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A hybrid wing body transport aircraft model was tested in NASA Langley’s 14 by 22Foot 

Subsonic Tunnel to evaluate proposed “low noise” technology. The experiment was set up to 

evaluate the community noise impact of the hybrid wing body design, as well as study the 

noise components of propulsion-airframe noise and shielding. A high fidelity 5.8-percent 

scale model, including landing gear, cruise and drooped wing leading edges, trailing edge 

elevons, vertical tail options, and engine noise simulators, was built to test both aerodynamic 

and acoustic configurations. The aerodynamic test data were used to establish appropriate 

flight conditions for the acoustic test. 

To accomplish the acoustic portion of this test, two major upgrades were required of 

NASA Langley’s 14 by 22 Foot Subsonic Tunnel; first, a fuel delivery system to provide 

realistic gas temperatures to the jet engine simulators; and second, a traversing microphone 

array and side towers to measure full spectral and directivity noise characteristics. 

The results of this test provide benchmark hybrid wing body aircraft and noise shielding 

data to assist in achieving NASA’s 2020 noise emission goals. 

I. Introduction 

To achieve the next generation of aircraft noise reductions, the aircraft noise research community must search 

beyond traditional airframe and engine noise sources. When the propulsion system and airframe are considered as a 

unit, additional acoustic sources can be created or significantly altered. A complete high fidelity wind-tunnel model 

of the HWB system was built to develop, test and understand new aircraft propulsion aeroacoustic (PAA) 

technologies such as flows through and around the engines and airframe, shielding effects, and diffraction around 

aircraft edges. 

The Hybrid Wing Body (HWB) aircraft configuration with the installation of the engines on the upper surface of 

the airframe and highly integrated fuselage and wings should yield quieter aircraft characteristics. To obtain accurate 

acoustic data on this unconventional HWB aircraft, it was important to have wind tunnel test conditions as close to 

real flight conditions as possible to capture all propulsion aircraft acoustic influences. The current test involves not 
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just shielding of the engine noise but also understanding and rearranging the noise sources to take advantage of 

shielding. Two types of engine noise simulators were used to test the effectiveness of engine shielding benefits: a 

broadband noise simulator to represent turbomachinery noise and a compact hot jet engine simulator to represent the 

jet noise. 

This test is uniquely designed to demonstrate the achievability of the Agency goals by answering the question, 

“How much noise reduction can be achieved with a HWB concept”?  The HWB assessment, anticipated in 

September 2013, will evaluate the progress toward achieving NASA’s noise emission goals of 42 Effective 

Perceived Noise Levels in decibels (EPNL dB) cumulative noise below the Federal Aviation Administration (FAA) 

Federal Aviation Regulations (FAR) 36 Stage 4 certification level1.  

The planning of these tests began in 2008 under NASA’s Environmentally Responsible Aviation (ERA) project 

and was first presented to the aeroacoustic community in 20112. The HWB aircraft was designed as a cargo plane 

with a 6000 nautical mile mission and a maximum payload of 103,000 pounds3. It was based on a new integrated 

planform with conventional state of the art dual engines. The research efforts were broken into two stages: an 

aerodynamic wind tunnel test in July 20114 and an aeroacoustic test from September 2012 through January 2013. 

Both tests were conducted in Langley Research Center’s 14 by 22 Foot Subsonic Tunnel. The 14x22 Tunnel was 

advantageous for the HWB acoustic test because of its size: To obtain full scale high frequency acoustics of interest, 

the corresponding wind tunnel model wing span was almost thirteen (13) feet. In addition, with some modifications 

to the tunnel, it was possible to invert the HWB model and sweep an acoustic array over a large range of directivity 

angles. 

