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ABSTRACT A novel optimization algorithm named hybrid grey wolf optimizer with crow search algorithm

(GWO-CSA) is developed in this paper for handling large-scale numerical optimization problems. The

proposed GWO-CSA algorithm combines the strong points of both grey wolf optimizer (GWO) and crow

search algorithm (CSA) with the aim to escape from local optima with faster convergence than the standard

GWO and CSA. In this algorithm, GWO operates in enhancing the exploration ability while CSA works as

a local searching scheme to emphasize the exploitation capability to achieve global optimal solutions. In this

sense, the movement direction and speed of leader grey wolf (alpha) is improved by incorporating the CSA

phase. Also, a dynamic fuzzy learning strategy (DFLS) is introduced to enable the occurring of tiny changes

in the neighborhood of the best solution to avoid the caught in the local optima and refine the quality of the

obtained solution. The robustness and efficiency of the proposed GWO-CSA algorithm are investigated on

fifteen CEC 2015 benchmark problems in addition to four large-scale problems and four real applications

related to engineering design optimization taken from the literature. The comprehensive comparisons with

other algorithms have demonstrated the effectiveness of GWO-CSA to address optimization tasks.

INDEX TERMS Grey wolf optimizer, crow search algorithm, numerical optimization, hybridization.

I. INTRODUCTION

Nowadays optimality concepts have appeared frequently

in several real-world applications such as engineering

designs [1], [2], statistical physics [3], economics [4], chem-

istry [5], power system [6] and information theory [7]. In this

regard, optimization methodologies have a significant role in

searching for the optimal solution among all the reasonable

solutions that minimize or maximize the output of a given

system [8]. However, obtaining optima in numerous complex

optimization fields require notable evaluations and compu-

tations. Because of the limitations such as time-consuming,

the dependency of the initial point, higher dimensionality,

and non-convexity and non-differentiability of the cost func-

tion, the solely relying on traditional optimization algorithms

(TOAs) is unreliable.

The associate editor coordinating the review of this manuscript and

approving it for publication was Charith Abhayaratne .

To overcome the lacks of TOAs and meet the ever increas-

ing of optimal industrialization, meta-heuristic optimization

algorithms (MOAs) [9]–[15] have flourished and attracted

the attention of many researchers and scientists during the

past two decades. In this context, researchers have proposed

a sequence of intelligent methods inspired by certain rules.

Particle swarm optimization (PSO) [16], sine cosine algo-

rithm (SCA) [17], [18], moth-flame optimization algorithm

(MFO) [19], ant colony system (ACS) [20], artificial bee

colony (ABC) [21], firefly algorithm [22], [23], and grav-

itational search algorithm (GSA) [24]. These optimization

algorithms have been investigated by several researchers to

deal with optimization tasks at various fields such as design

optimization [25], resource allocation [26], economic dis-

patch [27], and multi-objective optimization [28].

Grey wolf optimizer (GWO) is one of the recent MOAs,

which is developed by Mirjalili et al. [29]. The main inspi-

ration is introduced based on the strategy of hunting and the
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hierarchy of leadership of the grey wolves in nature. Due to

its simple structure and easiness of implementation, it has

been successfully employed to deal with a wide area of opti-

mization problems including feature subset selection [30],

economic dispatch problems [31], optimal power flow prob-

lem [32] and flow shop scheduling problem [33]. However,

as a new intelligent technique, GWOacquires some disadvan-

tages. The first one is its guidance towards the three wolves at

each iteration hampers the search diversity and leads to a local

optimum. The second one is that no mechanism is employed

to enhance the best position of the alpha grey wolf during

each generation which may yield a poor quality of the final

solution.

Apart from the previously introduced GWO algorithms,

many attentions have been developed in the literature to

realize and achieve the optimal solutions for numerous

contemporary tasks. However, several experiments with

high dimensional, complex, and multimodal optimization

problems have confirmed that GWO acquires a mediocre

convergence trends and still easily be stuck at local

optima. Consequently, many researchers have attempted to

improve/modify the performance of GWO in recent year.

In [34], Heidari et al. developed a novel modified GWO by

integrating the Levy flight pattern, named LGWO, to solve

unconstrained optimization tasks. In [35], Long et al. pro-

posed a random opposition-based learning GWO (ROGWO)

for solving benchmark problems as well as optimization of

engineering designs. In [36], Gupta and Deep introduced a

memory-based GWO (mGWO) to deal with global optimiza-

tion tasks. In [37], Long et al. suggested a novel GWO based

on refraction learning (RLGWO) to enhance the original

mode of GWO for solving benchmark test functions, while

Long et al. [38] proposed an improved GWO (IGWO) by

introducing a nonlinear adjustment strategy for controlling

the exploration and exploitation searches, and also an updat-

ing strategy for position is presented. In [39], Long et al. sug-

gested a novel exploration-enhancedGWO (EEGWO), which

employs the nonlinear strategy of control parameter andmod-

ified formulation for position-updating strategy to improve

the exploration ability as well as balance the convergence

among the convergence speed and precision of solution.

