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HYBRIDIZED GLOBALLY DIVERGENCE-FREE LDG METHODS.

PART I: THE STOKES PROBLEM

JESÚS CARRERO, BERNARDO COCKBURN, AND DOMINIK SCHÖTZAU

Abstract. We devise and analyze a new local discontinuous Galerkin (LDG)
method for the Stokes equations of incompressible fluid flow. This opti-
mally convergent method is obtained by using an LDG method to discretize a
vorticity-velocity formulation of the Stokes equations and by applying a new
hybridization to the resulting discretization. One of the main features of the
hybridized method is that it provides a globally divergence-free approximate
velocity without having to construct globally divergence-free finite-dimensional
spaces; only elementwise divergence-free basis functions are used. Another im-
portant feature is that it has significantly less degrees of freedom than all other
LDG methods in the current literature; in particular, the approximation to the
pressure is only defined on the faces of the elements. On the other hand, we
show that, as expected, the condition number of the Schur-complement matrix
for this approximate pressure is of order h−2 in the mesh size h. Finally, we
present numerical experiments that confirm the sharpness of our theoretical a

priori error estimates.

1. Introduction

This is the first in a series of papers in which we propose and analyze hybridized,
globally divergence-free local discontinuous Galerkin (LDG) methods. In this paper,
we present the main ideas in a simple setting and consider the Stokes equations

−∆�u + grad p = �f, div �u = 0 in Ω; �u = �uD on Γ = ∂Ω;

which model the flow of a viscous, incompressible fluid. Here Ω is taken to be

a bounded polygonal domain in R2, �f ∈ L2(Ω)2 a given source term, and �uD ∈
H1/2(Γ)2 is a prescribed Dirichlet datum satisfying the usual compatibility condi-
tion

(1.1)

∫

Γ

�uD · �n ds = 0,

with �n denoting the outward normal unit vector on the boundary Γ of the domain Ω.
We devise an LDG method that is locally conservative, optimally convergent and

provides an approximate velocity which is globally divergence-free, that is, which
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belongs to the space

H(div0; Ω) = {�v ∈ L2(Ω)2 : div�v = 0 in Ω}.

One of the advantages of working with finite-dimensional subspaces of H(div0; Ω)
is that the approximate velocity has a smaller number of degrees of freedom in
comparison with standard finite element spaces with similar approximation proper-
ties. Another advantage is that the pressure can be completely eliminated from the
equations, and the resulting problem for the velocity becomes a simple second-order
elliptic problem. An LDG method for the velocity can be devised in a most straight-
forward way; the pressure can be easily computed once the velocity is obtained. On
the other hand, finite-dimensional subspaces of H(div0; Ω) are extremely difficult
to deal with because their basis functions are complicated to construct and do
not have local support. The main contribution of this paper is to show that this
difficulty can be overcome by a simple hybridization of the LDG method.

This hybridization is similar to that of mixed methods for second-order elliptic
problems; see [1], [8], [9], and [12]. It is achieved as follows. First, we relax the con-
tinuity of the normal components of the approximate velocity across interelement
boundaries. This allows us to use velocity spaces whose elements are completely
discontinuous and divergence-free inside each element. In this procedure, however,
the pressure has to be reintroduced in the equations as the corresponding Lagrange
multiplier. Furthermore, new equations have to be added to the system to render it
solvable. These equations enforce the continuity of the normal components of the
new approximate velocity. Thus, although the approximate velocity is divergence-
free only inside each element, the additional equations automatically ensure that it
is also globally divergence-free. In this way, the proposed hybridization allows one
to base the approximate velocity on the space H(div0; Ω) without having to work
with globally divergence-free finite-dimensional spaces. Another advantage of this
approach is that the resulting hybridized LDG method produces a remarkably small

Schur-complement matrix for the pressure, given that this variable is only defined
on the edges of the triangulation; the values of the pressure inside the elements can
be computed in an element-by-element fashion.

The price to pay for these advantages is the fact that the condition number of the
Schur-complement matrix for the pressure is of order h−2, instead of being of order
one, as is typical of classical mixed methods. Fortunately, good preconditioners
can be obtained by using the techniques developed in [5]. We also refer the reader
to [24] for Schwarz preconditioners for hybridized discretizations of second-order
problems.

We carry out the numerical analysis of the resulting hybridized LDG method.
We show that it is well defined and derive optimal a priori error bounds in the
classical norms. Thus, for approximations using polynomials of degree k ≥ 1, the
error in the velocity, measured in an H1-like norm, is proven to converge with the
optimal order k with respect to the mesh size. Similarly, we show that the L2-
errors in the vorticity and the pressure converge with the optimal order k when
these variables are taken to be piecewise polynomials of degree k − 1. The same
rates are obtained if all the unknowns are approximated by polynomials of degree k.
We display numerical results showing that these results are sharp.

Finally, let us point out that, although here we use the LDG approach to dis-
cretize the Stokes problem, our theoretical results are equally valid for any other
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HYBRIDIZED GLOBALLY DIVERGENCE-FREE LDG METHODS 535

stable and consistent DG discretization as described in the unifying analysis for
second-order problems proposed in [2].

