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Abstract— Most real-world search and optimization problems
involve multiple conflicting objectives and results in a Pareto-
optimal set. Various multi-objective optimization algorithms
have been proposed for solving such problems with the goals of
finding as many trade-off solutions as possible and maintaining
diversity among them. Since last decade, Evolutionary Multi-
objective Optimization (EMO) algorithms have been applied
successfully to various test and real-world optimization prob-
lems. These population based algorithms provide a diverse set
of non-dominated solutions. The obtained non-dominated set is
close to the true Pareto-optimal front but it’s convergence to the
true Pareto-optimal front is not guaranteed. Hence to ensure
the same, a local search method using classical algorithm can
be applied.

In the present work, SBX based NSGA-II is used as a
population based approach and the sequential quadratic pro-
gramming (SQP) method is used as a local search procedure.
This hybridization of evolutionary and classical algorithms
approach provides a confidence of converging near to the
true Pareto-optimal set with a good diversity. The proposed
procedure is successfully applied to 13 test problems consisting
two, three and five objectives. The obtained results validate our
motivation of hybridizing evolutionary and classical methods.

I. INTRODUCTION

Real-world optimization and test problems deal with si-

multaneous optimization of objectives. The outcome of such

an optimization problem is a set of compromised solutions of

different objectives. These are known as ‘Pareto-optimal’ so-

lutions [1]. Among the different multi-objective algorithms,

it is observed that an elitist non-dominated sorting algorithm

(popularly known as NSGA-II) can converge near to the

true Pareto-optimal front as well as maintain the diversity

of population on the Pareto-optimal front [2], [4]. The

non-dominated solutions obtained from NSGA-II can be

improved by local search technique using classical procedure.

This paper is prepared for the special session devoted to

performance assessment and competition of different multi-

objective algorithms on a set of 13 test problems [6]. In

this paper, we employ a population-based optimization al-

gorithm (NSGA-II) as a global optimizer and the sequential

quadratic programming (SQP) for locally improving the non-

dominated set of solutions. Most of the classical optimization

methods are designed to solve a derived single-objective

optimization problem in order to handle a multi-objective

optimization problem. The procedure needs to be scalarized
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to a single objective problem. In this work, we have used an

ε-constraint procedure [1] to convert multiple objectives to a

single-objective optimization problem.
The test problems consist of various properties in terms

of number of objectives (separability and deception), uni-

modality and multi-modality, convexity and concavity, and

with complex geometry, and others. It is our intuition that

to solve such wide variety of test problems with a reason-

able level of satisfaction, a hybrid approach consisting of

evolutionary and classical algorithms, has to be used. In the

following section, we describe the description of algorithm

and proposed procedure. In Section III and IV, we present

the parameters setting and simulation results in tabular and

graphical forms respectively and the paper is concluded in

section V.

II. DESCRIPTION OF THE PROPOSED PROCEDURE

A. Elitist Non-dominated Sorting Genetic Algorithm

Elitist Non-dominated Sorting Genetic Algorithm (NSGA-

II) uses an elite-preserving strategy as well as an explicit

diversity preserving mechanism [4]. The offspring popu-

lation Qt is first created by using the parent population

Pt. Then, the two population are combined together and a

non-dominated sorting is performed. To preserve diversity,

a density metric called Crowding Distance is used. The

different steps of the algorithm are described below:

Step 1: A random population is initialized.

Step 2: Objective functions for all objectives and constraint

are evaluated.

Step 3: Front ranking of the population is done based on

the dominance criteria.

Step 4: Crowding distance is calculated.

Step 5: Selection is performed using crowded binary tour-

nament selection operator.

Step 6: Crossover and mutation operators are applied to

generate an offspring population.

Step 7: Parent and offspring populations are combined and

a non-dominated sorting is done.

Step 8: The parent population is replaced by the best

members of the combined population.

In Step 3, Each solution is assigned a non-domination rank (a

smaller rank to a better non-dominated front). In Step 4, for

each i-th solution of a particular front, density of solutions

in its surrounding is estimated by taking average distance of

two solutions on its either side along each of the objective[4].

This average distance is called the crowding distance.
Selection is done based on the front rank of an individual

and for solutions having same front rank, selection is done
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on the basis of their crowding distances (larger, the better).

