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ABSTRACT A novel algorithm for optimization in this paper, called hybrid grasshopper optimization 
algorithm (GOA) with genetic algorithm (GA): hybrid-GOA-GA, is proposed for solving the system of 
non-linear equations (SNLEs). First, the SNLEs are converted into an optimization problem. Then, the 
optimization problem is solved by hybrid-GOA-GA. In the hybrid-GOA-GA, a population of randomized 
solutions is initialized. These solutions, by GOA, are looking for an optimal solution for SNLE in the 
domain of optimization problem. During this process, the evolution of these solutions is carried out by GA. 
Hybrid-GOA-GA integrates the merits of both GOA and GA; where GOA's exploitability and GOA's 
exploration potential are combined. Furthermore, hybrid-GOA-GA has good capability for escaping from 
local optima with faster convergence. The hybrid-GOA-GA has been tested by eight benchmarks problems 
which include different applications. Additionally, the effect of changing the initial intervals of the 
variables on the efficiency of the proposed algorithm is discussed. Also, the computational cost of the 
proposed algorithm is studied and compared with other methods. The results show that the hybrid-GOA-
GA algorithm is superior to other algorithms, and return the best solution of SNLEs. Finally, in terms of 
accuracy, the effect of changing initial intervals and computational cost, the proposed approach is 
competitive and better in most benchmark problems compared to other methods. So, we can say that 
hybrid-GOA-GA is effective to solve a SNLEs. 

INDEX TERMS Grasshopper optimization algorithm, Genetic algorithm, System of non-linear equations, 
Hybrid algorithm, Optimization 

I. INTRODUCTION 
The system of non-linear equations (SNLEs) is known as the 
basis for many engineering and scientific models, and their 
efficient solution is very important to achieve progress in 
these fields. SNLEs appears directly in some applications, 
but they may also appear indirectly from the transformation 
of practical models into SNLEs [1,2]. Theoretically, finding 
an effective and robust solution for the SNLEs can be a very 
challenging problem. 

The single nonlinear equation solution is an easy process 
but, solving a set of nonlinear equations is very difficult. 
SNLEs traditionally solved by bisection method, false-
position method, Muller's method, Levenberg–Marquardt 
algorithm, the steepest descent methods, Broyden method, 
Halley's method, branch and prune approach, Newton 

method, damped Newton methods, and Secant method [3-6]. 
In general, secant and Newton are the recommended methods 
to solve the system of nonlinear equations. On the other 
hand, some methods convert the SNLEs into a single 
optimization problem [7,8], then used the augmented 
Lagrangian method to solve it [9]. These methods are very 
time-consuming, might be diverged, not efficient to solve a 
set of nonlinear equations, need a tedious task to calculate the 
partial derivatives to form the Jacobian matrix and sensitivity 
to initial guess [10]. 

Due to these limitations, the researchers turned to the 
population based approaches (PBAs) to solve SNLEs. PBAs 
can be described as the collective behavior that emerged 
from social insects working under very few rules. The 
famous algorithms of PBAs come from the world of animals, 
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such as fish school, birds flock and bugs swarm. In addition, 
PBAs are considered as computational models simulating 
natural swarm systems. Until now, many PBAs have been 
proposed in the literature and have been successfully applied 
to solve optimization problems. Examples of PBAs models 
are: genetic algorithm (GA) [11,12], ant colony optimization 
(ACO) [13], particle swarm optimization (PSO) [14-16], 
artificial bee colony (ABC) [17], bacterial foraging (BF) 
[18], cat swarm optimization (CSO) [19], glowworm swarm 
optimization (GSO) [20], firefly algorithm (FA) [21], 
monkey algorithm (MA) [22], krill herd algorithm (KHA) 
[23], sine cosine algorithm (SCA) [24] and grasshopper 
optimization algorithm (GOA) [25], cuckoo search algorithm 
(CSA) [26], salp swarm algorithm (SSA) [27], gradient-
based optimizer (GBO) [28], slime mould algorithm (SMA) 
[29], and harris hawks optimization (HHO) [30], etc. 

There are many PBAs [31-38] that were used to solve 
SNLEs such as GA, PSO, ABC, CSA and FA. In [31] Chang 
proposed an improved real-coded GA for parameters 
estimation of the nonlinear system. In [32] the authors 
proposed a new perspective for the solution of complex 
SNLEs by introducing them as a multiobjective optimization 
problem and resolving it via GA. While, in [33] SNLEs are 
solved by an efficient GA with harmonious and symmetric 
individuals. In [34], Mo and Liu proposed conjugate 
direction to PSO for the solving of SNLEs, which would 
incorporate conjugate direction method (CDM) into PSO in 
order to improve PSO and enable high-dimensional 
optimization problems to be optimized effectively. CDM also 
helps PSO overcome local minima by shifting the problem of 
high-dimensional function optimization to low-dimensional 
function optimization. In [35] Jaberipour et al. proposed a 
new version of PSO for solving SNLEs. They modified the 
way of updating each particle to overcome the problems of 
the basic PSO method such as trapping in local minima and 
slowing convergence. In addition, In [36], Jia and He 
presented a hybrid algorithm for solving SNLEs through 
combining ABC algorithm and PSO together. The principle 
of the hybrid algorithm is using the advantages of both 
algorithms to ameliorate the defect of slumping into 
premature or into local optimum. Furthermore, In [37], Zhou 
and Li proposed an improvement CSA, to solve the SNLEs. 
They used a new encoding method which guarantees that the 
obtained solution is a feasible solution without needing to 
modify the evolution of cuckoo. Finally, in [38], Ariyaratne 
et al. presented an amended FA which treats the SNLEs as an 
optimization problem, where initial assumptions, 
differentiation, and even function continuity were not 
required and it is capable of providing several root 
approximations at the same time. 

In order to improve the productivity of the solutions, 
benefit from their advantages, and correct any weaknesses, 
the majority of researchers suggest integration between PBAs 
such as: hybrid PSO [39,40], hybrid ACO [41], hybrid GA 
[42,43], hybrid ABC [44], hybrid BF [45], hybrid CSO [46], 

hybrid GSO [47], hybrid FA [48], hybrid MA [49], hybrid 
KHA [50], hybrid SCA [51], and etc. 

