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(e capability of the extreme learning machine (ELM) model in modeling stochastic, nonlinear, and complex hydrological
engineering problems has been proven remarkably. (e classical ELM training algorithm is based on a nontuned and random
procedure that might not be efficient in convergence of excellent performance or possible entrapment in the local minima
problem. (is current study investigates the integration of a newly explored metaheuristic algorithm (i.e., Salp Swarm Algorithm
(SSA)) with the ELM model to forecast monthly river flow. Twenty years of river flow data time series of the Tigris river at the
Baghdad station, Iraq, is used as a case study. Different input combinations are applied for constructing the predictive models
based on antecedent values. (e results are evaluated based on several statistical measures and graphical presentations. (e river
flow forecast accuracy of SSA-ELM outperformed the classical ELM and other artificial intelligence (AI) models. Over the testing
phase, the proposed SSA-ELM model yielded a satisfactory enhancement in the level accuracies (8.4 and 13.1 percentage of
augmentation for RMSE and MAE, respectively) against the classical ELMmodel. In summary, the study ascertains that the SSA-
ELM model is a qualified data-intelligent model for monthly river flow prediction at the Tigris river, Iraq.

1. Introduction

Due to the wide range of space and time variabilities, river
flow modeling has been a critical problem in water man-
agement and hydrology [1]. (e operation of many water
resources system rule curves needs monthly river flow
forecasts [2]. Various methods capable of forecasting river
flow under different conditions with different levels of ac-
curacy have been proposed, considerably evolving within the
past decades from the simple linear equations to the complex
and complicated ones. Researchers have considered various
river flow forecasting methods such as the conceptual (HEC-
HMS and HBV) [3–5], stochastic (AR-autoregressive and
ARMA-autoregressive moving average) [6], and the phys-
ical-based (SWAT) models [7, 8].

(e complex relationship between rainfall and river flow
variables and the lack of sufficient hydrological data of
watersheds have made data-driven models such as artificial
intelligence more suitable for river flow forecasting com-
pared to the process-based models [9]. Currently, a single
method which can be employed generally for all types of
basins and systems is yet to be developed. Hydrologists have
currently been building reliable forecasting methods by
exploiting the available and new scientific techniques such as
hybrid intelligence models. (e ability of hybrid AI models
in addressing the associated nonlinearity and non-
stationarity problems has attracted great attention in dif-
ferent domains [10, 11]. Likewise, this explains their wide
applications in modeling the river flow in particular [12, 13]
and hydrological processes in general [14].
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Studies have demonstrated a wide range of forecasting
accuracies using AI models with the geographic topogra-
phies of the test sites despite their success in other fields
[15–18]. (e development of a model that will be used to
forecast in any environmental condition is an aspect yet to be
explored. Researchers in water resources management en-
gineering should be motivated by the assertion: does the
integration of an optimization algorithm with AI models as
hybrid intelligent models boost their predictive model ac-
curacies? Hydrologists and intelligence system modelers, in
an attempt to address the raised issue, have faced the
challenge of properly selecting the input combinations
known to rule the predictable accuracy of an objective
predictive model for model development [19].

(e literature stated a very massive implementation of
the AI models for river flow modeling. (ese models are
artificial neural network, genetic programming, fuzzy logic
methods, support vector machine models, M5 tree models,
complementary AI models coupled with data time series
preprocessing techniques, and hybrid model [14]. Most
recently, a new version of the ANN model called extreme
learning machine was developed by the authors in [20], as a
robust predictive model. (e employment of ELM in the
field of hydrology and particularly in river flow modeling
demonstrated a very promising and enhancement in the
modeling process [14].

(e first attempt of modeling river flow using ELM was
established in [21]. (e authors developed an ELM model to
capture the associated nonlinearity of the seasonal river
inflow of the Brazilian Hydropower. (eir Finding evi-
denced the potential of the proposed model and emphasised
several hydrological investigations later on. Li and Cheng
[22]studied the capacity of ELM tomodule themonthly scale
reservoir inflow in China. (e ELM model provided an
accurate result in comparison with several other well-
established AI models. An improved ELM model is devel-
oped in a new version called online sequential extreme
learning machine (OS-ELM) for multiple river flow scales
prediction in Canada [22]. (e same OS-ELM model was
developed for flood events forecasting for hourly river flow
monitoring [23]. (e findings of the improved ELM model
demonstrated a noticeable prediction performance. In an-
other attempt, Yaseen et al. developed an ELM model to
forecast the monthly scale river flow located in semiarid
environment in Iraq. (e proposed model revealed good
capability to mimic the monthly river flow trend. Later on,
several studies approved the potential of the ELM in the field
of hydrology processes [13, 24–29]. Based on the reported
literature of the extreme learning machine modeling and its
version improvement in hydrological problems over a very
short period, the authors’ attention is mainly to modify this
robust predictive model and attempt to enhance its pre-
dictability skills.

