
Citation: Hayat, I.; Tariq, A.;

Shahzad, W.; Masud, M.; Ahmed, S.;

Ali, M.U.; Zafar, A. Hybridization of

Particle Swarm Optimization with

Variable Neighborhood Search and

Simulated Annealing for Improved

Handling of the Permutation

Flow-Shop Scheduling Problem.

Systems 2023, 11, 221. https://

doi.org/10.3390/systems11050221

Academic Editor: William T. Scherer

Received: 2 March 2023

Revised: 28 March 2023

Accepted: 24 April 2023

Published: 26 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Hybridization of Particle Swarm Optimization with Variable
Neighborhood Search and Simulated Annealing for Improved
Handling of the Permutation Flow-Shop Scheduling Problem
Iqbal Hayat 1, Adnan Tariq 1 , Waseem Shahzad 2, Manzar Masud 3, Shahzad Ahmed 4 ,
Muhammad Umair Ali 5,* and Amad Zafar 5,*

1 Department of Mechanical Engineering, University of Wah, Wah Cantt 47040, Pakistan;
iqbalmts@gmail.com (I.H.); adnan.tariq@wecuw.edu.pk (A.T.)

2 Department of Mechatronics Engineering, University of Wah, Wah Cantt 47040, Pakistan;
waseemshahzad@wecuw.edu.pk

3 Department of Mechanical Engineering, Capital University of Science and Technology (CUST),
Islamabad 44000, Pakistan; manzar.masud@cust.edu.pk

4 Department of Electronics Engineering, Hanyang University, Seoul 04763, Republic of Korea;
shahzad1@hanyang.ac.kr

5 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
* Correspondence: umair@sejong.ac.kr (M.U.A.); amad@sejong.ac.kr (A.Z.)

Abstract: Permutation flow-shop scheduling is the strategy that ensures the processing of jobs on
each subsequent machine in the exact same order while optimizing an objective, which generally
is the minimization of makespan. Because of its NP-Complete nature, a substantial portion of the
literature has mainly focused on computational efficiency and the development of different AI-based
hybrid techniques. Particle Swarm Optimization (PSO) has also been frequently used for this purpose
in the recent past. Following the trend and to further explore the optimizing capabilities of PSO,
first, a standard PSO was developed during this research, then the same PSO was hybridized with
Variable Neighborhood Search (PSO-VNS) and later on with Simulated Annealing (PSO-VNS-SA)
to handle Permutation Flow-Shop Scheduling Problems (PFSP). The effect of hybridization was
validated through an internal comparison based on the results of 120 different instances devised
by Taillard with variable problem sizes. Moreover, further comparison with other reported hybrid
metaheuristics has proved that the hybrid PSO (HPSO) developed during this research performed
exceedingly well. A smaller value of 0.48 of ARPD (Average Relative Performance Difference) for the
algorithm is evidence of its robust nature and significantly improved performance in optimizing the
makespan as compared to other algorithms.

Keywords: permutation flow-shop scheduling problems (PFSP); particle swarm optimization (PSO);
makespan; hybrid particle swarm optimization (HPSO); metaheuristic

1. Introduction

Scheduling is a fundamental component of advanced manufacturing processes and
systems. It efficiently utilizes resources to maximize objectives, e.g., makespan, flow time,
average tardiness, etc. It plays a significant role in modern production facilities by optimally
organizing and controlling the work and workloads in a manufacturing process, resulting in
minimal inventory, processing time, idle time, and product cost [1]. In scheduling resources,
such as machines, are allocated to tasks, such as jobs, to ensure the completion of these tasks
in a limited amount of time. Scheduling while manufacturing, is basically the arrangement
of jobs that can be processed on available machines subjected to different constraints.

Some of the classical models used to solve scheduling problems are job-shop, flow-
shop, and open-shop. The Permutation Flow-shop Scheduling Problem (PFSP) addresses
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the most important problems related to machine scheduling and involves the sequential pro-
cessing of n jobs on m machines [2]. Flow-Shop scheduling problems are NP-complete [3,4],
for which complete enumeration requires considerable computational effort and time
exponentially increasing with the problem size. The intricate nature of these problems
renders exact solution methods impractical when dealing with numerous jobs and/or
machines. This is the primary rationale behind the utilization of various heuristics, found
in the literature.

2. Literature Review

Pioneering efforts by Johnson [5] concluded that PFSP with more than two machines
could not be solved analytically. Consequently, researchers focused on other heuristic-based
approaches to handle the PFSP of more than two machines. Some notable examples include
Palmer’s heuristic [6], CDS (Campbell, Dudek & Smith) [7], VNS (Variable Neighborhood
Search) [8], Branch & Bound [9], etc. However, with the increase in problem size, even the
best heuristics tend to drift away from the optimal solutions and converge to suboptimal
solutions. Therefore, the focus of research shifted towards meta-heuristics. Many such
approaches, as viable solutions to PFSP, have already been reported in the literature, which
includes GA (Genetic Algorithms) [10,11], PSO (Particle Swarm Optimization) [12,13] and
ACO (Ant Colony Optimization) [14], Q-Learning algorithms [15], HWOA (Hybrid Whale
Optimization Algorithms) [16], CWA (Enhanced Whale Optimization Algorithms) [17],
and BAT-algorithms [18]. Metaheuristic-based approaches start with sequences generated
randomly by a heuristic and then iterate until a stopping criterion is satisfied [19]. These
approaches have been extensively applied to find optimal solutions to flow-shop scheduling
problems [20]. Goldberg et al. [21] proposed GA-based algorithms as viable solutions to
scheduling problem. A GA-based heuristic for flow-shop scheduling, with makespan
minimization as the objective, was presented by Chen et al. [22]. The authors utilized
a partial crossover, no mutation, and a different heuristic for the random generation of
the initial population. A comparative analysis showed no improvement in results for a
population size of more than 60. However, hybrid GA-based approaches have significantly
improved results [23–27]. Despite this, the increased computational cost of such approaches
is a major limitation. Therefore, comparatively more efficient algorithms such as PSO have
recently been opted for more frequently [28].