This paper is organized as follows. In Section 2, we present a brief overview
of the development of divergence-free methods for the Stokes problem, in order to
place our work into perspective. The hybridized LDG method is then described
in Section 3. In Section 4, we present our main theoretical results, namely, opti-
mal error estimates for the velocity and the vorticity (Theorem 4.1) and optimal
error estimates for the pressure (Theorem 4.2). We also outline the main steps of
the proof of these estimates while the details of some of the auxiliary results are
given in Section 6. In Section 5, we discuss a modification of the matrix equa-
tions that allows us to use minimization algorithms to actually solve the resulting
linear systems. We further state an upper bound on the condition number of the
Schur-complement matrix for the pressure (Theorem 5.2). This bound follows from
an inf-sup condition whose proof is contained in Section 7. Then in Section 8, we
present numerical experiments that confirm that the theoretical orders of conver-
gence are sharp. Finally, we end in Section 9 by discussing some extensions of the
proposed method.

2. A historical overview of the main ideas

for enforcing incompressibility

To properly motivate the devising of hybridized LDG methods, we briefly discuss
the evolution of some of the main ideas and techniques used to deal with the
incompressibility condition div �u = 0. To simplify the exposition, we take �uD = �0.

2.1. Enforcing exact incompressibility. By considering finite-dimensional sub-

spaces �Vh ⊂ H1
0 (Ω)2 ∩ H(div0; Ω), exactly incompressible velocity approxima-

tions �uh ∈ �Vh can be readily defined by requiring that

(grad �uh, grad�v) = (�f,�v), �v ∈ �Vh.

Unfortunately, since the early beginnings of the development of finite element
methods for incompressible flow, it was clear that the construction of such finite-

dimensional spaces �Vh was an extremely difficult goal to achieve. Indeed, in his
pioneering work of 1972, Fortin [20] was able to construct spaces of that type, but
they turned out to be “complex elements of limited applicability”, as Crouzeix and
Raviart said in their seminal paper of 1973, [18]. In an effort to be able to use
simpler methods, these authors proposed an alternative approach.

2.2. Enforcing weak incompressibility. Crouzeix and Raviart [18] sacrificed
the exact verification of the incompressibility condition and opted instead for en-
forcing it only weakly; the pressure must then be considered simultaneously with
the velocity. In the case of conforming methods, for example, we take (�uh, ph)

in a finite-dimensional space �Vh × Qh ⊂ H1
0 (Ω)2 × L2(Ω)/R, and determine it by

requiring that

(grad �uh, grad�v) − (ph, div�v) = (�f,�v), (q, div �uh) = 0, (�v, q) ∈ �Vh × Qh.

Of course, we can still try to solve only for the velocity in the above method.
Indeed, since the approximate velocity �uh belongs to the finite-dimensional space

�Zh =
{
�v ∈ �Vh : (q, div�v) = 0, q ∈ Qh

}
,
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it can be characterized as the only element of �Zh such that

(grad �uh, grad�v) = (�f,�v), �v ∈ �Zh.

The pressure can thus be eliminated from the equations and recovered once the
velocity �uh is computed (see [10] and [11]) by solving

− (ph, div�v) = (�f,�v) − (grad �uh, grad�v) , �v ∈ �Vh.

The solvability of this equation is guaranteed by a discrete inf-sup condition for the
method; see the books [9] and [22], and the recent article [27].

Unfortunately, bases for the space �Zh of weak incompressibility are also very
difficult to construct. Bases for spaces of this type were constructed by Griffiths
in 1979 [25], by Thomasset in 1981 [38], both for the two-dimensional case, and by
Hecht in 1981 [28] for the three-dimensional case and the nonconforming method
using piecewise-linear functions. However, they have a support that is not nec-
essarily local; this has a negative impact on the sparsity of the stiffness matrix.
Yet another problem with this approach was discovered in 1990 by Dörfler [19]
who showed that the condition number of the stiffness matrix for the velocity is of
order h−4. Because of all these difficulties, this approach was never very popular.

2.3. Weak incompressibility can ensure exact incompressibility. Of course,

exact incompressibility follows from weakly imposed incompressibility if div �Vh ⊂
Qh. This condition is satisfied, for example, if we take �Vh to be the space of contin-
uous vector fields which are polynomials of degree k on each triangle and Wh the
space of discontinuous functions which are piecewise polynomials of degree k − 1.
In 1985, Scott and Vogelius [37] showed that the constant of the inf-sup condition
for this conforming method is independent of the mesh size, provided k ≥ 4 (and
a minor condition on the triangulation holds). This implies that the approximate
velocity �uh is globally divergence-free and that the solution (�uh, ph) is optimally
convergent; see other cases in [6]. Lower order polynomial spaces with this prop-
erty do not exist, as was proven in 1975 by Fortin [21]. Extensions of these results
to the three-dimensional case seem to be quite challenging and remain an inter-
esting open problem. Other examples of how weak incompressibility implies exact
incompressibility can be found in the book by Gunzburger [26].