Despite the noticeable promising implementation of the
ELM model in wide range of hydrology applications, it still
suffers limitations and drawbacks. First, the random as-
signment of the input weights and biases can negatively
affect the generalization capability of the network [30]. In
addition, ELM needs larger number of hidden neurons

which results in more complex models [31]. Hence, the main
motivation of the current research is to propose a new
training optimization for the ELM model to solve the
aforementioned problems and improve the predictability
performance of the ELM model.

In this research, a new optimization algorithm called
Salp Swarm Algorithm is proposed and hybridized with the
ELM model for optimizing the input weights and hidden
biases of the network. SSA is a modern nature-inspired
algorithm proposed in [32]. SSA has shown an impressive
performance in optimizing various complex and challenging
engineering problems. Based on these facts, the motivation
of exploring the capabilities of this optimizer is endeavoured
and the authors work to improve the performance of the
classical ELM model for the surface hydrology application.
For this reason, a real case of semiarid environment of the
Tigris river in Iraq is investigated which is an extension for
the published work [33].

(is research is organized as following. A brief intro-
ductory of the proposed methodology is given in Section 2.
(e description of the investigated case study is described in
Section 3. (e proposed ELM model based on the SSA
optimizers is introduced and discussed in detail in Section 4.
(e experiments and results are given and discussed in
Section 5. Finally, the conclusions and findings of this work
are summarized in Section 6.

2. Preliminaries

2.1. Salp Swarm Algorithm. SSA is a recent nature-inspired
algorithm which mimics the swarming behaviour of sea
creatures called salps [32]. Salps have barrel-shaped gelat-
inous bodies, and they move around by pumping water
through their body from one side to the other. Salps exist as
colonies and move together as chains. In SSA, the movement
behaviour is mathematically modelled for solving optimi-
zation problems. (e models suppose that there are two
main types of salps: leaders and followers.(e leaders are the
salps that lead the chain in the front direction, while the
followers follow their leaders synchronously and in harmony
as shown in Figure 1.

Like all swarm intelligent algorithms, SSA starts by
randomly initializing a swarm of N salps. Each salp is
represented by one-dimensional vector of n elements, while
the swarm is represented as a two-dimensional matrix x. (e
algorithm also refers to the target of the swarm as a food
source F.(emovement of the leader chain x1j is modelled as
given in the following formula:

x1j �
Fj + c1 ubj − lbj( )c2 + lbj( ), c3 ≥ 0.5,

Fj + c1 ubj − lbj( )c2 + lbj( ), c3 < 0.5,

 (1)

where j is the dimension of the position to be updated, Fj is
the jth element of the food source position, ubj and lbj are
the upper and lower bounds of the jth element, c2 and c3 are
the random numbers drawn from the interval [0, 1], and c1 is
the dynamic variable that changes its value over the course of
iterations according to the following formula:
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c1 � 2e− (4l/L)
2

, (2)

in which l represents the current iteration and L is a pre-
defined number of maximum iterations. Note that c1 is a
very important variable in the SSA process which controls
the balance between the exploration and exploitation pro-
cesses of the optimization algorithm. (e followers update
their position accordingly as

xij � 0.5 xij − x
i− 1
j( ), (3)

where xij is the ith element of the jth position and i≥ 2. (e
procedure of the SSA algorithm is presented in Figure 2.