To create new offspring, simulated binary crossover (SBX)

operator [3] and polynomial mutation operator [5] are used.

In Step 8, initially solutions of better fronts replace the

parent population. When it is not possible to accommodate all

solutions of a particular front, that front is sorted on the basis

of crowding distance and as many individuals are selected

on the basis of higher crowding distance, which makes the

population size of the new population same as the previous

population.

Inspiration of using the SBX operator arrives from the

property of creating offsprings in proportion to the distance

between two parent solutions. The SBX operator biases

solutions near each parent more favorably than solutions

away from the parents [3]. In the present work, NSGA-II is

used as a population based algorithm which helps in finding

a non-dominated set of solutions with a good diversity.

B. Sequential Quadratic Programming

Sequential Quadratic programming (SQP) method uses

a quadratic model for the objective function and a linear

model for constraint(s) [7]. A nonlinear program in which

the objective function is quadratic and constraints are linear

is called a quadratic program (QP). SQP method solves an

approximated QP at each iteration. The gradients are numer-

ically calculated using forward finite difference technique. In

this study, the ε-constraint method is used to convert multiple

objectives to a single-objective optimization problem, follow-

ing which SQP is applied to the single-objective problem.

Here the SQP is employed as a local search procedure. Steps

of the proposed algorithm are described below:

1) Random population is initialized.

2) NSGA-II is applied to the initial population.

3) After finding a diverse set of non-dominated solutions

of NSGA-II, the SQP is employed on these solutions.

4) Solutions obtained from SQP, are again given to

NSGA-II to ensure non-domination and for achieving

any further improvement in terms of diversity among

them in the final iteration.

Test problems with M = 2 and M = 3 objectives are

solved with the above procedure. For M = 5 objectives,

the obtained SQP solutions are supplied to NSGA-II and

then, an archive of non-dominated solutions is created during

the final three iterations of NSGA-II to make sure that an

adequate number of non-dominated solutions are obtained,

as demanded in [6].

III. PARAMETERS SETTING

A. Test Suite

The performance of the hybrid algorithm is tested on

a set of 19 benchmark problems [6], which include seven

two-objective test problems, six three-objective and six five-

objective test problems.

B. PC Configuration

• System: Mandrake Linux 10.1

• CPU: P-IV 2.8 GHz

• RAM: 1 GB

• Language: ANSI-C

• Compiler Used: GCC version-3.2.2

C. Parameters Setting for NSGA-II

1) For M = 2 objective problems: Population size (N) =
100; Probability of crossover (Pc) = 0.9; Probability

of mutation (Pm) = 0.033; Distribution index for

crossover (ηc) = 5; Distribution index for mutation

(ηm) = 15.

2) For M = 3 objective problems: Population size (N) =
150; Probability of crossover (Pc) = 0.9; Probability

of mutation (Pm) = 0.033; Distribution index for

crossover (ηc) = 15; Distribution index for mutation

(ηm) = 10.

3) For M = 5 objective problems: Population size (N) =
300; Probability of crossover (Pc) = 0.9; Probability

of mutation (Pm) = 0.033; Distribution index for

crossover (ηc) = 15; Distribution index for mutation

ηm = 15.

D. Parameters Setting and Termination Criteria of SQP

1) Norm of descent direction: ‖ d ‖≤ ε; where ε = 10−9

or

2) Maximum number of iterations allowed (τ ): 50, 50
and 20 for two, three and five objective problems

respectively.

As soon as, any of the above criteria of SQP is satisfied, it

terminates and the solutions are supplied back to NSGA-II.

Terminating criteria of hybrid algorithm is based on the total

number of function evaluations taken by NSGA-II including

its final iteration(s) and by SQP method. It should be less

or equal to the maximum FES allowed (5(105)) [6]. We

calculate the number of FES required by SQP approximately

as follows. For n number of variables, SQP requires on

an average (n + 2) number of function evaluations in each

iteration to calculate gradient and objective function values.