PSO, initially proposed by Kennedy and Eberhart [29], is based on the “collective intel-
ligence” exhibited by swarms of animals. In PSO, a randomly generated initial population
of solutions iteratively propagates toward the optimal solution. PSO has been extensively
applied to flow-shop scheduling problems. Tasgetiren et al. [30] implemented the PSO
algorithm on a single machine while optimizing the total weighted tardiness problem and
developed the SPV (Smallest Position Value) heuristic-based approach for solving a wide
range of scheduling and sequencing problems. The authors hybridized PSO with VNS to
obtain better results by avoiding local minima. Improved performance of the PSO was
reported in comparison to ACO, with ARPD (average relative percent deviation) as the
evaluation criteria. Another approach, presented by Tasgetiren et al. [31], utilized PSO
with SPV and VNS for solving Taillard’s [32] benchmark problems and concluded that
PSO with VNS produced the same results as GA with VNS. Moslehi et al. [33] conducted a
study on the challenges of a Limited Buffer PSFP (LBPSFP) using a hybrid VNS (HVNS)
algorithm combined with SA. Despite the similar performance, the computational effi-
ciency of PSO was found to be exceedingly better than GA [28,34,35]. In addition, Fuqiang
et al. [36] proposed a Two Level PSO (TLPSO) to solve the management problem related
to credit portfolio. TLPSO included internal search and external search processes, and the
experimental results show that the TLPSO is more reliable than the other tested methods.

Horng et al. [37] presented a hybrid metaheuristic by combining SA (Simulated An-
nealing) with PSO and compared their results with that of simple GA and PSO. The results
for 20 different mathematical optimization functions confirmed the quick convergence and
good optimality of SA-PSO compared to standalone GA and PSO. A similar but slightly dif-
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ferent metaheuristic compounding PSO, SA, and TS (Tabu Search) was developed by Zhang
et al. [38]. The algorithm obtained quality solutions while consuming lesser computational
time when tested with 30 instances of 10 different sizes taken from Taillard’s [39] benchmark
problems for PFSP and performed significantly better than NPSO (Novel PSO) and GA.
Given the optimizing capabilities of hybrid approaches, recently, researchers have focused
even more on applying hybrid metaheuristics to PFSP to improve the global and local
neighborhood search capabilities of the standard algorithms. The optimizing capabilities of
the hybrid approaches have invigorated the researchers to apply these techniques to the
global and localneighborhood search algorithms. Yannis et al. [40] hybridized his PSO-VNS
algorithm with PR (Path Relinking Strategy). A comparative analysis of the technique
while solving Taillard’s [32] problems yielded a significantly better PSO-VNS-PR algorithm
performance than PSO with constant global and local neighborhood searches. The effects
of population initialization on PSO performance were studied by Laxmi et al. [41]. The
authors hybridized standard PSO with a NEH (Nawaz, Enscore & Ham) heuristic for
population initialization and SA for enhanced local neighborhood search. A significantly
improved performance of the algorithm was reported compared to other competing algo-
rithms. Fuqiang et al. [42] developed a technique including SA and GA for scheduled risk
management of IT outsourcing projects. They concluded that SA, in combination with GA,
is the superior algorithm in terms of stability and convergence.

From the literature review presented above, it can be evidently concluded that meta-
heuristics have the increased the capability of handling NP-hard problems. Furthermore,
PSO, combined with other heuristics, have performed better than other tools, e.g., GA,
ACO, etc. Therefore, to further validate this conclusion, a PSO-based approach was devel-
oped during this research in a stepwise manner. First, a standard PSO was developed and
validated through Taillard’s [32] suggested benchmark problems. This was followed by its
gradual hybridization with VNS only and then both with VNS & SA while observing the
initial temperature’s effect on SA optimality [43]. An internal comparison based on Tail-
lard’s benchmark problems was also carried out to justify the effect of hybridization. After
validation, the hybrid PSO (HPSO)—developed during this research—was also compared
with a recently reported Hybrid Genetic Simulated Annealing Algorithm (HGSA) [26]
and other famous techniques based on the ARPD values. The comparison showed the
effectiveness and the robust nature of the HPSO (PSO—VNS—SA), developed during this
research, as it outperformed all its competitors.

3. Methodology

To execute the proposed research, a stepwise methodology adopted during this re-
search is as follows:

(1) Formulation of an optimization model for the PFSP.
(2) Development of standard PSO.
(3) Hybridization of standard PSO with VNS.
(4) Further hybridization of PSO—VNS with SA.