2.2. Extreme LearningMachines. Artificial neural networks
(ANN) have been used as a universal approximator to deal
with complex problems in a wide spectrum of different
domains. One of these common problems is classification
and regression problems. For ANN to be able to predict
the value of the output variable, it needs to be trained
based on a set of examples using a learning algorithm. One
of the recent and successful variants of ANNs is ELM.
ELM is a learning framework for single hidden layer
feedforward neural networks (SLFN) introduced recently
in [20]. (e main merit of the ELM model is the learning
process convergence speed that emphasizes the capability
over the classical gradient decent approach for training
the SLFN [34]. In addition, the nonrequirement for al-
gorithm tuning parameters is similar to the back-
propagation algorithm. (e ELM model requires no
human interactive for tuning [35]. Further, ELM does not
require an iterative process to tune the SLFN parameters.
Instead, it randomly modifies the input weights and the
hidden biases and then it governs the output weights
systematically using the potential of the Moore–Penrose
(MP) generalized inverse method. An illustration of the
SLFN-based ELM is shown in Figure 3.

(e output of SLFN is trained using a dataset with N
distinct examples denoted as (xi, ti), i� 1, 2, . . .,N, where xi is
the input vector and ti is the output vector. (e activation
function g(.) and k hidden neurons is

fi �∑k
j�1

βjg wjxi + bj( ), j � 1, 2, . . . , N, (4)

where wj denotes the weight vector that links the input
nodes to the jth hidden node, bj signifies the bias value of the
jth hidden node, and βj are the values of the output weights
that connect the jth hidden node with the output nodes [36].
Formula (4) is written compactly as

O � H × β, (5)

where H is the output matrix of the hidden layer. ELM
assigns the weights and the biases randomly without the
need to take into consideration the input data. ELM de-
termines the output weights by solving equation (5) using

Movement direction

Leader salp

Follo
wer s

alps

Figure 1: Leaders and followers of salps chain movement.

Initialize a swarm of slaps xi(i = 1, 2, ..., n)
While (Termination condition is not met) do

Calculate the fitness of each salp in the swarm
Set F as the position of best salp
Update c1 by equation (2)
for (each salp (xi)) do

if (i == 1) then

else

end if

end while
Return F

end for

Update the leader’s position using equation (1)

Update the follower’s position using equation (3)

Check and return salps if they go beyond upper and
lower bounds

Pseudocode of the SSA algorithm.

Figure 2: Salp Swarm Algorithm procedure.
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MP generalized inverse. (e output weights can be deter-
mined by ELM using the following formula:

β̂ � H†
× T. (6)

(e process of the ELM predictive model is presented in
Figure 4.

3. Case Study and Site Description

In this study, the Tigris river which is located in the Iraq
region is selected for examining the proposed hybrid pre-
dictive model. (e total length of the river is around
1718 km. (e river originates from Turkey and flows toward
Iraq in the southern part. Most of the river basin (about 85
percentage) is located in Iraq with an approximate catch-
ment area of 253000 km2. Tigris and Euphrates rivers are
presenting the chief freshwater resources in Iraq, providing
water for multiple usages such as domestic, agricultural,
industrial uses, and several other usages. (e region envi-
ronment of the river has a semiarid climate, with the Tigris
basin having a climatic range from semihumid in the
headwaters to the north to semiarid in the area close to
where it met with the Euphrates river in the southern part of
the region. (e average precipitation in the basin per year is
between 400 and 600mm, even though the annual precip-
itation values in the upper and lower parts have been reg-
istered as 800 and 150mm, respectively. Due to the high
precipitation rates in the Zagros Mountains in the east of the
Tigris basin, it has a significantly higher mean precipitation
of approximately 300mm/year compared to the Euphrates
basin [37]. Precipitation mainly occurs in the basins around
November and April, while January to March witness
snowfall in the mountains. (e climatic conditions in the
lowlands of Iraq and Syria (semiarid to arid) usually facilitate
a considerable loss of water to evapotranspiration in the
Mesopotamian region. (e Tigris basin has an air temper-
ature of about − 35°C during the winter in the Armenian
Highlands and about 40°C on the Jezira plateau during the

summer [38]. Baghdad, the capital city of Iraq, has an av-
erage rainfall of about 216mm, with rainfall usually expe-
rienced from December to February. At the capital, the
Tigris river mean river flow is 235m3

·s− 1. (e maximum
weather temperature experienced around is 45°C during the
summer and about 10°C during the winters [39, 40].

For the modeling establishment, the monthly river flow
scale is used to build the predictive model measured at the
Baghdad station (see Figure 5). (e historical river flow
database is gathered from the USGSData Series 540 [41].(e
statistical description of the utilized dataset is tabulated in
Table 1.(e area of the drainage site is 134, 000 km2, which is
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Figure 3: (e architecture of the single hidden layer ELM model.

