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Hybrid waves localized at hyperbolic metasurfaces
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We reveal the existence of a type of surface electromagnetic wave supported by hyperbolic metasurfaces,

described by a conductivity tensor with an indefinite signature. We demonstrate that the spectrum of the hyperbolic

metasurface waves consists of two branches corresponding to hybrid transverse electric–transverse magnetic

waves with a polarization that varies from linear to elliptic or circular depending on the wave frequency and

propagation direction. The shape of the equal-frequency contours drastically depends on the frequency and

changes from the elliptical to hyperbolic—a topological transition takes place. We derive asymptotic formulas

describing the losses of the surface waves for capacitive, inductive, and hyperbolic regimes of the metasurface.

We analyze numerically the generation of surface waves by a point electric dipole placed in the vicinity of the

metasurface with numerical simulations, and also reveal wave-front peculiarities in strong anisotropic hyperbolic

and σ -near-zero regimes of the metasurface.
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I. INTRODUCTION

Metasurfaces are known as a two-dimensional analog of

metamaterials, and they offer unprecedented control over light

propagation, reflection, and refraction [1,2]. One of the main

advantages of metasurfaces is that these structures are fully

compatible with modern planar fabrication technology and

they can be readily integrated into on-chip optical devices,

preserving most of the functionalities of three-dimensional

metamaterials. In a general case, a metasurface can be

described as a two-dimensional current characterized by a

dispersive nonlocal two-dimensional conductivity tensor. At

the same time, electromagnetic properties of a broad and

constantly growing class of two-dimensional materials, such

as graphene, silicene, and hexagonal boron nitride, can also

be characterized by conductivity tensors. Thus, the physics

of metasurfaces and optics of two-dimensional materials are

tightly interconnected. Particularly, it has been shown in

Ref. [3] that a graphene sheet can support transverse electric

(TE) surface polaritons in the frequency region where the

imaginary part of the surface conductivity becomes negative.

The negative imaginary part of the conductivity corre-

sponds to the capacitive surface impedance. At the same time,

the existence of TE surface waves at capacitive impedance

surfaces has been studied previously [4].

In this paper, we study a special class of metasurfaces

characterized by a local diagonal anisotropic conductivity ten-

sor. Such metasurfaces can be regarded as a two-dimensional

analog of uniaxial crystals. Specifically, when the imaginary

parts of the principal components of the conductivity tensors

have different signs, a strong correspondence appears between
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these structures and hyperbolic metamaterials [5]. Here, we

focus on the dispersion and polarization properties of the

localized waves supported by these metasurfaces.

It was shown that an anisotropic interface separating a

hyperbolic metamaterial and vacuum can support a certain

class of plasmonic modes analogous to the Dyakonov surface

states [6–9]. Dyakonov surface states are localized modes

which can propagate in a narrow angle range along the

interface of the anisotropic crystals [10]. Despite their the-

oretical prediction back in the 1980’s, these modes have been

experimentally demonstrated only recently [11]. This is due to

the fact that, for the case of an interface of a conventional

anisotropic crystal, these modes can propagate only in an

extremely narrow range of angles, and thus it is hard to

excite them experimentally. Nevertheless, these modes attract

significant scientific interest since they suggest a route for

virtually lossless optical information transfer at the nanoscale,

which is extremely important from the perspectives of on-chip

optical data processing devices. Moreover, as was shown

recently, the propagation direction of these modes can be

effectively controlled by a slight modification of the dielectric

permittivities of the structure [12].

Here, we show that, in sharp contrast to bulk hyperbolic

metamaterials, hyperbolic metasurfaces can support two types

of surface modes at a single frequency. These modes originate

from the coupling of the transverse magnetic (TM) and TE po-

larized surface polaritons. A similar effect occurs in graphene

sheets in the presence of a strong magnetic field perpendicular

to the graphene layer [13] or on a metal substrate coated by a

thin anisotropic dielectric film [14]. The corresponding surface

waves have an elliptic polarization which is essential for the

construction of on-chip optical networks [15–17].

