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Abstract: 

When a host organism is infected by a symbiont, the resulting symbiotum has a phenotype 
distinct from uninfected hosts. Genotypic interactions between the partners may increase 
phenotypic variation of the host at the population level. Neotyphodium is an asexual, vertically 
transmitted endophytic symbiont of grasses often existing in hybrid form. Hybridization 
in Neotyphodium rapidly increases the symbiotum’s genomic content and is likely to increase the 
phenotypic variation of the host. This phenotypic variation is predicted to enhance host 
performance, especially in stressful environments. We tested this hypothesis by comparing the 
growth, survival, and resource allocation of hybrid and nonhybrid infected host plants exposed to 
controlled variation in soil moisture and nutrients. Infection by a hybrid endophyte did not fit our 
predictions of comparatively higher root and total biomass production under low moisture/low 
nutrient treatments. Regardless of whether the host was infected by a hybrid or nonhybrid 
endophyte, both produced significantly higher root/total biomass when both nutrient and 
moisture were high compared to limited nutrient/moisture treatments. However, infection by 
hybrid Neotyphodium did result in significantly higher total biomass and host survival compared 
to nonhybrid infected hosts, regardless of treatment. Endophyte hybridization alters host 
strategies in response to stress by increasing survival in depauperate habitats and thus, potentially 
increasing the relative long-term host fitness. 
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Article: 

Introduction 

Genetic diversity at the species level is ecologically critical at population, community, and 
ecosystem levels [1–3]. Ecological heterogeneity can act as a selective force on plant populations 
requiring plants to possess a high degree of genetic variance or phenotypic plasticity in order to 
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be successful [2, 4]. Plants can respond to environmental differences such as seasonal changes in 
climate by shunting resources to favor successful strategies [5–7]. Successful phenotypic 
response(s) to resource availability, herbivory, pathogens, and competition result from 
specifically effective genotype X environment interactions [8–11]. 

Endophytic infection increases the genetic variation in the host population not only because of 
the genotypic interactions between host and symbiont but also as a result of the amount of 
genetic information present in populations containing mosaics of infected and uninfected (E-) 
hosts [11–13]. Additionally, symbionts such as Neotyphodium foliar endophytes and some 
mycorrhizal species hybridize [14–16], potentially increasing the genetic complexity of host 
populations as reviewed in Cheplick and Faeth 2009 [17]. As a consequence, fungal endophytes 
are an important but rarely explored component of genotypic variation. 

Hybridization as a proximal cause of speciation as well as adaptation to and invasion of new or 
marginal habitats is well explored [e.g., 18–24]. Hybridization events can lead to adaptive 
responses allowing for expansion into new niches and habitats [22, 25]. For example, fungal 
hybridization has resulted in host shifts and increased the number of host species susceptible to 
hybrid versus nonhybrid fungal pathogens [26–28]. The ecological consequences of foliar 
endophyte hybridization have not been well explored [but see 29] despite the abundance of 
hybrid endophytes in nature [30–33]. Initial research suggests individual populations of Arizona 
fescue (Festuca arizonica) are dominated by Neotyphodium infected hosts, hybrid or nonhybrid 
[29, 34]. 

Two hypotheses about the quality of symbiosis between a hybrid endophyte and its grass host 
prevail. First, endophyte hybridization is hypothesized to increase host fitness in stressful 
environments by shifting the symbiotum closer to the mutualistic end of the symbiosis. Second, 
fungal hybridization is hypothesized to increase local adaptation to marginal and/or novel 
habitats thus shifting the interaction toward mutualism but only under a limited set of conditions 
and as a direct result of plant genotype X fungal genotype X environmental interactions 
[17, 29, 33]. Potential causes for these predicted outcomes are: (a) increased allelic diversity 
contributing to increased production of alkaloid compounds (herbivore deterrents); (b) 
hybridization acting as a proxy for sexual recombination thereby reducing mutation 
accumulation in an otherwise asexually producing fungus; and/or (c) increasing the probability 
of favorable genotypic interactions between host and fungal symbiont [29, 33]. 

Endophytic fungal infection of plant hosts significantly alters host phenotype under varying 
ecological pressures, e.g., resistance to drought and nutrient stress [17, 35–39] and increased 
nutrient uptake in poor soils [40–44]. We previously reported high hybrid endophyte infection 
frequencies among host plants correlated with low soil nutrients and moisture, whereas high 
infection frequencies by nonhybridNeotyphodium were strongly correlated with higher soil 
nutrients and positively (albeit slightly) associated with higher soil moisture [29, 34, 45]. 