In [40], Long et al. developed an efficient and robust GWO

(ERGWO)with an enhanced framework to balance the explo-

ration and exploitation engines while dealing with numerical

optimization problems. In [41], Gupta and Deep proposed

an enhanced leadership of GWO with Levy-flight, named

GLFGWO, with the aim to accelerate the search process and

improve the convergence trends while dealing with uncon-

strained and constrained benchmark optimization problems.

In [42], Yan et al. developed a novel weighted distance-based

GWO (GWOWD) for improving the capability of the algo-

rithm as well as escaping from the local optima when tack-

ling with the benchmark optimization suits and engineering

designs.

Although, the above improvements have been tried to

enhance the solution accuracy and performance of the GWO,

but still some difficult cases such as for more complex multi-

modal tasks the algorithm can suffer from the stagnation at

local optima (LO) and thus the obtained solutions cannot be

accepted on the global scale [43]. Another reason for improv-

ing the performance of the GWO can be answered through the

fact recognized by the ‘‘No Free Lunch’’ theorem [44], that

states that there is no unique optimization method can claim

the best performance for all optimization natures. Hence,

this theorem logically opens the room of research to propose

new algorithms or improve the searching mechanism of the

existing ones. Thus by motivating these facts, the present

work proposes a hybrid sequential variant based on GWO

and crow search algorithm (CSA) aiming to exhibit more

robust performance and greater flexibility against the difficult

and complicated optimization problems. To the best of our

information, this proposed hybrid variant is proposed for the

first time.

Crow search algorithm (CSA) is a new intelligent meta-

heuristics method that is developed by Askarzadeh [45].

It imitates the social, intelligent behavior of the crows during

the storing and restoring processes of the excess food. CSA

has a simple structure, and it is applied for dealing with

optimization problems such as the economic load dispatch

problem [46], magnetic resonance brain images [47] and

engineering optimization [48]. However, CSA does not have

the specific domain knowledge to each problem and may

face the dilemma of trapping in a local optimum. To address

the above issues, GWO is hybridized with CSA in a novel

strategy with the aim to refine the diversity of solutions and

evade the falling in the local optimum.

In this work, a newly developed hybrid meta-heuristic

algorithm named hybrid grey wolf optimizer with crow

search algorithm (GWO-CSA) is implemented to solve dif-

ferent natures of benchmark problems and real-world appli-

cations. GWO-CSA combines the desirable properties of both

GWO and CSA to mitigate their weaknesses. In GWO-CSA,

CSA is embedded to improve the movement of grey wolves

of the GWO. Also, the serialized scheme among the GWO

and CSA can enhance the diversity of the solution effi-

ciently. A novel dynamic fuzzy learning strategy (DFLS)

is introduced to preserve the quality of the best solution

for each iteration. To investigate and validate the efficacy

of the proposed GWO-CSA, it is benchmarked on different

optimization tasks and compared with other well-established

techniques. Simulation results exhibit a superior performance

of the proposed GWO-CSA regarding quality and reliability.

Therefore, GWO-CSA can be an efficient alternative to deal

with complex optimization tasks.

The main contributions regarding this work are outlined as

follows:

(1) GWO-CSA algorithm is introduced to solve different

optimization tasks. In GWO-CSA, the CSA is embedded

into GWO to exhibit two features, namely, to improve the

movement of the leader wolf in its hierarchical structure

(i.e., alpha grey wolf) and exchange the information that

enhances the diversity of solutions.
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(2) Dynamic fuzzy learning strategy (DFLS) is designed

and implemented to enhance the quality of the best so far

solution and improve the convergence performance.

(3) A modified updating strategy based on elite-opposition

is introduced to balance the search among the diversification

and intensification capabilities.

(4) The effectiveness of GWO-CSA is proved through

different natures of benchmark problems as well as the

comprehensive comparisons with other algorithms from the

literature.

The remainder of the paper is organized using some

sections. Section II presents the overview of the grey

wolf optimizer (GWO) and crow search algorithm (CSA),

Section III develops the motivation behind the hybridiza-

tion, Section IV introduces in detail the proposed hybrid

GWO-CSA. In Section V, the simulation results and com-

parisons are demonstrated. Finally, Section VI provides the

conclusions and future research.

II. OVERVIEW OF GWO AND CSA

This section is devoted to overview the basics of GWO and

CSA, respectively.

A. BASIS OF GWO

Grey wolf optimizer (GWO) [29] is developed as a coopera-

tive algorithm based on the hunting behavior of grey wolves

and the social leadership among them in nature. The hierar-

chical leadership is simulated by employing four grey wolves

such as alpha, beta, delta, and omega. The first three best

wolves positions are denoted asα,β, and δ while the rest of all

wolves are supposed to be omega (ω) andωwolves are guided

by these three best wolves. The updating position of eachwolf

is executed employing some mathematical equations [29].

