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Abstract In this paper, we propose novel hybrid approaches to annotate videos
in valence and arousal spaces by using users’ electroencephalogram (EEG) signals
and video content. Firstly, several audio and visual features are extracted from
video clips and five frequency features are extracted from each channel of the
EEG signals. Secondly, statistical analyses are conducted to explore the relationships
among emotional tags, EEG and video features. Thirdly, three Bayesian Networks
are constructed to annotate videos by combining the video and EEG features at
independent feature-level fusion, decision-level fusion and dependent feature-level
fusion. In order to evaluate the effectiveness of our approaches, we designed and
conducted the psychophysiological experiment to collect data, including emotion-
induced video clips, users’ EEG responses while watching the selected video clips,
and emotional video tags collected through participants’ self-report after watching
each clip. The experimental results show that the proposed fusion methods out-
perform the conventional emotional tagging methods that use either video or EEG
features alone in both valence and arousal spaces. Moreover, we can narrow down
the semantic gap between the low-level video features and the users’ high-level
emotional tags with the help of EEG features.
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1 Introduction

Recent years have seen a rapid increase in the size of digital video collections.
Because emotion is an important component in the human classification and retrieval
of digital videos, assigning them emotional tags has been an active research area in
recent decades [80]. Video tagging is usually divided into two categories: explicit
and implicit tagging [76]. Explicit tagging involves a user manually labeling a video’s
emotional content based on his/her visual examination of the video. Implicit tagging,
on the other hand, refers to assigning tags to videos based on an automatic analysis
of a user’s spontaneous response while consuming the videos [76].

Since the research of emotional tagging of videos deals with videos and human’s
emotional response while watching the videos, it should consist of video content
space, users’ spontaneous response space, and emotional tag space, as well as their
relationships [80]. Present explicit tagging approach involves the mapping between
video content space and emotional tag space, while the emerging implicit tagging
approach considers the mapping between users’ spontaneous response space and
emotional tag space. We believe that fully exploiting the three spaces and their
relationships is crucial to reducing the semantic gap between the low-level video
features and the users’ high-level emotional tags.

In this paper, we propose novel emotional tagging approaches combining video
content and physiological signals in three ways (i.e., independent feature-level fusion,
decision-level fusion, and dependent feature-level fusion). Firstly, several EEG fea-
tures and video features are extracted. Secondly, statistical analyses are conducted to
explore the relationships among emotional tags and video and EEG features. After
that, three kinds of Bayesian Networks (BN) are constructed for emotional tagging.
The first one is an independent feature-level fusion, in which EEG and video features
are independent given emotional tags. The second performs decision-level fusion
by combining the tagging results from EEG signals and video features. The third
performs dependent feature-level fusion by directly considering the relationship
between EEG and video features. To evaluate our approaches, we designed and
conducted a psychophysiological experiment to collect data. An emotion-induced
video dataset is gathered, which consists of 92 video clips with intrinsic emotional
content from movies and TV series. Subjects’ EEG signals are recorded while they
watch video clips. Ground truth emotional tags of videos in terms of valence and
arousal are collected by asking subjects to report their induced emotions immediately
after watching every clip. The experimental results demonstrate that our proposed
fusion methods outperform the conventional emotional tagging methods that use
either video or EEG features alone in both valence and arousal spaces. Independent
feature-level fusion yields the best performance. The comparison of the emotional
tagging method using video alone and the dependent feature-level fusion method
confirms the role of narrowing semantic gaps by adopting users’ physiological signals.

The outline of the paper is as follows. In Section 2, we briefly review the
related works on video emotional tagging and multi-modality fusion for emotion
recognition. In addition, we propose a framework for emotional tagging of videos.
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Section 3 presents the construction of three spaces and analyses of their relationships.
Section 4 elaborates on the proposed emotion tagging methods. Section 5 discusses
the experimental results and analyses. Section 6 concludes the paper.

2 Related work

2.1 Video emotional tagging

To the best of our knowledge, study on emotional tagging of videos is first conducted
at the beginning of the last decade by Moncrieff et al. [54]. Since then, hundreds of
papers have been published in this field. Earlier studies mainly infer emotional tags
from video content, and so use the explicit approach.

Two kinds of tag descriptors are often used. One is the categorical approach [27,
32, 33, 41, 54, 60, 72, 78, 81–83, 89]. It uses the six basic emotions (happiness, sadness,
surprise, fear, disgust and anger) as well as adjectives and adjective pairs, such as
pleasing, boring, or irritating. The other is the dimensional approach [4–6, 23, 73, 79,
85, 90, 91], such as valence and arousal [19, 24, 69].

Various kinds of visual and audio features (e.g., color, motion, and sound energy)
are extracted from videos [54, 73, 82]. The mapping from video features to emotional
tags are modeled by different machine learning methods, such as support vector
machine [82], support vector regression [15], neural networks [81], hidden Markov
model [72, 85, 86], dynamic Bayesian networks [5], conditional random fields [87],
etc.

Only recently have researchers begun to realize that users’ spontaneous phys-
iological and behavior responses are useful hints to videos’ emotional tags. By
recognizing users’ emotion from their induced physiological/behavioral signals while
watching the videos, the tags can be obtained automatically. This is called the implicit
approach. Two pioneer groups, Money et al. [55, 56] and Soleymani et al. [68, 70],
have investigated many kinds of physiological signals as the implicit feedback,
including electroencephalography, electromyography, galvanic skin resistance, blood
pressure, respiration, heart rate, and skin temperature, while some other researchers
only focus on one or two kinds of physiological signals [14, 64, 67]. Two other
groups consider event-related potential (ERP), such as N400 [42] and P300 [88],
as subjects’ implicit feedback. Several researchers also consider implicit tagging
according to spontaneous visual behavior, such as facial expressions and eye gaze
[2, 3, 30, 46, 61, 62]. A comprehensive overview can be found in [50, 80].