Grasshopper optimization algorithm (GOA) is one of the 
novel PBAs which is based on the swarm nature of 
grasshoppers. It mainly depends on the forces of social 
interaction to find the global optimum values of the 
optimization problem. Due to its easy deployment and high 
accuracy, robustness and effectiveness, it is widely used in a 
variety of optimization problems. But, GOA has some 
limitations such as: 1) unbalancing between the processes of 
exploitation and exploration; 2) convergence speed is 
unstable; and 3) may be fall into the local optimum. So,  
there are several hybrid algorithms between GOA and other 
PBAs have been proposed in the literature [52-59]. In [52], 
the authors proposed a dynamic population quantum binary 
GOA based on shared knowledge and a rough set theory for 
the selection of features; where GOA was improved by the 
quantum method. The search scope was improved by the 
quantification of grasshopper individuals and a good balance 
between exploitation and exploration was achieved. In 
addition, premature and catastrophe methods have also been 
used to avoid premature convergence and failure to get an 
optimal position. While, In [53], Singh and Prakashthe 
optimized multiple optical network units (ONUs) placement 
in Fiber-Wireless (FiWi) access network using two recent 
optimization algorithms, HHO and GOA. Dwivedi et al. 
proposed in [54] a new technique for the selection of features 
by combining the feature Selection Ensemble and the chaotic 
adaptive GOA. The chaos principle in GOA has been used to 
create a uniformly distributed population to boost the 
efficiency of the initial populations, control the capacity to 
look for new space referred to as exploration, and use 
existing space referred to as exploitation in the optimization 
process. In addition, Raeesi et al. (55) proposed an inverse 
magneto-rheological (MR) damping model Takagi-Sugeno-
Kang for the control of non-linear vibrations using enhanced 
GOA, which improved by incorporating opposition-based 
learning and merit function methods to enhance its 
exploration and exploitation capabilities. In [56], the author 
proposed a new model to reliably forecast the monthly 
volatilization of the price of iron ore. This model integrates 
chaotic behavior into GOA in order to form a new GOA 
called a chaotic GOA that is used to learn the neural network 
(NN) of multi-layer perceptions as a trainer. Purushothaman 
et al. [57] also suggested a hybrid algorithm, between GWO 
and GOA, for text selection and clustering; where it has a 
reasonable convergence rate and a minimum computational 
time. In [58] Ewees et al. suggest an improved GOA 
approach based on opposition-based learning (OBL) for the 
resolution of benchmarking optimization functions and 
engineering problems, where OBL is used to reduce time 
complexity by applying it to half of the solutions. Finally, in 
[59], Alphonsa and Sundaram have used a hybrid algorithm 
for the data sanitation and restoration process, known as the 
grasshopper optimization with GA. These hybrid algorithms 
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[52-59] aim to enhance GOA by generating a uniformly 
distributed population, improving the search scope, achieving 
good balance between exploration (the ability to search for 
new space) and exploitation (use existing space), producing a 
mature convergence rate or reducing the computational time. 

On the other hand, GA is one of the PBAs that introduced 
in 1975 by Holland [60], and described in 1989 by Goldberg 
[61] as a proficient global technique for solving complex 
optimization problems based on the technicalities of natural 
selection, evolution, and genetics. GA is well suitable for 
solving optimization problems and has still garners great 
attention by researchers [62-65]. From the literature we can 
see that GA was widely applied to solve SNLEs [66-72]. 
However, GA when dealing with complex and large systems 
has many disadvantages such as: extreme slow and the 
difficulty in ensuring access to the global optimum solution 
as it requires an increase in the number of iterations (i.e. long 
search time). Hence, it is suggested that the implementation 
of GOA and GA in hybrid form results in superior 
characteristics; where GA with its operators (ranking, 
selection, crossover and mutation) has good exploitation 
ability. While, GOA updates the location of each agent on 
the basis of their actual position, the global best position, and 
the locations of all other search agents. This mean that GOA 
has good exploration ability.  From this motivation, this 
study makes the following contributions: 
1. Proposing a novel hybrid-GOA-GA algorithm for solving 

system of non-linear equations (SNLEs).  
2. The proposed algorithm includes the key merits of the 

autonomous GOA and GA and integrates the GA 
exploitation and GOA exploration capabilities. 

3. The novel hybrid algorithm is realized on eight 
benchmarks problems that includes different applications. 

4. The effect of changing the initial intervals of the variables 
on the efficiency of the proposed algorithm is discussed.  

5. The Computational cost of the proposed hybrid algorithm 
is investigated and compared with other techniques. 

6. The outcomes show that the proposed hybrid-GOA-GA is 
superior to other algorithms and that it provides the best 
solution for SNLEs. 

7. With the effective performance characteristics on the 
benchmarks problems, in terms of accuracy, effect of 
changing initial intervals and computational cost, the use 
of the hybrid algorithm is recommended for solving 
system of non-linear equations (SNLEs). 

The paper is organized as follows: Non-linear system of 
equations are described in Section II. In Section III The 
proposed methodology is presented. Section IV shows the 
numerical results. Discussions about the results are 
introduced in section V. Remarks and conclusions are given 
in the concluding Section VI. 

II. NON-LINEAR SYSTEM OF EQUATIONS 
The system of non-linear equations (SNLEs) are defined 
mathematically as: 
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where each function 1,...,if i N   is a nonlinear 
function, which maps the vector  1 2,  ,...,  T

nx x x x  of the 
n-dimensional space Rn to real line. May be some of the 
functions are nonlinear and others linear. The solution for 
SNLEs involves finding solution so that each of the function 
above 1,...,if i N   is equal to zero. 

There are many methods that convert the SNLEs 
 0,  1,...,if i N   to an optimization problem. The first 
technique is used by in Nie [7,73]; where the SNLEs 
 0,  1,...,if i N   is transformed into a constrained 
optimization problem. The original equations is divided into 
two groups S1 and S2; S1 contains the equations that form the 
objective function and S2 contains the equations that used as 
equality constraints. In addition, the two groups are updated 
due to the optimization process in every step. Then, the 
constrained optimization problem can be written as: 
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Secondly, the SNLEs are converted to a multi-objective 
optimization problem [32,74] as follow: 
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This function (Eq. (3)) is aimed to minimize the difference 
in the absolute value of the equations between the left and the 
right sides. This technique has no additional constraints are 
required and has the capability to find the solutions even for 
large-scale SNLEs. But, the functions values 
 0,  1,...,if i N   is not sufficiently close to zero. 

Finally, with the inclusion of the left side of all equations 
and the use of the absolute value function, the SNLEs is 
transformed into a constrained optimization problem as 
follows [71]: 
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The definition of this objective function is quite different 
from that proposed by Grosan and Abraham [32]. The 
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objective function in Eq. (4) has a global minimum if all the 
nonlinear equations equal to zero  0 1,...,if i N   .  

III. THE PROPOSED METHODOLOGY 
This section introduces a brief description of GA and GOA. 
Then, the hybrid version between them is presented in detail. 

A. GENETIC ALGORITHM 
Holland introduced the genetic algorithm (GA) and Goldberg 
defined it in 1975 and 1989, respectively [60,61] as an 
optimization technique. It starts with a group of 
chromosomes (solutions). Genetic operators (selection, 
mutation, and crossovers) were then used to generate a new 
set of chromosomes (solutions). The efficiency of the newly 
produced chromosomes is predicted to be better than the 
initial generation. The procedures will proceed until the 
completion test is completed and the finishing solution is 
registered on the best chromosome (solution) of the last 
generation. The basic steps of GA are defined as follows : 
Step I: An initial population of chromosomes are generated 
randomly and it is must be suitable for the problem. 
Step II: The fitness value is evaluated of each chromosome 
in the population. 
Step III: A new population is generated by applying the 
following steps repeatedly: 
1) Two parents are selected from the population 

depending on selection mechanism. 
2) Crossover the parents to create new offspring. 
3) Mutate new offspring at each locus. 

Step IV: If the termination criterion is met, the run is 
stopped; otherwise, the algorithm returns to step II. The 
flowchart that represents GA is shown in Figure 1. 

 

New generation 

Initial Population 

Start 

Selection mechanism  Crossover operator 

Mutation operator 
Stop test  

Yes  

No  

Stop  

Evaluate the fitness value 

 
FIGURE 1.  The flowchart of GA. 