Since a maximum of τ iterations are allowed, it will take

τ × (n + 2) number of FES for each solution and for N
non-dominated points, total SQP function evaluations are

τ ×N(n + 2). Thus, the function evaluations left to NSGA-

II is (5(105) − τ × N(n + 2)). On the basis of above

calculations, the number of generations allowed by NSGA-II

is (5(105) − τ × N(n + 2))/N . For example, for S ZDT1

problem with n = 30, N = 100, and τ = 50, the number

of generations allowed for NSGA-II procedure is 3, 400. It

is clear that the results shown at 5(105) FES used SQP

procedure.

As an initial parameter study, we have chosen 4 different

values of ηc (range: 2–20) and ηm (range: 5–50) and three

different values of τ (range: 20–50). A parametric study

on nine of 19 test problems was performed to find good

combinations of ηc, ηm and τ parameters. We have chosen
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three test problems with 2, 3 and 5-objective test problems.

A total of (4 × 4 × 3 × 9) or 432 runs were executed with

5(105) function evaluations (FES) for each run. Hence, a

maximum of 2.16(108) FES were performed for tuning the

parameters.

IV. SIMULATION RESULTS

A. R, Hypervolume and Covered Sets Indicators

First, we show the R-indicator values, which computes

difference between the maximum values of the augmented

Tchebycheff utility function of the supplied reference set and

our obtained solutions. A negative R-indicator means a better

obtained utility function value than that of the reference

set. A value close to zero means almost similar utility

function value between reference and obtained solutions. The

results obtained are presented in Tables I, II, III, IV, V, VI

and VII. 25 runs are performed for each test problem and

the best, median and worst results of R and IH indicators

are presented along with these mean and standard deviation

values.

First three tables show the values of R indicator at 5(103),
5(104) and 5(105) FES. Tables I, II and III indicate that

the algorithm converges at 5(104) FES and SQP helps in

improving the solution locally. In case of S ZDT1, S ZDT2

and S ZDT4, good improvement in R-indicator values can

be observed after the local search. It is also observed that 11

out of 19 problems, a negative R-indicator value is obtained

after 5(105) FES, meaning that a better utility function value

than the supplied reference set is found by our procedure. In

the other eight problems, the R-indicator is very close to

zero, meaning that a similar utility function value to that of

the reference set is found. On the basis of R-indicator values,

the proposed algorithm has performed well for the given test

suite.

Tables V to VII show hypervolume indicator IH at 5(103),
5(104) and 5(105) FES. A lower value of IH indicator

corresponds to a better approximated set. IH indicators show

better hypervolume values of our hybrid algorithm than the

supplied reference set in nine out of 19 problems after 5(105)
FES. Except both three and five-objective WFG1 problems,

in eight other problems, the IH indicator value is close to

zero.

Table IV shows the covered set indicator values for the

SYMPART test problem only. Best, median, worst, mean and

standard deviation values at 5(103), 5(104) and 5(105) FES

are presented.

B. Attainment Surface Plots

Attainment surface signifies a combination of both con-

vergence and diversity of obtained solutions. Figures 1, 2, 3

and 4 show 0%, 50% and 100% attainment surfaces after

5(105) FES along with Pareto front. Figures 5, 6 and 7 show

the 50% attainment surface after 5(105) FES. It can be ob-

served from the plots that for all two objectives test problems

except R ZDT4 and S ZDT6, the proposed procedure shows

excellent convergence and spread. Good attainment surfaces

for the shifted DTLZ problems are also obtained, whereas

performances on rotated DTLZ and WFG1 problems are

not quite satisfactory. In the case of S DTLZ3, WFG8 and

WFG9 problems, the attainment surface plots depict a partial

convergence and diversity. When the range for each objective

is fixed between [1, 2.5] for S DTLZ3 problem, the 50%

attainment surface plot shows a clear Pareto-optimal front,

indicating that the proposed procedure finds an adequate set

of solutions.
Figure 8 shows pair-wise interaction among five-objective

problems for WFG8 (above diagonal) and WFG9 (lower

diagonal) problems. The function values are normalized in

the range [1, 2] using lower and upper bounds given in the

reference data set [6]. Median approximation set with respect

to R-indicator at 5(105) is used for plotting the same. Definite

structures between objective pairs are visible from the plots.