3.1. Optimization Model

An optimization model is formulated for n–jobs and m–machines PFSP while having
minimization of makespan (Cmax) as the objective function so that its results can be easily
compared with other approaches. To optimize Cmax, the model needs to fulfill several
constraints listed as follows:

1. Each job (j) must start its next operation on the next machine (i + 1) in sequence after
its previous operation on the previous machine (i) is completed.

2. Each job (j) has an operation scheduled on each machine (i), i.e., each job must visit
each machine only once

3. Jobs must not overtake each other in between machines, and the permutation remains
the same on each subsequent machine.
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The formulated model is presented in Equation (1)

Objective = F = Minimize Cmax (1)

where Cmax = max (CTj); CTj is the completion time of job j and j = 1, 2, 3 . . . . . . ., n; where
n is the total number of jobs. In PFSP, the value of makespan is always defined by the last
job in each permutation; therefore, to reduce the computational effort, Cmax is determined
only for the last job (j = L) and is given by Equation (2).

Cmax =

[
CT1L +

m−1

∑
i=1

(
ST(i+1)L − CTiL

)
+
(

CT(i+1)L − ST(i+1)L

)]
(2)

where:

CT1L = Completion time of the last job (j = L) in a permutation on machine1.
ST(i+1)L = Start time of the last job on the next machine.
ST(i+1)L − CT1L = Waiting time of the last job (j = L) in a permutation on the next machine.
CT(i+1)L − ST(i+1)L = Processing time of the last job in a permutation on the next machine.

Subject to:
ST(i+1)j − CTij ≥ 0 (3)

Job (j) must start its next operation on the next machine (i + 1) after its previous
operation on the previous machine (i) is completed.

ST(i+1)j − STij ≥ 0 (4)

This constraint ensures that the processing time of each job must be positive, i.e., each
job has an operation scheduled on each machine.

CTij ≤ STi(j+1) (5)

This ensures that jobs do not overtake each other in between machines, and the
permutation remains the same on each subsequent machine.

STij ≥ 0 (6)

CTij ≥ 0 (7)

3.2. Solution Representation

Since PSO is domain-independent, the most complicated step is the solution represen-
tation. There is n number of coordinates or positions for n number of jobs, representing
the direct relationship between the problem domain and the PSO particles. In parallel,
the particle Xt

i = xt
i1, xt

i2, xt
i3, . . . , xt

in represents the continuous values of positions for
n number of jobs in the flow-shop problems. For the determination of sequencing, the
smallest position value (SPV) was embedded in the algorithm for finding the position
values xt of the particle xt

i proposed by Tasgetiren et al. [31]. The solution representation of
particle Xt

i with its positions and velocity values, and the sequence, according to the SPV
rule, is shown in Table 1.
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Table 1. Solution representation of a particle.

Dimension,
j 1 2 3 4 5 6

xt
ij 1.80 −0.99 3.01 −0.72 −1.20 2.15

vt
ij 3.89 2.94 3.08 −0.87 −0.20 3.16

Jobs, πt
ij 5 2 4 1 6 3

xt
i5 = −1.20 is the minimum value in the position row, so the first job assigned in the

permutation j = 5; the second minimum position value is xt
i2 = −0.99. Therefore, j = 2 is

assigned to the next job, and so on. Otherwise stated, permutation is constructed by using
the sorted value of positions.

3.3. Algorithm Implementation

The approach is implemented in three different stages using MATLAB programming.
Firstly, a standard PSO is encoded, as shown in Figure 1, Part (a). To test its performance, a
total number of 120 benchmark problems, devised by Taillard [32], are handled, and their
respective outcomes are listed in Table 1. Later on, the same standard PSO is hybridized
with VNS by allowing the best solution in each iteration of standard PSO to receive further
improvements under the procedure devised by VNS. PSO is a global search algorithm and
thus explores the larger search space and identifies the potential region where the optimum
may exist. VNS, on the other hand, searches inside this potential space and narrows down
the location of a possible optimum. In each iteration this process is repeated until the best
solution is identified. This combination of standard PSO with VNS is presented in Figure 1,
combination of Parts (a) and (b). The performance of hybridized PSO-VNS is also validated
through the same 120 benchmark problems, and the results are listed in Table 1.

Systems 2023, 11, x FOR PEER REVIEW 6 of 18 
 

 

 

Figure 1. Flow diagram of PSO, PSO-VNS and PSO-VNS-SA. 

3.4. Sensitivity Analysis 

Like other evolutionary computational algorithms, particle swarm optimization is 

sensitive to hyperparameters and may suffer from premature convergence due to poorly 

selected control parameters. This may result in suboptimal performance and convergence 

at a local minimum. Extensive research has been conducted to characterize the influence 

of various control parameters on the performance of PSO. Isiet et al. [44] studied the effect 

of individual parameter variation on the performance of a standard benchmark problem. 