The Hybrid Wing Body (HWB) aircraft concept for this study was developed under a NASA Research 

Announcement (NRA) with Boeing. The Boeing team included the Massachusetts Institute of Technology (MIT), 

the University of California at Irvine (UCI), and the United Technologies Research Center to provide noise 

prediction assessments and test design support for the development of the HWB vehicle. As part of the noise 

assessment effort new noise shielding methods for installed turbomachinery and jet noise were developed with the 

intent of eventual integration into the Aircraft Noise Prediction Program (ANOPP5). ANOPP26 is being expanded to 

incorporate prediction capabilities for advanced unconventional vehicle designs such as the HWB.  

The shielding results of the HWB test will be used to 1) determine the spectral levels and noise directivity of the 

HWB airframe and engine simulator components, 2) characterize noise shielding benefits of the HWB fuselage, and 

3) provide a benchmark acoustic database of isolated and shielded components for development/validation of noise 

prediction capabilities including those of ANOPP and ANOPP2. 

The purpose of this paper is two-fold. First, to document the Hybrid Wing Body (HWB) activities required in the 

investigation; and second, to inform the acoustic community of the new acoustic testing capabilities in NASA 

Langley Research Center’s 14 by 22 Foot Subsonic Tunnel. 

II. Background and History 

The aircraft noise research community has significantly reduced aircraft noise over the past five decades through 

the development of advanced bypass ratio fans, advanced jet nozzles, and airframe noise reduction technologies. 

Figure 1 maps the historical reduction in commercial aircraft noise up to the present. Large jumps in noise reduction 

have been attributed to advancing engine technologies. As advances in engine noise technology with acceptable 

performance become more challenging, noise reduction becomes increasingly more difficult and it becomes 

necessary to look at other technologies to achieve further noise reduction. 

The National Aeronautics Research and Development Plan7 designates “N+1”, “N+2” and “N+3” successive 

notional aircraft generations to anchor the environmental goals. A HWB design with engines mounted on the upper 

surface for shielding benefits has been proposed as a means of meeting the N+2 noise goals. It is anticipated that 

only half of the noise reduction assessed against the N+2 goals will be attributable to engine technologies; thus to 

achieve further noise reduction, the community must investigate new aircraft configurations including shielding. In 

order to correlate NASA’s cumulative noise reduction goals to an average noise reduction, as seen in Figure 1, the 

Environmentally Responsible Aviation (ERA) N+2 project goal of 42 EPNL dB cumulative reduction at  the FAA’s 

three certification points with an average reduction of 14 EPNL dB relative to stage 4. 
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Figure 1. Normalized Average Historical Progress in Aircraft Noise Reduction 8, 9, 10. The noise values are 

normalized to 100,000 lb thrust. Significant noise reduction has been accompanied by engine technologies in the 

past. Note: Average EPLN values reflect 1/3 of the cumulative noise levels which include take-off, sideline/cutback and 

approach certification values.  

Prior to undertaking this test, a pretest system noise assessment11 of the hybrid wing body with state-of-the-art 

engines was performed using NASA’s best available aircraft models, engine models, and systems level code 

(ANOPP) to determine the probability of success in achieving NASA’s N+2 acoustic goal. Where ANOPP 

prediction codes were inadequate, an experimental database containing suppression factors for key noise sources and 

interaction effects was directly input into the ANOPP noise assessment. In addition to the shielding database two 

codes, the Fast Scattering Code 12  (FSC) and the Diffraction Integral Method Code 13 (DIM), were used to predict 

noise scattering effects for the broadband fan noise, tonal fan noise and jet noise. Since the completion of the 

assessment, the diffraction code has been enhanced to account for more general reflections and edge effects, which 

for the HWB range from the sharp trailing edge to a more rounded blunt leading edge.  

A post-test HWB assessment will demonstrate the viability of the HWB aircraft to achieve NASA’s goals. But 

just as importantly, the results of this test will be used to update the shielding databases compiled over the last 

decade from the works of Clark and Gerhold14, Hill15,16, Reimann and Tinetti17, and most recently by Czech, 

Thomas, and Elkoby18, and to validate the scattering and diffraction codes. 

