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Homotopy perturbation method is combined with Laplace transformation to obtain 
approximate analytical solutions of non-linear differential equations. An example 
is given to elucidate the solution process and confirm reliability of the method. The 
result indicates superiority of the method over the conventional homotopy pertur-
bation method due its flexibility in choosing its initial approximation. 
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Introduction 

The last two decades have experienced a rapid development of non-linear sciences 
arising in thermal science and other fields as well. Recently, several analytical methods were 
developed in order to find solutions of non-linear partial differential equations (PDE), for ex-
ample, the homotopy perturbation method (HPM) [1, 2], the variational iteration method [3-5], 
the exp-function method [6-8], the homotopy analysis method [9, 10], and others [11, 12]. 

The classic approach by the perturbation method is still widely used for weakly non- 
-linear equations and appeared in many textbooks. The drawback of the perturbation method 
is that their choice of a small parameter seems to be an art rather than a solution procedure, an 
inappropriate choice of such parameter leads to an inaccurate result or even a wrong one. The 
shortcoming can be easily solved by HPM, which was proposed in later 1990s [1, 2], and the 
method has been developed into a mature tool for almost all kinds of non-linear equations. 

Laplace transform is accessible to all students, but it is suitable only for linear equa-
tions. Gondal and Khan [13] first coupled HPM with the Laplace transform, and the coupled 
technology is widely used in non-linear differential equations [14] and fractional calculus 
[11], and the method is generally called as He-Laplace method [15].  

He-Laplace method 

To illustrate the basic idea of this method, we consider the general form of 1-D non- 
-homogeneous PDE with a variable coefficient of the form: 
–––––––––––––– 
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subject to the boundary conditions: 
 0 1(0, ) ( ), (1, ) ( )u t g t u t g t= =  (3) 

and the initial condition:  
 ( ,0) ( )u x f x=  (4) 

The methodology consists of applying transform on both sides of eqs. (1) and (3) 
and in view of the initial condition [13-15]: 
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 0 1(0, ) ( ), (1, ) ( )u s g s u s g s= =  (6) 

which is second order boundary value problem. According to HPM [1, 2], we construct a ho-
motopy in the form:  
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where ū0 is the arbitrary function that satisfies boundary conditions eq. (6), therefore: 
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Applying the inverse Laplace transform on both sides of eq. (8), we get: 
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Setting p = 1 gives the approximate solution of eq. (9): 

 0 1 2( , ) ( , ) ( , ) ( , ) ...u x t u x t u x t u x t= + + +  (10) 

Implementation  

In order to ascertain the wider applicability of the method we consider a non-linear 
differential equation of the form (11) as an example: 
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With the initial condition:  
 ( ,0) sin(π )U x x=  (12) 
and boundary 
 (0, ) 0, π(e e )t at

xU t U − −= = +  (13) 



Liu, Z.-J., et al.: Hybridization of Homotopy Perturbation Method and … 
THERMAL SCIENCE, Year 2017, Vol. 21, No. 4, pp. 1843-1846 1845 

By applying the method subject to the initial condition, we have: 
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To solve eq. (14) by means of HPM, a homotopy equation can easily be constructed: 
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We assume that the solution to eq. (16) may be written as a power series in P: 
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Substituting eq. (17) into eq. (16), and equating the terms with the identical powers 
of p, we have: 
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The initial approximation V0(x, s) or 0U (x, s) can freely be chosen, and we can set: 

 0 0
sin π sin π( , ) ( , )

1
x xV x s U x s

s s a
= = +

+ +
  (19) 

which satisfies the boundary conditions (15). 
Substituting eq. (19) into eq. (18), the first component of the homotopy perturbation 

solution for eq. (14) are derived: 
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By taking the inverse Laplace of eq. (20) yields: v0(x, t) = e–tsinπx + e–atsinπx:  
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which is the exact solution. 

Conclusion 

In this work we employed He-Laplace method to find the exact solutions of some 
non-linear PDE. The method is very easy to implement due to its flexibility in freely chosen 
its initial approximation.  
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