During the hunting process, greywolves attempt to encircle

the prey that is modeled mathematically as follows:

1 (Iter+1)=1p (Iter)−A ◦ |C ◦1 (Iter)−1 (Iter) | (1)

where Iter denotes the current iteration, ◦ presents the

Hadamard product operation, whereas 1p and 1 represent

respectively, the position of prey and the position of the grey

wolf. The vectors A and C are determined as follows:

A = 2 · a ◦ r1 − a (2)

C = 2 · r2 (3)

a (Iter) = 2− 2 ·
Iter

T
(4)

where a is a linearly decreasing parameter from 2 to 0, and it

aims to preserve the exploration and exploitation capabilities,

r1 and r2 are random vectors from the interval [0, 1]. Here,

T is a maximal number of iterations.

The hunting process is often managed by the alpha grey

wolf, and also beta and delta grey wolves might join in this

process. However, the prey location (optimum) is unknown

over the search area; it is supposed that the wolves, alpha,

beta, and delta, exhibit better perception regarding the proba-

ble location of the prey. Thus, these three wolves (fittest) are

maintained to guide the other wolves towards the probable

location of the prey. Thus scenario of hunting is modeled as

follows.

11 = 1α − A1 ◦ |C1 ◦1α −1|

12 = 1β − A2 ◦ |C2 ◦1β −1|

13 = 1δ − A3 ◦ |C3 ◦1δ −1| (5)

The updating process of a candidate’s position through

using the alpha, beta, and delta wolves is as follows.

1 (Iter + 1) =
11 (Iter)+12 (Iter)+13 (Iter)

3
(6)

where A1, A2, and A3 are similar to A, and C1, C2, and C3

are similar to C . The practical steps of the GWO are pro-

vided in Algorithm 1. The updating process of a candidate’s

position through using the alpha, beta, and delta wolves in

2-dimension is provided in Figure 1. Figure 1 shows that the

three best wolves (α, β, and δ) can obtain the location of

the prey as well as the rest wolves update their location in

the vicinity of the prey, randomly.

Algorithm 1 Pseudo-Code of the GWO

Input : T - number of iterations; N - population size.

Output: 1α - the best wolf (solution)

1 Initialize the location of each wolf randomly to

constitute the population

2 Evaluate each wolf and obtain the 1α , 1β , and 1δ (first

three best wolves positions) using the objective function

3 while Iter≤T do

4 for i=1 to N do

5 Update the position of each wolf as

1 (Iter + 1) =
11(Iter)+12(Iter)+13(Iter)

3
6 end

7 Update a : a (Iter) = 2− 2 · Iter
T

8 Update A : A = 2 · a ◦ r1 − a, and C : C = 2 · r2
9 Compute the fitness of each grey wolf

10 Update the 1α , 1β , and 1δ using the objective

function

11 end

12 Output: obtain the best individual 1α

B. BASICS OF CSA

Crow search algorithm (CSA) is developed by Alireza

Askarzadeh [45] based on the nature intelligent of crows.

Crows are intelligent birds as their behaviors exhibit a high

level of cleverness, such as self-awareness in mirror test and

toolmaking ability. One of their unusual behaviors is that they

follow the other birds to observe the food hiding places and

steal their food. Each crow acquires a hiding place to store its

surplus food, and it considers awareness to safeguard it from

probable followers. Also, the crow can make fool by going

to other location if another crow follows it. CSA’ behavior is

formulated through the following assumptions [45]:
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FIGURE 1. Updating strategy in GWO.

1. Crows are found together as a flock.

2. Crows canmemorize the locations of their hiding places.

3. Crows recognize victim’s hiding place by following each

other.

4. Each crow protects food stores by a probability.

It is assumed that crows store their food in an

n-dimensional search environment and N is the number of

crows. The current location of the crow j at Iter-th iteration

is defined as a vector:

xj,Iter = [x1j,Iter , x
2
j,Iter , . . . , x

n
j,Iter ] (7)

where k = 1, 2, . . . ,N , and Iter = 1, 2, . . . ,T . Each crow

in the flock has its memory where its food hiding place is

saved. The food hiding location of crow j at Iter-th iteration

is defined by mj,Iter which is the best position obtained by

crow j till now.

Suppose that at Iter-th iteration, crow j needs to go to its

food hiding positionmj,Iter . At the same time (iteration) crow

i attempts to follow crow j in order to its the food hiding

position. In this situation, two cases may have occurred:

Case 1: Crow j does not become aware that another crow i

is tracking it. In this situation, the crow i can reach the food

hiding location of crow j and the crow iwill update its position

as follows.

xi,Iter+1 = xi,Iter + ri · fli,Iter ·
(

mj,Iter − xi,Iter
)

(8)

where ri is a random number that distributed uniformly in

the interval [0, 1] and fli,Iter is the flight length of crow i at

Iter-th iteration that has a significant effect on the searching

capability of algorithm, where lower values of fl enhances

the local search (closer to xi,Iter ), while higher values of fl

promotes the exploration that is denoted as global search (far

away from xi,Iter ) (i.e. see Figure 2).

