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Abstract: Three-phase induction motors (IMs) are considered an essential part of electromechanical
systems. Despite the fact that IMs operate efficiently under harsh environments, there are many
cases where they indicate deterioration. A crucial type of fault that must be diagnosed early is stator
winding faults as a consequence of short circuits. Motor current signature analysis is a promising
method for the failure diagnosis of power systems. Wavelets are ideal for both time- and frequency-
domain analyses of the electrical current of nonstationary signals. In this paper, the signal data are
obtained from simulations of an induction motor for various stator winding fault conditions and one
normal operating condition. Our main contribution is the presentation of a fault diagnostic system
based on a hybrid discrete wavelet–CNN method. First, the time series of the currents are processed
with discrete wavelet analysis. In this way, the harmonic frequencies of the faults are successfully
captured, and features can be extracted that comprise valuable information. Next, the features are
fed into a convolutional neural network (CNN) model that achieves competitive accuracy and needs
significantly reduced training time. The motivations for integrating CNNs into wavelet analysis
results for fault diagnosis are as follows: (1) the monitoring is automated, as no human operators are
needed to examine the results; (2) deep learning algorithms have the potential to identify even more
indistinguishable and complex faults than those that human eyes could.

Keywords: wavelet; deep learning; fault diagnosis; induction motors; motor current signature
analysis; convolutional neural networks

1. Introduction

Induction motors are widely used in the industry for converting electrical into me-
chanical energy. Three-phase AC squirrel-cage motors are used in shipping because of
their robust construction and efficient operation under harsh environments. Applications
include lifts, cranes, auxiliary engine pumps, and blower fans. Although 3-phase IMs
are relatively reliable, there is a chance for damage or deterioration, mostly in the shaft,
bearings, and stator windings, according to [1,2]. The faults of various components are
classified into two categories, electrical and mechanical, depending on the nature of the
fault. Examples of mechanical faults are broken rotor bars, rotor mass unbalance, and bear-
ing faults [3]. Other examples of electrical faults are an unbalanced voltage supply, single
phasing, and short circuits between phases [3]. The authors in [1,2] reported that 32% of IM
damage occurs in stator windings as a consequence of the electrical faults of short circuits,
mainly because of insulation problems. Stator winding short circuits cause the flow of high
currents in the system, and they are extremely dangerous for both the IM and the health of
human operators. Therefore, there is a strong interest in the condition monitoring of IMs
for instant fault diagnosis. Monitoring a system’s appropriate parameters is necessary to
diagnose faults in electromechanical equipment. Examples of these monitoring parameters
are vibrations, temperature, and current, according to [4].

Motor current-signature analysis is promising for achieving the condition monitoring
for fault diagnosis, but in many cases, the time domain analysis of signals may not be
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sufficient. Frequency domain analysis is an alternative with respect to frequency rather than
time, and Fourier techniques are employed for this kind of analysis. Wavelet analysis is a
combination of both frequency- and time-domain analyses, and it is ideal for nonstationary
signals composed of dynamic frequencies, according to [5]. Wavelet analysis is useful for
fault diagnostic implementations when fast Fourier transform (FFT) is not efficient or time
information about the fault is needed [5].

Machine learning (ML) is a subfield of artificial intelligence that regards techniques
focusing on automatically recognizing patterns in data and drawing inferences. Deep
learning (DL) is a subdomain of ML, and its algorithms imitate the way in which the human
brain gains knowledge. DL and artificial neural networks (ANNs) are employed in various
applications because of their high accuracy and generalization power, as highlighted in our
previous studies [6–8].

This paper proposes a fault diagnostic system based on a hybrid discrete wavelet–CNN
method. A 3-phase motor was simulated in MATLAB Simulink under healthy and faulty
stator winding operation. Preliminary condition monitoring was achieved by performing
discrete wavelet transform (DWT) analysis of the 3-phase stator currents. The next step
involves using the results as input in a CNN model to automatically classify faults.

The remainder of this paper is organized as follows: Section 2 presents a review of
related works. Section 3 describes the simulation model of the motor. Section 4 discusses
the diagnostic methodology. The results of descriptive analysis, and the hybrid model’s
parameters and accuracy are discussed in Section 5. Section 6 draws the conclusions and
outlines future directions.