Input: L = {(xi, ti) | xi ∈ Rn, ti ∈ Rm, i = 1, 2, ..., N}

//Training dataset L consists of a set of N training samples

and their associated output values.
g(x): activation function.

H =

(1) procedure ELM(L, N, g(.))

(2)

(3)

(4)

(5)

(6) end procedure

Initialize weights wi and biases bi randomly [–1, 1], i =

▷ wi is the vector of weights that connect the hidden node

▷ bi is the bias value of the hidden node i

Calculate the hidden layer output matrix H

return β

Find output weight β using MP generalized inverse

β = H†T

β = (HT H)–1HTT

g(w1.x1 + b1) . . . g(w
N
∼.x1 + b

N
∼)

g(w1.xN + b1) . . . g(w
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∼
.
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∼
: Number of hidden nodes

Output: Output weight β

i to all input nodes.

...
...

▷ The output weights

ELM algorithm for training SLFN.

Figure 4: (e extreme learning machine model learning
procedure.
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coordinated between the Latitude of 33°24′34″N and a
Longitude of 44°20′32″E. Over the past two decades, a
noticeable negative river flow deterioration was observed for
the Tigris river. (is deterioration is associated with several
causes such as diplomatic issues or climate change. Hence,
the necessity of providing an accurate and reliable data-
intelligence model for this river system is highly
recommended.

4. Proposed SSA-ELM Forecasting Model

(ere are two basic points that should be determined before
applying any evolutionary or swarm-based algorithm to
optimize any problem which are the representations of the
solution and the choice of the cost function. (ese two
points are addressed for the proposed SSA-ELM model as
follows:

(i) In order to handle an optimization problem using a
metaheuristic algorithm, the solution of the problem
should be represented properly in the algorithm.
(at is, the way that the solution is encoded as an
individual. In the proposed SSA-ELM model, each
individual represents a potential solution as a real

vector I, where I consists of two parts: inputs weights
and hidden biases as given in equation (10). All
elements of I are generated in [− 1, 1]:

I � W11,W12, . . . ,Wnkb1, . . . bk[ ]. (7)

(ii) In all metaheuristic algorithms, a cost function is
utilized to assess the quality of the generated solu-
tions over the course of iterations. In this work, the
root mean squared error (RMSE) is selected as the
cost function which is the most commonly used cost
function in evolutionary extreme learning algo-
rithms. RMSE can be measured as given in equation
(8). (e goal of the algorithm is to find the ELM
model that has the minimum value of RMSE:

RMSE �

�������������������������∑Nj�1 ∑Kj�1 βjg wjxi + bj( ) − ti 
m ×N

√
. (8)

(e procedure of the proposed SSA-ELM algorithms can
be described as follows:

First, the algorithm starts by generating randomly a
predefined number N of particles. Each of the particles
represents a candidate ELM network as explained previously.

Iran

N

Turkey

Syria

Iraq

KSA

Case study

Figure 5: (e case study location: Baghdad metrological station, Tigris river, Iraq.

Table 1: Descriptive statistics for the mean monthly river flow for the Tigris river at Baghdad (Iraq) (1991–2010) [33].

Partition Time period No. records
Q (m3

·s− 1)

Mean St. dev. Median Minimum Maximum

Training Jun. 1991–Dec. 2007 187 780.099 379.712 674.700 298.100 2651.000
Testing Jan. 2007–Dec. 2010 48 489.879 136.746 445.900 331.400 936.400
Complete Jun. 1991–Dec. 2010 235 720.820 363.469 636.900 298.100 2651.000
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(en, the fitness of each particle is calculated using the fol-
lowing steps:

(i) Assign the values of the input weights and hidden
biases that a given particle carries to a network
structure.

(ii) Calculate the output weights of the ELM network
using the PM method based on the training part of
the dataset.

(iii) Calculate the RMSE as given in equation (8) based
on the validation part of the dataset.

After performing the fitness evaluation step, the particles
are sorted according to their fitness values. (e best L
particles that generate ELM networks with lowest RMSE
values are nominated as leaders. (e rest of the particles in
the swarm are considered as followers.(e description of the
proposed predictive algorithm is displayed in Figure 6.