2.4. Locally incompressible approximations. In 1990, Baker, Jureidini and
Karakashian considered locally incompressible velocities, that is, they took

�Vh ⊂ {�v ∈ L2(Ω)2 : �v|K ∈ H(div0; K), K ∈ Th},
with Th being a triangulation of Ω. Since the use of this space rendered impossible

the satisfaction of the continuity constraints typical of conforming and nonconform-
ing methods, the authors were led to use completely discontinuous approximations
for the velocity; the approximate pressures where, however, continuous. This opti-
mally convergent method was extended in the late 90’s to the Navier–Stokes equa-
tions by Karakashian and Katsaounis [30] and by Karakashian and Jureidini [29]
with excellent results.

Recently, several DG methods for incompressible flow have been proposed in the
literature, all of which impose the incompressibility condition weakly; see [4], [17],
[16], [14], [15], [23] and [36]. General DG methods face an important difficulty when
applied to the Navier–Stokes equations. In this case, the appearance of the nonlin-
ear convection introduces a phenomenon that is not present in the Stokes or Oseen

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HYBRIDIZED GLOBALLY DIVERGENCE-FREE LDG METHODS 537

equations, namely, that energy-stable DG methods, like the methods proposed in
[29] and in [23], cease to be locally conservative because the incompressibility con-
dition is enforced only weakly.

2.5. Exactly incompressible, locally conservative LDG methods. To re-
cover the highly valued property of local conservation for DG methods for the
Navier–Stokes equations, a new way to deal with the incompressibility condition
was introduced by Cockburn, Kanschat and Schötzau in [15]. It is based on the
observation that, for mixed DG discretizations of the incompressibility condition,
a globally divergence-free velocity can be easily computed by using an element-by-
element post-processing of the approximate velocity �uh. Since the velocity �uh is
only weakly incompressible, this gives another way of enforcing the incompressibil-
ity condition strongly by only enforcing it weakly.

For this locally conservative, optimally convergent DG method, the velocity is
taken to be a piecewise polynomial of degree k ≥ 1 and the pressure a piecewise
polynomial of degree k−1. This is the first method to produce globally divergence-
free velocities by using polynomials of degree equal or bigger than one, in both two
and three space dimensions.

2.6. Hybridized, exactly incompressible LDG methods. The LDG method
we propose in this paper is devised in an effort to reduce the number of unknowns
of the LDG method in [15] while maintaining the exact incompressibility of its
approximate velocity. This is achieved in two steps. First, we devise an LDG

method which uses approximate velocities in spaces �Vh such that �Vh ⊂ H(div0; Ω).
Then, we hybridize the method. That is, we base its velocity approximation on
spaces of the form

�Vh ⊂ {�v ∈ L2(Ω)2 : �v|K ∈ H(div0; K), K ∈ Th},

and still get the approximate velocity in �Vh. The spaces �Vh are remarkably simpler
to deal with from the implementational point of view.

It must be emphasized that it is not known how to carry out a similar hy-
bridization for classical conforming and nonconforming methods for the Stokes
problem. Let us briefly discuss the nature of this difficulty. When dealing with
the LDG method proposed in this paper, the original velocity spaces are such that
�Vh ⊂ H(div0; Ω), and hence to perform an hybridization, we only have to deal
with the continuity of the normal components across interelement boundaries. On
the other hand, for conforming methods, the velocity spaces satisfy the inclusion
�Vh ⊂ H1

0 (Ω)2, and hence their hybridization must involve the more difficult issue of
how to handle the continuity of the whole function and not only that of its normal
component. For classical nonconforming methods, a similar situation arises.

3. The hybridized LDG method

In this section, we introduce the hybridized LDG method. After introducing
the notation we are going to use, we first describe the LDG method with globally
divergence-free velocities and then present its hybridization. Finally, we show how
to compute the pressure in an element-by-element fashion in terms of the approxi-
mate solution of the hybridized LDG method.
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3.1. Preliminaries. To define the method, we need to introduce some notation.
Let us begin with the notation related to the triangulation of the domain. We
denote by Th a regular and shape-regular triangulation of Ω into triangles and set
h = hmax = maxK∈Th

{hK}, where hK is the diameter of the triangle K. We write
(p, ψ)Th

=
∑

K∈Th
(p, ψ)K , where (p, ψ)K =

∫
K

p ψ dx. Further, we denote by EI
h

the set of interior edges of Th and by EB
h the set of boundary edges. We define Eh =

EB
h ∪EI

h . If Fh is a subset of Eh, we use the notation 〈f, φ〉Fh
=

∑
e∈Fh

〈f, φ〉e , where

〈f, φ〉e =
∫

e
f φ ds. For an element K ∈ Th, the boundary ∂K will be understood

as a subset of Eh.
Next, let us deal with the notation associated with weak formulations. Thus,

if ϕ satisfies the equation O ϕ = Φ, where O is a first-order differential operator
and ϕ is a scalar- or vector-valued function, we can write, for any element K ∈ Th,
that

(Oϕ, ψ)K = (ϕ, O⋆ ψ)K + 〈ϕ, ψ ⊙ �nK〉∂K = (Φ, ψ)K ,

where ψ is any smooth function, O⋆ is the formal adjoint operator to O and the
symbol ⊙ stands for the corresponding multiplication operator on the boundary
(with respect to the outward unit normal vector �nK on ∂K). Adding over the
triangles of the triangulation, we obtain

(ϕ, O⋆ ψ)Th
+

∑

K∈Th

〈ϕ, ψ ⊙ �nK〉∂K , = (Φ, ψ)Th
.