2. Related Works

Recently, researchers have separately utilized DL and wavelets to diagnose various
faults in power systems. Jayaswal et al. [9] presented a review of recent advances, mention-
ing applications of ANNs, fuzzy logic, and wavelet transform. Verma et al. [10] studied
the stator current time series from an experimental setup of an IM for both healthy and
faulty operation. Statistical features were extracted from the acquisitioned raw time series
and then fed into the ANN for classification. In this way, the authors claimed that the
time required for training the DL model was reduced. Similarly, Duan et al. [11] used
a DL model for the interturn fault diagnosis of a transformer. The time series included
both primary and secondary voltage and current waveforms. The signals were obtained
from MATLAB Simulink simulations. In total, the study included 16 different interturn
short-circuit faults, and the time series with the corresponding labels were fed into an
autoencoder to classify the fault. Laamari et al. [5] simulated the stator winding interturn
short circuits of a permanent-magnet synchronous motor. On the basis of stator current
analysis, the authors concluded that time–frequency domain analysis with DWT is more
reliable than frequency domain analysis with FFT. Ashfaq et al. [12] applied DWT to
determine if the operation of a transformer was healthy or faulty. The transformer was
simulated in MATLAB Simulink, and the authors highlighted that there was a change in
the analyzed DWT wave shape when a fault occurred. Lastly, Hussain et al. [13] studied
signal-processing techniques such as fast Fourier transform, short-time Fourier transform,
and mainly continuous wavelet transform for the diagnosis of short circuits in the stator of
a simulated 3-phase IM. Additionally, the authors applied many DL models, such as ANN,
CNN, and RNN, to the raw time series of the currents, and successfully identified the type
of fault.

A new trend in fault diagnosis is to apply signal processing, such as the various
wavelet techniques for feature extraction, and then to use the extracted data in DL meth-
ods. Hsueh et al. [14] studied an experimental setup and proposed a diagnostic system
in a 3-phase IM. Specifically, five different types of fault and a normal operation could
be classified after current analysis. By applying an empirical wavelet transform, the raw
signals were transformed into two-dimensional grayscale images retaining valuable infor-
mation. Then, a CNN model was utilized to detect the faults by automatically extracting
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robust features from grayscale images. Towards the same direction, Wang et al. [15] stud-
ied an experimental rotor system, and the authors concluded that CNN models could
reach higher classification accuracy when the models had been trained with scalograms
of continuous wavelet transform (CWT) instead of hand-crafted features from the signals.
Agrawal et al. [16] presented a comparative study of ANN and support vector machines
(SVMs) using CWT for the diagnosis and classification of rolling element bearing faults.
SVM are considered supervised ML models and are implemented as advanced signal-
processing techniques. The signals were obtained from experiments, and statistical features
were extracted from the wavelet coefficients. The results showed that SVMs are more
efficient than ANNs. Xiaoan et al. [17] presented a novel method, the deep order-wavelet
convolutional variational autoencoder. Specifically, the authors presented a method on
the experimental vibration data of a motor to diagnose bearing faults under fluctuating
speed conditions. Attallah et al. [18] designed a similar method to ours for detecting stator
interturn winding faults, but focusing on 2D data (images). DWT, as a time–frequency
feature extraction method, was utilized before DL implementation. DL models included
three advanced 2D CNN architectures (Inception, MobileNet, Xception).

Early fault detection is extremely crucial in the energy sector, and a combination
of wavelets and DL is applied in various power systems. The authors in [19] presented
a method based on a CNN in coordination with DWT that could diagnose and locate
defects in power system operators for substation equipment. Tang et al. [20] diagnosed
defects in the hydraulic piston pump of a transmission system. The authors conducted
their analysis on an experimental setup, and besides the normalized CNN in conjunc-
tion with the wavelet transform, an interesting addition was the Bayesian algorithm
that was implemented to automatically tune the model. Many of the latest studies of
2022 focused on fault event classification in grid-connected photovoltaic systems [21–23].
Ahmadipour et al. [21] tested an intelligent scheme using a wavelet transform and an
extreme learning machine, and achieved outstanding accuracy on simulated noisy data.
Similarly, Allan et al. [22] introduced an approach based on CNN and CWT for the extrac-
tion of scalograms. The grid-connected photovoltaic system was modeled in Simulink,
and the detection was achieved within 2 s. Venkatesh et al. [23] presented a method for
the visual faults of photovoltaic modules such as discoloration, delamination, and glass
breakage. DWT was applied to preprocess captured images, and other signal-processing
techniques were evaluated, including the gray-level co-occurrence matrix, FFT, and the
gray-level difference method. Afterwards, the preprocessed experimental images were fed
into ensemble deep neural networks.