Case 2: Crow j finds out that the crow i is tracking it.

Therefore, the crow j will fool crow i by going to another

FIGURE 2. The strategy of searching by the crow regarding the two cases:
fl ≤ 1 (a), and fl > 1 (b).

location in the search region. In general, the two cases can be

considered as follows:

xi,Iter+1 =











xi,Iter + ri · fli,Iter ·

·
(

mj,Iter − xi,Iter
)

if rj ≥ APj,Iter

a random position, if otherwise

(9)

mi,Iter+1 =

{

xi,Iter+1, if f
(

xi,Iter+1
)

> f
(

mi,Iter
)

mi,Iter , if otherwise
(10)

where rj is a random number that uniformly distributed in the

range [0, 1] and APj,Iter represents the awareness probability

of crow j at Iter-th iteration. The main steps of the CSA are

introduced in Algorithm 2.

III. THE MOTIVATION FOR THIS WORK

The standards of the grey wolf optimizer (GWO) and crow

search algorithm (CSA) exhibit good performances on some

unimodal benchmark function problems. However, they deal

with complex multimodal functions, the trapping in local

optima, as well as the premature convergence, may be

occurred. Furthermore, dealing with large-scale dimensions

may deteriorate the performances of simple algorithms.

To overcome these shortages and improve the searching capa-

bility, a new hybrid algorithm based on GWO and CSA

is introduced to solve complex life problems as well as

large-scale dimensions. The proposed algorithm is called

GWO-CSA. In the GWO-CSA, the movements of all grey
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Algorithm 2 Pseudo-Code of the CSA

Input : T - number of iterations; N - number of crows,

fl - flight lenght, AP - awareness probability

Output: Best crow location

1 Initialize randomly the location of a flock of N crows in

the search region

2 Evaluate the crows’ locations

3 Fill the own memory of each crow with its initial

location

4 while Iter≤T do

5 for i=1 to N do

6 Elicit one of the crows at random to track it (for

example j) Generate r ∈ [0, 1]

7 if r < AP then

8 xi,Iter+1 = xi,Iter + ri · fli ·
(

mj,Iter − xi,Iter
)

9 else

10 xi,Iter+1=random location

11 end

12 end

13 end

14 Check the feasibility of new locations

15 Evaluate the new locations of the crows

16 Perform the updating of the memory:

mi,Iter+1 =

{

xi,Iter if f
(

xi,Iter
)

> f
(

mi,Iter
)

mi,Iter , if otherwise

17 end

18 Output: best crow location

wolves, as well as an alpha grey wolf, are improved based on

CSA to enhance the diversity of solutions, efficiently.

Further, a dynamic fuzzy learning strategy (DFLS) based

on the information of the best solution is introduced to enable

the tiny perturbation in the neighborhood of the best so far

outcome and then refine the quality of the solution. By this

methodology, the balance among exploration and exploitation

can be enhanced and the sucking in local optima can be

avoided. The hybrid variant has been tested on numerous

benchmark problems with different dimensions and some

of engineering design applications. Simulation results affirm

its robustness of searching when dealing with numerous

problems.

IV. THE PROPOSED HYBRID ALGORITHM

A hybrid grey wolf optimizer with crow search algorithm

(GWO-CSA) is presentedwith the aim to integrate the search-

ing merits of both algorithms. In this sense, GWO aims

to enhance the exploration search in the first stage of the

searching scheme, while CSA aims to preserve the exploita-

tion capability in the final stage of this scheme. Further,

a dynamic fuzzy learning strategy (DFLS) is presented to

enable the occurring of tiny changes in the neighborhood

of the best solution to mitigate the trapping in the local

solutions and refine the quality of solutions. Therefore, the

proposed GWO-CSA involves three main improvements.

Firstly, a learning strategy based on opposition searching

is introduced to preserve the diversity of crows. Secondly,

an iterative level hybridization with CSA is presented to

accelerate the approaching of the best solution. Thirdly,

a dynamic fuzzy learning strategy (DFLS) is developed as

a neighborhood searching strategy for achieving top-quality

of solutions in each generation. The kernel idea behind

GWO-CSA is demonstrated as follows.

A. UPDATING OF CSA-BASED OPPOSITION LEARNING

In CSA, the crow is updated by considering the awareness

probability, when crow j does aware that another crow i is

following it, then crow i will update its position randomly.

This may lack the diversity of solution and may be deteri-

orated with the immediate convergence rate. Thus, instead

of updating randomly, a strategy based on the opposition

learning is developed to preserve the crow’s diversity and

increase the exploration capability. The updating strategy is

as follows.

xi,Iter+1 =











xi,Iter + ri · fli,Iter ·

·
(

mj,Iter − xi,Iter
)

if rj ≥ APj,Iter

q · (ub+ lb)− xi,Iter , if otherwise

(11)

where ub and lb illustrate the limits of the search space, and

q denotes a random number in [0, 1].