B.  GRASSHOPPER OPTIMIZATION ALGORITHM 
Grasshopper optimization algorithm (GOA)  is one of the 
newly algorithms for optimization that proposed by Mirjalili 
[25]. GOA is an evolutionary computation technique 
simulates the social behavior of grasshoppers in nature to 
solve optimization problems. As in Figure 2, The algorithm 

initially has a population of random (grasshoppers) solutions; 
where the position of the i-th grasshopper in a d-dimensional 
space is denoted as iX  and represented as 

 1 2,  ,...,i i i idX x x x .  
The grasshoppers positions are updated according to the 

following equations: 
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FIGURE 2.  The flowchart of GOA. 

 
where iX  is the position of the i-th grasshopper, dub  and 
dlb  are the upper bound and the lower bound in the d-th 

dimension respectively, d
ix  and d

jx  are the i-th and the j-th 
grasshopper in the d-th dimension respectively, s is a 
function to define the strength of social forces, f is the 
intensity of attraction, l is the attractive length scale, ijd  is 
the distance between the i-th and the j-th grasshopper, dT  is 
the value of the d-th dimension in the target (the best 
grasshopper among all the grasshopper in the population 
found so far) and c is a decreasing coefficient proportional to 
the number of iterations and is calculated as follows: 

max min
max ,c c

c c t
T


                                                          (6) 

where maxc  is the maximum value, minc  is the minimum 
value, t  indicates the current iteration, and T  is the 
maximum number of iterations. 

C.  COMBINED ALGORITHM: HYBRID-GOA-GA 
Hybrid-GOA-GA blends the merits of both the GOA and GA 
algorithms. It blends GA exploitation capacity and GOA 
exploration capacity; where GA operators (crossover and 
mutation) prevent the proposed algorithm from falling into 
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the local optima while GOA's procedures accelerate the 
search process and convergence to reach a global solution. In 
the proposed algorithm, a population of solutions are 
randomly initialized. These solutions, by GOA, are searching 
in the domain of the optimization problem to obtain optimal 
solution. The evolution of these solutions is carried out by 
GA during this process. The flow chart of the proposed 
approach is shown in Figure 3. The proposed algorithm 
details are explained as follows:  
 

 
FIGURE 3.  The flow chart of the proposed algorithm. 

 
Step 1: Initialization: 
- A population of agents (in d-dimensions) are Initialized 

with random positions in the search space and set GOA 
and GA parameters. 

- For each agent, the desired fitness function is evaluated 
in d variables. 

- Determine the target position T  as the position of best 
initial agent. 

Step 2: Traveling in the search space by GOA 
- Update the position of each agent as in (5). 
- For each agent, the desired fitness function is evaluated 

in d variables. 
- The target position T  is updated as the best agent 

position found so far. 
Step 3: Evolution by GA 
- Selection [75]: In the proposed approach, tournament 

selection (TS) will be used; where a number Tour of 
agents are chosen randomly from the population and the 
best agent from this group is selected as parent. This 
process is repeated as often as agents must be chosen. 

- Crossover [75]: Two agents,  1 1,A a b  and 
 2 2,B a b , are selected as parents by tournament 

selection.  Suppose a is the crossover point for a 
particular A and B, and the a-values in the offsprings are 
determined by: 
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where   is a random number between 0 and 1. The 
remaining parameter (b in this case) is inserted directly 
from each parent, so the new offsprings are: 
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- Mutation [77]: We mutate each agent in a string 
 ,i i ix a b  with mutation probability Pm by addition of 

small random values according to the equations below: 
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where r is a random number  0,1r   and   is a 
positive constant chosen arbitrarily. 

- Elitist strategy: The list of best agents directly entered 
into new set of agents are elitism.  

- Evaluation: For each agent, the desired fitness function is 
evaluated in d variables. 

- Updating: Updating the target position T  as the best 
agent position found so far. 

Step 4: Termination criteria 
If the maximum number of generations is reached or the 

agents converge, the proposed algorithm will be terminated. 
Finally, the target position T  is set as the optimal solution. 
Pseudo code of the proposed algorithm is shown in Figure 4. 

 

 
FIGURE 4.  The pseudo code of the proposed algorithm. 
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IV. NUMERICAL RESULTS 
In order to evaluate the proposed approach, eight systems 
of nonlinear equations are solved. These eight test cases are 
general problems and known as benchmarks which were 
studied by other researchers. The proposed algorithm was 
programmed in Matlab (R2016b) on a PC with 3.00 GHz 
P4 CPU, 1 GB of RAM for i5 processor, and Windows 7 
for OS. 

A. BENCHMARK 1 
This benchmark problem consists of the following two of 
nonlinear algebraic equations [33]: 
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B. BENCHMARK 2 
This benchmark problem consists of the following two of 
nonlinear algebraic equations [33]: 

 
 
 
 

   
 
     

     

2 2
1 1 2 3

3 2

1 1 2 3

2 1 2 3

3 1 2 3

1 1 2 3

2 1 2 3

3 1 2 3 1

1 2 3

1 2 3

2 3 2

 , , ,
 , , ,     where
 , , ,

, , 0,

 , , 0,
 , , sin 2 cos 1 0,
         5,5 ,  1,3 ,  5,

3 sin 2

2

5

3

.

f x x x

F x f x x x

f x x x

f x x x

f x x x

f x x

x x x x

x x x

x x xx x

x x x




 







   

 

   



   

  



      (11) 

C. BENCHMARK 3 
This benchmark problem consists of the following two of 
nonlinear equations [33]; where f is non-differentiable: 
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    




 

 




          (12) 

These benchmark problems are solved by EGA: efficient 
GA, SHEGA: GA with harmonious and symmetric 
individuals [33] and the proposed algorithm. In [33], the 
authors introduced  N   pairs of harmonious and 
symmetric individuals; where N is the size of population 
( 40N  for benchmark 1 and 3, 50N   for benchmark 2) 
and  0,0.5  is a parameter, while G is the fixed maximal 
generation. Benchmark problem 1 is solved 30 times by the 
proposed algorithm, while benchmark problems 2 and 3 are 
solved 20 times. The comparison results between the 
proposed algorithm, EGA and SHEGA with different values 
of λ for the three benchmarks are given in Tables I-III. 
Figures 5-7 show the convergence curves of the best F 

obtained so far by the proposed algorithm, in different 10 
runs that randomly selected from among the total number of 
runs. Tables and Figures show that the proposed algorithm 
converges well and performs better than EGA and SHEGA; 
where our results are completely less than that that obtained 
by both algorithms. 
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FIGURE 5.  The convergence curves of the best F obtained so far by the 
proposed algorithm in 10 random runs out of 30 different runs for 
benchmark 1. 
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FIGURE 6.  The convergence curves of the best F obtained so far by the 
proposed algorithm in 10 random runs out of 20 different runs for 
benchmark 2. 
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FIGURE 7.  The convergence curves of the best F obtained so far by the 
proposed algorithm in 10 random runs out of 20 different runs for 
benchmark 3.
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TABLE I 
THE COMPARISON RESULTS OF THE BEST FUNCTION VALUE F FOR BENCHMARK 1 