In our previous work [8], 1D CNN models were utilized for fuel-oil consumption
estimation and failure detection. Moreover, we proposed signal-preprocessing methods
in conjunction with DL for condition monitoring cases [6,7]. Specifically, we generated
spectrograms to train 2D CNN models, efficiently detecting defective behavior in the
operational state of vessels [6], and oil and gas pipelines [7]. Going one step further in
the current study, we investigate wavelet efficiency for preliminary signal analysis instead
of spectrograms.

3. System Description

The experimental analysis of electromechanical systems is not feasible for both healthy
and faulty operation because the equipment could be damaged through experiments.
Moreover, the damage caused in laboratory and/or industrial environments cannot be fully
controlled, causing fault parameters to exhibit large deviations that do not contribute to
proper system fault diagnostic verification and fine tuning. Hence, a 3-phase low-voltage
squirrel-cage motor was simulated in MATLAB Simulink. Specifically, a 3-phase squirrel-
cage motor was chosen because it is used in a wide variety of electromechanical systems,
including of ships, and it was simulated as a low-voltage motor since a similar setup was
available for future experimental analysis.
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3.1. Description of Simulation Model

The simulation model was based on a 3-phase squirrel-cage 4 kW IM and a fault block
for simulating the faulty operation. The completed model is depicted in Figure 1, and
information about the basic blocks of our model, which are the IM and the block of fault, is
presented in Table 1. Our aim was to simulate stator winding faults in the IM that were
caused by short circuits. The 3-phase block of faults provided by Simulink is ideal for
causing not only phase to phase faults, but also phase to ground faults. Six different kinds of
short circuits were simulated: Phase A—ground (G), Phases B–G, Phases C–G, Phases A–B,
Phases A–C, and Phases C–B. Lastly, fault resistance (R) is an important parameter of the
simulation model since it controls the fault intensity. When the value of the fault resistance
decreases to near zero, the insulation faults increase to a full interturn short-circuit value,
according to [5]. On the other hand, increased resistance causes indistinguishable faults.
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Figure 1. Simulation model in MATLAB Simulink.

Table 1. Parameters of the IM and block of fault.

Block Name Parameter Value

Three-phase squirrel-cage IM
(4 kW, 400 V, 50 Hz, 1430 rpm)

Stator resistance 1.4050 Ω
Rotor resistance 1.3590 Ω

Stator inductance 0.005839 H
Rotor inductance 0.005839 H

Pole pairs 2
Friction factor 0.002985 N m s

Inertia 0.0131 J/kg m2

Mutual Inductance 0.1722 H

Three-phase block of fault
Fault resistance 0.1 Ω

Ground resistance 0.01 Ω
Snubber resistance 106 Ω

3.2. Running the Simulation

Each simulation lasted 5 s, and the sampling rate of the monitored parameters, which
were the 3-phase stator’s currents, was 20.000 Hz. The IM was subjected to variable load
torque that had been induced by a step function; the value, duration, and rotational speed
for each load torque are summarized in Table 2. The time series of the 3-phase currents
of the stator during healthy operation are depicted in Figure 2, and the maximal current
flowed during the maximal load torque. When there was a change in the load, there was a
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proportional change in the waveforms of the currents, as expected. The time series of the
3-phase currents of the stator during faulty operation are depicted in Figure 3, where we
can easily distinguish that the operation was faulty from 1.4 to 1.7 s. Our ultimate goal
was to develop a method for both the accurate and automated condition monitoring of
power systems. The research methodology that is presented in Section 4 was utilized for
the diagnosis of stator winding faults.

Table 2. Different load conditions of step load torque.