II. MODEL

A. Conductivity tensor

There are different possible realizations of hyperbolic

metasurfaces. In the microwave frequency range, hyperbolic

metasurfaces can be realized with a certain type of LC con-

tour [18,19]. In the infrared and optical range, the metasurfaces

can be formed by an array of graphene nanoribbons [20] or by
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FIG. 1. (Color online) (a) Geometry of the problem. Upper (x >

0) half space with ε1 and lower (x < 0) half space with ε2 are

separated by an anisotropic conducting layer. The principal axes of

the conductivity tensor are shown by dashed lines. A surface wave

propagates along the z direction. (b) Frequency dependence of the

imaginary parts of dimensionless conductivity tensor components σ̃⊥
and σ̃‖. The parameters of the conductivity tensor components are

�̃⊥ = 1, �̃‖ = 3, γ̃ = 0.05.

a two-dimensional lattice of anisotropic plasmonic particles.

Alternatively, metasurfaces can be formed by an array of

dielectric subwavelength antennas [shown schematically in

Fig. 1(a)]. This design benefits from a low level of ohmic losses

in the dielectric resonators as opposed to plasmonic counter-

parts. At the same time, using a refractive index material such

as silicon for the resonators, it is possible to achieve sufficiently

subwavelength dimensions of the metasurface elements [21].

The interaction of the metasurface with an external elec-

tromagnetic field can be described with an effective conduc-

tivity tensor. Effective conductivity is directly proportional to

the effective two-dimensional polarizability of the structure

α̂eff [22]:

σ̂ = (−iω/S0)α̂eff. (1)

Here, S0 is a surface area of the metasurface unit cell, and ω is a

frequency of the electromagnetic wave. Rigorous calculations

of the effective polarizability of a two-dimensional lattice

of resonant scatterers have been performed in a number of

papers [23,24]. The effective polarizability of the metasurface

can be expressed as

α̂−1
eff = α̂−1

0 + k2
0Ĉ(k,ω). (2)

Here, α̂0 is the polarizability of the individual resonant scat-

terer, and Ĉ is the so-called dynamic interaction constant [24]

which accounts for the additional polarization induced by the

field scattered from all the scatterers in the lattice. In our case,

a single scatterer can be approximated by a triaxial ellipsoid,

for which the exact Mie series is available. However, it is

justified to account only for the dipole response, which can be

approximated by a Lorentzian:

α̂0 =

⎛
⎝

0 0 0

0 α0,⊥
0 0 α0,‖

⎞
⎠, (3)

α0,s =
N

ω2 − �2
s + iγsω

, s = ‖, ⊥ . (4)

Here, N is the normalization constant, �s is the resonant

frequency, and γs is the bandwidth of the resonance, defined by

ohmic and radiation losses. As can be seen in Eq. (3), we have

neglected the polarizability of the scatterer in the perpendicular

to the plane direction. This is justified for the sufficiently thin

inclusions.

We note that by setting the right-hand side of Eq. (2) to

zero we obtain the equation for dispersion of the eigenmodes

of the structure ω(k) which accounts for both the nonlocality

and finiteness of the unit cell. The rigorous analysis of the

eigenmodes of the two-dimensional lattice of anisotropic

scatterers is the subject of future work. Here, we would only

note that, as it has been shown in Ref. [24] for a regular lattice,

the radiative decay of the metasurface is allowed only in the

directions satisfying the Floquet conditions |k × ẑ|D = πn,

where n is an integer. Thus, for a metasurface with a period

smaller than the wavelength, the losses of the surface waves are

defined only by the ohmic losses in the scatterers and radiative

losses caused by irregularities in the lattice geometry or by the

finiteness of the sample.