The authors testified a profound impact of inertia weight and acceleration coefficients on 

algorithm performance and reported a range of [0, 0.5] for the inertia weight matrix con-

trary to the previously reported [45,46] range of [0.9, 1.2]. More recent studies have pro-

posed a dynamically changing inertia matrix approach [47] for increased exploration at 

the initial stage and reduced randomness at the converging stage of the algorithm. The 

algorithm developed in this research followed a similar approach with an inertia matrix 

in the range of [0.4, 1.2] and a decrement factor of 0.975. In addition to the inertia matrix, 

C1 (self-adjustment) and C2 (social adjustment) learning factors significantly impact algo-

rithm’s performance. Previous studies have experimented with contrasting values of C1 

and C2 and have suggested that the sum of the two variables should not be more than 4 

[48], as proposed by [29]. The algorithm, developed during this research, exhibited similar 

behavior, which utilized a value of 2 for both the social coefficients. The main PSO algo-

rithm was hybridized with Simulated Annealing (SA) to improve its performance against 

local minima. The computational procedure of SA is analogous to the positioning of mol-

ecules to the lowest state of energy as well as the constancy state through a controlled 

cooling rate for improving material properties. SA’s behavior depends on hyperparame-

ters too. These include initial temperature, acceptance criteria, and cooling rate. The cool-

ing rate is dynamically adjusted, starting with a higher value and decreasing it with in-

creasing iterations. The initial temperature is kept at a higher value to ensure maximum 

variation and is slowly cooled with a specific cooling rate to the final temperature, which 

Figure 1. Flow diagram of PSO, PSO-VNS and PSO-VNS-SA.



Systems 2023, 11, 221 6 of 17

Finally, the hybrid version of PSO-VNS is further hybridized with SA to intensify local
improvement and give further chance to the best solution in each iteration of the standard
PSO by searching in its neighborhood for an even better option. The evolution part of the
search is taken care of by the PSO whereas both VNS and SA help in locally improving the
solution (Best) identified by PSO. VNS, by nature, is a greedy search algorithm and selects
only better solutions whereas SA chooses even a slightly inferior solution if it falls within
an already calculated range of probability. This helps the overall algorithm in avoiding
local minima, reaching global optimum, and maintaining diversity in the population as
well. The combined operating strategy of HPSO is shown in Figure 1. Its performance
has also been confirmed through the same 120 benchmark problems. All the algorithms
were run on a Core-i7 processor with 8 Gb of RAM using Windows 10 as the operating
system. For comparison, the results are also listed in Table 1. The statistical comparison of
the algorithms was based on a t-test, and the level of significance was set to p = 0.05.

3.4. Sensitivity Analysis

Like other evolutionary computational algorithms, particle swarm optimization is
sensitive to hyperparameters and may suffer from premature convergence due to poorly
selected control parameters. This may result in suboptimal performance and convergence
at a local minimum. Extensive research has been conducted to characterize the influence of
various control parameters on the performance of PSO. Isiet et al. [44] studied the effect
of individual parameter variation on the performance of a standard benchmark problem.
The authors testified a profound impact of inertia weight and acceleration coefficients
on algorithm performance and reported a range of [0, 0.5] for the inertia weight matrix
contrary to the previously reported [45,46] range of [0.9, 1.2]. More recent studies have
proposed a dynamically changing inertia matrix approach [47] for increased exploration
at the initial stage and reduced randomness at the converging stage of the algorithm.
The algorithm developed in this research followed a similar approach with an inertia
matrix in the range of [0.4, 1.2] and a decrement factor of 0.975. In addition to the inertia
matrix, C1 (self-adjustment) and C2 (social adjustment) learning factors significantly impact
algorithm’s performance. Previous studies have experimented with contrasting values
of C1 and C2 and have suggested that the sum of the two variables should not be more
than 4 [48], as proposed by [29]. The algorithm, developed during this research, exhibited
similar behavior, which utilized a value of 2 for both the social coefficients. The main PSO
algorithm was hybridized with Simulated Annealing (SA) to improve its performance
against local minima. The computational procedure of SA is analogous to the positioning of
molecules to the lowest state of energy as well as the constancy state through a controlled
cooling rate for improving material properties. SA’s behavior depends on hyperparameters
too. These include initial temperature, acceptance criteria, and cooling rate. The cooling
rate is dynamically adjusted, starting with a higher value and decreasing it with increasing
iterations. The initial temperature is kept at a higher value to ensure maximum variation
and is slowly cooled with a specific cooling rate to the final temperature, which is also the
stopping criterion for the algorithm. The approach developed during this research utilizes
an initial temperature of 100 cooled to a final temperature of 0.5 with a final cooling rate
of 0.99.

4. Results and Discussion

The sizes of Taillard’s benchmark problems, used for validation of the three algorithms
presented in Figure 1, ranged from 20 × 5 (n × m) to 500 × 20. Each problem was given
ten runs while using a swarm size of twice the number of jobs, and the inertial weights
used, ranged from 1.2 to 0.4, with a decrement factor of 0.975. The cognitive and social
acceleration coefficients (C1 and C2) were initialized with a value of 2, and the maximum
iterations were kept limited to 100. The results obtained are listed in Tables 2–5 and
presented in Figures 2–5. The recently reported results of the Q-Learning algorithm [15],
though limited to a maximum problem size of 50 × 20, have also been analyzed for
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performance comparisons. The data in Table 2 and Figure 2 show that the algorithm
achieved the upper bound in all instances of the 20-job problems resulting in an ARPD
value of zero. A similar trend can be observed for the 50-job problems (Table 3, Figure 3),
where the HPSO results in an ARPD value of 0.80, which is significantly better than the
PSO-VNS and PSO with ARPD values of 3.21 and 4.20, respectively. The performance
consistency is also apparent from the 100- and 200-job instances results, where the HPSO
achieved ARPD values of 0.48 and 0.63 compared to 3.03 and 3.06 for PSO-VNS and 6.30 and
8.49 for the PSO. Figures 2–5 clearly depict that the performance of HPSO in comparison to
standard PSO and PSO–VNS was consistently superior as it returned improved solutions
for the entire set of 120 benchmark problems.