Although researchers believe emotional tagging of videos involves videos’ con-
tent, users’ spontaneous responses, and users’ subjective evaluations (that is videos’
emotional tags), few researchers have fully explored the relationships between the
three. Soleymani [70] analyzed the relationship between subjects’ physiological
response and videos’ emotional tag in both arousal and valence, as well as the
relationship between the content of videos and the emotional tag in arousal and
valence. In this paper, we propose a framework of emotional tagging of videos that
fully exploits these three spaces and their relationships as shown in Fig. 1. The
physical space includes various visual and audio features extracted from videos to
represent content; the psychological space captures the users’ subjective tagging
of the videos’ emotional content in terms of dimension or category (this may
be also called emotional tag space); and the physiological space represents users’
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Fig. 1 General framework for emotional video tagging [80]

physiological and behavioral responses while watching the videos. The mapping from
physical space to psychological space can be regarded as explicit tagging, while the
mapping from physiological space to psychological space is implicit tagging. The
relationship between physical space and physiological space has rarely been studied,
although it may help reduce the semantic gap between low-level video features and
the high-level users’ high-level emotional tags, thus improving the performance of
emotional tagging.

2.2 Multimodality fusion for emotion recognition

As we know, humans interpret others’ emotional states using multiple modalities
such as facial expression, speech, behavior, and posture. Thus, many researchers
believe that computers should also recognize users’ emotions by fusing multiple
modalities.

Generally speaking, multimodal data fusion can be accomplished at three levels:
data, feature, and decision. Data-level fusion directly integrates raw data of multiple
modalities. It requires data of the same type. Feature-level fusion is performed on
the features extracted from each modality. It is appropriate for closely coupled
and synchronized modalities. The features extracted should be synchronous and
compatible. Decision-level fusion is based on the fusion of the individual mode
decisions. It is considered to be the most robust and resistant to individual sensor
and is computationally less expensive than feature fusion.

Current works on multimodal emotion recognition have adopted both feature-
level [11, 17, 18, 21, 40] and decision-level fusion [7, 11, 18, 31, 34–36, 40].
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The combined modality can be face-body [34], face-physiological signal [8], face-
speech [51], speech- physiological signal [39], multiple channel physiological signal
[1, 12, 22, 25, 48, 49, 59, 75, 77], face- voice-body [10] and speech-text [20]. Many
machine learning methods are adopted, such as support vector machine (SVM)
[7, 20, 34, 35, 82], neural network [17, 36, 81], linear discriminant analyses [21, 40],
Gaussian process classification [7, 34, 35], Bayesian classifier [18], hidden Markov
models [33, 47, 72, 85, 86], and dynamic Bayesian networks [5]. Most reported
work achieved better performance with feature-level fusion [26]. A comprehensive
overview can be found in [13, 66, 92].

For explicit emotional video tagging, most current works have adopted feature-
level fusion by concatenating audio and visual features as the input of a classifier
[23]. A few works employ decision-level fusion by combining the tagging results from
visual and audio features to yield final fused tagging results [57, 73, 86].

For implicit emotional video tagging, if multiple modalities of users’ physiological
and behavioral responses are adopted to infer the video tag, the data- fusion
approaches are similar as those used in multimodal emotion recognition.

Until now, there has been no reported research integrating video content and
users’ EEG signals to annotate videos. Compared to previous work, our contri-
butions are summarized as follows: (1) It is the first instance of combining video
content and users’ physiological response at two different levels (feature-level and
decision-level) to annotate videos’ emotional tags. (2) We investigate and model
relationships between video and EEG features, which can narrow down the semantic
gap between the low-level physical features and the users’ high-level emotional
tags.

3 Emotional video analyses

Figure 2 shows the framework of how to construct three spaces and analyze their
relationships. After the psychophysiological experiment and data collection, EEG
features and video features are extracted. Then, statistical analyses for hypothesis
testing are conducted to check whether there are significant differences in every
feature between the two groups of emotional tags. Correlation analysis between
EEG and video features is also employed.

3.1 Emotional tag space

The descriptors of emotions are valence and arousal. Valence refers to how positive
or negative an event is, and arousal reflects whether an event is exciting/agitating
or calming/soothing [38]. In this work, valence and arousal are divided into two
categories: positive/negative valence, and high/low arousal.

3.2 Physiological space

The physiological space consists of several EEG features. First, noise mitigation is
carried out. The Horizontal and Vertical Electro-OculoGram (HEOG and VEOG)
are removed and a band pass filter with a lower cutoff frequency of 0.3 Hz and a
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Fig. 2 Framework for constructing and analyzing the three spaces

higher cutoff frequency of 45 Hz is used to remove DC drifts and suppress the 50Hz
power line interference [42, 43]. Then, the power spectrum (PS) is calculated and
divided into five segments [29]: the delta (0–4 Hz), theta (4–8 Hz), alpha (8–13 Hz),
beta (13–30 Hz) and gamma (30–45 Hz) frequency bands. The ratios of the power in
each frequency band to the overall power are extracted as the features.

3.3 Physical space

Physical space consists of several visual and audio features that represent video
content. For visual features, lighting, color, and motion are powerful tools to establish
the mood of a scene and affect the emotions of the viewer according to cinematog-
raphy and psychology. Thus, three features, named lighting key, color energy, and
visual excitement are extracted from video clips [78]. Thirty-one commonly used
audio features are extracted from the video, including average energy, average
energy intensity, spectrum flux, Zero Crossing Rate (ZCR), standard deviation of
ZCR, twelve Mel-frequency Cepstral Coefficients (MFCCs), log energy of MFCC,
and the standard deviations of the thirteen MFCCs [53].

3.3.1 Visual features

Visual excitement represents the average number of pixels changed between cor-
responding frames according to human perception. The change is computed in the
perceptually nearly uniform CIE Luv space [52] according to (1).
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where (L1, u1, v1) and (L0, u0, v0) are the average CIE Luv values of corresponding
blocks of consecutive frames, thres f d is the threshold, savL is the average frame
luminance, Nc is the number of frames and k is the index of the frame, W is a
constant, NH is the block number of each frame and H is the Heaviside step function.