The proposed algorithm: The best solutions obtained in 30 runs 
EGA and SHEGA [33]: The average of the 

best function (in 30 runs) value F with 
300G   

1 2,f f  1 2,x x  F  F 
1.9929e-08,4.1568e-08 1.00000002752194,1.99999997950108 3.0748e-08 EGA 0.129795093953972 
1.1812e-08, 9.3856e-08 2.00000003522273,0.999999945232846 5.2834e-08 SHEGA (λ = 0.05) 0.053101422547384 
2.1311e-08,7.6810e-08 1.00000003793659,1.99999998150026 4.9061e-08 SHEGA (λ = 0.10) 0.041427669194903 
1.1961e-07, 2.6574e-08 2.00000003101142,0.999999988183792 7.3091e-08 SHEGA (λ = 0.15) 0.034877317449825 
5.9117e-09, 4.8096e-09 0.999999996014262,2.00000000357378 5.3607e-09 SHEGA (λ = 0.20) 0.035701604675096 
1.0585e-08, 2.3503e-08 1.99999998863761, 1.00000001540913 1.7044e-08 SHEGA (λ = 0.25) 0.038051665705034 
2.1473e-07,2.8525e-08 0.999999968129972,2.00000006206758 1.2163e-07 SHEGA (λ = 0.30) 0.039332883168632 
3.8687e-09,1.6598e-08 0.999999991638524,2.00000000424314 1.0233e-08 SHEGA (λ = 0.35) 0.035780879206619 
4.6006e-09,4.8105e-08 2.00000001756851,0.999999972252682 2.6353e-08 SHEGA (λ = 0.40) 0.034509424138501 
9.0164e-08,2.8446e-08 1.99999997942747,1.00000000423288 5.9305e-08 SHEGA (λ = 0.45) 0.037425326021257 

G’’ means maximal generation 
 

TABLE II 
THE COMPARISON RESULTS OF THE BEST FUNCTION VALUE F FOR BENCHMARK 2 

The proposed algorithm: The best solutions obtained in 20 runs

 

EGA and SHEGA [33]: The average of the 
best function (in 20 runs) value F with 

300G   

1 2 3, ,f f f  1 2 3, ,x x x  F  F 
8.1293e-08,1.7983e-07,2.3139e-07 -0.0327591321066124,1.26462879567440,1.40064387735038 1.6417e-07 EGA 0.0081958187235953 
2.2096e-07,5.7394e-08,1.2367e-08 -0.0327589695693218,1.26462870306312,1.40064399020112 9.6908e-08 SHEGA (λ = 0.05) 0.0021219384775699 
2.0579e-07,9.5554e-08, 2.7042e-07 -0.0327592529919166,1.26462874497731,1.40064372941569 1.9059e-07 SHEGA (λ = 0.10) 0.0019286950245614 
1.5265e-07, 8.4477e-08,1.3548e-07 -0.0327591379828040,1.26462879184554,1.40064379164548 1.2420e-07 SHEGA (λ = 0.15) 0.0018367719544782 
1.5161e-07,2.3268e-08, 1.5710e-08 -0.0327589961888146,1.26462868481683,1.40064395551739 6.3529e-08 SHEGA (λ = 0.20) 0.0022816080103967 
7.0813e-08, 2.4517e-07, 1.1791e-07 -0.0327589424808460,1.26462881499237,1.40064389505317 1.4463e-07 SHEGA (λ = 0.25) 0.0023297925904943 
3.8327e-08,3.4307e-08, 2.4373e-07 -0.0327591699133487,1.26462872233391,1.40064384846897 1.0545e-07 SHEGA (λ = 0.30) 0.0023318357433983 
3.4337e-08,1.3396e-07, 2.2496e-07 -0.0327588585095305,1.26462874342104,1.40064396540968 1.3109e-07 SHEGA (λ = 0.35) 0.0021392510790106 
3.3092e-09, 1.0484e-07, 2.5082e-07 -0.0327591894675818,1.26462870219270,1.40064382875580 1.1965e-07 SHEGA (λ = 0.40) 0.0022381534380744 
4.0356e-08, 1.4050e-07, 1.9419e-07 -0.0327588959827691,1.26462876218205,1.40064392425333 1.2502e-07 SHEGA (λ = 0.45) 0.0025798012930550 

 
TABLE III 

THE COMPARISON RESULTS OF THE BEST FUNCTION VALUE F FOR BENCHMARK 3

The present study: The best solution obtained in 20 runs

 

EGA and SHEGA [33]: The average of the 
best function (in 20 runs) value F with 

500G   

1 2,f f  1 2,x x  F  F 
1.0356e-08,2.7202e-08 1.15936084839974,2.36182434809133 1.8779e-08 EGA 0.1668487275323187 
8.5255e-08,6.5579e-08 1.15936081271468,2.36182433628177 7.5417e-08 SHEGA (λ = 0.05) 0.0752619855962109 
5.3446e-09,4.9676e-08 -1.25195282517727,2.81760286238918 2.7510e-08 SHEGA (λ = 0.10) 0.0500864062405815 
2.5529e-08, 2.3128e-08 1.15936083869689,2.36182433968804 2.4329e-08 SHEGA (λ = 0.15) 0.0358268275921585 
9.9194e-08,4.0646e-08 -1.25195278608611,2.81760285401479 6.9920e-08 SHEGA (λ = 0.20) 0.0257859494269335 
3.8038e-08, 4.2611e-08 1.15936083910945,2.36182435319996 4.0325e-08 SHEGA (λ = 0.25) 0.0239622084932336 
8.0422e-08,1.6479e-08 1.15936088198772,2.36182433892625 4.8451e-08 SHEGA (λ = 0.30) 0.0247106452514721 
4.6369e-08, 2.1640e-08 -1.25195280637207,2.81760285423760 3.4004e-08 SHEGA (λ = 0.35) 0.0171980128114993 
1.1263e-08, 2.7873e-08 -1.25195281722414,2.81760284750974 1.9568e-08 SHEGA (λ = 0.40) 0.0179659124369376 
5.4002e-08, 3.9527e-08 1.15936087377521,2.36182434539194 4.6764e-08 SHEGA (λ = 0.45) 0.0158999282064303 

 

 
D. BENCHMARK 4: EXPERIMENT TEST 
In this benchmark, the following system of nonlinear 
equations has been considered [71]: 

     
       

 
 

1 1 2 1 2

2 1 2 2 1 2 1

1

2

 , cos 2 cos 2 0.4 0,
 , 2 sin 2 sin 2 1.2 0.