Accounting only for the local response of the metasurface,

and using Eqs. (2)–(4), we can write down the expressions for

the effective conductivity tensor components:

σs(ω) = A
ic

4π

ω

ω2 − �2
s + iγsω

, s = ⊥, ‖ . (5)

We note that such a dispersion is quite natural to many systems

in the optical, infrared, THz, and radio-frequency ranges [25].

In what follows, we assume that the bandwidth of the resonant

is the same for both orientations γ‖ = γ⊥ = γ . Constant A has

a dimension of rad/s. The explicit expression of A is defined by

the metasurface design. This constant can be excluded from the

analysis with the help of the following dimensionless variables:

σ̃s =
4πσs

c
, ω̃ =

ω

A
, γ̃ =

γ

A
,

(6)

κ̃ =
cκ

A
√

ε
, k̃z =

ckz

A
√

ε
.
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The real part of σ̃⊥ and σ̃‖ is responsible for energy dissipation

and the imaginary part is responsible for the polarizability of

the structure. A typical frequency dependence of Im(σ̃⊥) and

Im(σ̃‖) is shown in Fig. 1(b). One can see that the signature

of conductivity tensor (7) depends on the frequency. It is

possible to distinguish three cases: (i) a capacitive metasurface

when both Im(σ̃⊥) and Im(σ̃‖) are negative; (ii) a hyperbolic

metasurface when Im(σ̃⊥)Im(σ̃‖) < 0; and (iii) an inductive

metasurface when both Im(σ̃⊥) and Im(σ̃‖) are positive which

corresponds to a conventional metal sheet. It is known that

both inductive and capacitive metasurfaces support the surface

waves of TM and TE polarization, respectively. Thus, at ω̃ ≫
�̃‖ and ω̃ ≪ �̃⊥, the structure supports conventional TM and

TE plasmons [3], respectively. However, in the intermediate

region �̃⊥ < ω̃ < �̃‖, the structure supports mixed TE-TM,

Dyakonov-like states.

B. Dispersion equation

We consider two isotropic media with permittivities ε1

and ε2 separated by a hyperbolic metasurface—an anisotropic

nonchiral metasurface possesses a hyperbolic dispersion at

some frequency range [Fig. 1(a)]. The subwavelength size

of both the resonators and the period of the structure allow

one to describe the optical properties of the metasurface by a

conductivity tensor, which can be represented within the local

homogenization procedure as follows:

σ̂0 =
(

σ⊥ 0

0 σ‖

)
. (7)

Here, σ⊥ and σ‖ are frequency-dependent conductivities per

unit length corresponding to the principal axes of the tensor.

We suppose that the frequency dependence of σ⊥ and σ‖ is

described by Eq. (5).

We will seek a solution for the Maxwell’s equations in the

form of a traveling wave propagating in the z direction and

localized in the x direction. Both the electric and magnetic

fields depend on the z coordinate and time t as exp(ikzz − iωt).

We assume that ϕ is the angle between the z direction and one

of principle axes of the tensor [see Fig. 1(a)]. The conductivity

tensor is not diagonal in the chosen set of coordinates and can

be written as

σ̂ =
(

σyy σyz

σzy σzz

)
, (8)

where

σyy = σ⊥ cos2 ϕ + σ‖ sin2 ϕ, (9)

σzz = σ⊥ sin2 ϕ + σ‖ cos2 ϕ, (10)

σyz = σzy =
σ‖ − σ⊥

2
sin 2ϕ. (11)

Electric and magnetic fields (E and H) obey the following

boundary conditions on the metasurface:

[n,H2] − [n,H1] =
4π

c
σ̂E, (12)

[n,E2] − [n,E1] = 0. (13)

Index 1 (2) corresponds to the upper (lower) half space, and n

is a unit vector normal to the interface.