The lighting key is the product of the mean and variance of the brightness of a
frame [63]. Suppose μi and σi are the mean and standard deviation of the brightness
of the HSV space [16] respectively. The lighting key is expressed as

ξi = μi · σi (2)

The mean value for the lighting key of all frames in a clip is calculated as the feature.
Color energy is defined as the product of the raw energy and color contrast:

∑

i

∑

j

p(ci) × p(c j) × d(ci, c j) ×
M∑

k

E(hk)skvk, (3)

where c is a histogram bin indexed by i, j to iterate over every single bin index in HLS
histogram of an image. p(·) is the histogram probability. d(ci, c j) is the L 2-norm in
HLS space while M is the total number of pixels, over which index k iterates. sk, vk

are the corresponding saturation and lightness values while E(hk) is the energy of
the hue depending on its angular distance to blue and red.

The detailed explanation and parameter setting of these three visual features can
be found in [78].

3.3.2 Audio features

Suppose x(t), t ⊆ [t1, t2] is an audio clip separated from a video clip. Firstly, we
divide the audio clip into several segments using the sliding window with length
of T and 50 % overlap. Secondly, we obtain the Fourier coefficients through Fast
Fourier Transform Algorithm (FFT). Let xt(n), n ⊆ [0, N] be the time sequence data
of the t-th segments, and Nt(n) be the corresponding Fourier coefficient. Then, we
calculate average energy, average energy intensity, spectrum flux, and zero crossing
rate according through (4) to (7) respectively.

Average energy:

∫ t2

t1
x2(t)dt, (4)
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Average energy intensity: In physical perspective, the sound wave spreads in a
spherical space, so the energy depends on where we are in relation to the source. If
the distance is R, then the intensity is

1

4π R2

∫
x2(t)dt,

However, this is not the model for humans’ auditory sense. The intensity in air,
expressed in dB should be relative to the auditory threshold.

10 log10

(
1

P2
0

∫
x2(t)dt

)
, (5)

where x(t) is the sound pressure in units of Pa (Pascal), and P0 = 2 · 10−5Pa is the
auditory threshold pressure.

Spectrum flux:

Ft =
N∑

n=1

(Nt(n) − Nt−1(n))2, (6)

Zero crossing rate:

Zt = 1

2N

N∑

n=1

|sign(xt(n)) − sign(xt(n − 1))|, |xt(n) − xt(n − 1)| > δ, (7)

sign(x) =
{

1 x > 0

0 x ≤ 0

where δ is a threshold to check whether two adjacent frames have significant
difference. We also calculate the standard deviation of ZCR.

In order to extract MFCCs, we first map the powers of the spectrum obtained
from FFT onto the Mel scale, using triangular overlapping windows. We then take
the logs of the powers at each of the Mel frequencies. From this, we take the discrete
cosine transform of the list of Mel log powers. Thus, the first twelve amplitudes of
the resulting spectrum are obtained. After that, we also calculate the log energy of
MFCC, and the means and standard deviations of MFCCs.

3.4 Relations between physical/physiological space and emotional tags

After feature extraction, we conduct statistical analyses for hypothesis testing to
analyze whether there are significant feature differences between the two groups
of emotional tags. The null hypothesis H0 means the median difference between
positive and negative valence (or high and low arousal) for a feature is zero.
The alternative hypothesis H1 is that the median difference between positive and
negative valence (or high and low arousal) for a feature is not zero. We may reject
the null hypothesis when the P-value is less than the significant level. The procedures
are described as follows: First, a normality test is performed on each feature. If the
feature is not normally distributed, a Kolmogorov-Smirnov test is used. Otherwise,
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homogeneity of the features is tested. If the variance is homogeneous, a T-test
with homogeneity of variance is performed; otherwise, a T-test with inhomogeneity
of variance is performed. In our study, the P-value threshold is set to 0.01. This
procedure can also be used as feature selection.

3.5 Relations between physical space and physiological space

The Pearson correlation coefficient with its P-value is calculated between each EEG
and video feature with a significant difference between two emotional tag groups.
The P-value is the probability that the correlation coefficient is zero. Here, P-value
threshold is also set to 0.01.

4 Video emotional tagging with Bayesian networks

Three BNs are constructed to annotate videos with emotional tags from three as-
pects: independent feature-level fusion, decision-level fusion and dependent feature-
level fusion. As a probabilistic graphical model, BN can effectively capture the
uncertainties in data and allows data from different modalities to be systematically
represented and integrated. Furthermore, BN can easily realize dependent and
independent feature-level fusion, while other methods just concatenate features of
multiple modalities to realize feature-level fusion.

4.1 Independent feature-level fusion

We use a three-node BN to perform independent feature-level fusion. The structure
is shown in Fig. 3a.

The model consists of two layers: the emotional tag layer and the feature layer.
The node in the emotional layer is discrete with two states, representing positive
and negative valence, or high and low arousal. The two nodes in the feature layers
are continuous, representing EEG features (Fe) and video features (Fv) respectively.
The relationship between videos’ emotional tags and EEG/video features are estab-
lished through links. Two features are assumed to be independent given video tags.

In the training step, the tag prior probability P(C) and the likelihood p(Fe|C =
k) (the probability of the training sample Fe given their class C) and p(Fv|C = k)

are estimated from the training data; In the testing step, the posterior probability
P(C|Fe, Fv) is computed for each class C, and the class is recognized as the one with
the highest posterior probability, i.e.,

C∗ = arg max
C

P(C|Fe, Fv)

= arg max
C

P(C)P(Fe|C)P(Fv|C). (8)

4.2 Decision-level fusion

The structure of BNs used for decision-level fusion is shown in Fig. 3b. This model
consists of three layers: the top emotional tag layer, the intermediate emotional tag
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Fig. 3 a BN for independent feature-level fusion; b BN for decision-level fusion; c BN for dependent
feature-level fusion

layer, and the feature layer. All nodes in the top layer and the second layer are
discrete nodes with two states, and each state corresponds to the recognized emo-
tional tags, i.e., positive and negative valence, or high and low arousal. The relations
between final emotional tags, tags inferred from EEG signals, and tags inferred
from video features are established through links, which capture the uncertainty
of emotional tagging from EEG signals and video features. The lowest layer in the
model is the feature layer containing EEG and video features. All variables in this
layer are observable.

Given the above model structure, the conditional probability distribution (CPD)
associated with each node in the model needs to be learned from the training set.
Owing to lack of value of the second layer in the training set, we divided the
parameter’s learning phase into two phases.