C. Algorithm Complexity

Table VIII shows the complexity of the algorithm. T 1 =
(
∑N

i=1 t1i)/N , where t1i is the computing time for 10,000

function evaluations for problem i and N is the total number

of test problems. Here N = 19.
T 2 = (

∑N
i=1 t2i)/N , where t2i is the computing time for

the algorithm with 10,000 function evaluations for problem

i. Time complexity of the hybrid algorithm is 2.9295 which

depicts fast convergence capability.

V. CONCLUSIONS

In this paper, we have presented a hybrid approach con-

sisting of evolutionary and classical algorithms. A state-

of-the-art evolutionary multi-objective algorithm (NSGA-

II) and a local search procedure (SQP) have been put

together. The performance of the algorithm has been tested

on 19 test problems and assessment of performance has

been done on the basis of R-indicator, IH -indicator, covered

sets indicators, and the attainment surface plots. The pro-

posed hybrid procedure has shown a good performance for

problems OKA2, SYMPART, S ZDT1, S ZDT2, S ZDT4,

S DTLZ2 and S DTLZ3. For test problems S ZDT6, WFG8

and WFG9, the procedure has exhibited a fair performance,

whereas for problems WFG1, R ZDT4 and R DTLZ2 the

performance has been reasonably well. Even in case of higher

number of objectives, the proposed procedure has shown

a good convergence and diversity. The time complexity

estimate has revealed a fast convergence property of the

proposed procedure. In this paper, we have introduced a fast

and efficient hybrid multi-objective optimization procedure

which has solved a wide variety of problems with a rea-

sonable satisfaction. We are pursuing further investigation

on problems the proposed procedure did not perform to our

satisfaction.
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TABLE I

THE RESULTS FOR R-INDICATOR ON TEST PROBLEMS 1-7 FOR TWO-OBJECTIVE PROBLEMS.

FES 1.OKA2 2. SYMPART 3. S ZDT1 4. S ZDT2 5. S ZDT4 6. R ZDT4 7. S ZDT6

Best -0.1059e-2 0.8908e-3 0.1077e-1 0.3019e-1 0.3419e-1 0.5902e-2 0.1038e-1
Median -0.3735e-3 0.1538e-2 0.1343e-1 0.4382e-1 0.4147e-1 0.9405e-2 0.1118e-1

5 × 10
3 Worst 0.1854e-1 0.2244e-2 0.1870e-1 0.7153e-1 0.5387e-1 0.1724e-1 0.1180e-1

Mean 0.8095e-3 0.1543e-2 0.1349e-1 0.4809e-1 0.4164e-1 0.1034e-1 0.1111e-1
Std 0.3947e-2 0.3519e-3 0.2097e-2 0.1090e-1 0.4301e-2 0.3229e-2 0.4161e-2

Best -0.1065e-2 0.8419e-4 0.7988e-4 -0.3617e-4 0.3230e-3 0.7503e-3 0.2002e-1
Median -0.1064e-2 0.1380e-3 0.1096e-3 0.3548e-4 0.8402e-3 0.3062e-2 0.2561e-1

5 × 10
4 Worst -0.1063e-2 0.2035e-3 0.1727e-3 0.1752e-3 0.1650e-2 0.5635e-2 0.2942e-1

Mean -0.1064e-2 0.1449e-3 0.1143e-3 0.4377e-4 0.8775e-3 0.2947e-2 0.2522e-1
Std 0.3121e-6 0.3010e-4 0.2319e-4 0.4200e-4 0.3112e-3 0.1453e-2 0.1923e-2

Best -0.1065e-2 0.1408e-4 -0.4727e-7 -0.2062e-3 -0.1410e-8 0.3253e-3 0.8514e-2
Median -0.1065e-2 0.1902e-4 0.1967e-6 -0.2061e-3 0.2866e-7 0.1908e-2 0.1191e-1

5(10
5) Worst -0.1065e-2 0.2923e-4 0.7923e-6 -0.2057e-3 0.1134e-6 0.5039e-2 0.1417e-1

Mean -0.1065e-2 0.2024e-4 0.2092e-6 -0.2061e-3 0.3036e-7 0.2126e-2 0.1191e-1
Std 0.0 0.4737e-5 0.2172e-6 0.1227e-6 0.2400e-7 0.1304e-2 0.1670e-2

TABLE II

THE RESULTS FOR R-INDICATOR ON TEST PROBLEMS 8-13 FOR THREE-OBJECTIVE PROBLEMS.