B. ITERATIVE HYBRIDIZATION-BASED GWO WITH CSA

This stage aims to execute both algorithms in sequence itera-

tively to enhance the optimization performance. Here GWO

is used as explore tool to attain the promising areas and CSA

is then allowed to exploit these areas to find better solutions.

In this sense, GWO starts the search procedures using its

mechanism, and then CSA is initialized with the alpha grey

wolf and the other wolves to improve the location of an alpha

grey wolf.

The updating process of the candidate’s position through

using the alpha, beta, and delta wolves is as follows. The

three best crows denoted by 1Crow1, 1Crow2 and 1Crow3 are

obtained using the fitness function then they are compared

with those produced by GWO (1α , 1β , and 1δ) to attain the

survival ones as follows.

1α = arg min{f (1α) , f (1Crow1)}

1β = arg min{f
(

1β

)

, f (1Crow2)}

1δ = arg min{f (1δ) , f (1Crow3)} (12)

C. DYNAMIC FUZZY LEARNING STRATEGY (DFLS)

Zadeh developed the main concept of a fuzzy set (FS)

in 1965 [49]. The FS is different from the ordinary set in

which the element or the object is characterized by two values

(i.e., 0 or 1), where 1 and 0 indicate the element which

belongs and does not belongs to S, respectively, where S is

the FS in U (i.e., the universe of discourse) is recognized

by a membership (characteristic) µs (x) that specifies a real
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FIGURE 3. Fuzzy numbers representation.

number from the interval [0, 1] for each class (point) x in U .

Also the value ofµA (x) elucidates the degree of membership

of x in S, where the nearer value of µS (x) to unity the higher

grade of membership of x in S.

Definition 1: Let U represents a group (collection) of

objects or elements defined generically by x, then the set S%

of ordered pairs represents the fuzzy set:

S% =
{(

x, µS% (x)
)

|x ∈ U
}

(13)

where µS% (x) indicates the membership function (general-

ized characteristic function).

To implement the DFLS, the approximated optimal solu-

tion x◦ =
(

x◦1 , x
◦
2 , . . . , x

◦
n

)

= 1α is obtained through the

scenarios of GWO and CSA. In this sense, DFLS aims to

make a tiny perturb around the approximated optimal solution

by constructing the membership function, as in Equation 16,

which assigns different grads for the local region of optimal

solution that can reside. The bounds of the local region are

determined based on θ -the cut level that aims to siege the

optimal solution, where the bounds (i.e., upper and lower

bounds) of the local region can be depicted in Figure 3.

µ

(

x◦ij

)

=



































1 x = x◦ij
20x

x◦ij
− 19 0.95x◦ij ≤ x ≤ x

◦
ij

21−
20x

x◦ij
x◦ij ≤ x ≤ 1.05x◦ij

0 x < 0.95x◦ij or x > 1.05x◦ij

(14)

Consider the optimal solution x◦j in the j-th dimension

equals 1. In this sense, when θ = 1, the value of x = x◦j
remains as it is (see Figure 4a), while for θ = 0, the value

of x◦j having the ends, x ∈ [0.95, 1.05] (i.e., x lj = 0.95 and

xuj = 1.05 as in Figure 4b). Further for any θ such that θ =

0.6, the value of xoj gets the bounds 0.98 and 1.02, x lj = 0.98

and xuj = 1.02 as in Figure 4c. The main procedures of DFLS

can be stated as follows.

Step 1. Formulate the membership function and its width

for each dimension as in Figure 3 and Equation 16.

Step 2. Generate the value of θ-cut level randomly to obtain

dynamic bounds for the searching process.

FIGURE 4. θ – Levels schemes.

Step 3. After applying the θ -cut level, the crisp bounds for

the j-th dimension is determined as follows.

xLFj =
θx◦j

20
+ 0.95x◦j , x

UF
j = 1.05x◦j −

θx◦j

20
(15)

Step 4. Map the crisp bounds-based fuzzy technique into

optimization search as follows.

xj =







xLFj + rf 1 ·
(

xUFj − x
LF
j

)

rand < 0.5

xUFj + rf 2 ·
(

xUFj − x
LF
j

)

otherwise
(16)

where rf 1, rf 2 are random numbers in [0, 1].

Step 5. If f (x) < f (x◦) then put x◦ = x. The working code

of the introduced DFLS is shown in Algorithm 3.
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FIGURE 5. The flowchart of the proposed GWO-CSA.
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Algorithm 3 Pseudo-Code of the DFLS

Input : x◦ =
(

x◦1 , x
◦
2 , . . . , x

◦
n

)

Output: x◦

1 Formulate the membership function

2 k ← 1, j = 1 : n

3 θ ← rand

4 Fuzzy bounds: xLFj =
θx◦j
20
+0.95x◦j , x

UF
j = 1.05x◦j −

θx◦j
20

5 xj =







xLFj + rand ·
(

xUFj − x
LF
j

)

if rand<0.5

xUFj − rand ·
(

xUFj − x
LF
j

)

if otherwise

6 f (x) < f (x◦)⇒ x◦ = x; then set 1α = x◦

7 k ← k + 1

8 Output: x◦

TABLE 1. Test functions.