In the first phase, the emotional tags are taken as the value of nodes in
the intermediate emotional tag layer to learn the CPDs of nodes in the fea-
ture layer. The CPDs of the feature layer are parameterized as the multivariate
Gaussian. Specifically, for the EEG features node, let Fe denote the EEG features
and Ce denote the value of the EEG emotions node, and assume the CPD of
EEG features p(Fe|Ce = k) satisfying a multivariate Gaussian distribution with
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corresponding mean vector μk and covariance matrix
∑

k. It can be represented
as [58]:

p(Fe|Ce = k) = 1

(2π)n/2| ∑k |1/2
exp

{
−1

2
(Fe − μk)

T ∑−1
(Fe − μk)

}
. (9)

Then we can learn parameters μk and
∑

k given emotion Ce = k by the maximum
likelihood estimation.

μ̂k = 1

Nk

Nk∑

i=1

xik, (10)

∑̂
k

= 1

Nk

Nk∑

i=1

(xik − μ̂k)(xik − μ̂k)
T , (11)

where Nk is the number of samples of emotions k, and xik is the feature vector of
i-th samples of emotion k. Afterwards, we take the features in the training set as the
input to obtain the intermediate results according to the CPD of feature nodes.

In the second phase, the conditional probabilistic table (CPT) for each node
in the intermediate emotional tag layer is calculated based on the analysis of real
emotions and the previously obtained intermediate results. Specifically, for the EEG
emotional tag node,

p(Ce = i|C = j) = N ji/N j, (12)

where N j is the number of samples of emotion j in the training set, and N ji denote the
number of samples of emotion j whose EEG intermediate result is i. After training,
given the video and EEG features of a video, we want to find the video emotional
tag by maximizing the posterior probability of the emotional tag node as:

C∗ = arg max
C

P(C|Fe, Fv)

= arg max
C

∑

Ce

∑

Cv

P(C)P(Fe|Ce)P(Ce|C)P(Fv|Cv)P(Cv|C), (13)

where Ce and Cv denote the states of the emotional tags inferred from EEG signals
and video content respectively. Fe and Fv are the feature vectors of EEG signals
and video clips. Therefore, the true state of emotional tags can be inferred through
probabilistic inference.

4.3 Dependent feature-level fusion

Video and EEG features are independent given emotional tags in the above two
fusion methods. In this model, we add a link between video features and EEG
features to capture the relationship between two modalities directly, as shown in
Fig. 3c. The distributions of video and EEG feature nodes are multivariate Gaussian
and linear Gaussian respectively.
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In the training step, the tag prior probability P(C) and the likelihood p(Fe|Fv, C =
k) and p(Fv|C = k) are estimated from the training set data; In the testing step,
the posterior probability P(C|Fe, Fv) is computed for each class C, and the class is
recognized as the one with the highest posterior probability according to (14).

C∗ = arg max
C

P(C|Fe, Fv)

= arg max
C

P(C)P(Fe|C, Fv)P(Fv|C). (14)

5 Experiments and analyses

5.1 Psychophysiological experiments and data collection

Due to the copyright issues, most datasets used in current emotional video tagging
are self-collected and are not available for other researchers. Schaefer et al. [65],
Koelstra et al. [44] and Soleymani et al. [69] have created emotional video datasets
for public research. Their datasets provide the recorded physiological signals of sub-
jects as they watch videos, as well as their subjective evaluations. However, the video
stimuli are not provided. Thus, we designed and conducted the psychophysiological
experiment to collect the data.

5.1.1 Subjects

Twenty eight healthy students, including 25 males and 3 females, with ages ranging
from 18 to 28 years old, attended our experiments. All of them had normal vision. In
addition, an informed consent form was signed before the experiment and subjects
received compensation.

5.1.2 Stimuli

Video clips were taken as stimuli to induce subjects’ emotions in our experiments.
These were extracted from a variety of genres, including horror, comedy, action,
and drama, and were taken from DVDs and the Internet. Each clip contains a
full emotional event as judged by the authors. Three raters evaluated the primary
emotion of these clips in six categories: happiness, fear, sadness, disgust, surprise,
and anger. The clip was included in the dataset if all three raters agreed on the
main emotional category. The Source video, type, start-end time and resolution of
each clip is provided in Table 3 in the Appendix. After that, we randomly selected
clips with different emotional categories from the dataset to construct the playlist for
subjects. The number of clips that the subjects watched varied, but the length of the
playlists was almost the same.

5.1.3 Experimental setup

The diagram of the experiment is illustrated in Fig. 4. An isolated room that
shielded physical noises and electromagnetic effects was used to ensure the accu-
racy of the collected data. A 19-inch LCD screen was placed on the table, about
three feet from the sofa. The room on the left was for control and observation.
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Fig. 4 Experimental environment for data collection

It contained two signal amplifiers and two computers utilized for recording the
EEG signals and signal synchronization between EEG and video stimulus signal,
respectively. EEG signals were acquired via a Quik-cap (Neuro Inc., El Paso, TX)
with 32 Ag-AgCl electrodes arranged in an extended 10–20 system montage, which
could record HEOG and VEOG, together with the usage of Neuroscan Synamps2
bio amplifiers and Neuroscan software (v4.3.1). The settings were as follows:
sampling rate was 500Hz, amplifier gain was 1000, band-pass filter was between
0.3 and 100Hz without a notch filter, and mode was AC (Alternating Current)
[42, 44, 71].

5.1.4 Experimental procedure

First, a detailed introduction was given to the subjects about the purpose of the
experiment, the meaning and measurement scale of emotional arousal and valence,
and the procedures of the experiment. The subject was asked to sit on a sofa in the
isolated room seen in Fig. 4, and wore the Quik-cap and earphones. Experiments
were performed according to the experimental arrangement illustrated in Fig. 5. The
subject watched film clips from different emotional categories randomly selected
from our video data set, and his/her EEG signals were collected synchronously. After
watching each clip, the subject was asked to report his/her real induced emotion by
filling out forms using emotional valence (−2, −1, 0, 1, 2) and arousal (−2, −1, 0,
1, 2). To reduce the interference between different emotions, video clips that would
induce neither negative nor positive emotions, which was defined as neutral clips,
were displayed to subjects during the intervals between two film clips of different
categories.