Despite the fact that hybrid (H) infected hosts appear to possess a lower resource requirement 
than nonhybrid (NH) infected hosts, NH dominate most populations with average frequencies 
(24 populations compared) typically greater than 55% for NH and less than 15% for H [34]. A 
possible explanation for the distribution of H versus NH infected hosts is increased genomic 
content associated with H endophytes that may enhance host performance via changes in host 
physiological or phenological response to drought and/or low soil nutrients. Such changes could 
be the result from increased gene expression, epistatic interactions, or some other unidentified 
consequence of elevated genomic content in H Neotyphodium. 

Sullivan and Faeth [29] found H infected hosts produced higher volume/mass ratios in their local 
habitats but not in NH dominated locations, while NH hosts transplanted to H dominated 
locations did not produce significantly different plant architecture. They suggest that this may 
represent a response to light capture since H infected hosts are typically located under dense 
canopy, whereas, NH infected hosts are not. The relationship between drought and endophyte 
infection has been well explored, producing conflicting results [12, 38, 40, 46, 47]. Therefore, 
we asked if the increased genomic content present in H endophytes improves host performance 
in response to water and/or nutrient stress. While such ecological factors have been examined in 
populations of native grass systems containing multiple fungal endophyte genotypes [48], they 
have not been explored using controlled, greenhouse experiments. 

Methods 

Study System 

Arizona fescue (F. arizonica) is a dominant, perennial native grass in the southwestern USA and 
is frequently infected by either H or NH Neotyphodium endophytes 
[29, 34, 45]. Neotyphodium is asexual, obligate, and vertically transmitted; hosts remain 
facultative. Interestingly, most infected plants in Arizona fescue populations are NH [49, 50], 
contrary to the pattern of relatively more H Neotyphodium across other native grass species 
[21, 30, 33]. Multiple gene copies indicate Neotyphodium hybridization. If isozyme, DNA 
amplification methods of specific genes (followed by Southern blot) and sequencing produce 
multiple gene copies; the endophyte is considered an H, while single gene copies indicate a 
NH Neotyphodiumspecies [21, 51–53]. 

Plant Growth Parameters 

To test the prediction that H infected Arizona fescue would perform comparatively better than 
NH infected hosts under limited moisture and ammonium, Arizona fescue seeds from twenty 
distinct maternal plants (genotypes) of known infection [34] status (ten H and ten NH) were 
planted in 12 oz cups containing a soilless mix (2:1:1 of forest mulch, vermiculite, and perlite) 
and watered as needed through germination. Initially, 15–20 seeds of each maternal plant were 
germinated in the cups [infection status determined by 49]. Following germination, seedlings 
were culled from each pot leaving a single plant in the pot’s center. Ten distinct maternal plants 



X three replicates X two infection types X four treatments resulted in 240 plants initially. A 
single plant from each maternal plant was randomly selected for height measurements and total 
biomass. A second randomly selected plant was used to measure recovery in response to drought. 
The third replicate from each genotype was discarded. Seedlings were watered as needed for a 
month until experimental treatments began. Plants were then exposed to four treatments: (a) high 
moisture/high ammonium; (b) high moisture/low ammonium; (c) low moisture/high ammonium; 
and (d) low moisture/low ammonium. The low ammonium (nutrient) treatment consisted of a 
“no ammonium addition,” the high ammonium (nutrient) treatment was based on a modification 
of Aber et al. [54] resulting in 0.45 g of ammonium nitrate added to each 12 oz cup during the 
first and fourth week of treatment (total of 0.9 g per cup). Low water treatments received 50 ml 
of water every 2 days and high water treatments received 100 ml of water every other day; 
greenhouse temperatures were kept between 18°C and 22°C. 

Plant heights were measured by randomly selecting five tillers and averaging their heights to the 
nearest centimeter (cm) to obtain a single height measure per plant per month. After treatments 
were begun, measures were then taken every 21 days once seedlings had established, resulting in 
four measures over a total of 63 days (day 0, day 21, day 42, and day 62). Dry above- and 
belowground biomass was collected at the end of treatments by separating shoots from roots, 
carefully washing the roots of the majority of soil, and then drying for 3 days at 50°C. Plants 
were harvested at 80 days. 