Thus the GWO-CSA improves the exploration searches by

GWO in the initial stage and enhances the exploitation capa-

bilities of CSA in the final stage to achieve global optimal

solutions. Further, the DFLS is introduced to achieve a high

quality of the final solution. The flowchart of the GWO-CSA

is showed in Figure 5.

V. EXPERIMENTS AND RESULTS

A. BENCHMARK PROBLEMS

In this section, four test functions (F1: Quartic, F2: Rastrigin,

F3: Salmon, F4: Schaffer) are selected from [19] and listed

in Table 1. These problems are typical high-complicated test

problems, where they involve different natures, such as uni-

modal, multi-modal, separable, non-separable, regular, irreg-

ular, and multi-dimensional problems. The characteristics of

these problems such as formulas, and ranges are recorded

in Table 1. The optimal value for each problem is equal

to 0. For all test instances, we attempt to investigate the

performance of the proposed method as well as the com-

parative algorithms with three experiments meanwhile three

TABLE 2. The parameter settings for all algorithms.

TABLE 3. The PC configuration.

dimensions, i.e., D = 100, 500 and 1000, are investigated.

It is noted that the difficulty of searching process grows

exponentially with the dimension.

B. PARAMETER SETTINGS

In all experiments, the parameters of the proposed

GWO-CSA and the comparative algorithms are adjusted after

running a few trials as follows. The population size (PS) is

set to 30 while the maximum number of iterations (T ) is set

to 300, (i.e., the maximum number of function evaluation

is set to 9000) for all test problems with the employed

dimensions. To obtain a fair comparison, each algorithm is

executed 20 independent runs for each test problem, with

the same set of random seeds. The other control parameters

configurations of all comparative algorithms are presented

using the suggestions in their corresponding literature and

they reported in Table 2. To get unbiased comparisons of CPU

times, all the experiments are carried out utilizing the same

PC, where its configuration is provided in Table 3.

C. EXPERIMENTAL RESULTS

To validate the proposed GWO-CSA for large-scale global

optimization problems, it is tested on some benchmark prob-

lems that have different natures, which are listed in Table 1.

The proposed GWO-CSA is compared with classical algo-

rithms and hybrid ones such as GWO [1], CSA [45],

SCA [17], GWO-SCA [50], and MHDA [51]. Three exper-

iments are conducted with three dimensions, respectively,

D= 100, 500 and 1000, where in each one, the results such as

the best value, average (mean), worst, and standard deviation

(st. dev.) are reported. In addition, the convergence curves

that describe the convergence rate of all algorithms on all test

functions are provided for D = 1000 only due to the space

limitation. Based on the depicted convergences, GWO-CSA
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TABLE 4. Results of GWO, CSA, SCA, GWO-SCA, MHDA, and GWO-CSA
with D = 100.

TABLE 5. Results of GWO, CSA, SCA, GWO-SCA, MHDA, and GWO-CSA
with D = 500.

TABLE 6. Results of GWO, CSA, SCA, GWO-SCA, MHDA, and GWO-CSA
with D = 1000.

can provide faster convergence rate and has higher precision

than other algorithms.

In Experiment 1, the proposed algorithm and five compara-

tive algorithms are conductedwith dimensionD= 100, where

the statistical measures are presented in Table 4. Based on the

reported results of Table 4, it is evident that, overall, GWO-

CSA gives the best result among all compared algorithms

from the statistical view. Compared to the other algorithms,

GWO, CSA, SCA, GWO-SCA, and MHDA, GWO-CSA

finds dominant results for all test functions.

TABLE 7. Results of various GWO variants on the studied benchmark
function with D = 1000.

TABLE 8. Characteristic of CEC 2015 benchmark problems.

In experiment 2, the performance of the GWO-CSA is

investigated and compared with that of the GWO, CSA, SCA,

GWO-SCA, and MHDA on all test benchmark functions
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TABLE 9. Comparative results among the proposed method versus different DE variants for CEC 2015 problems.

with D = 500 to show their scalability. The obtained results

as in Table 5 affirm that with increasing the dimension-

ality, GWO-CSA continues to give the best result, which

means that the GWO-CSA is still insensitive to increas-

ing the dimension. Also, the GWO-CSA provides superior

performance compared to the GWO, CSA, SCA, GWO-SCA,

and MHDA on all test benchmark functions.

In Experiment 3, the scalability of the GWO-CSA algo-

rithm and the other comparative algorithms is further veri-

fied with D = 1000 for all test instances. Also, statistical
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TABLE 10. The information on the engineering designs.

TABLE 11. Statistical measures, design parameters, constraints, and
objective function value for CB design.

measures, best value of the candidate problem, mean

(average), worst and standard deviation, are recorded

in Table 6. It is noted GWO-CSA still continues to provide

the superior results over GWO, CSA, SCA, GWO-SCA, and

MHDA algorithms on all test functions. Also the convergence

curves for the six algorithms on the test functions are depicted

in Figure 6, where GWO-CSA has faster convergence speed

and higher precision than the others.