Next, we define the jump operator [[·]] by

[[ϕ (ψ ⊙ �n)]] =

{
ϕ (ψ ⊙ �n) on boundary edges in EB

h ,

ϕ+ (ψ+ ⊙ �nK+) + ϕ− (ψ− ⊙ �nK−) on interior edges in EI
h .

Here ϕ± and ψ± denote the traces of ϕ and ψ on the edge e = ∂K+ ∩ ∂K−

taken from within the interior of the triangles K±. We can thus rewrite the above
equation as

(ϕ, O⋆ ψ)Th
+ 〈1, [[ϕ (ψ ⊙ �n)]]〉Eh

= (Φ, ψ)Th
.

Finally, to be able to define the discrete traces of the LDG method, it only
remains to introduce the average {{·}} of the traces, namely,

{{ϕ}} =

{
ϕ on boundary edges in EB

h ,
1
2 (ϕ+ + ϕ−) on interior edges in EI

h .

We are now ready to define the LDG method.

3.2. An LDG method for the vorticity-velocity formulation. We first in-
troduce the LDG method that is based on velocities in H(div0; Ω). To introduce
its weak formulation, we rewrite the Stokes system as

ω − curl �u = 0 in Ω,(3.1)

�curl ω + grad p = �f in Ω,(3.2)

div �u = 0 in Ω,(3.3)

�u = �uD on Γ,(3.4)

where ω is the scalar vorticity, ω = curl �u = ∂1u2 − ∂2u1, and �curlω is the vector-

valued curl given by �curl ω = (∂2ω,−∂1ω).
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Next, we multiply equation (3.1) by a test function σ ∈ L2(Ω), equation (3.2) by
�v ∈ H(div0; Ω), such that �v · �n = 0 on Γ, and equation (3.4) by �n q with q ∈ L2(Γ).
We assume that the test functions �v and σ are smooth inside the triangles K but
might be discontinuous in Ω. Then, after integrating by parts and making use of

the identities �a×�b = a1b2 −a2b1, c×�a = c (−a2, a1), and �a× c = −c×�a, we obtain

(ω, σ)Th
− (�u, �curl σ)Th

− 〈�u, [[σ × �n]]〉Eh
= 0,

(ω, curl�v)Th
+ 〈ω, [[�v × �n]]〉Eh

= (�f,�v)Th
,

〈�u · �n, q〉EB
h

= 〈�uD · �n, q〉EB
h

.

Here we have also used the continuity of the tangential components of �u and ω.
Note that the pressure p does not appear in the equations; this is due to the

fact that �v ∈ H(div0; Ω). Moreover, only the information about the tangential

component of the Dirichlet boundary condition �uD appears in the first equation,
whereas the information about its normal component is contained in the third
equation. Finally, if q is a constant, we have

〈�uD · �n, q〉EB
h

= q 〈�uD · �n, 1〉EB
h

= 0,

by the compatibility condition (1.1) on �uD. Thus, in order to ensure that the
formulation is well defined, we must take q modulo constants.

Motivated by the fact that the exact solution satisfies the above equations, we

define the LDG approximation (ωh, �uh) in the finite-dimensional space Σk
h × �V k

h by
requiring that

(ωh, σ)Th
− (�uh, �curl σ)Th

−
〈
�̂uh, [[σ × �n]]

〉

Eh

= 0,(3.5)

(ωh, curl�v)Th
+ 〈ω̂h, [[�v × �n]]〉Eh

= (�f,�v)Th
,(3.6)

〈�uh · �n, q〉EB
h

= 〈�uD · �n, q〉EB
h

(3.7)

for all (σ,�v, q) ∈ Σk
h × �V k

h ×Qk
h/R with �v · �n = 0 on Γ, where

Σk
h = {σ ∈ L2(Ω) : σ|K ∈ Pk−1(K), K ∈ Th },

�V k
h = {�v ∈ H(div0; Ω) : �v|K ∈ �Pk(K), K ∈ Th },

Qk
h = { q ∈ L2(Γ) : q|e ∈ Pk(e), e ∈ EB

h }.
Here Pℓ(D) denotes the space of polynomials of degree ≤ ℓ on D. The quantities

�̂uh and ω̂h are approximations to the traces of �uh and ωh; they must be suitably
defined to render the method stable and optimally convergent. On interior edges
in EI

h , these discrete traces are chosen as

(3.8) ω̂h = {{ωh}} + �E · [[ωh × �n]] + D [[�uh × �n]], �̂uh = {{�uh}} + �E [[�uh × �n]].

Similarly, on boundary edges in EB
h , we take

(3.9) ω̂h = ωh + D (�uh − �uD) × �n, �̂uh = �uD.

Here D and �E are functions defined on Eh and EI
h , respectively. The function D

has a stabilization role, whereas the proper definition of the function E can reduce
the sparsity of the resulting matrices and might even have a positive impact on the
accuracy of the approximation in some cases; see [13]. This completes the definition
of the LDG method with globally divergence-free velocity spaces.
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With arguments similar to those in [17, Proposition 2.1], it can be readily seen

that LDG method in (3.5)–(3.9) has a unique solution (ωh, �uh) ∈ Σk
h× �Vk

h , provided
that D > 0.