III. HWB Model 

The HWB model is 5.8% of full scale which easily allows acoustic measurements over the full scale equivalent 

range of about 230 Hz to 4.1 kHz (4 to 70 kHz model scale). The HWB low-speed wind tunnel model represents 

Boeing’s Quiet R1 configuration aircraft, and is designated as N2A-EXTE. The HWB aircraft consists of wings 

which are highly integrated with the central fuselage and of accurately scaled details for airframe noise studies. The 

model was built by MicroCraft, Inc. under contract to Boeing and is illustrated in the expanded view presented in 

Figure 2. It measures 8.58 feet long with a span of 12.35 feet. 
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The model is modular with components and control surfaces that may be deflected to match specific flight 

conditions. The components include drooped and cruise leading edges, trailing edge elevons, vertical tails, landing 

gear, and flow through nacelles (which are replaced during the acoustic testing with turbomachinery and jet noise 

simulators).

Figure 2. General HWB Model Arrangement.

 

The HWB wing is swept and has twist at the wingtip. The model reference area is 33.50 ft2, with a reference 

chord of 60.55 inches and a model moment reference center at 54 percent of the fuselage length aft of the model 

nose. The model has removable, hinged leading edge shapes, one for cruise and one for the low-speed “drooped” 

leading edge. The drooped leading edge is deflected 20  down at approximately 30 % span and transitions to a 

deflection of 30  between 40 and 45 % span and then remains at 30  deflection for the remainder of the outboard 

portion of the span.  

The HWB model also supports various vertical tail configurations. These configurations include two vertical tail 

geometries (long span/short chords and short span/long chords) and two cant angles (10  and 30 ) for each tail 

geometry. The vertical tails can be located at either a forward or rear longitudinal position, and also support three 

rudder deflection angles. Referring to Figure 2, there are eleven independently deflectable elevons along the trailing 

edge of the vehicle. A center elevon (E1) positioned between the two vertical tails, and 5 elevons extending across 

the trailing edge of each wing. Each elevon can be set at -40°, -10°, 0°, +10°, or +40° deflection angles. The 

thickness of the model trailing edges is approximately 0.009” which accurately represents a 5.8% scaling of the full 

size geometry.  

Removable high-fidelity landing gears include left and right main gears and a nose gear. All gear components, 

hydraulic lines, actuators, side braces, brake system and tire treads are scaled. Gear wells and partially covered 

wheel wells and gear doors are also scaled. In addition to the landing gears, flow-through nacelles with pylons can 

be mounted on the fuselage upper surface at three different longitudinal stations.  

The baseline model configuration for the HWB test consisted of the drooped leading edge, the nacelles (engine 

noise simulators) in the mid location, the longer span vertical tails mounted with a 10° cant angle in the aft location, 

all elevons and rudders undeflected, the landing gear off, and the landing gear wells closed.  

(Landing gear, gear doors and cavities also 

included) 
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stream temperatures and pressures. Once the mass flows were set to the correct range, fine control adjustments were 

based on nozzle temperature ratios (NTRs) and nozzle pressure ratios (NPRs). 

Numerous CJES risk reduction studies were completed in preparation for the HWB acoustic test. A brief 

overview of each study and an explanation of their relevance to the larger HWB test are given below. 

Operational and preliminary acoustic testing took place in NASA’s Low Speed Aeroacoustic Wind Tunnel 

(LSAWT) which was modified to accommodate the CJES fuel valve pallet. Establishing consistent operation of 

each of the CJES units was a primary objective. This objective was achieved in the LSAWT after several 

modifications to the combustor and core flow conditioners24 (see Figure 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One challenge in modeling scaled jet noise is that internal rig noise tends to contaminate the jet noise. Flow 

conditioner studies by Doty and Haskin25 investigated the acoustic properties of numerous flow conditioner 

configurations for optimal rig noise reduction in anticipation of this issue. Flow conditioners and screens were 

evaluated to help minimize unwanted tones and broadband noise. 