TABLE 12. Statistical measures, design parameters, constraints, and
objective function value for TBT design.

D. COMPARISON WITH SOME GWO VARIANTS

In order to investigate the performance of the proposed

GWO-CSA, nine variants of GWO are benchmarked on

the studied benchmark problems. These variants include

LGWO [34], ROGWO [35], mGWO [36], RLGWO [37],

IGWO [38], EEGWO [39], ERGWO [40], GLFGWO [41],

and GWOWD [42], where the values of parameters for these

nine variants of GWO used for comparison are suggested as
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FIGURE 6. Convergence behaviors of the proposed GWO-SCA and the other algorithms for all problems with D = 1000.

TABLE 13. Statistical measures, design parameters, constraints, and
objective function value for PV design.

recommended in their corresponding literature. The obtained

results of these variants are presented in Table 7. Based on the

achieved results, it can be observed that the EEGWOprovides

the superior results among these variants but the proposed

GWO-CSA still outperforms all the variants as it provides

better results over the EEGWO for F1 (x) and F3 (x) and

faster than it for F2 (x) and F4 (x). The best results among

the presented variants are exhibited in boldface. On the other

hand, the convergence graphs for all problems are provided

in Figure 7 to exhibit the convergence rate towards the best

TABLE 14. Statistical measures, design parameters, constraints, and
objective function value for CSI design.

solution during the searching process. Based on the Figure 7,

the GWO-CSA still provides the faster rate than the other

peers. Also the proposed GWO-CSA can achieve a stable
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FIGURE 7. Convergence curves for various GWO variants and the proposed GWO-CSA with D = 1000.

performance than the other variants, where the statistical

measures of the best, mean, worst, and standard deviation

are seem to be coincident. Accordingly, it is evident that

the proposed approach is more fruitful than other existing

variants of GWO and thus the proposed algorithm can be

considered a strongly suitable methodology for optimization

sights.

E. INVESTIGATION ON CEC 2015 EXPENSIVE

OPTIMIZATION PROBLEMS

For further validation regarding the performance of the pro-

posed GWO-CSA, it is benchmarked on CEC 2015 bench-

mark problems which are more competitive suits and require

robust optimizers to achieve a suitable accuracy of the

obtained solutions with fast rates in limited allocated budgets.

The CEC 2015 test suits represent the collection of 15 chal-

lenging expensive problems that involve highly complex

composite and hybrid natures [52]. The natures of these prob-

lems involve the unimodal, multimodal, hybrid, and composi-

tion scenarios and they are listed in Table 8, where the global

optimum value (F∗) is provided for each problem and also the

range space for the variable bounds ∈ [−100, 100]. In this

regard, the results of proposed GWO-CSA are compared

with the traditional GWO, the most competitive variant of

the GWO (i.e., EEGWO), DE and high performance vari-

ants of DE, including SHADE, and LSHADE. On the other

the results of two other variants of DE, i.e. DE1 and DE2,

are taken from [53] and [54], respectively. The results in

terms of the statistical metrics are reported in Table 9 for

10 dimensional (10D) CEC 2015 problems. According to

the achieved results, the proposed GWO-CSA can provide

the better mean values and outperforms the other methods in

most CEC 2015 problems. From Table 9, it can be observed

that the results achieved by the proposed method are bet-

ter in 13 cases, where the best results are highlighted with

the bold values. Therefore, it can also conclude that the

proposed methodology is better or competitive while the

comparison with other methods. On the other hand, the con-

vergence graphs for CEC 2015 problems are provided in

Figure 8 to visualize the rate of convergence towards the

better optima point during the searching process. Based on the

depicted curves in Figure 8, mostly, GWO-CSA converges
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FIGURE 8. Convergence curves for the proposed method GWO-CSA versus different DE and GWO variants on CEC 2015 problems.
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FIGURE 9. Convergence curves of the proposed GWO-CSA against the compared algorithms for the design applications.

with a faster rate towards the better optima point than other

methods.

F. PRACTICAL APPLICATIONS IN ENGINEERING

DESIGN PROBLEMS

In this subsection, further validation of the proposed

GWO-CSA algorithm is conducted on some practical appli-

cations of engineering design problems. Four well-known

practical applications, which are cantilever beam (CB), three-

bar truss (TBT), pressure vessel (PV) and car side impact

(CSI) [18], [48]. These design problems are widely employed

in the literature to validate the efficiency of meta-heuristic

algorithms. The details of these design problems as well as

their mathematical models are presented in Table 10. On the

other hand, the structure of each design problem is appended

in Appendix.

The complexity of these engineering design optimization

problems is contained behind the very tiny feasible region of

the entire search space that is caused by a set of inequality

and equality constraints. However, solving such problems is

more challenging task not only due to the high nonlinear-

ity of these problems, but also due to the complex search

space shapes enclosed by various constraints. Additionally,

in most practical tasks the optimal solution is found on

the boundary between the feasible and infeasible regions.