3.3. The hybridized LDG method. Next, we hybridize the LDG method de-
scribed in (3.5)–(3.9). The purpose of the hybridization is to base the approximation
of the velocities on the space of locally divergence-free functions given by

�V k
h = {�v ∈ L2(Ω)2 : �v|K ∈ �Jk(K), K ∈ Th },

where
�Jk(K) = {�v ∈ �Pk(K) : div�v = 0 on K }.

This space is noticeably bigger than the space �V k
h but has the advantage of being a

set of functions which are totally discontinuous across interelement boundaries. As
a consequence, only local basis functions are needed for its implementation. On the
other hand, the price we pay for this is that we need to reintroduce the pressure in
the equations. To this end, we define the space

Qk
h = { q ∈ L2(Eh) : q|e ∈ Pk(e), e ∈ Eh }.

Thus, we define the LDG approximation (ωh, �uh, ph) ∈ Σk
h × �V k

h × Qk
h/R by

requiring that

(ωh, σ)Th
− (�uh, �curl σ)Th

− 〈�̂uh, [[σ × �n]]〉Eh
= 0,(3.10)

(ωh, curl�v)Th
+ 〈ω̂h, [[�v × �n]]〉Eh

+ 〈[[�v · �n]], ph〉Eh
= (�f,�v)Th

,(3.11)

〈[[�uh · �n]], q〉Eh
= 〈�uD · �n, q〉EB

h
(3.12)

for all (σ,�v, q) ∈ Σk
h × �V k

h × Qk
h/R.

Note that the pressure ph now appears in (3.11); this is because [[�v · �n]] is not
necessarily equal to zero. Note also that if q is a constant on Eh, we have that, for

�v ∈ �V k
h ,

〈[[�v · �n]], q〉Eh
=

∑

K∈Th

〈�v · �nK , q〉∂K = q
∑

K∈Th

(div�v, 1)K = 0,

and that, in view of (1.1), 〈�uD · �n, q〉EB
h

= q 〈�uD · �n, 1〉EB
h

= 0. Thus, to ensure that

the above weak formulation is well defined, we must take q in the space Qk
h/R.

Next, we establish that the LDG method in (3.10)–(3.12), completed with the
definition of the discrete traces (3.8)–(3.9), is well defined. Moreover, we show
that its approximate vorticity and velocity are also the solution of the original
LDG method in (3.5)–(3.9). In other words, even though the hybridized LDG
method works with locally divergence-free, but totally discontinuous, approximate
velocities, it provides a globally divergence-free velocity field �uh ∈ H(div0; Ω).

Proposition 3.1. If D > 0 and k ≥ 1, there is a unique solution (ωh, �uh, ph) ∈
Σk

h×�V k
h ×Qk

h/R of (3.10)–(3.12) with the numerical fluxes in (3.8)–(3.9). Moreover,

(ωh, �uh) is also the solution of (3.5)–(3.9). In particular, �uh ∈ �Vk
h ⊂ H(div0; Ω).

To prove this result, we use the following stability result whose detailed proof is
presented in Section 7 below; cf. Proposition 7.1.
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Proposition 3.2. Let q ∈ Qk
h, where k ≥ 1. Then for any K ∈ Th there is a

velocity field �v ∈ �Jk(K) such that

〈�v · �nK , q〉∂K ≥ ‖q − m∂K(q)‖2
0,∂K ,

with m∂K(q) denoting the mean value m∂K(q) = 1
|∂K| 〈1, q〉∂K . Here |∂K| is the

one-dimensional measure of ∂K.

Proof of Proposition 3.1. To prove the existence and uniqueness of the approximate
solution in (3.10)–(3.12), it is sufficient to show that the only LDG approximation

to the homogeneous Stokes problem with �uD = �0 and �f = �0 is the trivial one.
In this case, by using arguments similar to those in [17, Proposition 2.1], it can

be readily seen that (ωh, �uh) = (0,�0), provided that D > 0. Equation (3.11) then
becomes

0 = 〈[[�v · �n]], ph〉Eh
=

∑

K∈Th

〈�v · �nK , ph〉∂K , �v ∈ �V k
h .

From the stability result in Proposition 3.2, we can find a field �v ∈ �V k
h such that

0 =
∑

K∈Th

〈�v · �nK , ph〉∂K ≥
∑

K∈Th

‖ph − m∂K(ph)‖2
0,∂K .

This immediately implies that ph must be constant on ∂K for all K ∈ Th. Hence,
the multiplier ph is constant on Eh, which shows the first claim.

To show the second claim, note that (3.12) implies that the normal component
of �uh is continuous across interelement boundaries and that

〈�uh · �n, q〉EB
h

= 〈�uD · �n, q〉EB
h

, q ∈ Qk
h.

We conclude that �uh is in H(div0; Ω) and satisfies (3.7). Furthermore, in view of the

inclusion �Vk
h ⊂ �V k

h , we obtain that (ωh, �uh) is also the solution of (3.5)–(3.7). �

3.4. Recovering the pressure. Next, we show that once the solution of the hy-
bridized LDG method is computed, it is possible to recover the pressure on the
whole domain Ω in an element-by-element fashion.