Fig. 5 Experimental
arrangement of stimuli
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The video durations range from 34 s to 5 min 44 s. The subjects watched a different
number of clips, but each spent the same amount of time watching video clips.
However, a hardware problem in the EEG signal collecting device damaged some
raw EEG signal segments, so the actual number of EEG segments for each subject
ranges from one to five. Thus, we obtained 197 EEG segments and self-reported
emotion recordings corresponding to 92 video clips.

5.2 Results and analyses

5.2.1 Details of sample distribution in valence-arousal space and EEG feature
extraction

When a subject watched a video clip, we recorded his/her EEG signals and subjective
evaluation. Thus, one EEG segment corresponds to one emotional tag in valence and
arousal. Some videos were watched by multiple subjects, producing several subject-
specific emotional tags. To produce one tag for each video, we averaged the several
subject-specific emotion tags. Thus, there are 197 samples used for emotional tagging
from EEG, 92 samples for emotional tagging from videos only, and 197 samples for
emotional tagging by fusing EEG and videos.

We divided users’ five-scale evaluations (−2, −1, 0, 1, 2) into two groups based
on whether they are higher than zero or not. Thus, in arousal space, 149 EEG
recordings are high, and 48 recordings are low; 70 videos are high and 22 are low.
In valence space, 77 EEG recordings are positive, and 120 are negative; 30 video
clips are positive and 62 are negative. Before extracting EEG features, four bad
channels (T8, F3, FP1 and FP2) were removed from the original EEG data due to
the hardware issue. The invalidated data of these four channels does not affect other
channels.

5.2.2 Relations between EEG features and emotional tags

The EEG features with significant differences between two valence groups are shown
in Fig. 6a, where the gray cells represent the target features. The horizontal ordinate
represents the electrodes and the vertical one represents the frequency bands used
to extract EEG features. There are 45 features in total, including 11 delta, 9 theta,
7 alpha, 10 beta, and 8 gamma frequency band features. The distribution of these
EEG features over the brain is shown in Fig. 6b.

In Fig. 6b, the colors range from blue to red, representing the features distributed
in the brain areas from less present to more present. From Fig. 6b, we find that the
features gather in the frontal and temporal areas, with some in the parietal area. This
means that the frontal and temporal areas are highly correlated with human emotions
[9, 37], and the parietal area is involved in emotion elicitation [28].

The EEG features with significant differences between two arousal groups are
shown in Fig. 7a, and their distributions over the brain are shown in Fig. 7b.

There are 85 EEG features in total, including 18 features on delta frequency
bands, 18 for theta, 20 for alpha, 15 for beta and 14 for gamma. The features mainly
exist in the occipital and temporal areas, which means that these two areas are highly
relevant to the excitement of human emotion [45].
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Fig. 6 a EEG features with significant differences in valence. b The distribution of EEG features
with significant differences in valence. c The distribution of EEG features that have correlations in
valance with video features

5.2.3 Relations between video features and emotional tags

The video features with significant differences between two valence groups are two
visual features, including color energy and lighting key, and seven audio features,
consisting of the 5th MFCC, the 8th, 9th, and 10th MFCCs standard deviation,
the average energy, the average energy intensity, and the spectrum flux. For visual
features, two of the three are selected, which means visual stimuli strongly influence
emotions on valence [85]. For audio features, MFCC coefficients are discriminat-
ing features [85], since they occupy four out of seven among the selected audio
features.

For arousal, the features with significant difference are nine audio features: the
2nd, 3rd, and 7th to 12th MFCCs, and the log energy of MFCC. This indicates
that audio is closely connected to human emotions on arousal [78, 85], and further
confirms MFCC features are important for emotional tagging [68]. No visual features
are selected, possibly because only three visual features were measured.
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Fig. 7 a EEG features with significant differences in arousal. b The distribution of EEG features
with significant differences in arousal. c The distribution of EEG features that have correlations in
arousal with video features

5.2.4 Relations between EEG and video features

Figures 6c and 7c show the distribution of EEG features, which are significantly
correlated with video features on valence and arousal respectively. Thus, these
features are more important for affect characterization. EEG features that correlate
to video features for valence are listed as follows: (1) 8th MFCC’s standard deviation
correlates to P3’s beta PS, FT8’s gamma PS and F8’s alpha PS; (2) spectrum flux
correlates to F3’s delta PS; (3) color energy correlates to FC3’s delta PS.

In all, there are 57 EEG features with significant correlations to video features
for arousal. All of the above shows that there is a close relationship between video
content and EEG signals. For instance, the specific correlation coefficient between
color energy and F3’s delta PS is 0.1873, which means increasing red (energetic) or
blue (relaxing) components results more in F3’s delta band activity. This may be
helpful for reducing the semantic gap between the low-level video features and the
users’ high-level emotional tags, and improving emotional tagging.
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5.3 Emotional tagging experiments and results

To evaluate the effectiveness of our proposed tagging approaches, we compared the
performance of three hybrid tagging methods with a tagging method using only EEG
signals or video content.

To avoid overlap of samples in training and test phases, a leave-one-video-
out cross-validation was used. Three parameters: accuracy, F1-score, and average
precision, were adopted as the evaluation measurements.

5.3.1 Tagging results of valence

Tagging results of valence are shown in Table 1. From the table, we can see that:

(1) the accuracy and average precision of the tagging method using video content
only is higher than those of the tagging method using EEG signals only. This
is particularly true for positive samples, in which the accuracy using video is
73.33 % while the accuracy using EEG is 57.14 %. It seems that video content
distinguishes positive and negative emotional tags better than EEG signals do.

(2) Both independent feature-level and decision-level fusion outperform tagging
using only EEG signals or video content, since all three parameters of the two
fusion methods are higher than those of tagging using one modality.

(3) Compared to emotion tagging from video content, dependent feature-level
tagging that considers the relationship between video and EEG features per-
forms better, since it has higher accuracy, F1-score, and average precision. This
confirms that the emotional semantic gap can be narrowed by considering users’
physiological signals.