Duration (s) Load Torque (Nm) Rotational Speed (rpm)

0–1 0 1499
1–2 26.72 1434
2–3 13.36 1468
3–4 6.68 1484
4–5 0 1499
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4. Research Methodology
4.1. Discrete Wavelet Analysis

There are several types of wavelet transformations, each with its own set of applica-
tions, but the two main ones are continuous wavelet transform (CWT) and discrete wavelet
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transform (DWT), as highlighted in [9,12,24]. The CWT is mathematically expressed with
the following equation [24]:

W(a, b) =
1√
a

+∞∫
−∞

f (x)ϕ

(
x− b

a

)
dx (1)

where φ is the mother wavelet, a is the scale factor, and b is the translation factor. The values
of the factors are continuous, which means that there is an infinite number of wavelets. The
main difference of DWT is that discrete values are used for the scale and translation factors.
DWT is mathematically expressed with the following equation [24]:

W(a, b) = 2−(
a
2 )

T−1

∑
t=0

f (t)ϕ

(
t− b2a

2a

)
(2)

DWT can be utilized as a filter bank, meaning that the signal is decomposed into
several frequency sub-bands (Stephane Mallat multidecomposition theory). According to
the authors of [9], the DWT is implemented by convoluting the signal with sub-band low-
and high-pass filters. The output of the filters returns the DWT coefficients. Decomposition
theory is applied to many levels. At the first level, the signal is split into a high- and a
low-frequency part to analyze it at its maximal frequency. At the second level, the previous
low-frequency part is again split into high- and low-frequency parts in order to analyze it
at half of its maximal frequency. This process is repeated until the maximal decomposition
level, ending up with a set of approximation and detail coefficients from each level. The
coefficients can be used to reconstruct the original signal.

In some cases, it is desirable to exclude detail coefficients from various levels to
reconstruct the original signal without the high-frequency behavior (denoising). Harmonic
frequencies are generated during faulty operation in the current; thus, in our case, it was
desirable to reconstruct the original signal by keeping the detail coefficients from the
appropriate levels at which faulty operation was indicated if it existed. Additionally, the
selection of the appropriate mother wavelet for signal representation is crucial. There are
several DWT families and they are categorized on the basis of the features of the produced
basis functions. Examples of different families are Haar, the discrete approximation of
Meyer, Symlet, and Daubechies.

There were cases in our simulation where the fault was indistinguishable in the
time series of the currents (Figure 4). DWT was utilized to solve this problem since it
is ideal for the analysis of nonstationary signals [5]. As mentioned above, the selection
of an appropriate type of Wavelet is significant. In addition, the level of decomposition
is important for the efficient implementation of the DWT. Reconstructed signals from
various detail coefficients are depicted in Figure 5 for the case of an indistinguishable
fault in the time series. On the basis of the descriptive analysis in Figure 5 and after
experimenting with various types of DWT, we concluded that the discrete approximation
of Meyer (Dmey) was a good option. Dmey is ideal for the computation of fast discrete
wavelet transforms and it does not exhibit many disadvantages compared to other DWT
types [25]. Moreover, we decided to focus on the results of the reconstructed signals from
the detail coefficients of Level 5 (d5) since higher levels add unnecessary complexity, as
depicted in Figure 5. Diagnosis using DWT was successful since the harmonic frequencies
of the fault were captured. The MATLAB Wavelet Toolbox was used for the implementation
of DWT analysis.
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4.2. Convolutional Neural Networks

Convolutional neural networks (CNNs) are similar to ANNs since they are composed
of neural networks, but they include some distinctive features, which are the convolutional
and pooling layers. Convolution acts as a sliding filter and it was first introduced by
Kunihiko Fukushima [26] back in 1980. Researchers utilize CNN to cope with challenging
problems that are mainly divided into two main categories: (1) computer vision tasks
with 2D input data such as image classification, object detection, and image segmentation;
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(2) sequential problems with 1D input data such as time series forecasting, time series
classification, and natural language processing. The power of CNNs lies in extracting
valuable regional information. Furthermore, they are more effective to search for features
in smaller portions rather than the entire data. The structure of a 1D CNN consists of three
basic types of layers: 1D convolutional and 1D pooling layers for feature extraction, and
fully connected layers for the final decision. The 1D CNN operation is briefly explained
below, as described in our previous work [8]:

First, raw 1D input vector x[n] is fed into a 1D convolutional layer. Output f [n] is
called the feature map and it is calculated as in (3).

f [n] = x[n] ∗ k[n] = ∑w−1
m=0 k[m]x[n−m] (3)

Equation (3) is a linear elementwise multiplication, and the filters of kernels κ[n] are
convolved with x[n] to produce feature map f [n]. The most important parameter is the size
of the kernel, expressed as w, because it defines the size of the feature map [8].