Table 2. Results of PSO, PSO-VNS, and HPSO for Taillard’s benchmark problems.

Taillard’s Problems Makespan RPD

Problem Instance Upper Bound PSO PSO-VNS HPSO PSO PSO-VNS HPSO

20 × 5

1 1278 1294 1297 1278 ± 0.00 1.25 1.49 0.00

2 1359 1365 1366 1359 ± 0.00 0.44 0.52 0.00

3 1081 1108 1100 1081 ± 1.79 2.50 1.76 0.00

4 1293 1311 1311 1293 ± 0.00 1.39 1.39 0.00

5 1235 1248 1248 1235 ± 1.00 1.05 1.05 0.00

6 1195 1217 1210 1195 ± 0.00 1.84 1.26 0.00

7 1234 1251 1251 1234 ± 2.50 1.38 1.38 0.00

8 1206 1228 1218 1206 ± 0.00 1.82 1.00 0.00

9 1230 1264 1261 1230 ± 0.00 2.76 2.52 0.00

10 1108 1135 1135 1108 ± 0.00 2.44 2.44 0.00

ARPD 1.69 1.48 0.00

20 × 10

1 1582 1632 1625 1582 ± 0.00 3.16 2.72 0.00

2 1659 1710 1708 1659 ± 3.00 3.07 2.95 0.00

3 1496 1551 1542 1496 ± 2.94 3.68 3.07 0.00

4 1377 1418 1417 1377 ± 3.85 2.98 2.90 0.00

5 1419 1488 1479 1419 ± 3.00 4.86 4.23 0.00

6 1397 1443 1449 1397 ± 2.50 3.29 3.72 0.00

7 1484 1535 1531 1484 ± 0.00 3.44 3.17 0.00

8 1538 1575 1560 1538 ± 5.82 2.41 1.43 0.00

9 1593 1638 1636 1593 ± 0.92 2.82 2.70 0.00

10 1591 1637 1637 1591 ± 4.41 2.89 2.89 0.00

ARPD 3.26 2.98 0.00

20 × 20

1 2297 2355 2380 2297 ± 7.03 2.53 3.61 0.00

2 2099 2168 2144 2099 ± 4.58 3.29 2.14 0.00

3 2326 2375 2360 2326 ± 5.88 2.11 1.46 0.00

4 2223 2291 2291 2223 ± 4.50 3.06 3.06 0.00
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Table 2. Cont.

Taillard’s Problems Makespan RPD

Problem Instance Upper Bound PSO PSO-VNS HPSO PSO PSO-VNS HPSO

5 2291 2364 2361 2291 ± 4.58 3.19 3.06 0.00

6 2226 2288 2276 2226 ± 2.40 2.79 2.25 0.00

7 2273 2332 2332 2273 ± 3.38 2.60 2.60 0.00

8 2200 2260 2248 2200 ± 3.41 2.73 2.18 0.00

9 2237 2304 2304 2237 ± 2.50 3.00 3.00 0.00

10 2178 2271 2253 2178 ± 2.94 4.27 3.44 0.00

ARPD 2.95 2.68 0.00

Average 2.63 2.38 0.00

Table 3. Results of PSO, PSO-VNS, and HPSO for Taillard’s 50-job benchmark problems.

Taillard’s Problems Makespan RPD

Problem Instance Upper Bound PSO PSO-VNS HPSO PSO PSO-VNS HPSO

50 × 5
1 2724 2740 2735 2724 ± 0.00 0.59 0.40 0.00
2 2834 2882 2882 2834 ± 6.08 1.69 1.69 0.00
3 2621 2664 2628 2621 ± 0.00 1.64 0.27 0.00
4 2751 2795 2782 2751 ± 0.80 1.60 1.13 0.00
5 2863 2864 2864 2863 ± 0.00 0.03 0.03 0.00
6 2829 2848 2848 2829 ± 1.99 0.67 0.67 0.00
7 2725 2774 2758 2725 ± 4.18 1.80 1.21 0.00
8 2683 2719 2707 2683 ± 8.40 1.34 0.89 0.00
9 2552 2589 2585 2552 ± 5.96 1.45 1.29 0.00

10 2782 2786 2782 2782 ± 0.00 0.14 0.00 0.00
ARPD 1.10 0.76 0.00

50 × 10
1 2991 3140 3105 3018 ± 8.45 4.98 3.81 0.90
2 2867 3040 2980 2890 ± 11.77 6.03 3.94 0.80
3 2839 3015 2950 2860 ± 15.32 6.20 3.91 0.74
4 3063 3242 3180 3063 ± 2.00 5.84 3.82 0.00
5 2976 3140 3095 2995 ± 14.72 5.51 4.00 0.64
6 3006 3148 3106 3043 ± 2.50 4.72 3.33 1.23
7 3093 3225 3195 3115 ± 6.00 4.27 3.30 0.71
8 3037 3158 3090 3048 ± 2.80 3.98 1.75 0.36
9 2897 3030 2995 2909 ± 8.00 4.59 3.38 0.41