(e positions of the leaders and followers are updated
according to equations ((1) and (3)), respectively. (e
evaluation and update steps are repeated until a predefined
number of iterations is reached.

(e training procedure of the proposed model is
established using correlated lags computed via the corre-
lations statistical approach (i.e., autocorrelation and partial
autocorrelation functions) to detect appropriate input at-
tributes to the targeted attribute (see Figure 7). (is process
is accomplished in harmony with major researches of the
literature [42, 43]. Based on the visualization of the corre-
lation statistic, five lags time of river flow historical infor-
mation (attributes variables) influence the one-step ahead
river flow modeling. Hence, a combination of five scenarios
model (M1, M2, . . ., M5) architecture is constructed as
follows:

Model 1 M1: Q(t) � fQ(t− 1),

Model 2 M1: Q(t) � fQ(t− 1), Q(t− 2),

Model 3 M1: Q(t) � fQ(t− 1), Q(t− 2), Q(t− 3),

Model 4 M1: Q(t) � fQ(t− 1), Q(t− 2), Q(t− 3), Q(t− 4),

Model 5 M1: Q(t) � fQ(t− 1), Q(t− 2), Q(t− 3), Q(t− 4), Q(t− 5),

(9)
where Q(t) is the target river flow step “one month ahead”
and Q(t− 1), . . ., Q(t− 5) are the lag times up to five months
previously. Here, five input combinations are constructed
for the prediction matrix of the SSA-ELM and ELM pre-
dictive models.

5. Application Results and Analysis

Over the past couple decades, massive attention has been
focused on hydrological time series modeling, particularly
for river flow process. (is is owing to the need of an ac-
curate and reliable intelligent model that can be imple-
mented in real practice. Several machine learning
approaches have been proposed to forecast and simulate the
river flow time series. As a matter of fact, the assumption of

the hydrological time series is originated by stochasticity,
nonlinearity, and redundancy. Also, the underlying mech-
anisms of river flow generation are mostly different from
low-, medium-, and high-flow periods. In other words, the
extreme events of flows rely upon the outburst of heavy
storm of rainfall events. Hence, developing a new data-in-
telligent model characterized by sophistication to forecast all
kind of flow patterns satisfactory is still under process
mission for the hydrology engineers. In this research, the
application of forecasting the monthly river flow (semiarid
environment) using the hybrid SSA-ELM model is pre-
sented. Indeed, using a univariate modeling is more chal-
lenging for the hydrologist as it is fulfilled for the benefit of
the catchment that lacks the metrological information.

(e perdition skills for the conducted modeling were
carried out using two types of performance indicators in-
cluding the goodness (e.g., (r) and (WI)) and the absolute
error measures (e.g., (RMSE) and (MAE)). (e mathe-
matical description of these performance indicators is

r �
∑i�Ni�1 Sobsi − Sobs( ) · Spredi − Spred( )[ ]���������������������������������

∑i�Ni�1 Sobsi − Sobs( )2 · ����������������∑i�Ni�1 S
pred
i − Spred( )√√ ,

where − 1≤ r − 1

WI � 1 −
∑i�Ni�1 Sobsi − S

pred
i( )2

∑i�Ni�1 S
pred
i − Sobs
∣∣∣∣∣ ∣∣∣∣∣ + Sobsi − Sobs

∣∣∣∣∣ ∣∣∣∣∣( )2


,

RMSE �

�����������������
1

N
∑i�N
i�1

Sobsi − S
pred
i( )2

√√
,

MAE �
1

N
∑i�N
i�1

Sobsi − S
pred
i

∣∣∣∣∣ ∣∣∣∣∣,

(10)

where Sobsi and S
pred
i are the observed and forecasted values of

river flow, Sobs and Spred are the mean values of river flow,
and N is the number of the observations of the testing phase.

For SSA, the size of the population is set to 50 while the
number of iterations is set to 1000. (ese values were rec-
ommended and showed superior results when applied for
solving complex optimization problems in [32]. For ELM,
the common sigmoid function activation function is used
[44]. However, the number of hidden nodes was system-
atically determined by experimenting different numbers
starting from 2 hidden nodes up to 10 with a step of 2 nodes
each time.