The feature map of the convolutional operation is fed into a nonlinear activation
function, expressed as F, to produce output Z(n) on the basis of Equation (4). A common
activation function was sigmoid, but gradient vanishing problems during back-propagation
prompted researchers to investigate alternative activation functions according to the authors
of [8]. One of the most promising is rectifier linear unit (ReLU), expressed as in (5).

Z(n) = F( f (n)) (4)

ReLU(x) = max(0, x) (5)

The output of the activated convolutional layer is then fed into a pooling layer, aiming
at decreasing computational costs. There is a variety of pooling operations, but 1D max
pooling is a good option [27]. A window, such as the kernel stated in the convolutional
layer, slides through the activated feature map to keep only the maximal values while
discarding all other information.

Many convolutional and pooling layers could be combined for a final output feature
map. A special layer flattens the output, which is then fed into some fully connected layers.
The fully connected layers follow the ANN structure. To overcome problems of overfitting,
a dropout layer is implemented in many cases. This layer drops some neurons from the
neural network during the training process. Lastly, depending on the task, the number of
neurons and the type of activation function of the final dense layer must be chosen wisely.
For a 3-class classification task, the dense layer is expressed as in (6).

a[L] = So f tmax(WTa[L−1] + b) (6)

4.3. Hybrid Discrete Wavelet–CNN Method

The hybrid method consists of two main blocks, DWT analysis and a CNN model. For
concluding an inference model, it is necessary to train the model with pairs of batches of
DWT-analyzed signals and the corresponding labels for normal and faulty operation. The
DWT analysis block is utilized for the feature extraction of valuable information from the
time series. The features could be generated from the coefficients of each level. In more
detail, these features could be statistical values, such as variance, standard deviation, mean,
median, and the 70th percentile or just the raw values of the coefficients. Data preparation
is needed to prepare a training dataset that is employed to train a CNN model.

5. Results
5.1. Descriptive Analysis

This subsection presents a descriptive analysis for the diagnosis of various faults using
DWT. The time series of the currents were generated from various cases of simulations,
and DWT was then applied to them. The various cases included different:
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1. Types of short circuits (A–B, A–G, A–C, etc.).
2. Intensities of fault, controlled by the fault resistance (R).
3. Moments of fault.
4. Scales of white noise (W-N) (Figure 6).
5. Load conditions (Table 2).
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There was a level for every fault detection case depending on how easy it was to
identify the fault. In total, there were 5 levels, as presented in Table 3. In the Level 1 cases,
the comparison with a threshold value was sufficient to detect the fault in d5. The threshold
was calculated from the reconstructed range of d5 during healthy operation (Table 4). In
the Level 2 cases, the fault was identified in d5, while in Level 3, the fault could not be
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identified in d5, and it was necessary to observe many levels of detail coefficients. In Level
4, it was extremely difficult to identify the fault from any level of detail coefficients. Lastly,
in Level 5, it was unrecognizable. The results of the analysis for each monitoring parameter
(3-phase currents) are summarized in Tables 5–7 for the step load torque, and in Tables 8
and 9 for the ramp load torque.

Table 3. Five levels of diagnosis.

Threshold d5 Many d Indistinguishable Unrecognizable

Level 1 Level 2 Level 3 Level 4 Level 5

Table 4. Threshold value.

Phase A Phase B Phase C

0.01137 0.012 0.019

Table 5. Operation with fault at 1.4–1.7 s for the step load toque.