FES 8. S DTLZ2 9. R DTLZ2 10. S DTLZ3 11. WFG1 12. WFG8 13. WFG9

Best 0.4213e-4 0.3726e-3 0.1931e-3 0.7293e-1 0.1323e-2 -0.8088e-2
Median 0.6445e-4 0.4535e-3 0.2320e-3 0.7428e-1 0.3666e-2 -0.6207e-2

5 × 10
3 Worst 0.8864e-4 0.5499e-3 0.2641e-3 0.7659e-1 0.6047e-2 0.1104e-2

Mean 0.6528e-4 0.4522e-3 0.2320e-3 0.7457e-1 0.3667e-2 -0.5182e-2
Std 0.1152e-4 0.4624e-4 0.1457e-4 0.1003e-2 0.1225e-2 0.2689e-2

Best 0.6797e-4 0.1148e-3 0.1062e-4 0.5026e-1 -0.8896e-2 -0.1291e-1
Median 0.9662e-4 0.1466e-3 0.1744e-4 0.5434e-1 -0.7800e-2 -0.9202e-2

5 × 10
4 Worst 0.1246e-3 0.1710e-3 0.2644e-4 0.5735e-1 -0.5940e-2 -0.9090e-2

Mean 0.9901e-4 0.1422e-3 0.1775e-4 0.5364e-1 -0.7643e-2 -0.9790e-2
Std 0.1563e-4 0.1639e-4 0.4404e-5 0.2865e-2 0.7587e-3 0.1260e-2

Best 0.7081e-4 0.1348e-4 0.1354e-7 0.1543e-1 -0.1280e-1 -0.1420e-1
Median 0.1014e-3 0.2127e-4 0.5996e-7 0.2326e-1 -0.1249e-1 -0.9279e-2

5(10
5) Worst 0.1194e-3 0.3077e-4 0.1483e-6 0.2957e-1 -0.1176e-1 -0.9242e-2

Mean 0.9541e-4 0.2137e-4 0.6402e-7 0.2254e-1 -0.1238e-1 -0.1021e-1
Std 0.1481e-4 0.4241e-5 0.3266e-7 0.3607e-2 0.2853e-3 0.1899e-2

TABLE III

THE RESULTS FOR R-INDICATOR ON TEST PROBLEMS 8-13 FOR FIVE-OBJECTIVE PROBLEMS.

FES 8. S DTLZ2 9. R DTLZ2 10. S DTLZ3 11. WFG1 12. WFG8 13. WFG9

Best -0.9778e-5 0.1183e-4 -0.1391e-7 0.6185e-1 -0.3134e-3 -0.2922e-4
Median -0.7284e-5 0.1985e-4 0.2956e-5 0.6423e-1 0.2893e-2 0.1677e-2

5 × 10
3 Worst 0.5061e-4 0.3300e-4 0.1777e-4 0.6591e-1 0.4856e-2 0.5751e-2

Mean 0.2352e-5 0.2134e-4 0.5304e-5 0.6398e-1 0.2796e-2 0.1964e-2
Std 0.1779e-4 0.6508e-5 0.5494e-5 0.1096e-2 0.1178e-2 0.1213e-2

Best -0.9820e-5 -0.1162e-4 -0.1473e-7 0.4820e-1 -0.9025e-2 -0.2232e-2
Median -0.9820e-5 -0.9776e-5 -0.1470e-7 0.4971e-1 -0.7763e-2 -0.2084e-2

5 × 10
4 Worst -0.3798e-5 0.4056e-4 -0.1182e-7 0.5066e-1 -0.7142e-2 -0.1870e-2

Mean -0.9508e-5 -0.5551e-5 -0.1432e-7 0.4955e-1 -0.7838e-2 -0.2089e-2
Std 0.1200e-6 0.1165e-4 0.7007e-9 0.6795e-3 0.4335e-3 0.7862e-4

Best -0.9820e-5 -0.1186e-4 -0.1473e-7 0.3408e-1 -0.1239e-1 -0.2337e-2
Median 0.3086e-5 -0.1186e-4 -0.1473e-7 0.3727e-1 -0.1168e-1 -0.2320e-2

5(10
5) Worst 0.2175e-4 -0.1135e-4 -0.1473e-7 0.3980e-1 -0.1117e-1 -0.2253e-2

Mean 0.2811e-5 -0.1183e-4 -0.1473e-7 0.3694e-1 -0.1181e-1 -0.2253e-2
Std 0.1273e-4 0.1097e-6 0.0 0.1727e-2 0.3587e-3 0.1895e-4

TABLE IV

THE RESULTS FOR COVERED SETS FOR TEST PROBLEM SYMPART.