Table 2 tabulates the efficiency results of the hybrid SSA-
ELM model achieved based on the testing data for each input
combination attribute. (e results are validated against the
published results of ELM, support vector regression (SVR), and
generalized regression neural network (GRNN) which were
conducted in [33], on the same case study. In addition, Table 2
also lists the results of random forests (RF) implemented in
Weka the popular suite of machine learning software [45].
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Indeed, the motivation of the current study is to improve
the performance of the nontuned predictive model ELM
through complementing with an evolutionary nature-in-
spired novel optimization algorithm (i.e., SSA). Based on the

investigated results, an excellent performance in terms of
lower RMSE and MAE values and higher r and WI values,
respectively, when forecasting the present river flow data,
was observed. (e results exhibited a noticeable
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Figure 6: Description of the proposed SSA-ELM algorithm.
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Figure 7: (e statistical correlation process function of the investigated monthly scale river flow.
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enhancement in the prediction skills using the proposed
SSA-ELM model in comparison with the benchmark ELM-
based model. (e improved performance with SSA-ELM
attributed to the robustness of the novel evolutionary op-
timization method SSA linked to the ELM model. (is
robustness may have contributed to the internal function
parameter optimization for each input combination.

(e Taylor diagram is another modern graphical pre-
sentation to diagnose the predictability of the modeling
through visualizing the errors from the benchmark observed
record. (is diagram graphically summarizes the model’s
efficiency in approximating the accuracy to the observed
data. (e Taylor diagram of the hybrid SSA-ELM and
classical ELM is illustrated in Figure 8. (e position of each
model appeared on the diagram measures the accuracy of
that model in accordance to the observed river flow. Based
on the diagram presentation, the SSA-ELM model has a
higher value of correlation compared to the ELMmodel.(e
SSA-ELM model approximated well with observed and
located nearer to the actual record. (e RMSE between the
predicted and observed river flow was denoted as propor-
tional to the distance to the point of the observation. (e
standard deviation of the predictive model is proportional to
the radial distance from the origin.

For detailed inspection for the performance of the SSA-
ELM model over the benchmark ELM model, Figure 9
presents the relative error (RE) distribution indicator in
the form of boxplot. Based on the generated graph, the
hybrid SSA-ELM performed an acceptable improvement
with average RE between − 10 and + 10% and over 80% of the
testing period.(emaximumREmagnitude recorded on the

overestimation is +35%, whereas the underestimation aspect
is recorded as − 25%.(is is much different from the classical
ELM that exceeded the − 40% in the underestimation aspect.

Scatter plots for the ELM and SSA-ELM models are
presented in Figures 10 and 11, respectively. (e graphical
presentation followed the determination coefficient values as
it is the square value. (e proposed hybrid model was
performed closer to the ideal line between the observed and
forecasted values.

It is an excellent fashion of evaluating the current
research results by comparing with modern established
researches with the regards of hybrid evolutionary nature-
inspired algorithms integrated with AI-predictive models.
Most recently, the applications of metaheuristic techniques
have shown an extensive and noticeable optimization
methods for AI predictive models. (is is owing to the
main advantages such as flexibility, give an optimal so-
lution, and free from gradient decent drawbacks [32]. In
the last five years, there are various successful attempts on
hybridizing the AI models with evolutionary optimization
algorithms in the field of hydrology. For instance, a
combination between the adaptive neurofuzzy system
(ANFIS) model with the firefly algorithm (FFA) was
conducted for modeling the roller length of the hydraulic
jump [46]. An integration of the classical multilayer per-
ceptron with FFA for pan evaporation process is given in
[47]. River flow forecasting for tropical environment was
established using the ANFIS-FFA model [48]. On the same
region of the case study implemented in this research, the
water quality index prediction model was developed based
on the hybridization of the support vector machine model

Table 2: Performance evaluation for ELM and SSA-ELM, SVR, GRNN, and RF models.