Monitoring Parameter Type Intensity R (Ω) Level

Current of Phase A

A–B 0.1 1
A–G 0.1 1
A–C 0.1 1
B–C 0.1 2
B–G 0.1 1
C–G 0.1 1
A–B 1.0 1
A–G 1.0 3
A–B 5.0 3
A–G 5.0 4

Current of Phase B

A–B 0.1 1
A–G 0.1 1
A–C 0.1 3
B–C 0.1 1
B–G 0.1 1
C–G 0.1 1
A–B 1.0 1
A–G 1.0 5
A–B 5.0 3
A–G 5.0 5

Current of Phase C

A–B 0.1 3
A–G 0.1 3
A–C 0.1 1
B–C 0.1 1
B–G 0.1 1
C–G 0.1 1
A–B 1.0 5
A–G 1.0 4
A–B 5.0 5
A–G 5.0 5
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Table 6. Operation with fault at 1.9–2.2 s for step load torque.

Monitoring Parameter Type Intensity R (Ω) Level

Current of Phase A
A–B 0.1 1
A–G 0.1 1

Current of Phase B
A–B 0.1 1
A–G 0.1 3

Current of Phase C
A–B 0.1 3
A–G 0.1 3

Table 7. Operation with fault at 1.4–1.7 s for step load torque and W–N = 60 Eb/No.

Monitoring Parameter Type Intensity R (Ω) Level

Current of Phase A
A–B 0.1 1
A–G 0.1 4

Current of Phase B
A–B 0.1 1
A–G 0.1 5

Current of Phase C
A–B 0.1 4
A–G 0.1 4

Table 8. Operation with fault at 1.4–1.7 s for ramp load torque.

Monitoring Parameter Type Intensity R (Ω) Level

Current of Phase A
A–B 5.0 2
A–G 5.0 4

Current of Phase B
A–B 5.0 3
A–G 5.0 5

Current of Phase C
A–B 5.0 5
A–G 5.0 4

Table 9. Operation with fault at 1.4–1.7 s for ramp load torque and W–N = 60 Eb/No.

Monitoring Parameter Type Intensity R (Ω) Level

Current of Phase A
A–B 0.1 1
A–G 0.1 3

Current of Phase B
A–B 0.1 1
A–G 0.1 3

Current of Phase C
A–B 0.1 3
A–G 0.1 4

Some limitations exist with the descriptive analysis using DWT. The fault was hardly
detected in cases where there was W–N in the time series (Figure 8). Figure 8 depicts
reconstructed signal from the detail coefficients of levels 1–6 (d1–d6), the reconstructed
signal from the approximate coefficients of level 6 (a6), and the original signal (s). The fault
was unrecognizable in cases with a nonintense fault (R5.0). Moreover, it was indistinguish-
able whether a frequency had been caused by a load change or by a fault in some cases.
The classification of the fault type (A–B, A–G, B–C) could not be achieved. In the next
subsection, we show how our hybrid method was implemented to tackle the limitations.
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5.2. Hybrid Discrete Wavelet–CNN Model

The hybrid discrete wavelet–CNN model recognizes if the operation of IM is healthy or
faulty on the basis of the analyzed DWT current of Phase A. It was also trained to recognize
two types of fault (A–B and A–G short circuits); thus, it is considered a 3-class classifier. It is
crucial that our trained hybrid model does not have problems with overfitting. Overfitting
means that the model is excellent at recognizing faults in a training set, but is not capable
of recognizing them in cases outside of the distribution of the training set. Therefore, the
time series were processed from various simulations. The hybrid discrete wavelet–CNN
method was implemented in Python.

5.2.1. Training Parameters

The training process of the hybrid discrete wavelet–CNN model is depicted in pseu-
docode form in Figure 9. First, the time series of Current A were analyzed using DWT
with the efficient Dmey wavelet. Then, the raw values of detail coefficients of Level 5 were
extracted. The samples of the time series were 100,000, while the samples of the batches
were 1562 after DWT analysis. In this way, the data were compressed without losing
information, and the training time of CNN model was extremely shorter. The model’s
architecture is presented in Table 10, and the hyperparameters employed for training were
as follows:

• Epochs = 100.
• Batch size = 4.
• Learning rate = 0.001.
• Optimizer = ADAM.
• Dataset split = 70%, 15%, 15%.
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Table 10. Proposed neural network architecture.