                                 10,10 ,

                                 10,10 .

f x x x x

f x x x x x x

x

x

  


     
 

 



     

(13) 
Table IV summarizes the results of this nonlinear system 

by five different methods [71]: Newton’s method, Secant’s 

method, Multi objective optimization’s method, GA and the 
proposed algorithm. Figure 8 show the convergence curve of 
the best F that obtained by the proposed algorithm in three 
different runs. While the methods (Newton’s method, 
Secant’s method and multi objective optimization’s method) 
found only one solution for the problem and GA found two 
solutions for the problem, three solutions were obtained by 
the proposed algorithm. Moreover, in the proposed 
algorithm, the obtained values for the functions are 
sufficiently close to zero in comparison with the other 
methods. In addition, the quick convergence of the algorithm 
is noticeable as shown in Figure 8. 
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TABLE IV 
THE COMPARISON RESULTS OF THE BEST FUNCTION VALUE F FOR BENCHMARK 4, EXPERIMENT TEST 

Method  1 2,x x   1 2,f f  
Newton’s method [71] (0.15,0.49) (0.00168,0.01497) 
Secant’s method [71] (0.15,0.49) (0.00168,0.01497) 
Multi objective optimization’s method [71] (0.15722,49458) (0.001264,0.000969) 
GA [71] (0.156522,0.49338) (4.8606e-06, 3.7164e-06) 

(0.68021,2.26002) (6.9752e-06, 1.0970e-04) 
Present study (0.680235945188233,2.25999176017399) (2.2840e-06,1.2967e-06) 

(0.680236281982930,2.25999123973785) (1.9211e-06,3.5933e-07) 
(0.680235245449499,2.25999126133352) (6.3875e-08,2.1815e-06) 

 
TABLE V 

THE COMPARISON RESULTS OF THE BEST FUNCTION VALUE F FOR BENCHMARK 5, ARITHMETIC APPLICATION OBTAINED BY THREE STUDIES 
Present Study GA [71] Grosan and Abraham [32] 

1x  0.257833393701793 
1f  1.2656e-12 

1x  2.5783339e-01 1f  -7.3844e-10 1x  0.2077500302 1f  0.0464943 0.257833393702522  1.9790e-12 

2x  0.381097154602943 
2f  7.9096e-14 

2x  3.8109715e-01 2f  -1.1684e-12 2x  0.0299198492 2f  0.3489889 0.381097154599575 3.2443e-12 

3x  0.278745017344737 
3f  1.7517e-12 

3x  2.7874502e-01 3f  1.7931e-09 3x  -0.0339491324 3f  0.3058418 0.278745017345920  5.3920e-13 

4x  0.200668964229936 
4f  4.5315e-12 

4x  2.0066896e-01 4f  -8.8837e-10 4x  -0.2027950317 4f  0.4012915 0.200668964227426 2.0764e-12 

5x  0.445251424842223 
5f  1.1361e-12 

5x  4.4525142e-01 5f  -4.5866e-10 5x  0.2131771707 5f  0.2284027 0.445251424844883  3.8675e-12 

6x  0.149183919971614 
6f  2.2230e-12 

6x  1.4918391e-01 6f  -5.270e-09 6x  0.0568458067 6f  0.0886970 0.149183919968370 9.9666e-13 

7x  0.432009698985234 
7f  1.4795e-12 

7x  4.3200969e-01 7f  -6.3852e-09 7x  0.2267650517 7f  0.2024745 0.432009698984241  5.4015e-13 

8x  0.073402777776967 
8f  6.5123e-13 

8x  7.3402777e-02 8f  -9.7362e-10 8x  -0.0977041236 8f  0.1687259 0.073402777775704 5.5117e-13 

9x  0.345966826872031 
9f  3.5476e-12 

9x  3.4596683e-01 9f  -6.0389e-11 9x  -0.0339921200 9f  0.3787652 0.345966826876406  8.6115e-13 

10x  0.427326275993876 
10f  5.5468e-13 

10x  4.2732628e-01 10f  3.0841e-10 10x  0.2532921324 10f  0.1741025 0.427326275994709 1.4100e-12 
 
 

E. BENCHMARK 5: ARITHMETIC APPLICATION 
This benchmark problem consists of complex set of 
nonlinear equations as follows [32]: 
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        (14) 

Table V shows the solution of this system using the 
proposed algorithm, GA [71] and Grosan and Abraham [32]. 
Figure 9 show the convergence curve of the best F that 
obtained by the proposed algorithm in two different runs. In 
addition, this problem is solved in [66]; where the best 
obtained fitness function value F equal to 0.040217. We can 

see that the values that obtained for the functions by the 
present study is closer to zero in comparison with the values 
of the other three methods.  In addition, the algorithm have 
the same convergence in the two different runs which mean 
that it is stable for the different conditions of optimizations as 
shown in Figure 9. 
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FIGURE 8.  The convergence curves of the best F obtained so far by the 
proposed algorithm in 3 different runs for benchmark 4, Experiment 
test. 
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FIGURE 9.  The convergence curves of the best F obtained so far by the 
proposed algorithm in 2 different runs for benchmark 5, Arithmetic 
application. 
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FIGURE 10.  The convergence curves of the best F obtained so far by 
the proposed algorithm in 3 different runs for benchmark 6, Fluid 
mechanics application. 

F. BENCHMARK 6: FLUID MECHANICS APPLICATION 
The following nonlinear equation, was developed by 
Colebrook–White equation [78], is used to determine the 
friction coefficient (f) in a straight pipeline as: 

  10
2.51

3.7
1 lo

Re
2 g ;F

f
Df

f
 

   
 

                     (15) 

where   is the pipe surface roughness, D is the pipe 
diameter and Re is a dimensionless Reynolds number. The 
problem was solved for  0.001D  , Re 10 ^ n  for 

5,6,7n  . Table VI shows the values of friction coefficient 
and the function that obtained by our algorithm. While 
Figure 10 show the convergence curve of the best F that 
obtained by the proposed algorithm in three ceases 

5,6,7.n   We can see that, our results have good agreement 
with the data in the Moody chart [78] and our algorithm can 
easily get on friction coefficient for a wide range of Re and 

D . In addition, our results are better than that obtained by 
GA [71]. 

 

TABLE VI 
THE COMPARISON RESULTS OF THE BEST FUNCTION VALUE F FOR 
BENCHMARK 6, FLUID MECHANICS OBTAINED BY TWO STUDIES 

 GA [71] The present study 
n f   F f  f   F f  
5  0.02218  -8.6832e-04 0.022174535944694 2.8511e-11 
6  0.01994  6.2002e04 0.019943465840535 1.0405e-11 
7  0.01967  -5.3472e04 0.019667052432323 4.1059e-11 

G. BENCHMARK 7: COMBUSTION APPLICATION 
This benchmark problem consists of a complex set of 
nonlinear equations which governs a combustion problem 
as follows [32]: 
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         (16) 

Some obtained solutions by the proposed algorithm, GA 
[71] and Grosan and Abraham [32] as well as the function 
values are listed in Table VII. . In addition, this problem is 
solved in [66]; where the best obtained fitness function value 
F equal to 0.024030224. Moreover, the convergence curves 
of the best F that obtained by the proposed algorithm in two 
different runs are depicted in Figure 11. We can be seen that 
the results of our algorithm are very close to zero and has 
more convergence than other algorithms. 