To see this, note that if we multiply the equation (3.2) by a test function �v and
integrate over the triangle K, we get

−(p, div�v)K = (�f,�v)K − (ω, curl�v)K − 〈�v · �nK , p〉∂K − 〈ω,�v × �nK〉∂K .

We then set

Qk
h = {q ∈ L2(Ω) : q|K ∈ Pk−1(K), K ∈ Th},

and take the pressure ph ∈ Qk
h on each triangle K as the element of Pk−1(K) such

that

(3.13) −(ph, div�v)K = (�f,�v)K − (ωh, curl�v)K − 〈�v · �nK , ph〉∂K − 〈ω̂h,�v × �nK〉∂K

for all �v in �Pk(K).

Proposition 3.3. The pressure ph ∈ Qk
h given by (3.13) is well defined for k ≥ 1.

Proof. Since Pk−1(K) = div �Pk(K), we only have to prove that if div�v|K = 0, then

the right-hand side of (3.13) is also equal to zero. But in that case, �v ∈ �Jk(K),
and the right-hand side of (3.13) is zero by (3.11) defining the hybridized LDG
method. �
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This concludes the presentation of the method.
Let us point out that this method has a considerable smaller number of degrees

of freedom than the other LDG methods for incompressible fluid flow, a typical
example of which is the one considered in [15]. To see this, let us recall that the
method in [15] provides approximations for (�σ1, �σ2, �u, p), since to define it, we need
to rewrite the Stokes system as follows:

(3.14) �σi − grad�ui = 0, div �σi + ∂ip = �fi i=1,2, div �u = 0 in Ω.

Instead, the LDG method proposed in this paper only provides approximations for
(ω, �u, p). Thus, we see that the LDG method under consideration approximates a
considerably smaller number of variables.

Of course, an extension of the LDG method in [15] to the system of equations
(3.1)–(3.4) we are using to define our LDG method is not difficult to devise and
analyze. Conversely, the hybridized LDG method proposed in this paper can be
straightforwardly extended to the system in (3.14).

4. Error analysis of the method

In this section, we present two a priori error estimates for the hybridized LDG
method. The first, Theorem 4.1, states that the vorticity ωh and velocity �uh con-
verge at an optimal rate. The second, Theorem 4.2, states that the pressure at
the interior of the elements, ph, is also optimally convergent. These are our main
theoretical results.

4.1. The error estimates. The error estimates we obtain are for the hybridized
LDG method for which we take

(4.1) D|e = dh−1
e ∀e ∈ Eh,

with he denoting the length of the edge e and d being a positive parameter that is
independent of the mesh size, and

(4.2) |�E|e ≤ C ∀e ∈ EI
h ,

with a constant C independent of the mesh size. We use the norm

‖�v‖2
1,h =

∑

K∈Th

‖ grad�v‖2
0,K +

∑

e∈Eh

h−1
e ‖[[�v ⊗ �n]]‖2

0,e.

Here, for �a = (a1, a2) and �b = (b1, b2), we denote by �a ⊗ �b the matrix given by

[�a ⊗�b]ij = aibj .

Theorem 4.1. Let (ω, �u, p) be the exact solution of the Stokes system, and let

(ωh, �uh, ph) ∈ Σk
h × �V k

h × Qk
h/R be the approximation given by the hybridized LDG

method with k ≥ 1. If �u ∈ Hs+1(Ω)2 for s ≥ 1, then

‖ω − ωh‖0 + ‖�u − �uh‖1,h ≤ C hmin{k,s} ‖�u‖s+1,

where the constant C is independent of the mesh size and the exact solution.

Theorem 4.2. Let p be the exact pressure of the Stokes system and let ph ∈ Qk
h

be its approximation given by the post-processing method (3.13) with k ≥ 1. If

�u ∈ Hs+1(Ω)2 and p ∈ Hs(Ω) for s ≥ 1, then

‖p − ph‖L2(Ω)/R ≤ C hmin{k,s}
[
‖�u‖s+1 + ‖p‖s

]
,

where the constant C is independent of the mesh size and the exact solution.
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Remark 4.3. The convergence rates in the above results are optimal with respect
to the approximation properties of the underlying finite element spaces. The same
convergence rates are obtained if the approximate vorticity ωh is taken to be a
piecewise polynomial of degree k, that is, if it belongs to the space Σk+1

h .

Remark 4.4. Note that, in the first result in Theorem 4.1, nothing is said about the
error of the approximation provided by the pressure on the mesh edges, ph. This
reflects the fact that the original LDG method in (3.5)–(3.7) does not involve any
pressure variable in its definition. While it can be readily proven, using the inf-sup
condition in Theorem 5.1 below, that, on quasi-uniform meshes, ph converges to p
with order k−1 in an L2-like norm, the numerical experiments of Section 8 actually
indicate that ph converges to p with order k. However, since ph is a piecewise
polynomial of degree k, this observed rate of convergence is suboptimal with respect
to the approximation properties of Qk

h. A complete theoretical understanding of
this result, certainly linked with the fact that the vorticity and the velocity converge
with order k, still remains to be achieved.