To determine if recovery from drought differed based on infection status, a replicate plant was 
cut 3 cm above the soil line. These plants were subsequently watered as needed for an additional 
6 weeks after the 63rd day. The aboveground biomass was then harvested and treated as 
previously described. 

Plant tissue and soil were analyzed for total carbon and nitrogen, but no significant differences 
were found between plants of different infection status in response to treatments or any 
combination of factors; results not shown. 

Statistical Analysis 

Root dry biomass was log-transformed to fit assumptions of normality and homogenous 
variances; a power analysis for several means [55] was run to ensure sufficient statistical power 
to detect treatment effects. Outliers were removed based on a 98% probability (p ≤ 0.02) of being 
an outlier [56]. All analyses were completed with STATISTICA (StatSoft Inc. 2004). 

To test the hypothesis that infection by H versus NH endophytes alters plant biomass and height 
measures in response to differences in resource availability (treatments), we used analysis of 
variance (ANOVA) with the treatments and infection status as fixed effects in a fully factorial 
design with a Type IV sum of squares. We chose Type IV sum of squares because not all 
genotypes survived resulting in an unbalanced design. The root weight fraction (RWF) was 
determined by calculating the ratio of the dry biomass of roots to total dry plant biomass [5]. 



Recovery biomass could not be normalized so the data was analyzed using the nonparametric 
Kruskal–Wallis ANOVA. This necessitated individual analysis of treatment and infection status 
because the test is limited to comparisons between two independent groups. We used Tukey’s 
HSD for post hoc comparisons between means. 

Host survival in response to treatments and infection status was compared using Cox 
proportional hazard regression. We used this model because it allows inclusion of multiple 
factors and because the null hypothesis assumes no difference in hazard probability based on 
either time or infection status [57]. To compare survival based solely on infection status, we used 
the Gehan–Wilcoxon test designed for two group comparisons of censored data [58]. 

Results 

Plant Growth Parameters 

Total dry weight biomass was significantly higher for H compared to NH infected hosts 
compared across all treatments (Table 1 and Fig. 1). There was no significant interaction 
between infection status and the two treatments with regard to total biomass. High moisture/high 
nutrient treatments produced more biomass overall, while low moisture/low nutrient treatments 
produced less total biomass regardless of infection status 
(ANOVA; F (1,66) = 8.969, p = 0.004). Shoot and root biomass considered individually produced 
similar results with overall root and shoot biomass responding significantly to moisture and 
nutrient treatments and H plants producing more shoot biomass than NH plants (Table 1). 
However, for RWF, there was a significant interaction between treatment type 
(moisture/nutrient) and host infection status (Table 1 and Fig. 2). Under high nutrients, both H 
and NH infected hosts did not respond significantly to moisture treatments (Fig. 2). However, 
under the low nutrient treatment H and NH plants produced different responses to moisture 
treatments (ANOVA; F (1,65) = 3.764, p = 0.057). These differences are not significant (Tukey’s 
HSD; p ≥ 0.05), but NH infected host produced a lower RWF under high versus low moisture 
(Tukey’s HSD; p = 0.206) while H infected hosts produced a higher RWF under high versus low 
moisture (Tukey’s HSD; p = 0.573).  

Table 1. Results for dry weight biomass measures. Mixed effects ANOVA results for dry root 
weight, shoot, total, and root to shoot biomass measures 

Effect Df F p 

Root weight fraction (root: total biomass) 