10 3065 3160 3140 3099 ± 1.50 3.10 2.45 1.11
ARPD 4.92 3.37 0.69

50 × 20
1 3850 4216 4107 3910 ± 8.33 9.51 6.68 1.56
2 3704 4052 4009 3765 ± 13.12 9.40 8.23 1.65
3 3640 3899 3860 3709 ± 23.83 7.12 6.04 1.90
4 3723 3960 3930 3792 ± 13.80 6.37 5.56 1.85
5 3611 3850 3780 3675 ± 15.69 6.62 4.68 1.77
6 3681 3930 3890 3743 ± 26.00 6.76 5.68 1.68
7 3704 3915 3860 3762 ± 24.47 5.70 4.21 1.57
8 3691 3920 3890 3753 ± 25.47 6.20 5.39 1.68
9 3743 3960 3925 3805 ± 20.16 5.80 4.86 1.66

10 3756 3955 3896 3822 ± 3.60 5.30 3.73 1.76
ARPD 6.88 5.51 1.71

Average 4.30 3.21 0.80
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Table 4. Results of PSO, PSO-VNS and HPSO for Taillard’s 100 job benchmark problems.

Taillard’s Problems Makespan RPD

Problem Instance Upper Bound PSO PSO-VNS HPSO PSO PSO-VNS HPSO

100 × 5
1 5493 5523 5495 5493 ± 1.00 0.55 0.04 0.00
2 5268 5302 5290 5268 ± 7.84 0.65 0.42 0.00
3 5175 5225 5213 5175 ± 2.29 0.97 0.73 0.00
4 5014 5035 5023 5014 ± 3.63 0.42 0.18 0.00
5 5250 5311 5260 5250 ± 1.83 1.16 0.19 0.00
6 5135 5161 5160 5135 ± 0.98 0.51 0.49 0.00
7 5246 5292 5261 5246 ± 0.00 0.88 0.29 0.00
8 5094 5130 5120 5094 ± 2.45 0.71 0.51 0.00
9 5448 5485 5475 5448 ± 3.00 0.68 0.50 0.00

10 5322 5360 5342 5322 ± 6.50 0.71 0.38 0.00
ARPD 0.72 0.37 0.00

100 × 10
1 5770 6112 5879 5770 ± 6.42 5.93 1.89 0.00
2 5349 5654 5455 5364 ± 6.80 5.70 1.98 0.28
3 5676 5945 5797 5680 ± 5.88 4.74 2.13 0.07
4 5781 6204 5940 5810 ± 11.27 7.32 2.75 0.50
5 5467 5880 5619 5485 ± 8.65 7.55 2.78 0.33
6 5303 5625 5368 5303 ± 4.00 6.07 1.23 0.00
7 5595 5830 5727 5595 ± 2.80 4.20 2.36 0.00
8 5617 5985 5747 5624 ± 10.80 6.55 2.31 0.12
9 5871 6164 5990 5898 ± 4.80 4.99 2.03 0.46

10 5845 6074 5922 5860 ± 10.08 3.92 1.32 0.26
ARPD 5.70 2.08 0.20

100 × 20
1 6202 7003 6678 6308 ± 6.75 12.92 7.67 1.71
2 6183 7035 6566 6246 ± 27.00 13.78 6.19 1.02
3 6271 7017 6726 6361 ± 3.60 11.90 7.26 1.44
4 6269 7031 6651 6331 ± 0.00 12.16 6.09 0.99
5 6314 7131 6685 6403 ± 11.76 12.94 5.88 1.41
6 6364 7142 6781 6440 ± 9.62 12.23 6.55 1.19
7 6268 7092 6722 6342 ± 18.99 13.15 7.24 1.18
8 6404 7233 6852 6475 ± 8.33 12.95 7.00 1.11
9 6275 7072 6726 6342 ± 10.50 12.70 7.19 1.07

10 6434 7080 6777 6510 ± 16.23 10.04 5.33 1.18
ARPD 12.47 6.64 1.23

Average 6.30 3.03 0.48

Table 5. Results of PSO, PSO-VNS, and HPSO for Taillard’s 200- and 500-job benchmark problems.

Taillard’s Problems Makespan RPD

Problem Instance Upper Bound PSO PSO-VNS HPSO PSO PSO-VNS HPSO

200 × 10
1 10,862 11,224 10,993 10,862 ± 16.17 3.33 1.21 0.00
2 10,480 11,194 10,628 10,480 ± 14.18 6.81 1.41 0.00
3 10,922 11,435 11,122 10,922 ± 11.42 4.70 1.83 0.00
4 10,889 11,240 11,025 10,889 ± 0.00 3.22 1.25 0.00
5 10,524 11,145 10,650 10,550 ± 11.22 5.90 1.20 0.25
6 10,329 10,929 10,468 10,365 ± 8.97 5.81 1.35 0.35
7 10,854 11,409 11,087 10,880 ± 14.11 5.11 2.15 0.24
8 10,730 11,292 10,745 10,746 ± 5.88 5.24 0.14 0.15
9 10,438 11,098 10,515 10,438 ± 7.20 6.32 0.74 0.00

10 10,675 11,152 10,922 10,724 ± 6.86 4.47 2.31 0.46
ARPD 5.09 1.36 0.14
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Table 5. Cont.