Layer Number Parameters

Conv1D 2 Filters = 64, kernel size = 3, activation = ReLU.
Dropout 1 Rate = 0.5.

MaxPooling1D 1 Pool size = 2.
Flatten
Dense 1

1
1

-
Units = 100, activation = ReLU.

Dense 2 1 Units = 3, activation = softmax.

5.2.2. Results

After every iteration, the model was evaluated in the validation set to verify its
accuracy. Figure 10a depicts both training and validation accuracy, while Figure 10b depicts
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the desirable loss reduction. The trained model was implemented for predictions in the
test set, and its predictions were correct in all cases. Figure 11 depicts the confusion matrix
of the model, and the results of the matrix were distributed on the diagonal, which means
that the introduced model predicted only true positives and true negatives.

Signals 2023, 4, FOR PEER REVIEW  15 
 

 

test set, and its predictions were correct in all cases. Figure 11 depicts the confusion matrix 
of the model, and the results of the matrix were distributed on the diagonal, which means 
that the introduced model predicted only true positives and true negatives. 

  
(a) (b) 

Figure 10. (a) Accuracy and (b) loss curves over 100 epochs of CNN training. 

 
Figure 11. Confusion matrix of the model. 

  

Figure 10. (a) Accuracy and (b) loss curves over 100 epochs of CNN training.

Signals 2023, 4, FOR PEER REVIEW  15 
 

 

test set, and its predictions were correct in all cases. Figure 11 depicts the confusion matrix 
of the model, and the results of the matrix were distributed on the diagonal, which means 
that the introduced model predicted only true positives and true negatives. 

  
(a) (b) 

Figure 10. (a) Accuracy and (b) loss curves over 100 epochs of CNN training. 

 
Figure 11. Confusion matrix of the model. 

  

Figure 11. Confusion matrix of the model.



Signals 2023, 4 164

5.3. Discussion

The custom fault-detection challenge-indicative levels from Tables 5–9 show that the
harmonic frequencies of the faults were captured in most cases, providing valuable initial
information, but there were cases where it was extremely difficult to diagnose nonintense
faults, especially in noisy simulated data. Furthermore, the appropriate selection of the
mother wavelet and the level of decomposition are key factors for this particular application.
After feature extraction using DWT, the power of 1D CNN models was utilized to complete
the novel hybrid discrete wavelet–CNN model.

A main distinction of our research compared to related works is that the currents
were obtained from simulations that included various load conditions, types, intensities
of faults, and scales of white noise. The combination of 1D CNN and DWT is the other
distinction of our research, and it was employed to automatically diagnose even more
indistinguishable and complex faults. The proposed method could also be considered the
first step towards the development of a complete diagnostic system that is able to detect
and predict all types of IM faults from transfer learning on the basis of simulation data, and
able to be implemented to reduce the training costs of experimental analysis.

6. Conclusions

The related works mentioned in Section 2 involved only a few proposed methods
related to wavelet techniques in coordination with DL. Additionally, there is a strong
interest to diagnose faults adequately early when the current exceeds the rated amperage
capacity of the circuit of the connected equipment since, in cases of failure faults, the
power system could be damaged, and the health of human operators could be threatened.
The present work introduced a hybrid wavelet–CNN and a corresponding method for
current analysis to diagnose stator winding faults of 3-phase IMs; its main contributions
are as follows:

1. It can automatically and effectively classify faults related to short circuits even in
indistinguishable cases where white noise and load changes occur.

2. It can drastically reduce both the training time and the data volume employed for
training the neural network while maintaining competitive accuracy. Therefore, the
proposed method could be considered a data compression method as well.

In contemporary sensor network applications that often include mist and edge com-
puting systems with limited processing power and storage capabilities, reductions in model
training time and data volume are crucial.

Future work will be conducted to test the hybrid method with experimental data
of IM operation to verify the system’s accuracy. We are also interested in testing the
method for fault detection in a variety of other applications and classifying several types of
faults. An example is the thermographic fault diagnosis of motor shafts. Lastly, possible
future work could involve its implementation to other power systems, including power
transformers, power generators, and other types of motors, such as brushless DC electric
and permanent-magnet motors.
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