Infect 1 1.25 0.269 

Moist 1 0.67 0.417 

Nutrient 1 3.03 0.088 



Infect × Moista 1a 4.52a 0.038a 

Infect × Nutrienta 1a 4.18a 0.045a 

Moist × Nutrient 1 0.18 0.673 

Infect × Moist × Nutrienta 1a 4.53a 0.037a 

Error df 61     

Total biomassa 

Infecta 1a 6.012a 0.017a 

Moista 1a 36.086a <0.0001a 

Nutrienta 1a 8.567a 0.005a 

Infect × Moist 1 0.0142 0.906 

Infect × Nutrient 1 0.348 0.557 

Moist × Nutrient 1 0.204 0.653 

Infect × Moist × Nutrient 1 2.041 0.158 

Error df 61     

Shoot biomassa 

Infecta 1a 8.189a 0.006a 

Moista 1a 43.234a <0.001a 

Nutrienta 1a 28.409a <0.001a 

Infect × Moist 1 1.572 0.215 

Infect × Nutrient 1 2.486 0.120 

Moist × Nutrient 1 2.327 0.132 

Infect × Moist × Nutrient 1 0.053 0.819 

Error df 61     

Root: shoot biomassa 

Infect 1 1.072 0.305 



Moist 1 0.511 0.478 

Nutrienta 1a 3.653a 0.061a 

Infect × Moista 1a 5.507a 0.028a 

Infect × Nutrienta 1a 3.885a 0.053a 

Moist × Nutrient 1 0.116 0.735 

Infect × Moist × Nutrienta 1a 5.092a 0.028a 

Error df 61     

Treatments were low and high moisture (Moist) and low and high nutrient; fully factorial with 
infection (Infect) status. Significant and nearly significant effects are indicated in bold 
aSignificant and nearly significant effects 

 

Figure 1 Average total biomass production (dry) of H and NH infected Arizona fescue in 
response to four moisture/nutrient treatments; high (HI) moisture/high nutrient, low (LO) 
moisture/high nutrient, high moisture/low nutrient, and low moisture/low nutrient. Bars indicate 
95% confidence intervals. Significant differences (ANOVA, Tukey’s HSD test, p < 0.05) include 



the following pairs: (a) within H infected hosts under the high nutrient, in response to moisture 
treatments; (b) within H infected hosts under the low nutrient treatments, in response to moisture 
treatments; and (c) within NH infected hosts under high nutrient in response to moisture 
treatments 

 

Figure 2 Average root weight fraction determined by the ratio of the root to total dry biomass 
weights in response to four moisture/nutrient treatments (see Fig. 1). Bars indicate 95% 
confidence intervals 

Plant Recovery 

The amount of aboveground dry biomass produced in recovery was not significantly different in 
response to either host infection status or nutrient treatments (Kruskal–Wallis 
test; H = 0.005, p = 0.945 and H = 0.245, p = 0.620, respectively). Exposure to previous water 
treatments did result in significant differences in plant recovery (Kruskal–Wallis 
test; H = 5.900, p = 0.015). As might be expected, previous exposure to high moisture treatments 
produced significantly more biomass (recovery) compared to plants previously exposed to the 
low moisture treatments (Kruskal–Wallis test; H = 5.90, p = 0.015; Fig. 3). 



 

Figure 3 Average shoot biomass produced after plants were cut back to 3 cm heights (above soil 
surface) in response to previous moisture treatments, high (HI) and low (LO). Large 
boxes indicate standard errors andspreads are the standard deviation. Kruskal–Wallis test 
indicates a significant difference between previous moisture treatments 
(H 1,68 SS = 5.90, p = 0.015) 

Survival Analysis 

Survival was not significantly different between H and NH infected hosts within treatments 
(X 2 = 3.132, df = 4, p = 0.372). When considering infection status alone, H infected plants 
survived significantly better than NH (Gehan–Wilcoxon’s test = 2.142, df = 56, p = 0.032). At the 
time of harvest, H had 77.9% survival compared to NH with 67.3% (Fig. 4). 

 



Figure 4 Cumulative survival of hybrid (H) and nonhybrid (NH) infected Arizona fescue over 
the course of 63 days averaged across all four treatments (see Fig. 1) 

Discussion 

Infection by Neotyphodium hybrid did not fit our predictions of increased host performance 
under the low moisture/low nutrient treatments. However, H Neotyphodium infection did result 
in significantly higher total biomass weights and host survival regardless of treatment. In 
addition, infection status altered RWF in response to moisture treatments when the soil nutrient 
was also limited. This suggests that infection by H versus NH endophytes alters host resource 
allocation to root versus shoot biomass in response to available soil moisture. Finally, host 
recovery was not significantly different as a result of endophyte infection status and instead, was 
only indicative of previous moisture treatments. Cumulatively, these data suggest that H infected 
hosts produce a unique response to resource stress in terms of allocation to above- versus 
belowground biomass and additionally increase host plant survival regardless of ecological 
conditions. 