The dispersion equation for the surface waves can be

obtained from Maxwell’s equations using boundary condi-

tions (12) and (13) and the condition where the electromagnetic

field decays away from the interface,
(

cκ1

ω
+

cκ2

ω
−

4πi

c
σyy

)

×
(

ωε1

cκ1

+
ωε2

cκ2

+
4πi

c
σzz

)
=

16π2

c2
σ 2

yz. (14)

Here, κ2
1,2 = k2

z − ε1,2ω
2/c2 is the inverse penetration depth of

the surface wave into the upper and lower medium. A similar

equation describes the dispersion of magnetoplasmons, surface

waves in a two-dimensional electron gas in the presence of a

strong dc magnetic field [13,26,27].

III. RESULTS AND DISCUSSION

A. Dispersion of surface waves

In order to analyze the dispersion of surface waves, which

is described by Eq. (14), let us neglect the dissipation of the

energy in the system and put γ̃ = 0. The case γ �= 0 is analyzed

in Sec. III B. For the sake of simplicity, further on we will

consider the symmetric situation when ε1,2 = ε = 1, but all

asymptotic formulas for the dispersion and losses we will give

for arbitrary ε. As an example, let us consider a structure with

resonance frequencies of the conductivity tensor components

�̃⊥ = 1 and �̃‖ = 3. The dependence of wave vector kz on

frequency ω and propagation direction ϕ can be obtained

analytically from Eq. (14). This equation yields two solutions

which correspond to hybrid polarized waves (quasi-TE and

quasi-TM plasmons). Their dispersion for ϕ = 60◦ is shown

in Fig. 2.

The surface waves of pure TE or TM polarization can

propagate only along the principle axes of the conductivity

FIG. 2. (Color online) Dependence of k̃z on ω̃ for the surface

waves on a hyperbolic metasurface for different propagation direc-

tions ϕ. The two branches correspond to quasi-TM and quasi-TE

surface plasmons. The inset shows the structure of dispersion curves

at ϕ ≈ 90◦.
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tensor (ϕ = 0◦ and 90◦). In this case, the right part of Eq. (14)

is equal to zero and the equation splits into two independent

equations corresponding to two-dimensional TE and TM

plasmons [28].

The frequency cutoff of the quasi-TE plasmon is equal to

zero and does not depend on ϕ. The frequency cutoff ωc of

the quasi-TM plasmon belongs to the interval �⊥ � ωc � �‖
and depends on ϕ. This dependence can be found from the

equation

cot2 ϕ = −
σ‖(ωc)

σ⊥(ωc)
. (15)

The quasi-TE plasmon has a maximal frequency ωr at which

it can propagate. The dependence of ωr on the ϕ is described

by the equation

tan2 ϕ = −
σ‖(ωr )

σ⊥(ωr )
. (16)

It follows from Eqs. (15) and (16) that simultaneous propaga-

tion of both surface waves at the same frequency is possible

only if

π

4
� |ϕ| �

3π

4
. (17)

This condition does not depend on the specific dispersion of

σ̃⊥,‖ and can be fulfilled for any hyperbolic metasurface [29].

Dispersion curves of quasi-TM and quasi-TE plasmons for

all angles are shown in Fig. 2. It follows from Eq. (14) and can

be seen from the figure that there is a frequency gap between

�⊥ to �‖ at an angle ϕ = 0◦. The gap is squeezed as ϕ tends to

π/2. The structure of the dispersion curves at ϕ close to π/2 is

shown in the inset of Fig. 2. The presence of the anticrossing

means that there is a mixing of polarization. Therefore, the

notation “quasi-TM” and “quasi-TE” plasmons is just formal.

The asymptotics of the dispersion for quasi-TM and quasi-

TE modes can be obtained directly from Eq. (14):

ω̃ =

⎧
⎪⎨
⎪⎩

k̃z for ω̃ ≪ �̃⊥ (quasi-TE mode),

k̃
1/2
z

(4ε)1/4
for ω̃ ≫ �̃‖ (quasi-TM mode).