4.2. The compact form of the method. To facilitate the analysis we rewrite
the hybridized LDG method in a compact from. We do this by fully exploiting the
fact that the vorticity can be easily eliminated from the equations; we follow [2].

For �v ∈ �V (h), where

�V (h) = �V k
h +

[
H1(Ω)2 ∩ H(div0; Ω)

]
,

we define the lifted element L�E(�u) ∈ Σk
h by

(4.3) (L�E(�u), σ)Th
=

〈
�E[[�u × �n]], [[σ × �n]]

〉

EI
h

+ 〈{{σ}}, [[�u × �n]]〉Eh
∀σ ∈ Σk

h.

Similarly, the lifting UD ∈ Σk
h of the boundary datum �uD is given by

(UD, σ)Th
= 〈 �uD, σ × �n〉EB

h
∀σ ∈ Σk

h.

We note that, for the exact velocity �u, we have

(4.4) L�E(�u) = −UD.

This can easily be seen using the fact that the jump of �u vanishes over interior
edges and that �u = �uD on boundary edges.

By integration by parts, it is easy to see that the first equation (3.10) in the
definition of the hybridized LDG method can be rewritten as

(4.5) ωh = curl�uh + L�E(�uh) + UD on each K ∈ Th.

Next, we use this expression to eliminate the vorticity from the equations. Thus,
from the definition of the numerical fluxes and the lifting L�E, the second equa-
tion (3.11) can be expressed as

(ωh, curl�v + L�E(�v))Th
+ 〈D[[�uh × �n]], [[�v × �n]]〉Eh

+ 〈[[�v · �n]], ph〉Eh

= (�f,�v)Th
+ 〈D(�uD × �n), �v × �n〉EB

h
,

and, using (4.5), becomes

(curl�uh + L�E(�uh), curl�v + L�E(�v))Th
+ 〈D[[�uh × �n]], [[�v × �n]]〉Eh

+ 〈[[�v · �n]], ph〉Eh

= (�f,�v)Th
− (UD, curl�v + L�E(�v))Th

+ 〈D(�uD × �n), �v × �n〉EB
h

.

(4.6)
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Finally, by introducing the bilinear forms

Ah(�u,�v) =(curl �u + L�E(�u), curl�v + L�E(�v))Th
+ 〈D[[�u × �n]], [[�v × �n]]〉Eh

,(4.7)

Bh(�v, q) = 〈[[�v · �n]], q〉Eh
,(4.8)

as well as the functionals

Fh(�v) = (�f,�v)Th
− (UD, curl�v + L�E(�v))Th

+ 〈D(�uD × �n), �v × �n〉EB
h

,(4.9)

Gh(q) = 〈�uD · �n, q〉EB
h

,(4.10)

we are led to consider the following mixed formulation:

Find (�uh, ph) ∈ �V k
h × Qk

h/R such that

(4.11)

{
Ah(�uh, �v) + Bh(�v, ph) = Fh(�v) ∀�v ∈ �V k

h ,

Bh(�uh, q) = Gh(q) ∀q ∈ Qk
h/R.

The formulation in (4.11) is the compact form of the LDG method that we are
going to use in our error analysis.

Furthermore, in order to write the post-processing procedure (3.13) in a compact
form, we introduce the space

�Vk
h = {�v ∈ L2(Ω)2 : �v|K ∈ �Pk(K), K ∈ Th}.

Now, if we set

Bh(�v, p) = −(p, div�v)Th
,

then the recovered pressure ph is the element of the space Qk
h given by

Bh(�v, ph) = Fh(�v) − Ah(�uh,�v) − Bh(�v, ph)

for all �v ∈ �Vk
h.

Here we note that the definition of the form Ah can be straightforwardly extended

to the the space �V(h) = �Vk
h+

[
H1(Ω)2∩H(div0; Ω)

]
by extending the lifting operator

L�E to an operator �V(h) → Σk
h, using the same definition.

This is the framework we are going to use to carry out the analysis of the method.

4.3. Stability properties. Next, we state the main stability properties of the
forms Ah, Bh and Bh. The proofs of the most difficult properties are presented in
full detail in Section 6.

4.3.1. Continuity. We start by noting the following continuity properties:

|Ah(�u,�v)| ≤ CA,cont‖�u‖1,h‖�v‖1,h, �u,�v ∈ �V(h),(4.12)

|Bh(�v, q)| ≤ CB,cont‖�v‖1,h‖q‖L2(Eh;h)/R, �v ∈ �V(h), q ∈ Qk
h,(4.13)

|Bh(�v, q)| ≤ CB,cont‖�v‖1,h‖q‖0, �v ∈ �V(h), q ∈ Qk
h,(4.14)

with continuity constants CA,cont, CB,cont and CB,cont that are independent of the
mesh size. Here we use the norms

(4.15) ‖q‖2
L2(Eh;h) =

∑

e∈Eh

he‖q‖2
0,e, ‖q‖L2(Eh;h)/R = inf

c∈R

‖q − c‖L2(Eh;h).