Input combinations Models r WI RMSE (m3
·s− 1) MAE (m3

· s− 1)

M1

SSA-ELM 0.812 0.861 80.592 66.203
ELM 0.81 0.82 98.272 87.012
SVR 0.761 0.802 106.749 90.905

GRNN 0.658 0.689 127.818 113.698
RF 0.372 0.531 189.778 131.966

M2

SSA-ELM 0.809 0.850 80.516 62.185
ELM 0.817 0.834 95.571 83.899
SVR 0.715 0.769 111.228 95.14

GRNN 0.468 0.54 125.187 103.551
RF 0.373 0.549 175.765 142.347

M3

SSA-ELM 0.784 0.812 86.868 62.185
ELM 0.815 0.814 104.307 92.544
SVR 0.741 0.776 118.02 101.85

GRNN 0.496 0.54 125.187 103.551
RF 0.037 0.33 280.85 225.27

M4

SSA-ELM 0.800 0.855 87.84 69.069
ELM 0.803 0.826 98.432 85.117
SVR 0.728 0.769 119.539 106.585

GRNN 0.346 0.507 133.522 114.063
RF 0.127 0.39 1246.48 196.745

M5

SSA-ELM 0.801 0.856 87.659 67.886
ELM 0.799 0.853 87.906 71.544
SVR 0.715 0.768 124.155 108.367

GRNN 0.248 0.416 135.35 112.606
RF 0.222 0.0001 668.76 657.031
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with the firefly algorithm [49]. All the examples exhibited
earlier on the hybrid models demonstrated an excellent
performance over the AI-based models. It is evidenced that
the present study was performed in harmony with a new
era of the hybrid intelligent models in the field of surface
hydrology.

For the best knowledge of the practical implementation,
the proposed hybrid intelligence SSA-ELM model has the
possibility of the online learning potential. As reported in
Figure 12, the scheme demonstrated the capacity of the online
forecasting system in which there is a possibility to be
practiced as a floodingwarning system.(e online forecasting
system starts by obtaining the metrological information (e.g.,

river flow velocity (V), cross section area (A), and river
discharge (Q)) using sensors device.(e data information was
transferred via cricket wireless and digitized into a comma
separated value (CSV) format in which it is readable by any
software environment. At this stage, the learning process
based on the historical records is conducted using the SSA-
ELM predictive model. (e outcome of the predictive model
was subjected to a specific range of river flow threshold values.
If the prediction value is within the threshold, the loop of the
learning process is repeated using the new recalled historical
information. Otherwise, if the prediction is out of the
threshold range, a notification of the alarm system is inte-
grated (global system for mobile communications) that can
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Figure 8: Taylor diagram graphical presentation for the ELM and SSA-ELM predictive models.
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Figure 10: Scatter plot variation between the observed and forecasted river flow using the SSA-ELM model and for the five input
combinations.
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Figure 11: Scatter plot variation between the observed and forecasted river flow using the ELMmodel and for the five input combinations.
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deliver a message of alarm to the nearby civilian for preparing
an emergency evacuation. (is merit can contribute re-
markably to the water resources engineering, river man-
agement, and monitoring perspective.

6. Conclusions

In this research, a novel hybrid intelligent predictivemodel was
developed to be implemented on a regression hydrological
problem (i.e., river flow forecasting). A new nature-inspired
optimization algorithm called Salp Swarm Algorithm was
integrated with the modern AI model (i.e., ELM model) to
build a robust intelligent predictivemodel.(e basic concept of
the introduced SSA is inspired from the swarming behaviour of
the salp chain.(e developed SSA-ELMmodel was applied for
monthly time scale river flow data located in semiarid envi-
ronment in the Iraq region. Twenty years over the period
(1991–2010) was used to design the training and testing phases
following the published research [33]. Several input combi-
nation attributes were investigated in accordance with themost
correlated lag times. (e hybrid SSA-ELM model exhibited an
excellent level of accuracies in comparison with the ELM-based
model. In numerical evaluation, the SSA-ELM model dem-
onstrated an acceptable level of augmentation with regards to
the absolute metrics (8.4 and 13.1% for RMSE and MAE,
respectively). On the other aspect, the results verified that the
lag time as an input attribute is very significant on themodeling
performance of the predictive model. In conclusion, the de-
veloped model outcomes enthuse for proposing an online
forecasting system that can be applied as a real-time moni-
toring river engineering practice. For future work, further
research can be conducted based on investigating the efficiency
of the proposed model by incorporating several hydrological

processes such as rainfall, humidity, wind speed, and others in
modeling the target output river flow [50]. In addition,
inspecting longer data span of historical data information is
highly recommended to be devoted as it is a limitation of the
current research. On the algorithmic level, the proposed model
can be extended in a way that other parameters in the ELM
network can be optimized and such parameters include the
number of hidden nodes in the hidden layer, the transfer
functions, and the activation functions [51–53].
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