(18)

These expressions coincide with the ones for two-dimensional

TE and TM plasmons. In the common case, the dielectric

functions of the substrate and superstate are not equal (ε1 �=
ε2). If the difference between them is small (|δε| ≪ ε), the

correction to the dispersion in the symmetric case can be

obtained with perturbation theory:

δkz =
δε

ε

κ̃2

2k̃z

(
σ̃yyω̃

2 + 2i
√

εω̃κ̃

σ̃yyω̃2 + σ̃zzκ̃2
+

ω̃2

2κ̃2

)
. (19)

Figure 2 contains full information about the dispersion of

the surface waves on the hyperbolic metasurface, but some

peculiarities of the wave propagation associated, for example,

with the density of optical states or the relative direction of

the phase and group velocities, are best understood in k space

using equal-frequency contours. Equal-frequency contours for

quasi-TE and quasi-TM plasmons are shown in Fig. 3. One

can see that for quasi-TE plasmons, the contours have an

elliptical, ∞ shape, or a hyperbolic form depending on the

frequency. Equal-frequency contours for quasi-TM plasmons

FIG. 3. (Color online) Equal-frequency contours on a k plane for

(a) quasi-TE and (b) quasi-TM surface plasmons. Here, k̃⊥ and k̃‖ are

dimensionless components of the wave vector along the principle

axes of the conductivity tensor, and ω̃ is the dimensionless frequency.

In (a) ω̃ varies from 0 to �̃‖ = 3. In (b) ω̃ varies from �̃⊥ = 1 to

infinity.

have the form of an arc, rhombus, and 8-shaped, or elliptical

depending on the frequency. The arc contours are observed for

the hyperbolic regime when �̃⊥ < ω̃ < �̃‖. The end points of

the arcs correspond to the frequency cutoffs ω̃c which obey

Eq. (15). Its solution represents a fourth-order curve in the k

plane, a so-called hippopede [30]:

ω̃2
c = �̃2

⊥ sin(ϕ)2 + �̃2
‖ cos(ϕ)2. (20)

Discontinuity of the equal-frequency contours at the finite

points which takes place for the arcs in our case is unusual for

bulk waves in three-dimensional space but can be observed for
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FIG. 4. (Color online) Dependence of Im(k̃z) on ω̃ for quasi-TE

and quasi-TM surface plasmons for ϕ = 60◦ plotted on a log-log

scale. Dashed lines are asymptotics of the losses described. Curve A

is described by Eq. (21), curve B is described by Eq. (22), and curve

C is described by Eq. (23).

the surface ones [10]. Points inside the hippopede correspond

to the leaky quasi-TM plasmon modes.

The system considered above is similar to the one analyzed

in Ref. [7] but it is two dimensional. In this sense, it is rea-

sonable to call the waves under consideration two-dimensional

Dyakonov plasmons.

B. Effect of losses

Let us take into account the energy dissipation and put

γ̃ �= 0 in Eq. (5). It results in a finite propagation length

of the surface waves which is proportional to 1/Im(k̃z).

The frequency dependence of Im(k̃z) for quasi-TE and TM

plasmons is shown in Fig. 4. Using a log-log scale makes it

obvious that Im(k̃z) ∼ ω̃4 at ω̃ ≪ �̃⊥ and Im(k̃z) ∼ ω̃ at ω̃ ≫
�̃‖. An asymptotic expression for Im(k̃z) can be obtained from

Eq. (14). In the case of ω̃ ≪ �̃⊥, the losses can be written as

Im(k̃z) ≈
γ̃ ω̃4

4ε

(
cos2 ϕ

�̃2
⊥

+
sin2 ϕ

�̃2
‖

)(
cos2 ϕ

�̃4
⊥

+
sin2 ϕ

�̃4
‖

)
. (21)

In the case of ω̃ ≫ �̃‖, the losses can be written as

Im(k̃z) ≈ 2γ̃ ω̃ε1/2. (22)

One can see that in contrast to the case of low frequencies,

the losses do not depend on the propagation direction ϕ and

resonance frequencies �̃⊥ and �̃‖.