The greenhouse experiments reported here were designed to identify potential causes for the 
distribution patterns found in situ and test theoretical predictions about host response to 
H Neotyphodium. Our original predictions were that H infected hosts would outperform (higher 
biomass and better recovery) NH infected hosts under the most limited resource conditions. 
Instead, H plants tended to produce higher total biomass than NH plants and had significantly 
better survival when compared across all treatments (Table 1, Figs. 1, and 4). This, in 
combination with differences in above- versus belowground allocation strategy, may provide H 
infected hosts with greater relative, lifetime reproductive output. 

Increased aboveground biomass production by H in the low moisture/low nutrient treatments is 
consistent with previous research indicating H dominated populations may be light limited [29]. 
Sullivan and Faeth [29] reported different plant architecture when comparing H and NH Arizona 
fescue. They suggested that these differences may result from the predominance of H plants 
under comparatively dense canopy. Under such conditions, plants are predicted to preferentially 
allocate carbon resources to aboveground growth as a means of increasing light interception [5]. 
The resulting increase in photosynthetic activity increases host survival and lifetime fitness 
[49, 59]. Our results support this hypothesis. Thus, NH infected hosts do not invade H dominated 
habitats because they are unable to successfully compete for limited light levels [29]. In contrast, 
H infected hosts are not pervasive despite their ability to inhabit marginal and presumably lower 
resource environments, perhaps because NH are better soil resource competitors than H infected 
hosts [60]. 

Significantly higher root production by NH infected hosts under low moisture/low nutrient 
treatments may be indicative of an adaptive response to higher light levels and competition [5]. 
High solar irradiation reduces photosynthetic efficiency and can be especially costly to plants in 



arid environments where high light levels also mean lower ambient humidity and higher leaf 
temperatures [7]. Previously, we reported H dominated habitats had significantly lower 
understory abundances than NH dominated locations [34]. Increased root production by NH 
infected hosts could reduce light damage to leaf tissue and be advantageous when soil resources 
are low and plant competition is high, resulting in local adaptations [34, 61]. 

There is also the possibility that fungal pathogens limit the distribution of H infected hosts. We 
found H infected hosts produced significantly more morphotypes from leaves than either 
uninfected or NH infected hosts (C.E. Hamilton, unpublished data). Since NH are correlated with 
comparatively higher soil moisture and understory abundance [29, 34, 45], microhabitats 
favorable to other fungi may exist in locations dominated by NH Arizona fescue. Additional 
indirect support comes from work by Faeth [11] who reported increased herbivore abundances 
on NH infected hosts (compared to E-). He hypothesized that herbivores might be responding to 
the increased water content of NH infected hosts. Increased host tissue moisture content would 
be attractive to both herbivores and pathogenic fungi. 

To determine if our results support the above hypotheses and to differentiate between a 
mutualistic versus antagonistic interaction between H Neotyphodium requires quantification of 
H, NH, and E-host fitness over time spans sufficient to encapsulate the host’s life span. What we 
have shown is that endophyte hybridization can profoundly alter host phenotypes at the 
population level. This is the first study to document changes in host allocation to above- versus 
belowground tissue production as a result of infection by H versus NH endophytes. 

The genetic diversity of native grass hosts in these systems has not been tested but is assumed to 
be diverse due to obligate outcrossing. Testing this assumption and identifying the direct 
phenotypic consequences of unique host genotype X, fungal genotype interactions is warranted. 
Previous genotypic interactions between hosts and endophytes induce significant symbiotum 
phenotypic responses such as variation in alkaloid production and drought response, as reviewed 
in Cheplick and Faeth [17]. Including identification of host and fungal genetic diversity in future 
research will provide insights as to the quality of selection pressure experienced in response to 
unique ecological pressures at the population level. Determining the amount (if any) of host 
population isolation and the resulting degree of inbreeding will also aid in determining 
metapopulation dynamics influencing the symbiotic outcome [2, 62]. 

Fungal endophytes are known to alter the host phenotype in a myriad of ways including but not 
limited to changes in herbivory, competitive ability, growth rate, and survival [9, 11, 17, 63, 64]. 
Previous research documents differences in host resource allocation as a result of endophyte 
infection [11, 64]. Our results corroborate these experiments and support the hypothesis that 
symbiotic interactions produce uniquely adapted host-fungal complexes possibly via extended 
phenotypes [11, 17, 65]. 
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