermediate (5-amino-6-
methyl-2-benzimidazolone 
AMBI) containing 
wastewater; 4 g C/L 

Cost (for 1.2 Lh-1m-2) includes annualized capital, consumables & maintenance but excludes high 
land cost (US$ 200-400 m-2) in Switzerland. Economical than wet air oxidation or incineration (US$ 
200m-3). Further cost reduction possible for diluted wastewater at a location providing higher sunny 
hours. 

187
(2003) 

Coupled Photo -fenton and biologi-
cal treatment 

US$ 
71 m-3 

p-nitrotoluene- ortho- sulfonic 
acid (contained in dye manu-
facturing wastewater), 1 g/L 
or 330 mg C/L 

Cost of 70 min. (0.68 L/h) photo-fenton pretreatment using 400 W lamp (0.12 US$/ KWH) prior to 
biological treatment, combined DOC removal being 91%. Commercial lamps, being far more effi-
cient, would incur less cost. 

175
(1999) 

Combined treatment with O3/ Bio 
(Aerobic, Rotating disc reactor) 

US$ 94.7b 
m-3 

Segregated concentrated dye-
bath containing C. I reactive 
Black 5 & high salt concen-
trations. 

Cost includes both capital & operating cost (flow rate=50L/h). Higher value as compared to those 
from other studies e.g. membrane separation (11.68 US$  m-3), adsorption followed by aerobic bio-
logical treatment (2.6 US$  m-3), precipitation/flocculation followed by activated carbon adsorption 
(5.19 US$  m-3) indicates the ambiguousness arising from straightforward comparison of costs of seg-
regated vs. mixed streams. 

124
(2003) 

UV/ H2O2 treatment of secondary 
textile effluent to meet discharge 

US$ 
0.85m-3 

Textile wastewater Operating cost including lamp replacement, chemical and electrical cost. (Discharge standard: 
COD<100 mg/l; color<400 ADMI unit) 

123
(2000) 
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standard  
Post treatment of secondary textile 
effluent by (i) Ozonation, (ii) 
Membrane filtration 

US$ m-3 
(i) 0.19, 
(ii) 0.69 

Textile wastewater containing 
direct and reactive dyes 

Cost includes both capital & operating cost (except the reject disposal cost in case of membrane fil-
tration). Flow rate, (a) 2000 m3/d; (b) 1000 m3/d. 

108
(2001) 

Combined treatment with Coagula-
tion/ Electrochemical oxidation/ 
Activated sludge 
 

US$ 
0.34 ton-1 

Textile wastewater containing 
15 dyes used in a plant mak-
ing primarily cotton and poly-
ester fibers and small quantity 
of wool 

Mainly cost of consumables included. Economical than the conventional treatment process (US$ 0.45 
ton-1) used at that time in Taiwan. 

129
(1996) 

Combined treatment with Coagula-
tion/ Fenton’s reagent/ Activated 
sludge 

US$ 
0.4 m-3 

Textile wastewater Running cost, excluding that for sludge disposal. Economical than the conventional treatment process 
used at that time. 

128
(1995) 

Combined treatment with Coagula-
tion/ Activated sludge / Filtration/ 
Disinfection 

US$ 
0.19- 
0.22 m-3 

Textile wastewater Operating cost (consumables and maintenance) 155
(1992) 

Combined treatment with Bio/ Sand 
filter (SF)/ O3 for reusable water 

US$ 0.13b 
m-3 

Wastewater from plants dye-
ing & finishing natural/ syn-
thetic fibers 

Cost mentioned is for operation & maintenance. Including investment cost, it may amount up to 0.52
US$  m-3 depending on amount of water treated, although investment may be repaid in a short time 
due to saving of cost of water supply (0.52-1.3 US$  m-3). 

43
(2001) 

Combined treatment with 
Bio/Clariflocculation/GAC for re-
usable water 

US$ 
0.454b m-3 

Textile wastewater mixed 
with domestic (25-30%) 
wastewater 

Flowrate = 25000 m3/d. Cost includes both capital & operating cost. 182
(1999) 

Combined treatment with 
Bio/Membrane (MFNF)/O3 for 
reusable water 

US$ 1.69-
1.95b m-3 

Textile wastewater mixed 
with domestic (25-30%) 
wastewater 

Flowrate = 25000 m3/d. Cost includes both capital & operating cost. The system may potentially be-
come cost-effective with decline in membrane cost, the main cost-contributing factor. 

182
(1999) 

Combined treatment with Bio/ Sand 
filtration (SF)/ Membrane (MF fol-
lowed by NF) for reusable water 

US$ 0.44b 
m-3 

Dyeing wastewater Flowrate = 1500 m3/d; Cost includes operating and investment cost. A payback of investment cost 
may be expected in 3 yrs with the saving of water supply cost. 139 

(2002) 
Combined treatment with Bio/ Sand 
filtration (SF)/ Membrane (UF fol-
lowed by RO) for reusable water 

US$ 1.26b 
m-3 

Wastewater from plants dye-
ing & finishing natural/ syn-
thetic fibers 

Flowrate = 1000 m3/d; Cost includes both operating and investment costs. 44
(2001) 

Combined treatment with deep aer-
ation activated sludge/ 
BAC/Membrane (NF) for 50% re-
cycling 

US$ 
0.294c  m-

3 

Wastewater from plants dye-
ing & finishing synthetic fi-
bers 

Flowrate = 50 m3/d; Cost mentioned is for operation & maintenance. 224
(2005) 

Combined treatment with Bio/ Sand 
filtration (SF)/ Ozonation for 50% 
recycling 

US$ 0.57b 
m-3 

Wastewater from plants full-
ing & dyeing natural/ synthet-
ic fibers 

Flowrate = 2000 m3/d; Operating cost only. Required fresh water supply (50% of total) incurs a fur-
ther cost of 0.92 US$ m-3. 