Taillard’s Problems Makespan RPD

Problem Instance Upper Bound PSO PSO-VNS HPSO PSO PSO-VNS HPSO

200 × 20
1 11,195 11,517 11,625 11,310 ± 11.31 2.88 3.84 1.03
2 11,203 12,685 11,850 11,326 ± 9.17 13.23 5.78 1.10
3 11,281 12,715 11,887 11,404 ± 17.76 12.71 5.37 1.09
4 11,275 12,596 11,836 11,380 ± 11.00 11.72 4.98 0.93
5 11,259 12,658 11,780 11,394 ± 14.10 12.43 4.63 1.20
6 11,176 12,640 11,702 11,289 ± 20.38 13.10 4.71 1.01
7 11,360 12,805 11,936 11,487 ± 8.71 12.72 5.07 1.12
8 11,334 12,679 11,832 11,464 ± 11.99 11.87 4.39 1.15
9 11,192 12,642 11,768 11,287 ± 0.00 12.96 5.15 0.85

10 11,288 12,760 11,923 11,415 ± 9.31 13.04 5.63 1.13
ARPD 11.66 4.95 1.06

500 × 20
1 26,059 28,524 26,808 26,220 ± 27.92 9.46 2.87 0.62
2 26,520 29,096 27,177 26,684 ± 84.41 9.71 2.48 0.62
3 26,371 28,810 27,276 26,546 ± 34.74 9.25 3.43 0.66
4 26,456 27,895 27,178 26,640 ± 71.73 5.44 2.73 0.70
5 26,334 28,646 27,028 26,516 ± 47.5 8.78 2.64 0.69
6 26,477 28,750 27,263 26,674 ± 18.79 8.58 2.97 0.74
7 26,389 28,540 27,116 26,642 ± 31.41 8.15 2.75 0.96
8 26,560 28,890 27,348 26,743 ± 42.81 8.77 2.97 0.69
9 26,005 28,582 26,760 26,195 ± 30.62 9.91 2.90 0.73

10 26,457 28,844 27,204 26,604 ± 62.60 9.02 2.82 0.56
ARPD 8.71 2.86 0.70

Average 8.49 3.06 0.63
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It can be concluded that the assimilation of VNS and SA significantly improved the
convergence ability of standard PSO, which is evident from the results of the three PSO-
based algorithms. The performance difference among the three variants of the PSO was
significant (p << 0.05) for problem sizes up to 50 × 5 (Figure 4). However, the deviation
of the results became more pronounced with the increasing problem size, as is evident
from Figures 4 and 5. Zhang et al. [49] conveyed a similar pattern of results for a hybrid
metaheuristic-based approach they developed by combining PSO and SA with a stochastic
variable neighborhood search. Researchers have mostly reported a significantly improved
performance of SA with an initial temperature setting of 5◦. However, the HPSO algorithm
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presented in this paper performed comparatively better with an initial temperature setting
of 100◦ and a cooling rate of 0.95◦. A possible reason for this deviation from other algorithms
is the comparatively wider initial search space that increased the probability acceptance
level of SA.
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To further elaborate on the HPSO’s effectiveness, its performance has also been com-
pared against hybrid GA (HGA)-based approaches. Since HGAs have been extensively
reported in the literature and are widely regarded as the best metaheuristic for these sorts
of problems, to justify the robust behavior of HPSO developed during this research, its
performance was also compared with HGA by Tseng et al. [27] and HGSA by Wei et al. [26]
(hybrid GA with SA). The algorithm performed significantly better than HGA (p = 0.05)
and HGSA (p = 0.05), as evident from Figure 6.

Comparisons were also carried out with four different versions of GA, i.e., SGA
(Simple Genetic Algorithm) [24], MGGA (Mining Gene Genetic Algorithm) [23], ACGA
(Artificial Chromosome with Genetic Algorithm) [23], and SGGA (Self-Guided Genetic
Algorithm) [24], as presented in Figure 7. The deviation of the GA from the upper bound,
which increases in magnitude with the increasing problem size, was significantly more
than HPSO. Thus, it can be concluded that the algorithm developed during this research
is comparatively more robust and performs better than other hybrid GA techniques even
while handling larger problem sizes.

Once the internal comparison of HPSO with standard PSO, PSO-VNS, and validation
against HGA and HGSA was completed, the last part of validation was against other
notable techniques already reported in the literature. For this purpose, a more detailed
comparison was carried out with WOA [16], Chaotic Whale Optimization (CWA) [17], the
BAT-algorithm [18], NEHT (NEH algorithm together with the improvement presented by
Taillard) [31], ACO [50], CPSO (Combinatorial PSO) [51], PSOENT (PSO with Expanding
Neighborhood Topology) [40], and HAPSO (Hybrid Adaptive PSO) [52]. This comparison
was solely based on ARPD values and is shown in Table 6 and graphically illustrated in
Figure 8. The improved performance of HPSO, developed during this research, is evident
as compared to other reported hybrid heuristics.
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The results of the Q-Learning algorithm [15] have not been shown in Table 6 due to
the limited results reported by the author, as only 30 out of the 120 problems limited to a
maximum problem size of 50 × 20 were analyzed. However, a comparison was performed
for ARPD values for the limited number of problems for both HPSO and Q-learning. The
results show a superior performance of the HPSO compared to the Q-Learning algorithm.
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Table 6. Comparison of ARPD values of different metaheuristics with the algorithm developed
during this research.