In the vicinity of the frequency cutoff ω̃c, the frequency

dependence of Im(k̃z) can be represented as

Im(k̃z) ≈
γ̃ ω̃c

2ε
1
2

σ̃ 2
‖ (ω̃c) sin2(ϕ) + σ̃ 2

⊥(ω̃c) cos2(ϕ)

1 + σ̃‖(ω̃c)σ̃⊥(ω̃c)/4
δω̃. (23)

Here, δω̃ = ω̃ − ω̃c and δω̃ ≪ ω̃c. One can see from Eq. (23)

that Im(k̃z) → 0 as δω̃ → 0. It is a result of weak localization

of the quasi-TM plasmon near the frequency cutoff ω̃c. The

FIG. 5. (Color online) (a)–(d) Logarithmic map of the electric

field amplitude for four values of normalized frequency for the case

when the surface waves are excited by a pointlike electric dipole.

The dipole orientation is shown with a red arrow. The metasurface

conductivity spectrum is shown in Fig. 1(b).

opposite situation occurs for a quasi-TE plasmon mode near

ω̃r where this mode is strongly localized.

C. Field profiles

Here we perform a full-wave numerical simulation of the

surface wave field profiles assuming that the surface waves

are excited through the near field of a point electric dipole

placed in the vicinity of the metasurface. For the simulation

we use the CST Microwave Studio package. Conductivity

parameters of the metasurface are taken as in Fig. 1(b).

The orientation of the dipole is assumed to be along the ‖
direction [see Fig. 1(a)]. The logarithmic maps of the electric

field distribution corresponding to the different excitation

frequencies ω̃ are shown in Figs. 5(a)–5(d).

It is well known that the shape of the wave front inherits

the symmetry of the equal-frequency contour. In this sense, it

is quite instructive to analyze the obtained field profiles and

compare them to the equal-frequency contours shown in Fig. 3.

One can see from Fig. 3(a) that for ω̃ = 0.9 the equal-

frequency contours are ellipses that are prolate in the ‖
direction. This is reflected in the field profile in Fig. 5(a)—the

mode propagates primarily along the ⊥ direction. This regime

is analogous to the anisotropic ε-near-zero [31] regime in the

three-dimensional (3D) case and can be called an anisotropic

σ -near-zero regime.

It can be seen from Fig. 3(a) that at higher frequencies

we have a topological transition, so the contours transform to

hyperbolas. It results in crosslike field profiles [Fig. 5(b)]. As

we have mentioned in Sec. III A, in the hyperbolic regime, both
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quasi-TE and quasi-TM modes can propagate simultaneously.

Indeed, in Fig. 5(b) there are two distinct wave fronts having

crosslike and arclike forms that are with agreement with the

equal-frequency contours shown in Fig. 3.

As we approach ω̃ = 3, the shape of the equal-frequency

contours becomes diamondlike. In real space this corresponds

to the radiation of the dipole to four distinct angles with

quasiflat wave fronts [Fig. 5(c)].

Finally, at ω̃ � 3.0, the equal-frequency contours have a

positive curvature in the ⊥ direction and negative in the ‖
direction. It results in self-collimation of the surface wave

propagating in the ‖ direction. A similar effect is well known

in photonic crystals [32,33]. Excitation of the surface wave in

the ⊥ direction is low-effective (in comparison with the ‖ direc-

tion) because high wave vectors are needed. Therefore, the ra-

diation of the dipole is primarily along its polarization direction

[Fig. 5(d)]. Such behavior is unnatural for electric dipole radia-

tion and is caused by the strong anisotropy of the metasurface.