H.  BENCHMARK 8: NEUROPHYSIOLOGY 
APPLICATION 
This benchmark problem consists of a complex set of 
nonlinear equations that concerns problem of a 
neurophysiology  as follows [32]: 
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TABLE VII 
THE COMPARISON RESULTS OF THE BEST FUNCTION VALUE F FOR BENCHMARK 7, COMBUSTION OBTAINED BY THREE STUDIES 

Present Study GA [71] Grosan and Abraham [32] 

1x  5.21779475364814e-06 
1f  9.3077e-12 

1x  7.7944699e-005 1f  -9.0000000e-005 1x  2.8724570e-004 1f  -9.0156756e-005 1.55416640952108e-09 8.5611e-12  

2x  1.40880551532908e-07 
2f  1.0051e-07 

2x  2.3453123e-004 2f  -4.7433845e-020 2x  4.6449359e-004 2f  -3.3881318e-021 4.67103882154831e-06 1.2440e-08 

3x  2.28073956343815e-05 
3f  2.0002e-11 

3x  5.6870072e-008 3f  -5.5091023e-018 3x  -3.8722475e-006 3f  -5.9848143e-008 2.98520197109892e-05 1.9449e-14 

4x  9.67928615027979e-06 
4f  1.6723e-12 

4x  -5.1124010e-004 4f  -9.0000000e-005 4x  5.7046411e-005 4f  -9.0000000e-005 1.72396380792863e-10 6.6138e-12 

5x  1.01563226859111e-06 
5f  2.7173e-11 

5x  1.1665683e-001 5f  -7.8705351e-011 5x  1.2033492e+000 5f  -2.0652682e-008 9.83322254293174e-06 5.0547e-13 

6x  5.59198086961396e-10 
6f  3.9638e-14 

6x  3.6717284e-001 6f  -7.3037986e-008 6x  3.2144041e+000 6f  -1.0783996e-007 2.50296479375058e-06 4.3385e-11 

7x  1.60356088720311e-07 
7f  9.3689e-11 

7x  2.6062005e-004 7f  -2.6136644e-007 7x  -2.3523205e-005 7f  -3.2542930e-009 4.99991049490908e-06  2.5812e-20 

8x  7.29311644063544e-06 
8f  1.1791e-10 

8x  2.9943130e-005 8f  4.7478263e-014 8x  3.3872248e-005 8f  1.1173545e-009 1.35540003851492e-07 2.6115e-14 

9x  8.56574022358758e-07 
9f  6.8203e-13 

9x  2.6776713e-001 9f  -1.6938693e-009 9x  1.6152635e+000 9f  -3.3367727e-008 9.47790670982597e-08 1.3886e-15 

10x  4.50071816882287e-06 
10f  9.4156e-20 

10x  -5.0116867e-001 10f  -4.2883872e-012 10x  -4.0222631e+000 10f  -6.1982897e-011 1.14121981385416e-07 3.3671e-20 
 

TABLE VIII 
THE COMPARISON RESULTS OF THE BEST FUNCTION VALUE F FOR BENCHMARK 8, NEUROPHYSIOLOGY OBTAINED BY THREE STUDIES 

Present Study GA [71] Grosan and Abraham [32] 

1x  0.0949210611770202 
1f  6.1760e-11 

1x  3.2484137e-001 1f  1.5105117e-010 1x  7.0148122e-001 1f  1.1532022e-009 
0.0820223613267075  6.9593e-11 

2x  -0.0949210609568043 
2f  7.5751e-12 

2x  3.2484137e-001 2f  1.5114510e-010 2x  7.5925767e-001 2f  2.6058267e-011 -0.138287000903135 3.1647e-11 

3x  0.995484802599612 
3f  1.3914e-12 

3x  9.4576852e-001 3f  -1.2749912e-011 3x  -7.1268794e-001 3f  -6.5553074e-010 
-0.996630489354999  3.3110e-12 

4x  -0.995484802585785 
4f  2.9057e-12 

4x  9.4576852e-001 4f  4.6365863e-012 4x  6.5079013e-001 4f  1.1783451e-009 0.990392197774631  9.6123e-12 

5x  0.490886141709622 
5f  1.0662e-10 

5x  -5.6887875e-001 5f  1.0181522e-011 5x  2.4122542e-009 5f  1.1134504e-009 4.48130330622387e-09 2.5478e-10 

6x  0.490886141728666 
6f  2.0320e-11 

6x  5.6887875e-001 6f  8.4981744e-012 6x  7.8977724e-010 6f  -5.4967453e-010 
4.56992671931472e-09 5.6505e-11 
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FIGURE 11.  The convergence curves of the best F obtained so far by 
the proposed algorithm in 2 different runs for benchmark 7, Combustion 
application. 
 

Table VIII contains some results of this benchmark with 
the functions values that obtained by the proposed algorithm, 
GA [71] and Grosan and Abraham [32]. Furthermore, Figure 
12 show the convergence curve of the best F that obtained by 

the proposed algorithm in two different runs. The nearness of 
the objective functions values to zero in the results of the 
current study are noticeable. In addition, the proposed 
algorithm is stable for the different conditions of 
optimizations in the two runs as shown in Figure 12. 
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FIGURE 12.  The convergence curves of the best F obtained so far by 
the proposed algorithm in 2 different runs for benchmark 8, 
Neurophysiology application. 
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V. DISCUSSIONS 
The research proposed is divided into three parts. In the 
first part, The system of non-linear equations (SNLEs) is 
transformed into an optimization problem. The hybrid-
GOA-GA was used to solve this optimization problem. In 
general, the proposed algorithm quickly converges without 
being influenced by the difficulty or complexity of the 
equation system. The second part was to solve four 
benchmarking problems and compare the results with other 
methods. Compared to other approaches, the precision of 
results is obvious especially with conventional methods 
(Benchmark 4, Experiment test). We can see that the 
suggested methodology is very fast and easy to implement 
and hence we can recommend using it to solve a set of 
nonlinear equations with any number of variables.  

Finally, a complex system of nonlinear equations 
(Benchmark 5, Arithmetic applications) and three examples 
of different applications have been resolved. It is noted that 
the objective functions values that obtained by the proposed 
algorithm approaching to zero and the proposed algorithm is 
very stable and able to solve this kind of problems. In order 
to investigate the ability of the proposed algorithm to solve 
nonlinear systems thoroughly, Effect of changing initial 

intervals and computational cost are discussed in the coming 
subsections. 

A.  EFFECT OF CHANGING INITIAL INTERVALS 
In this subsection, we study the sensitivity of the proposed 
algorithm when the initial intervals are changed. All 
benchmark problems are resolved at the initial interval D, 
10D, 100D, 1000D and 10000D. At each interval, the 
objective function F is calculated for each benchmark 
problem as shown in tables IX-XVI. In addition, Figures 
13-20 show the convergence curve of the objective function 
for all benchmark problems at each interval.  

From these results, it is obvious that for benchmarks 1, 5, 
6 and 8 that the proposed algorithm doesn’t affect by 
changing the initial intervals and give better results than other 
algorithms (Tables IX, XIII, XIV and XVI). For Benchmark 
No. 3, changing the initial interval led to bad results and this 
is probably because of that the objective functions are non-
differentiable. Also, For Benchmark No. 7, changing the 
initial interval led to bad results. Finally, for Benchmarks 2 
and 4, the proposed algorithm yields a satisfactory result 
compared to other methods. 