Problem
Instance

Average Relative Percentage Deviation

HPSO HWA CWA BAT CLN NEHT ACO CPSO HGA HGSA SGA MGGA ACGA SGGA PSOENT HAPSO

20 × 5 0 0 0.04 0.54 2.25 3.35 1.19 1.05 17.03 7.57 1.02 0.81 1.08 1.1 0 0
20 × 10 0 0 0.67 2.61 4.01 5.02 1.7 2.42 28.27 7.42 1.73 1.4 1.62 1.9 0.07 0.09
20 × 20 0 0 0.68 2.54 3.32 3.73 1.6 1.99 30.1 6.37 1.48 1.06 1.34 1.6 0.08 0.07
50 × 5 0 0 0.08 0.06 0.71 0.84 0.43 0.9 18.66 1.31 0.61 0.44 0.57 0.52 0.02 0.05

50 × 10 0.69 0.54 0.79 4.00 4.23 5.12 0.89 4.85 42.9 7.05 2.81 2.56 2.79 2.74 2.11 2.01
50 × 20 1.71 0.44 2.37 6.65 5.73 6.26 2.71 6.4 58.72 8.86 3.98 3.82 3.75 3.94 3.83 3.2
100 × 5 0 0.09 0.05 0.06 0.28 0.46 0.22 0.74 19.9 1.49 0.47 0.41 0.44 0.38 0.09 0.14
100 × 10 0.2 0.46 0.41 0.86 1.45 2.13 1.22 2.94 43.26 2.76 1.67 1.5 1.71 1.6 1.26 1.17
100 × 20 1.23 1.52 1.87 3.84 4.74 5.23 2.22 7.11 70.2 4.21 3.8 3.15 3.47 3.51 4.37 4.13
200 × 10 0.14 0.49 0.28 0.68 1.1 1.43 0.64 2.17 47.33 2.38 0.94 0.92 0.94 0.8 1.02 1.06
200 × 20 1.06 2.07 1.82 2.91 4.07 4.41 1.3 6.89 81.7 5.16 2.73 3.95 2.61 2.32 4.27 4.27
500 × 20 0.7 0.91 1.19 1.66 1.91 2.24 1.68 - 86.49 3.3 - - - - 2.73 3.43
Average 0.48 0.54 0.85 2.20 2.82 3.35 1.32 3.41 45.38 4.82 1.93 1.82 1.85 1.86 1.65 1.64

Note: The smallest ARPD values reported for each group of problems and overall average are presented as boldfaced.
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Figure 8. Comparison of HPSO with CLS, NEHT, and three other hybridized PSO techniques.

A row-wise comparison yields the performance variation of different approaches for
individual problem groups. It is important to note that the technique developed during this
research (HPSO) outperformed the other algorithms for each problem set. Although there
is a performance variation across the techniques for different problem sizes, the algorithm
was consistently better than all the other techniques. A smaller ARPD value in each
problems group resulted in an overall smallest average ARPD value of 0.48, significantly
better than the closest value of 0.85 for the HWA algorithm. It validates the claim that
the HPSO approach, developed during this research, is comparatively more robust and
remains consistent even while handling large sized problems. Furthermore, the average
computation time of HPSO is reported in Table 7.

Table 7. Comparison of Average Computation time in seconds of PSO, PSO-VNS, and HPSO.

Serial Number Problem Size Matrix Size PSO PSO-VNS HPSO

1 20 × 5 100 4.32 6.16 8.34
2 20 × 10 200 10.80 12.47 15.01
3 20 × 20 400 18.68 20.50 23.81
4 50 × 5 250 16.38 18.81 22.55
5 50 × 10 500 39.00 73.76 111.63
6 50 × 20 1000 87.60 135.39 190.19
7 100 × 5 500 59.40 71.92 89.20
8 100 × 10 1000 332.64 403.58 501.14
9 100 × 20 2000 591.60 718.40 892.53

10 200 × 10 2000 763.20 925.89 1149.64
11 200 × 20 4000 839.40 1028.85 1285.45
12 500 × 20 10,000 998.40 1225.25 1531.97
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5. Conclusions

As a member of the class of NP-complete problems, PFSP has been regularly re-
searched and reported in the literature. Several heuristic-based approaches in the literature
can efficiently handle this problem. However, for the larger problem sizes, most of the
researchers focused on hybridized metaheuristics due to their ability to produce quality
results in polynomial time, even for large-sized problems. Following this trend, a PSO-
based approach was developed during this research in a stepwise manner. First, a standard
PSO was developed, then it was hybridized with VNS, and finally, with SA. The final
version, HPSO, outperformed not just standard PSO and PSO-VNS, but it also performed
exceedingly well against other algorithms, including HGA, HGSA, ACO, BAT, WOA, and
CWA. Comparisons based on the ARPD values showed that the performance of HPSO
remained comparatively consistent, as evidenced by its small overall ARPD value of 0.48.
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