Therefore, developing a robust optimization algorithm to

locate good feasible solution with acceptable accuracy is cru-

cially important for engineering design fields. In this regard,

the proposed GWO-CSA and other competitive algorithms

are conducted to deal with some of engineering designs

including CB, TBT, PV, and CSI.

Tables 11, 12, 13, 14 present the statistical results reported

by GWO-CSA with the other compared algorithms for

reported CB, TBT, PV, and CSI design problems, respec-

tively. Also, the values of design parameters for all design

problems associated with their constraints are reported as a

counterparts as in Tables 11, 12, 13, 14. Based on the obtained

results, we can conclude that the GWO-CSA gives superior

results for designs over the other compared algorithms.

For the cantilever beam (CB) design problem, because of

the best result, the proposed GWO-CSA achieves a better

result than the other comparative algorithmswhere the overall

results of the proposed GWO-CSA and the other algorithms

are reported in Table 11. Also, the convergence curves for the

proposed GWO-CSA and the comparative ones are displayed

in Figure 9. Furthermore, the box plot diagram is presented

in Figure 10 for all algorithms to exhibit the stability of the

algorithms through the different runs.

For the three-bar truss (TBT) design application,

the reported information in Table 12 provides that the result
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FIGURE 10. Box plot diagrams of the proposed GWO-CSA and different algorithms for the design applications.

obtained by GWO-CSA be similar to CSA regarding the

best value and the mean result. Also, GWO-CSA gives faster

convergence than the other comparative algorithms. In this

sense, the convergence curves for the proposed GWO-CSA

and the comparative ones are depicted in Figure 9 and the

box plot diagram is showed in Figure 10 for all algorithms

to exhibit the stability of the algorithms through the different

runs.

For the pressure vessel (PV) design problem, Table 13

exhibits the results provided by GWO-CSA and the other

comparative algorithms. Given mean value, the proposed

GWO-CSA finds the better one over the other algorithms.

Also, GWO-CSA gives faster convergence than the other

algorithms, where convergence curves are portrayed in Fig-

ure 9 and the box plot diagram is presented in Figure 10 for

all algorithms to exhibit the stability of the algorithms through

the different runs.

For the car side impact (CSI) design application,

the obtained results of the GWO-CSA and the other compar-

ative ones are recorded in Table 14. Based on these results,

the obtained one by GWO-CSA presents the superior result

over the other comparative algorithms regarding statistical

values. Also, GWO-CSA still affirms its robustness through

achieving the faster rate of convergence performance over

the other algorithms, where convergence curves are showed

in Figure 9 and the box plot diagram is presented in Figure 10

for all algorithms to exhibit the stability of the algorithms

through the different runs.

VI. CONCLUSION

This paper proposes a novel hybrid algorithm called

GWO-CSA based on combining the features of both grey

wolf optimizer (GWO) and crow search algorithm (CSA) to

obtain balanced tradeoff among the exploration and exploita-

tion capabilities. GWO-CSAworks in sequence stages, where

GWO operates in exploring the promising areas in the search

region while CSA aims to exploit these areas with the aim to

refine the positions of the grey wolves.

Further, a dynamic fuzzy learning strategy (DFLS) is

developed to improve the quality of solution based on the

alpha cut that sieges the promising solutions. Four bench-

mark test functions are conducted for large-scale dimensions,

and also four engineering designed problems are investi-

gated. Based on the reported results, it can conclude that the

GWO-CSA has a superior performance that is caused by the

integrating methodology of GWO, SCA, and DFLS. Simula-

tions affirmed that the GWO-CSA could achieve very com-

petitive outcomes compared to other comparative algorithms

such as GWO, CSA, SCA, GWO-SCA, and MHDA. Finally,

the GWO-CSA is an efficient methodology that can achieve

the global optimum for most test instances and engineering

applications.

However, even the proposed GWO-CSA approach has

fulfilled competitive and progressive results while the com-

parisons with other methods in this work, the GWO-CSA

may still have improved rooms to be competitive enough

with more effective technologies. First, a novel parameter
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FIGURE 11. Cantilever beam structure (CB problem).

FIGURE 12. Three-bar truss structure (TBT problem).

FIGURE 13. Pressure vessel structure (PV problem).

FIGURE 14. Model of car side impact (CSI problem).

adaptation scheme can be further explored rather than

employing the parameters of initial works for GWO and CSA

algorithms. Secondly, the effectiveness of the GWO-CSA

still deserves further investigation on more harder realistic

problems such as IEEE CEC 2017 test cases.

In future work, we intended to validate and analyze the

GWO-CSA algorithm for solving many objectives optimiza-

tion, combinatorial optimization and developing a binary

version of the GWO-CSA.

APPENDIX

The structure of each design problem is presented as follows:

cantilever beam structure (CB problem) – Figure 11, three-

bar truss structure (TBT problem) – Figure 12, pressure vessel

structure (PV problem) – Figure 13, model of car side impact

(CSI problem) – Figure 14.
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