FES 5 × 10
3

5 × 10
4

5(10
5)

Best 1.0000e-0 1.0000e-0 1.0000e-0

Median 1.0000e-0 1.0000e-0 1.0000e-0

Worst 1.0000e-0 1.0000e-0 1.0000e-0

Mean 1.0000e-0 1.0000e-0 1.0000e-0

Std 0.0 0.0 0.0
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TABLE V

THE RESULTS FOR HYPERVOLUME INDICATOR I
H

ON TEST PROBLEMS 1-7 FOR TWO-OBJECTIVE PROBLEMS.

FES 1.OKA2 2. SYMPART 3. S ZDT1 4. S ZDT2 5. S ZDT4 6. R ZDT4 7. S ZDT6

Best -0.9124e-3 0.2593e-2 0.4323e-1 0.6483e-1 0.1011e-0 0.1771e-1 0.2533e-0
Median 0.1217e-2 0.4457e-2 0.4790e-1 0.9467e-1 0.1241e-0 0.2824e-1 0.2763e-0

5 × 10
3 Worst 0.2625e-1 0.6491e-2 0.6285e-1 0.1453e-0 0.1605e-0 0.5292e-1 0.2916e-0

Mean 0.1968e-2 0.4473e-2 0.4983e-1 0.9915e-1 0.1244e-0 0.3192e-1 0.2741e-0
Std 0.5235e-2 0.1015e-2 0.5287e-2 0.1957e-1 0.1278e-1 0.9994e-2 0.1119e-1

Best -0.1085e-2 0.2503e-3 0.5984e-3 -0.1169e-1 0.8615e-3 0.2377e-2 0.4467e-1
Median -0.1048e-2 0.4089e-3 0.7706e-3 -0.1156e-1 0.2281e-2 0.9371e-2 0.5772e-1

5 × 10
4 Worst -0.9996e-3 0.6012e-3 0.9585e-3 -0.1130e-1 0.4755e-2 0.1698e-1 0.6655e-1

Mean -0.1047e-2 0.4291e-3 0.7811e-3 -0.1156e-1 0.2391e-2 0.9266e-2 0.5677e-1
Std 0.2104e-4 0.8844e-4 0.8364e-4 0.8540e-4 0.9101e-3 0.4095e-2 0.4493e-2

Best -0.1090e-2 0.4457e-4 0.2743e-3 -0.1214e-1 0.1233e-5 0.1471e-2 0.1839e-1
Median -0.1052e-2 0.5944e-4 0.3063e-3 -0.1211e-1 0.1520e-5 0.5727e-2 0.2625e-1

5(10
5) Worst -0.9906e-3 0.9000e-4 0.3748e-3 -0.1207e-1 0.2027e-5 0.1502e-1 0.3121e-1

Mean -0.1047e-2 0.6302e-4 0.3104e-3 -0.1211e-1 0.1507e-5 0.6521e-2 0.2618e-1
Std 0.2217e-4 0.1422e-4 0.2567e-4 0.1430e-4 0.1602e-6 0.3829e-2 0.3618e-2

TABLE VI

THE RESULTS FOR HYPERVOLUME INDICATOR I
H

ON TEST PROBLEMS 8-13 FOR THREE-OBJECTIVE PROBLEMS.