D. Polarization properties

Spatial inhomogeneity and partial longitudinal polarization

of surface waves results in an unusual spatial distribution of

their momentum and angular momentum densities. In partic-

ular, surface waves can possess a transversal Belinfante’s spin

momentum [34,35]. Anisotropy of the hyperbolic metasurface

results in a mixing of TE and TM surface waves and makes

their polarization structure very manifold. It can be shown

from the Maxwell’s equations that, for the surface waves under

consideration, electric field components Ez and Ey are in phase

and Ex has a π/2 phase delay. It means that electric field E

rotates in the plane orthogonal to the metasurface so that the

end of E draws an ellipse. In the common case, the plane of

the ellipse is rotated through the angle β with respect to the

wave vector k̃z (Fig. 6). An equation that describes the

dependence of β on ω̃ and k̃z can be obtained in a closed

form:

tan β =
iσ̃yz

2
√

εκ̃/ω̃ − iσ̃yy

. (24)

At low frequencies (ω̃ ≪ �̃⊥), there is only a quasi-TE

mode. Therefore, angle β is close to 90◦ and the ellipse is

almost completely degenerated into a line segment. At high

FIG. 6. (Color online) Polarization structure of hybrid surface

waves on a hyperbolic metasurface.

frequencies, where only the quasi-TM mode propagates, angle

β is near 0◦ and the ellipse represents a circle.

Strong hybridization of quasi-TE and quasi-TM plasmons

results in their unusual polarization. For example, for a quasi-

TM plasmon at ϕ = 11.5◦ and ω̃ = 2.95, angle β = 87.3◦ and

the difference between the semiaxis of the ellipse is less than

4%. Therefore, the wave has circular polarization. Absorption

for this wave is quite low due to the vicinity of the frequency

cutoff ω̃c. In this case, the figure of merit (FOM) can be

estimated using Eq. (23) or numerically,

FOM =
Re(k̃z)

Im(k̃z)
≈ 1 × 105 for γ̃ = 0.05. (25)

IV. CONCLUSIONS

We have presented a comprehensive analysis of surface

waves propagating along hyperbolic metasurfaces. We have

analyzed the dispersion, losses, and polarization properties of

such waves in the most general form, not specifying a specific

design of the metasurface and describing its properties using

the effective conductivity approach. Within this approach, the

problem does not acquire a specific scale and, therefore, the

results can be applied to different frequencies ranging from

microwaves to an ultraviolet band.

We have shown that the spectrum of waves supported by

hyperbolic metasurfaces consists of two branches of hybrid

TE-TM polarized modes that can be classified as quasi-TE

and quasi-TM plasmons. The dispersion properties of these

waves are strongly anisotropic, and they have some similar

features with magnetoplasmons and two-dimensional TE and

TM plasmons.

Analytical solutions of the problem allow a detailed

study of the surface wave properties. So, simple asymptotic

formulas for the losses have been obtained near the frequency

cutoff of the quasi-TM plasmon mode and in the high and

low frequency regions. An analysis of the equal-frequency

contours shows that their form and topology drastically depend

on the frequency. The contours can have elliptic, hyper-

bolic, 8-shaped, rhombic, or arc form. Multiplicity of equal-

frequency contours allows one to forecast in the hyperbolic

metasurface such phenomena as negative refraction [36], self-

collimation [33,37,38], channeling of surface waves [39,40],

and large spontaneous emission enhancement of the quantum

emitters due to the large density of states [41–43].

We have shown that hyperbolic metasurfaces support simul-

taneous propagation of both quasi-TE and quasi-TM plasmon

surface modes at the same frequency, and we have derived the

specific conditions for this to occur. Neither in isotropic, nor

in chiral metasurfaces, is such a phenomenon known [13,27].

The polarization structure of the surface waves can vary

substantially, so the polarization can change from linear to

circular with different orientations of the polarization plane.

The unique electromagnetic properties of hyperbolic meta-

surfaces make them quite promising for applications in many

areas, such as resonance sensing and detection, superlensing

and near-field imaging, enhanced Raman spectroscopy, optical

antennas, on-chip optical networks, etc. Taking into account

their fabrication simplicity, rich functionality, and planar
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geometry, it is possible to assert that hyperbolic metasurfaces

can be a basis of many optical and optoelectronic devices.
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