Generally, our three hybrid tagging methods improve the performance of valence
recognition.

Table 1 Tagging results of valence

EEG only Video only Independent feature-
fusion level

Positive Negative Positive Negative Positive Negative

Positive 44 33 22 8 54 23
Negative 32 88 18 44 19 101
Accuracy 67.01 % 71.74 % 78.68 %
F1-score 0.6524 0.6286 0.7200
Average precision 0.5752 0.7215 0.7715

Decision-level Dependent feature-
fusion level fusion

Positive Negative Positive Negative
Positive 57 20 51 26
Negative 24 96 20 100
Accuracy 77.66 % 76.65 %
F1-score 0.7215 0.6892
Average precision 0.7701 0.7478



Multimed Tools Appl

Table 2 Tagging results of arousal

EEG only Video only Independent feature-
fusion level

High Low High Low High Low

High 125 24 46 24 114 35
Low 31 17 13 9 18 30
Accuracy 72.08 % 59.78 % 73.10 %
F1-score 0.3820 0.3273 0.5310
Average precision 0.5965 0.5331 0.6591

Decision-level Dependent feature-
fusion level fusion

High Low High Low
High 123 26 136 13
Low 27 21 34 14
Accuracy 73.10 % 76.14 %
F1-score 0.4421 0.3733
Average precision 0.6315 0.6022

5.3.2 Tagging results of arousal

Table 2 shows the tagging results of arousal. The performance of tagging using EEG
only is better than that using video only, since the former achieves higher scores in
all the three parameters. However, both methods tend to misclassify samples of low
arousal to high arousal. Independent feature-level fusion and decision -level fusion
demonstrate their effectiveness by a higher F1-score when compared with tagging
using one modality. Compared to tagging using video content, dependent feature-
level fusion performs better, with higher accuracy, F1-score, and average precision.
It further confirms the physiological signals’ potential to bridge the semantic gap.

From the tagging results of valence and arousal, we can find that the independent
feature-level fusion achieves the best performance among the three fusion methods,
followed by decision-level fusion and dependent feature-level fusion. We used 197
samples in our fusion experiments. One video may have different tags if we infer the
tag from video only. Since we first infer video tags from EEG and videos respectively
during decision-level fusion, the issue of multiple tags for one video may impact the
tagging performance from videos, thus reducing the performance of decision-level
fusion. In independent feature-level fusion, we do not face such issue. This may be
the reason that independent feature-level fusion performs better than decision-level
fusion. A possible explanation for better performance of independent feature-level
fusion as compared to dependent feature-level fusion may be that the distribution of
EEG data may not satisfy linear Gaussian, which is the assumption of the dependent
feature-level fusion model.

6 Conclusion

In this paper, we first propose a general framework of emotional tagging, consisting
of video content space, physiological space, and emotional tag space and their
relationships. Secondly, we design and conduct the psychophysiological experiment
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to collect data. Thirdly, three spaces are constructed and their relations are analyzed
based on our collected data. Lastly, three emotion tagging approaches are proposed
to annotate videos with emotional tags by combining video content and physiological
signals, i.e., independent feature-level fusion, decision-level fusion, and dependent
feature-level fusion.

The experimental results show that in valence and arousal spaces, hybrid methods
produce better tagging performance than that of the conventional emotional tagging
methods that use either video or EEG features alone. The independent feature-level
fusion method achieves the best performance among the three hybrid methods.

All the recruited subjects in our psychophysiological experimental are students
from our university, where the ratio of male/female is about 7:1. Thus, the age range
of the subjects is narrow, and the ratio of male to female is unbalanced. We will
enhance subject diversity during future data collection.

Recent research has demonstrated the gender difference in response to emotional
stimuli [84]. Such gender differences may affect emotional video tagging. We will
study this issue in the next step of our work.

With the growing availability of built-in sensors, we believe emotional tagging
with the help of spontaneous user responses will attract more and more attention.
However, not everybody is comfortable with wearing sensors to detect their body
changes, or being observed by cameras during the actual tagging. A potential solution
is to employ users’ spontaneous responses during model training only. In actual
tagging, only video features would be used, without requiring user response. This
is a study of how to learn using privileged information [74]. We will investigate this
study in the future.
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Appendix

A Video information

Table 3 Source video, type, start-end time and resolution

Source video names Video type Start-end time Resolution
(HH:MM:SS)

Shutter (Directed by Parkpoom Wongpoom Movie 00:29:07–00:31:40 640 × 352
and Banjong Pisonthanakun)

Shutter (Directed by Parkpoom Wongpoom Movie 00:38:01–00:42:42 640 × 352
and Banjong Pisonthanakun)

Dragons World A Fantasy Made Real Animated film 01:07:49–01:10:10 672 × 352
Titanic Movie 01:49:21–02:52:09 800 × 336
Leon - The Professional Movie 00:03:39–00:07:54 1024 × 576
I Am Legend Movie 00:26:23–00:31:30 640 × 360
Backkom Season 1:Episode 38 Animated film 00:00:04–00:03:01 1024 × 576

(Railway obstacles)
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Table 3 (continued)

Source video names Video type Start-end time Resolution
(HH:MM:SS)