FES 8. S DTLZ2 9. R DTLZ2 10. S DTLZ3 11. WFG1 12. WFG8 13. WFG9

Best 0.7192e-3 0.6519e-2 0.2351e-2 0.6476e-0 -0.2597e-0 -0.4135e-1
Median 0.8781e-3 0.1019e-1 0.3618e-2 0.6595e-0 -0.2235e-0 -0.2463e-1

5 × 10
3 Worst 0.1213e-2 0.1457e-1 0.4960e-2 0.6773e-0 -0.1951e-0 0.1555e-1

Mean 0.8817e-3 0.1058e-1 0.3565e-2 0.6603e-0 -0.2238e-0 -0.2242e-1
Std 0.1194e-3 0.2526e-2 0.6222e-3 0.8864e-2 0.1556e-1 0.1687e-1

Best 0.4969e-3 0.3230e-3 0.5142e-6 0.5273e-0 -0.3792e-0 -0.5860e-1
Median 0.1134e-2 0.5792e-3 0.1985e-5 0.5371e-0 -0.3370e-0 -0.4609e-1

5 × 10
4 Worst 0.2286e-2 0.9148e-3 0.8502e-5 0.5464e-0 -0.3075e-0 -0.3337e-1

Mean 0.1116e-2 0.6018e-3 0.2800e-5 0.5360e-0 -0.3405e-0 -0.4615e-1
Std 0.3593e-3 0.1597e-3 0.2169e-5 0.6005e-2 0.1847e-1 0.7021e-2

Best 0.4857e-3 0.2223e-5 0.5884e-11 0.3213e-0 -0.4246e-0 -0.7746e-1
Median 0.1335e-2 0.6243e-5 0.1207e-8 0.4249e-0 -0.3911e-0 -0.4877e-1

5(10
5) Worst 0.1976e-2 0.2564e-4 0.5189e-8 0.4622e-0 -0.3742e-0 -0.3631e-1

Mean 0.1294e-2 0.7885e-5 0.1475e-8 0.4231e-0 -0.3991e-0 -0.5158e-1
Std 0.3796e-3 0.5197e-5 0.1183e-8 0.2736e-1 0.1756e-1 0.1134e-1

TABLE VII

THE RESULTS FOR HYPERVOLUME INDICATOR I
H

ON TEST PROBLEMS 8-13 FOR FIVE-OBJECTIVE PROBLEMS.

FES 8. S DTLZ2 9. R DTLZ2 10. S DTLZ3 11. WFG1 12. WFG8 13. WFG9

Best -0.6328e-5 0.1104e-3 0.1024e-7 0.6818e-0 -0.2454e-0 -0.1845e-0
Median 0.7930e-5 0.1703e-3 0.1459e-4 0.7050e-0 -0.2107e-0 -0.1611e-0

5 × 10
3 Worst 0.1737e-3 0.2991e-3 0.8320e-4 0.7207e-0 -0.1750e-0 -0.1095e-0

Mean 0.3752e-4 0.1878e-3 0.2507e-4 0.7025e-0 -0.2120e-0 -0.1573e-0
Std 0.5447e-4 0.6238e-4 0.2618e-5 0.1054e-1 0.1524e-1 0.1573e-1

Best -0.6815e-5 -0.1805e-3 -0.1776e-14 0.5498e-0 -0.3780e-0 -0.2144e-0
Median -0.6815e-5 -0.1722e-3 0.1998e-14 0.5644e-0 -0.3563e-0 -0.2124e-0

5 × 10
4 Worst -0.5044e-6 -0.1682e-4 0.1464e-8 0.5753e-0 -0.3011e-0 -0.2079e-0

Mean -0.6518e-5 -0.1557e-3 0.5859e-10 0.5629e-0 -0.3498e-0 -0.2124e-0
Std 0.1260e-5 0.3828e-4 0.2928e-9 0.7024e-2 0.1988e-1 0.1375e-2

Best -0.6815e-5 -0.1830e-3 -0.1110e-14 0.4115e-0 -0.4302e-0 -0.2160e-0
Median -0.3104e-6 -0.1830e-3 0.0 0.4415e-0 -0.4209e-0 -0.2153e-0

5(10
5) Worst 0.3992e-4 -0.1829e-3 0.1998e-14 0.4621e-0 -0.3870e-0 -0.2139e-0

Mean 0.5535e-5 -0.1830e-3 0.2042e-15 0.4381e-0 -0.4165e-0 -0.2154e-0
Std 0.1428e-4 0.1363e-7 0.9108e-15 0.1510e-1 0.1375e-1 0.4374e-3

TABLE VIII

COMPUTATIONAL COMPLEXITY.

T1 T2 (T2 − T1)/T1
0.240s 0.9431s 2.9295
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