 
TABLE IX 

RESULTS OF BENCHMARK 1 AT DIFFERENT INITIAL INTERVALS 
Initial Interval F 1 2,f f  1 2,x x  

D
 

 3.5,2.5  4.2378e-08 3.7190e-08,4.7567e-08 1.00000001816148,1.99999999654106 
10D

  35, 25  4.3387e-07 5.3831e-07,3.2942e-07 0.999999697364968,2.00000028924366 

100D
  350, 250  3.3879e-06 3.8015e-06,2.9743e-06 2.00000225860121,0.999997502826225 

1000D
  3500,2500

 
9.3583e-05 1.0195e-04, 8.5214e-05 1.99999442038899,0.999975315038051 

10000D
  35000, 25000

 
2.7607e-04 3.5477e-04,1.9738e-04 2.00018401322862,0.999811543217344 

 
TABLE X 

RESULTS OF BENCHMARK 2 AT DIFFERENT INITIAL INTERVALS 
Initial Interval F 

D
 

     5,5 1,3 5,5      9.4171e-08 
10D

 
     50,50 10,30 50,50      1.1325e-06 

100D
 

     500,500 100,300 500,500      4.8602e-06 

1000D
 

     5000,5000 1000,3000 5000,5000    
 

1.6810e-04 
10000D

 
     50000,50000 10000,30000 50000,50000    

 
0.0014 

1 2 3, ,f f f  1 2 3, ,x x x  
4.0128e-08,1.8040e-09,2.4058e-07 -0.0644172605927118,2.09043964511622,-1.37047251766814 
1.9006e-06,2.1402e-07, 1.2829e-06 -0.0327586609343846,1.26462902019859,1.40064334669972 
4.5121e-07,5.5416e-06, 8.5879e-06 -0.0327529639159027,1.26462995552519,1.40064634530864 
3.3626e-05,1.7982e-04,2.9087e-04 -0.0329513166986744,1.26458110757298,1.40058324946997 
0.00183487,0.0011117094,0.0013537162 -0.0330615295572167,1.26485510090264,1.40118100641021 

 
TABLE XI 

RESULTS OF BENCHMARK 3 AT DIFFERENT INITIAL INTERVALS 
Initial Interval F 1 2,f f  1 2,x x  

D
 

   2,2 1,6   3.0942e-08 3.1947e-08,2.9938e-08 -1.25195281287198,2.81760285681280 
10D

 
   20, 20 10,60   45.5924 6.4903e-10, 91.1847 -2.92638597817765,10.0000000013121 

100D
 

   200,200 100,600   5.0070e+03 1.5488e-07,1.0014e+04 9.90005581164752,100.000000009041 

1000D
 

   2000,2000 1000,6000 
 

5.0004e+05 1.3137e-08,1.0001e+06 -31.5496967821878,1000.00000001065 
10000D

 
   20000,20000 10000,60000 

 
5.0001e+07 1.5498e-06,1.0000e+08 -99.9389041753464,10000.0000000165 
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TABLE XII 
RESULTS OF BENCHMARK 4 AT DIFFERENT INITIAL INTERVALS 

Initial Interval F 1 2,f f  1 2,x x  

D
 

   2,2 1,6   3.3559e-06 5.6302e-06,1.0817e-06 -2.98507598872599,-2.64822091066403 
10D

 
   20, 20 10,60   6.2575e-05 9.5824e-05, 2.9326e-05 28.4307999579039,28.7676328922980 

100D
 

   200,200 100,600   4.0729e-04 1.5614e-04, 6.5845e-04 917.501230937581,917.838210767026 
1000D

 
   2000,2000 1000,6000 

 
0.0019 0.0026,0.0011 -9977.54308762156, -977.20693907882 

10000D
 

   20000,20000 10000,60000 
 

0.0409 0.0610,0.0208 45041.1213024372,45041.4532870304 
 
 
 

TABLE XIII 
RESULTS OF BENCHMARK 5 AT DIFFERENT INITIAL INTERVALS 

Initial Interval F 
D

 
 10,10 x   1.7220e-12 

10D
 

 100,100 x   1.9066e-11 

100D
 

 1000,1000 x   2.2150e-10 
1000D

 
 10000,10000 x 

 
1.7218e-09 

10000D
 

 100000,100000 x 
 

1.8091e-08 
 

TABLE XIV 
RESULTS OF BENCHMARK 6 AT DIFFERENT INITIAL INTERVALS 

Initial 
Interval 5n   Friction coefficient  f   F f  

D
 

 10,10 f   0.022174535944086 6.8212e-11 
10D

 
 100,100 f   0.022174535954141 1.5301e-09 

100D
 

 1000,1000 f   0.022174535873613 1.127e-08 

1000D
 

 10000,10000 f 
 

0.022174537210046 2.0115e-07 
10000D

 
 100000,100000 f 

 
0.022174541344562 8.5831e-07 

 
TABLE XV 

RESULTS OF BENCHMARK 7 AT DIFFERENT INITIAL INTERVALS 
Initial Interval F 

D
 

 10,10 x   5.6726e-09 
10D

 
 100,100 x   6.3915 

100D
 

 1000,1000 x   523.4762 
1000D

 
 10000,10000 x 

 
4.3847e+03 

10000D
 

 100000,100000 x 
 

4.7574e+04 
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FIGURE 13.  Convergence curves of the best F obtained so far by the 
proposed algorithm for Benchmark 1 at different initial intervals. 

TABLE XVI 
RESULTS OF BENCHMARK 8 AT DIFFERENT INITIAL INTERVALS 

Initial Interval F 
D

 
 10,10 x   3.9846e-11 

10D
 

 100,100 x   1.2428e-10 

100D
 

 1000,1000 x   4.0382e-09 
1000D

 
 10000,10000 x 

 
2.3714e-08 

10000D
 

 100000,100000 x 
 

4.4574e-07 
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FIGURE 14.  Convergence curves of the best F obtained so far by the 
proposed algorithm for Benchmark 2 at different initial intervals. 
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FIGURE 15.  Convergence curves of the best F obtained so far by the 
proposed algorithm for Benchmark 3 at different initial intervals. 
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FIGURE 16.  Convergence curves of the best F obtained so far by the 
proposed algorithm for Benchmark 4 at different initial intervals. 
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FIGURE 17.  Convergence curves of the best F obtained so far by the 
proposed algorithm for Benchmark 5 at different initial intervals. 
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FIGURE 18.  Convergence curves of the best F obtained so far by the 
proposed algorithm for Benchmark 6 at different initial intervals. 
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FIGURE 19.  Convergence curves of the best F obtained so far by the 
proposed algorithm for Benchmark 7 at different initial intervals. 
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FIGURE 20.  Convergence curves of the best F obtained so far by the 
proposed algorithm for Benchmark 8 at different initial intervals. 

B.  COMPUTATIONAL COST 
The computational cost of the proposed algorithm is 
analyzed in this sub-section and contrasted with other 
approaches. Table XVII shows the CPU time for the eight 
benchmarks for the three studies: Grosan and Abraham [32] 
and GA [71] and the present study hybrid-GOA-GA. It 
should be noted in the present study that the CPU time is 
the average of 100 independent runs for all the test 
problems. The table shows the comparison between the 
proposed algorithm and other methods in terms of time, 
population size and number of generations (Iterations). As 
shown in Table XVII, the difference of running times 
between the three studies is clear. This is attributed to the 
number of generations and population size considered in 
these studies. The more population/generation the more the 
objective function evaluation, the higher the computational 
costs. So, we can say that our algorithm outperforms the 
two algorithms in terms of accuracy of results. But in terms 
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of time, computational cost of the proposed algorithm is 
acceptable. 

Finally, For fair comparisons and prove our motivation to 
propose this hybrid algorithm, a comparison between 
Hybrid-GOA-SA, GA, and GOA is achieved under the same 
conditions (number of population and number of iterations 
and the same equipment). Table XVIII shows the comparison 
between Hybrid-GOA-GA, GA, and GOA according to the 
best function value F for all benchmarks problems, while 
Figure 21 shows the convergence curves for the three 
algorithms. We can see that Hybrid-GOA-GA outperformed 
the original GA and original GOA concerning the absolute 
value function F, convergence to the best solution of SNLEs, 
and CPU time. Also, both GA and GOA are stuck in a local 
optimum in some cases. For GOA, it is trapped in local 
optima in benchmarks No. 1, 5, 7, and 8. While, for GA, it is 
trapped in local optima in Benchmark No. 5. These results 
reinforce our motivation to introduce a hybrid algorithm 
between GOA and GA. 