The Silence of the Lambs Movie 01:14:33–01:18:25 720 × 456
The Day After Tomorrow Movie 00:48:11–00:51:09 752 × 416
From Hell Movie 01:42:32–01:45:03 1024 × 576
The Shining Movie 01:48:02–01:53:46 640 × 480
Garfield Animated film 00:23:41–00:28:06 672 × 368
Chaos Theory Movie 00:33:28–00:38:33 640 × 360
The Extra-Terrestrial Movie 01:33:53–01:38:07 720 × 480
The Grudge 1 Movie 00:27:19–00:31:58 512 × 384
The Grudge 1 Movie 00:49:00–00:54:13 512 × 384
The Grudge 2 Movie 00:44:53–00:50:01 592 × 320
The Grudge 2 Movie 01:21:12–01:23:07 592 × 320
The Uninvited Movie 00:27:03–00:29:21 624 × 352
The Lion King Animated film 00:13:53–00:18:11 544 × 320
The Lion King Animated film 01:23:02–01:23:46 544 × 320
Monsters Inc Animated film 00:57:33–01:02:40 800 × 432
Bee Movie Animated film 00:13:33–00:16:13 720 × 396
Horton Hears a Who Animated film 00:32:05–00:36:09 1280 × 720
Horton Hears a Who Animated film 00:02:19–00:05:07 1280 × 720
Mountain Patrol Movie 01:14:56–01:20:31 640 × 272
Braveheart Movie 02:42:32–02:46:51 640 × 272
Braveheart Movie 00:53:30–00:55:32 640 × 272
The Lion King Animated film 01:01:23–01:04:06 544 × 320
Tarzan Animated film 00:22:42–00:25:17 672 × 384
Cars Animated film 00:00:41–00:03:19 1024 × 576
Bunhongshin Movie 00:48:14–00:50:48 640 × 272
Discovery Movie 00:58:32–01:02:10 640 × 360
Happy Feet Animated film 00:25:04–00:27:24 640 × 360
Bunhongshin Movie 01:11:02–01:13:01 640 × 272
The Ring (Directed by Hideo Nakata) Movie 00:27:04–00:29:25 608 × 344
Face Movie 00:24:30–00:26:32 576 × 304
The Grudge 1 Movie 00:13:31–00:15:32 640 × 360
The Hitchhiker’s Guide to the Galaxy Movie 00:58:30–01:00:12 1280 × 720
Twilight Movie 00:49:44–00:53:43 1024 × 576
Twilight Movie 01:37:23–01:40:29 1024 × 576
Braveheart Movie 00:41:26–00:45:29 1024 × 560
Mother Love Me Once Again Movie 00:28:27–00:30:57 640 × 432
Mother Love Me Once Again Movie 01:03:21–01:08:41 640 × 432
Mother Love Me Once Again Movie 01:08:56–01:13:07 640 × 432
Tears Of The Sun Movie 01:29:13–01:34:38 800 × 432
Bolt Animated film 01:22:20–01:24:52 640 × 336
Exorcist: The Beginning Movie 00:36:42–00:39:54 640 × 272
High School Musical Movie 01:46:00–01:50:07 880 × 480
Rob-B-Hood Movie 01:08:05–01:13:13 640 × 272
Meet the Fockers 2 Movie 00:13:26–00:17:21 576 × 324
Red Cliff Movie 00:13:45–00:17:16 672 × 272
Cheaper by the Dozen 2 Movie 00:09:07–00:12:32 800 × 452
The Sixth Sense Movie 01:15:50–01:17:24 1280 × 720
The Thing Movie 01:14:57–01:17:46 1024 × 576
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Table 3 (continued)

Source video names Video type Start-end time Resolution
(HH:MM:SS)

Starship Troopers Movie 01:48:34–01:50:09 1024 × 552
Starship Troopers Movie 01:48:34–01:49:29 1024*552
Starship Troopers Movie 01:49:30:01:50:05 1024*552
Slither Movie 00:05:31–00:06:23 448*336
Slither Movie 01:15:23–0:16:42 576*320
Slither Movie 01:17:49–01:18:23 576*320
Slither Movie 01:19:41–01:21:23 576*320
The Grudge 1 Movie 00:31:07–00:31:46 512*384
The Grudge 1 Movie 00:53:05–00:54:18 512*384
Shutter (Directed Movie 00:13:06–00:14:26 640*352

by Masayuki Ochia)
Shutter (Directed Movie 00:70:03–00:70:53 640*352

by Masayuki Ochia)
The Grudge 2 Movie 00:47:53–00:49:52 592*320
The Grudge 2 Movie 01:22:18–01:24:07 592*320
The Grudge 3 Movie 01:18:57–01:20:45 640*352
The Grudge 3 Movie 00:35:03–00:36:51 640*352
Bunhongsin Movie 00:04:09–00:05:57 640*272
Bunhongsin Movie 00:48:44–00:50:41 640*272
The Ring (Directed Movie 00:27:04–00:29:02 608*344

by Gore Verbinski)
The Ring (Directed Movie 01:26:00–01:27:53 608*344

by Gore Verbinski)
My Beloved Movie 00:28:27–00:30:57 640*432
My Beloved Movie 01:03:21–01:05:36 640*432
My Beloved Movie 01:05:36–01:08:41 640*432
My Beloved Movie 01:08:56–01:11:59 640*432
Garfield 2 Movie 01:05:12–01:06:06 800*432
Garfield Movie 00:30:07–00:31:18 672*368
Garfield Movie 00:26:08–00:27:41 672*368
iPartment Season 1:Episode 11 TV play 00:03:17–00:04:27 640*480
iPartment Season 1:Episode 11 TV play 00:04:29–00:06:21 640*480
iPartment Season 1:Episode 13 TV play 00:32:57–00:34:54 640*480
Mr. Bean Episode 4: Mr. Bean TV play 00:20:09–00:21:44 512*384

goes to town
Tom and Jerry Episode 1 TV play 00:01:36–00:03:39 464*316

West cowboy
Tom and Jerry Episode 6 TV play 00:00:25–00:01:45 464*316

The Three Little Kittens
Tom and Jerry Episode 6 TV play 00:02:21–00:04:03 464*316

The Three Little Kittens
Tom and Jerry Episode 9 bodyguard TV play 00:01:06–00:03:06 464*316
Tom and Jerry Episode 90 TV play 00:00:22–00:02:07 400*300

the mouse from the hunger
Tom and Jerry Episode 90 TV play 00:02:35–00:03:38 400*300

the mouse from the hunger
Tom and Jerry Episode 90 TV play 00:04:02–00:06:12 400*300

the mouse from the hunger
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77. Wagner J, Kim J, André E (2005) From physiological signals to emotions: implementing and
comparing selected methods for feature extraction and classification. In: IEEE International
conference on multimedia and expo, ICME 2005, pp 940–943

78. Wang HL, Cheong LF (2006) Affective understanding in film. IEEE Trans Circuits Syst Video
Technol 16(6):689–704

79. Wang CW, Cheng WH, Chen JC, Yang SS, Wu JL (2006) Film narrative exploration through
the analysis of aesthetic elements. Adv Multimed Model. Lecture Notes in Computer Science
4351:606–615