42
(2001) 

Reuse after Membrane filtration (i), 
followed by UV/H2O2 (ii), concur-
rent with reuse after membrane 
concentrate treatment by Wet air 
oxidation (iii) and Biological (iv) 

US$ m-3 
(i) 0.53 
  (ii)2.6 
  (iii)4.4 
  (iv)0.13 

Textile wastewater Flow rate= 400 m3/d. Indicated costs are operating and maintenance costs for each stage of the inte-
grated system. Annualized total installation cost is US$ 243,000 while saving generated from water 
reuse is US$ 98,000. 

120
(2001) 

Membrane bioreactor US$ 
0.273 m-3 

Municipal wastewater d Flowrate = 2.4 m3/h; cost mentioned includes all sorts of capital & operating costs. With expected 
decline in membrane cost to US$ 50 m-2 in 2004, the unit cost would reduce to US$ 0.181 m-3. 

228
(2004) 

a,b,c Original reported values in Deutsche Marks, Euro and Taiwanese dollar have been converted to US$ by multiplying with a factor of 0.663348, 1.29730, 

0.0322134. respectively. d Data given for comparison of MBR technology with others only. 
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Fig.2 Different stages of textile wet processing and associated scopes of material recovery127,220 

 

 

 

 

Process Purpose and Chemical 
additives/drainages 

Slashing/ 
Sizing 

Cotton or synthetic threads are treated 
with a large amount of reusable 
thickening agent (Poly Vinyl Alcohol, 
PVA) to impart tensile strength and 
smoothness. 

Desizing To allow further wet processing, PVA is 
removed with a weak oxidizing agent, 
boiling water/detergent. 

Scouring Impurities in natural fibers (grease, wax 
etc.) or in synthetic fibers (catalysts, low 
molecular weight compounds etc.) are 
removed using caustic -soda/ash, 
detergent etc. 

Bleaching Naturally occurring pigments are 
removed using peroxide and caustic. 

Mercerizing Cotton is treated with concentrated 
caustic to correct curling of fiber, 
reducing shrinkage and increasing dye 
affinity, following removal of the added 
chemical by warm water/detergent wash.  

Weight 
reduction 

Polyester fiber is treated with caustic, 
following its removal by hot and cold-
water wash, whereupon 10-20% of 
weight of fiber is expelled as organic 
acid. 

Dyeing and 
rinsing 

Different types of dyes along with wide 
range of dyeing-auxiliaries, e.g., 
electrolyte, dispersing agent, smoothing 
agent, surfactants etc. are applied. Hot 
water/detergent rinse is applied to 
remove unfixed dye and auxiliaries. 

Oiling To increase the cohesion of the fibers 
and aid in spinning, olive oil/ mineral oil 
with non-ionic emulsifier is sprayed on 
wool, and washed out later on. 

Fulling Loosely woven wool from the loom is 
shrunk into a tight, closely woven cloth 
using detergent, caustic, sequestering 
agent, which are washed out later on. 

Carbonizing Using hot concentrated acid the 
vegetable matter in the wool is converted 
to loose, charred particles, which are 
mechanically shaken out; finally 
carbonized wool is neutralized. 

Printing and 
rinsing 

Cotton and synthetic fiber. Similar to 
dyeing/ rinsing. 

Finishing Chemicals are added to render anti-
bacterial deodorants, water resistance, 
stain proofing, glossiness etc. Involves 
less water and related drainage. 
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PVA recovery: 1.Slasher, 2.Weaving/others, 3.UF mem-
brane, 4.Permeate tank, 5.Periodic wash out, 6.Heat recov-
ery, 7.Water make-up, 8.To further processing, 9.Screens, 
10. Buffer Tank, 11.Concentrate, 12.Refractometer, 
13.PVA make-up, 14.Periodic wash out, 15.Mixing tank 

Caustic recovery (Mercerizing): 1.Mercerizing (25% 
NaOH), 2.Warm water wash, 3.Hot water wash, 4. Con-
taminated NaOH(6%), 5.Membrane, 6.Concentrate(Fibers, 
washing agent), 7.Purified NaOH(6%), 8.Evaporator, 
9.Clean NaOH(18-25%) 

Full recycle/ Jet dyeing machine: 1.Dye-bath water, 2.UF 
process tank, 3.UF membrane, 4. NF process tank, 5.NF 
Membrane, 6.Disperse,Sulfur,Vat,Acid dye 
7.Reactive,Direct,Cationic dye 9.Rinse water, 10.Water, 
11.Scour/bleaching water, 12.Water, perox-
ide,detergent,13.UF membrane, 14.Prefilter, 15.Brine, 
16.Caustic 

Scour/bleaching 

Rinse water 

Dye bath 

Printing: 1.Print machine, 2.Concentrated waste, 3.UF 
membrane, 4. Clean water, 5.Periodic disposal 



 20

Fig.3 Layout of a conceptual on-site textile dye wastewater treatment scheme (Continuation 

from Fig. 2) 

 

4 5 
1a 2 3 

6 

7 

Integrated MBR-AOP-Membrane treatment scheme
1.Wastewatera; 2.Membrane separated fungi reactor; 3.Solar photocatalytic reactor; 4. RO 
membrane; 5,7.Recyclable water; 6.Concentrated salt  
 
a For an integrated textile processing plant the wastewater is composed of the concentrate and discarded 
streams after possible material recoveries (refer to Fig.2), and passes through a treatment route of 2-3-7. For a 
plant only including dyeing and finishing, the mixed effluent without any attempt of recovery will be fed, and 
at the end salt and water will be recovered through RO filtration, thereby, involving a treatment route of 2-3-4-
5. 

or 
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