Comparative studies have been performed in this section 
to determine the proposed hybrid algorithm efficiency of the 
solution. First of all, PBAs are suffering from the consistency 
of the solution. Therefore, the proposed hybrid algorithm was 
used to increase the quality of the solutions by integrating the 
merits of two PBAs. On the other hand, unlike deterministic 

algorithms our method searches by a population of points, 
not a single point. So, it can provide a globally optimal 
solution. In addition, our algorithm uses only objective 
function information, not derivatives or other auxiliary 
knowledge. So, it can deal with the problems of non-smooth, 
non-continuous, and non-differentiable optimization that 
currently occur in real-life applications. Also, the 
convergence of deterministic algorithms and their 
performance properties can be highly sensitive to the initial 
guess of the solution provided. However, it is very difficult to 
pick a good initial estimate for most SNLEs. Another 
positive observation is that the results of the simulation show 
that the proposed hybrid is superior to those stated in the 
literature, as it is better than both GA, GOA, and other PBAs 
in terms of accuracy, the effect of changing initial intervals, 
and computational cost. The reason for this is due to the 
integration between GOA (exploration ability) and GA 
(exploitation ability) which makes solutions sufficiently 
diverse. Moreover, due to its simplicity, the new hybrid 
algorithm tackles higher-order non-linear equations that we 
mostly face in the engineering field such as weather 
forecasting, geological oil exploration, computational 
mechanics and control fields, etc. Finally, it can be said that 
Hybrid-GOA-GA is competitive and able to solve SNLEs 
efficiently. 

 
TABLE XVII 

COMPARISON OF REQUIRED COMPUTATIONAL COST BETWEEN TWO STUDIES AND HYBRID-GOA-GA.. 

Benchmark 
Grosan and Abraham [32] Constrained GA [71] Hybrid-GOA-GA 

Population Generation 
(Iteration) 

CPU 
time(s) Population Generation CPU 

time(s) Population Generation 
(Iteration) 

CPU 
time(s) 

Benchmark 1 NA NA NA NA NA NA 10 500 1.22E-002 
Benchmark 2 NA NA NA NA NA NA 10 500 3.98E-002 
Benchmark 3 NA NA NA NA NA NA 10 500 2.49E-002 
Benchmark 4 250 150 5.14 10 10 9.7E-002 10 300 1.54E-002 
Benchmark 5 500 300 39.07 20 10 2.02 10 1200 2.008 
Benchmark 6: 
Fluid mechanics NA NA NA 10 10 9.97E-002 10 1000 7.73E-002 

Benchmark 7: 
Combustion 500 300 151.12 40 70 41.18 10 300 13.25 

Benchmark 8: 
Neurophysiology 300 200 28.9 10 20 2.28 10 1000 1.49 

Configuration 2.4-GHz Intel Duo Core CPU with 2-
GB RAM 

2.6-GHz Intel Duo Core i7 with 3-GB 
RAM 

2.27 GHz Intel(R) core (TM) i5 with 6-
GB RAM 

NA’’ means that the result is not available  

 
 

TABLE XVIII 
THE COMPARISON RESULTS BETWEEN HYBRID-GOA-GA, GA, AND GOA OF THE BEST FUNCTION VALUE F FOR ALL BENCHMARKS PROBLEM UNDER THE 

SAME CONDITIONS 
 Hybrid-GOA-GA Original GA Original GOA 
 Best function value F CPU time(s) Best function value F CPU time(s) Best function value F CPU time(s) 
Benchmark 1 9.335964490375659e-08 1.15E-002 3.869776437070982e-07 10.77 1.780852528919779 12.56 
Benchmark 2 9.15141820101439e-08 3.53E-002 1.29985183119567e-03 9.23 8.73143984527536e-04 8.45 
Benchmark 3 1.04105449261205e-08 2.75E-002 1.34198781612249e-06 8.36 1.50415595218112e-06 9.03 
Benchmark 4 3.53232353555999e-06 1.68E-002 3.31995714273892e-05 7.25 6.73262630843108e-05 6.98 
Benchmark 5  1.70197794659849e-12 2.15 0.180984099759073 8.65 0.322954187877703 7.08 
Benchmark 6  6.44879705191670e-11 7.85E-002 4.94866370104319e-10 2.54 1.51797330261161e-09 3.14 
Benchmark 7  5.672647019819165e-09 12.87 6.55986316446494e-08 20.06 1.10674631250539 5.36 
Benchmark 8  2.46962954485145e-11 1.97 7.01249556436421e-07 9.63 0.0536470576751199 13.47 
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FIGURE 21.  The convergence curves of the best F obtained by Hybrid-GOA-GA, GA, and GOA for all benchmark problems under the same conditions. 
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VI. CONCLUSION 
In this paper, we proposed a hybrid grasshopper algorithm 
(GOA) with a genetic algorithm (GA) to solve the system of 
non-linear equations (SNLEs). Hybrid-GOA-GA integrates 
the merits of both GOA and GA; where it combines the 
exploitation capability for GA and exploration capability for 
GOA. In the hybrid-GOA-GA, a population of random 
solutions is initialized. These solutions, by GOA, are 
searching in the domain of the optimization problem to 
obtain an optimal solution for SNLE. During this process, an 
evolution of these solutions is performed by GA. The 
optimization problem is configured from a system of non-
linear equations (SNLEs). Then, this optimization problem is 
solved by the hybrid algorithm. Eight benchmarks problems 
with different applications are considered. The main research 
findings of the proposed algorithm mention as follows: 
1) Using GOA with GA strikes a good balance between 

exploration and exploitation capabilities, improving the 
performance of the proposed algorithm. 

2) Combining GOA with GA avoids the trapping into local 
minima, accelerates the seeking operation, and speeds 
the convergence to the best solution of SNLEs.  

3) Hybrid-GOA-GA can be used to handle large-scale 
SNLEs due to its simple procedures. 

4) Numerical results have proven the superiority of the 
proposed algorithm over those reported in the literature, 
as it is significantly better than other comparison 
methods and finds the best solution with high accuracy 
for the eight benchmark problems. 

5) The proposed algorithm is not affected by changing the 
initial intervals of the SNLEs and gives better results 
than other algorithms in most cases. 

6) In terms of time, the proposed algorithm is acceptable. 
The potential weakness of the proposed algorithm, as all 

population-based approaches (PBAs), is that the guarantee of 
improvement in the computational speed or accuracy is not 
guaranteed when solving any optimization problem. This due 
to that PBAs are random approaches. So, in future works, 
other large-scale and more complex SNLEs can be 
considered to test the ability of the algorithm and know its 
potential weakness. Also, if there are any potential 
weaknesses, the proposed hybrid algorithm can be improved 
by using a chaotic local search. It is also suggested that other 
optimization approaches, such as sine cosine algorithm 
(SCA), salp swarm algorithm (SSA), gradient-based 
optimiser (GBO), slime mould algorithm and harris hawks 
optimization (HHO) be used to solve SNLEs. 
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