In addition to understanding each CJES unit individually, relevant twin jet acoustic and flow field effects were 

investigated by Doty26 in the LSAWT using the linear microphone array and the Jet Noise Directional Array 

(JEDA27). Recommendations for the CJES test matrix based on twin jet results were used as input for the HWB test 

matrix. 

V. Facility Description 

The 14 by 22 Foot Subsonic Tunnel28 is a closed-circuit, single return, atmospheric wind tunnel with a 12,000 

HP drive capable of producing a maximum speed of 348 feet per second (Mach 0 to 0.3), and Reynolds Numbers 

between 0 and 2.2 x 106 per foot. The cross section of the test section inlet measures 14.5’ H x 21.75’ W x 50’ L. 

The facility can be operated in either an open (floor only) or a closed test-section configuration. The test section was 

in the open configuration for the acoustic test and in the closed configuration for the aerodynamic test. A sketch 

showing the details of the complete tunnel circuit is presented in Figure 11. 

Two major tunnel improvements were made to provide NASA researchers the ability to test the HWB model at 

realistic flight conditions. A traversing mechanism was added to allow the positioning of a phased microphone array 

to remain outside of the tunnel shear layer in the open tunnel configuration, and a fuel delivery system was added to 

supply propane to the CJES combustor core streams to properly represent high gas temperature engine noise 

characteristics. 

In addition to these major facility improvements, several other tasks were completed to enhance the acoustic 

characteristics in the 14x22 Tunnel: A portion of the control room wall was moved 7 feet away from the test section. 

This was done so that microphone towers and side rails could be placed outside of the tunnel shear layer flow for the 

entire length of the test section. Moving this wall also benefited the tunnel aerodynamics by removing a potential 

source of flow skew in the open section flow; Cable conduits connecting the control room to a patch panel on the far 

side of the tunnel were installed to manage cabling and ease test setup time. Acoustic treatment was modified to 

account for tunnel modifications. Foam wedges were installed on the new blast wall as well as the new ceiling 

Figure 9. Ultra Compact Combustor for CJES unit. 

The core air flow enters from the right. Propane 

combustion is contained in the mid annular section. 

The fuel and bypass air ports are located circumfer- 

entially around the annular combustion section. 

Figure 10. Assembled CJES unit shows proper CJES 

operation with the flame controlled in the upstream 

annular flow cavity of enclosed combustor.
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The fuel supply system consists of propane fuel and nitrogen systems, where nitrogen  is used for pressurization 

and purging. During the purge operations the system has the capability to force remaining propane in the run tank 

back to the storage tank. 

The liquid propane is stored in a 2500 gallon storage tank and is pumped into a 500 gallon run tank. An electric 

vaporizer converts the liquid propane to gaseous propane. A manifold located downstream of the vaporizer 

distributes the gaseous propane to the CJES valve pallets when needed. The storage and run tanks are shown in 

Figure 14. 

 
Figure 14. 2500 gallon liquid propane storage tank and 500 gallon run tank.  An electric pump transfers liquid propane 

from the storage tank to the run tank. 

 

There is one valve pallet for each Compact Jet Engine Simulator (CJES) unit. The intrinsically safe control 

cabinet can be seen on the left of the valve pallet in Figure 15. The main purpose of the valve pallets is to control the 

nitrogen, propane and air operations29. All valve pallet operations are commanded and monitored using the PLC. 

The valve pallets supply one fuel line and two air lines, one for the fan flow and one for the core flow, to each CJES 

unit. the portable valve pallet with sealed tank open at the outside test stand are also seen in Figure 15.  

Storage Tank 

Run Tank 
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Figure 15. One of the two portable valve pallets with sealed tank open at the outside test stand. The intrinsically safe 

control cabinet is shown on the left. 