80. Wang S, Wang X (2010) Emotional semantic detection from multimedia: a brief overview. In:
Dai Y, Chakraborty B, Shi M (ed) Kansei engineering and soft computing: theory and practice.
IGI Global, USA, pp 126–146. doi:10.4018/978-1-61692-797-4, ISBN13: 9781616927974, ISBN10:
1616927976, EISBN13: 9781616927998

81. Watanapa SC, Thipakorn B, Charoenkitarn N (2008) A sieving ann for emotion-based movie
clip classification. IEICE Trans Inf Syst 91(5):1562–1572

82. Wei CY, Dimitrova N, Chang SF (2004) Color-mood analysis of films based on syntactic and psy-
chological models. In: IEEE international conference on multimedia and expo, 2004. ICME’04.
2004, vol 2. IEEE, pp 831–834

83. Winoto P, Tang TY (2010) The role of user mood in movie recommendations. Expert Syst Appl
37(8):6086–6092

84. Wrase J, Klein S, Gruesser SM, Hermann D, Flor H, Mann K, Braus DF, Heinz A (2003) Gender
differences in the processing of standardized emotional visual stimuli in humans: a functional
magnetic resonance imaging study. Neurosci Lett 348(1):41–45

85. Xu M, Jin JS, Luo S, Duan L (2008) Hierarchical movie affective content analysis based on
arousal and valence features. In: Proceedings of the 16th ACM international conference on
multimedia. ACM, pp 677–680

86. Xu M, Wang J, He X, Jin JS, Luo S, Lu H (2012) A three-level framework for affective content
analysis and its case studies. Multimed Tools Appl 1–23. doi:10.1007/s11042-012-1046-8

87. Xu M, Xu C, He X, Jin JS, Luo S, Rui Y (2012) Hierarchical affective content analysis in arousal
and valence dimensions. Signal Process. In press

88. Yazdani A, Lee JS, Ebrahimi T (2009) Implicit emotional tagging of multimedia using eeg signals
and brain computer interface. In: Proceedings of the first SIGMM workshop on social media.
ACM, pp 81–88

89. Yoo HW, Cho SB (2007) Video scene retrieval with interactive genetic algorithm. Multimed
Tools Appl 34(3):317–336

90. Zhang S, Tian Q, Jiang S, Huang Q, Gao W (2008) Affective mtv analysis based on arousal
and valence features. In: IEEE International conference on multimedia and expo, 2008. IEEE,
pp 1369–1372

http://dx.doi.org/10.4018/978-1-61692-797-4
http://dx.doi.org/10.1007/s11042-012-1046-8


Multimed Tools Appl

91. Zhang S, Huang Q, Jiang S, Gao W, Tian Q (2010) Affective visualization and retrieval for music
video. IEEE Trans Multimedia 12(6):510–522

92. Zhao Y (2012) Human emotion recognition from body language of the head using soft computing
techniques. PhD thesis, University of Ottawa

Shangfei Wang received the M.S. degree in circuits and systems, and the Ph.D. degree in signal and
information processing from University of Science and Technology of China, Hefei, China, in 1999
and 2002. From 2004 to 2005, she was a postdoctoral research fellow in Kyushu University, Japan. She
is currently an Associate Professor of School of Computer Science and Technology, USTC. Dr. Wang
is an IEEE member. Her research interests cover computation intelligence, affective computing,
multimedia computing, information retrieval and artificial environment design. She has authored or
coauthored over 50 publications.

Yachen Zhu received the Bachelor degree in School of Computer Science and Technology from
University of Science and Technology of China, Hefei, Anhui Province, China, in 2010. And he
continues studying for Ph.D degree there. His research interest is Affective Computing.



Multimed Tools Appl

Guobing Wu received the Bachelor degree in School of Computer Science and Technology from
Anhui University, Hefei, Anhui Province, China, in 2009. And he received the M.S. degree in School
of Computer Science and Technology from University of Science and Technology of China, Hefei,
Anhui Province, China, in 2012. His research interest is Affective Computing.

Qiang Ji received his Ph.D degree in Electrical Engineering from the University of Washington.
He is currently a Professor with the Department of Electrical, Computer, and Systems Engineering
at Rensselaer Polytechnic Institute (RPI). He recently served as a program director at the National
Science Foundation (NSF), where he managed NSF’s computer vision and machine learning pro-
grams. He also held teaching and research positions with the Beckman Institute at University of
Illinois at Urbana-Champaign, the Robotics Institute at Carnegie Mellon University, the Dept. of
Computer Science at University of Nevada at Reno, and the US Air Force Research Laboratory.
Prof. Ji currently serves as the director of the Intelligent Systems Laboratory (ISL) at RPI.

Prof. Ji’s research interests are in computer vision, probabilistic graphical models, information
fusion, and their applications in various fields. He has published over 160 papers in peer-reviewed
journals and conferences. His research has been supported by major governmental agencies including
NSF, NIH, DARPA, ONR, ARO, and AFOSR as well as by major companies including Honda and
Boeing. Prof. Ji is an editor on several related IEEE and international journals and he has served as
a general chair, program chair, technical area chair, and program committee member in numerous
international conferences/workshops. Prof. Ji is a fellow of IAPR.


	Hybrid video emotional tagging using users' EEG and video content
	Abstract
	Introduction
	Related work
	Video emotional tagging
	Multimodality fusion for emotion recognition

	Emotional video analyses
	Emotional tag space
	Physiological space
	Physical space
	Visual features
	Audio features

	Relations between physical/physiological space and emotional tags
	Relations between physical space and physiological space

	Video emotional tagging with Bayesian networks
	Independent feature-level fusion
	Decision-level fusion
	Dependent feature-level fusion

	Experiments and analyses
	Psychophysiological experiments and data collection
	Subjects
	Stimuli
	Experimental setup
	Experimental procedure

	Results and analyses
	Details of sample distribution in valence-arousal space and EEG feature extraction
	Relations between EEG features and emotional tags
	Relations between video features and emotional tags
	Relations between EEG and video features

	Emotional tagging experiments and results
	Tagging results of valence
	Tagging results of arousal


	Conclusion
	Appendix
	A Video information

	References