VI. Miscellaneous Facility Studies  

Several preliminary risk reduction wind tunnel studies, some large – some small, were completed prior to 

building the test matrix. These studies include risk reduction efforts to mitigate unforeseen events, as well as setting 

operational limits, testing parameters and acoustic measurement conditions. Studies included tunnel vibrations and 

natural frequency studies for array and structural response requirements, open and closed aerodynamic tunnel wall 

influence studies including model roll effects, tunnel temperature studies to determine acceptable weather conditions 

for testing, and tunnel background noise studies, both before and after testing, to define the facility acoustics with 

respect to other acoustic tunnels and to assess instrumentation range requirements. 

VII. Model Support Systems 

Due to the large model size and corresponding high aerodynamic loads, two completely new model support 

systems were designed and built for the aerodynamic and acoustic tests. The aerodynamic test was performed with 

the model upright and flow through nacelles attached to the model with pylons. During the acoustic test, in order to 

capture the full acoustic shielding effects of the HWB model for ground observers, the model was mounted upside 

down so that overhead phased microphone array and individual microphones could traverse over the model. The two 

fully assembled configurations are shown in Figures 16 and 17 below. 

Both aerodynamic and acoustic model support systems are mounted on existing model carts and are controlled 

by the facility control system. The aerodynamic model support system entered the bottom of the HWB model and 

was designed to locate the model on the tunnel centerline during angle-of-attack and sideslip sweeps. 

During the acoustic test, the inverted HWB model was mounted on a stationary strut. The strut was separated to 

allow the pitching and rolling mechanisms to be independent. The top of the strut connected the model to the pitch 

mechanism and also supported an attachment arm to mount the engine simulators. The lower portion connected the 

pitch and roll joints. 

The pitch mechanism provided variation in angle of attack (AOA) and was controlled by the facility’s control 

and data acquisition systems. With the model at 10o angle of attack, the pitch mechanism was at the center of its 

travel and the post was vertical. The required range in this configuration is  +25o to -5o as shown in Figure 18.  
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Figure 16. The 5.8% HWB model mounted on the 

aerodynamic support system installed on model cart #1 in 

the 14x22 Tunnel. Photograph by George Holmich.   

Figure 17. Acoustic model support with fairing and 

acoustic treatment applied.  Photograph by George 

Holmich. 

A roll knuckle located below the pitch mechanism allowed the model to be manually rolled and locked at -30o, 

0o, and +30o. The roll knuckle is located below the pitch mechanism so that the model angle of attack can be set 

while the model is rolled without inducing a yaw angle. 

The engines were mounted on the acoustic model support hardware in order to enable relative axial motion 

between the HWB model and the engine. The entire assembly (HWB and engine simulators) pitches and rolls 

together as one mechanism. The axial motion is aligned with the body centerline and contains a constant 5 degree 

offset angle between the simulators and the HWB centerline, which is the angle between the upper surface of the 

airplane and the body centerline.  

Five (5) discrete longitudinal (or axial) locations are preset for the fan and jet simulators. The 5 locations, 

referenced to the nozzle exit plane with respect to the trailing edge, are x/D = [ 3.0, 2.5 (baseline), 1.5, 0.0, and -0.5 ] 

where “D” refers to fan nozzle exit diameter and “x” refers to axial distance from fan nozzle exit to trailing edge 

with positive values denoting a fan exit location upstream of the trailing edge over the body. 

The model can be attached to the acoustic model support either with or without a balance. When no balance is 

used, the support is bolted directly to the model strong back. This direct connection was added to minimize model-

engine interactions due to air loads or vibrations. Both connection blocks, one with and one without a balance in 

place, were fabricated for the HWB model and are interchangeable on the model support. The current acoustic test 

did not use a balance. It was mounted directly to the strong back using the appropriate mounting block.  

 
Figure 18. Acoustic Model Support 
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