To see the continuity of Ah, we first note that there holds

(4.16) ‖L�E(�v)‖2
0 ≤ C2

lift

∑

e∈Eh

h−1
e ‖[[�v × �n]]‖2

0,e, �v ∈ �V(h),
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with a constant Clift independent of the mesh size; see [33, Section 3] or [34, Propo-
sition 4.2] for details. Property (4.12) then follows from the above estimate and an
application of the Cauchy–Schwarz inequality. The continuity properties in (4.13)
and (4.14) are readily obtained from the weighted Cauchy–Schwarz inequality.

4.3.2. Coercivity of Ah. Next, we discuss the coercivity properties of the form Ah.
The following trivial stability result holds:
(4.17)

Ah(�v,�v) ≥ C
[ ∑

K∈Th

(
‖ curl�v‖2

0,K + ‖ div�v‖2
0,K

)
+

∑

e∈Eh

h−1
e ‖[[�v×�n]]‖2

0,e

]
, �v ∈ �V k

h ;

see [2] or [34, Lemma 4.5]. Here we have used the fact that functions in �V k
h are

locally incompressible. Then, if we introduce the norm (see [22, Lemma I.2.5 and
Remark I.2.7])

(4.18) ‖�v‖2
⋆ =

∑

K∈Th

(
‖ curl�v‖2

0,K+‖ div�v‖2
0,K

)
+

∑

e∈Eh

h−1
e

(
‖[[�v×�n]]‖2

0,e+‖[[�v·�n]]‖2
0,e

)
,

we immediately get that

(4.19) Ah(�v,�v) ≥ C‖�v‖2
⋆, �v ∈ �V k

h ∩ H0(div; Ω),

where we have set

H0(div; Ω) = {�v ∈ L2(Ω) : div�v ∈ L2(Ω), �v · �n = 0 on Γ }.
The following result shows that the norm ‖ · ‖⋆ is actually equivalent to the

norm ‖ · ‖1,h.

Proposition 4.5. On �V k
h , the norms ‖ · ‖1,h and ‖ · ‖⋆ are equivalent uniformly in

the mesh size. That is, there are constants C1 and C2 independent of the mesh size

such that C1‖�v‖1,h ≤ ‖�v‖⋆ ≤ C2‖�v‖1,h for all �v ∈ �V k
h .

The proof of Proposition 4.5 is carried out in Section 6.1. Combining Proposi-
tion 4.5 and (4.19), we obtain the following coercivity property:

(4.20) Ah(�v,�v) ≥ CA,coer‖�v‖2
1,h, �v ∈ �V k

h ∩ H0(div; Ω),

with a coercivity constant CA,coer that is independent of the mesh size.

4.3.3. The inf-sup condition for Bh. To derive the error estimates in the pressure ph,
we will make use of the following inf-sup condition. There is a constant CB,is

independent of the mesh size such that

(4.21) sup
�v∈�V k

h ∩H0(div;Ω)

Bh(�v, q)

‖�v‖1,h
≥ CB,is‖PQ k

h
q ‖L2(Ω)/R, q ∈ L2(Ω),

where PQ k
h

is the L2-projection onto Q k
h .

The proof of this result is carried out in Section 6.2.

4.4. Sketch of the proofs of the error estimates. Next, we outline the main
steps of the proofs of our error estimates. We begin by addressing the fact that,
after elimination of the vorticity, the method under consideration does not have the
so-called Galerkin orthogonality property.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



546 JESÚS CARRERO, BERNARDO COCKBURN, AND DOMINIK SCHÖTZAU

4.4.1. Approximate Galerkin orthogonality. It is well known that the property of
Galerkin orthogonality is crucial in the analysis of classical finite element methods.
However, due to the use of the lifting operators in the definition of the form Ah,
such a property does not hold; see [33] and [34]. Instead, we have what we refer to
as approximate Galerkin orthogonality. This is stated in the following result.

Lemma 4.6. The exact solution (ω, �u, p) of the Stokes problem satisfies

(4.22)

{
Ah(�u,�v) + Bh(�v, p) = Fh(�v) + Rh(ω,�v) ∀�v ∈ �V k

h ,

Bh(�u, q) = Gh(q) ∀q ∈ Qk
h/R,

as well as

(4.23) Bh(�v, p) = Fh(�v) − Bh(�v, p) − Ah(�u,�v) + Rh(ω,�v) ∀�v ∈ �V k
h .

Here Rh(ω,�v) is the expression

Rh(ω,�v) = 〈�E[[�v × �n]], [[PΣk
h
ω × �n]]〉EI

h
+ 〈{{PΣk

h
ω − ω}}, [[�v × �n]]〉Eh

,

with PΣk
h

denoting the L2-projection onto Σk
h.

Proof. We first note that the second equation in (4.22) is trivially satisfied since �u
is continuous across interelement boundaries and satisfies �u = �uD on Γ. To prove
the first equation in (4.22), consider the expression

Θh = Ah(�u,�v) + Bh(�v, p) − Fh(�v),

for �v ∈ �V k
h . As a direct consequence of the definitions of the forms Ah, (4.7), Bh,

(4.8), and Fh, (4.9), of the fact that L�E(�u) = −UD, (4.4), of the continuity of �u
across interelement boundaries, and of the fact that on the boundary �u = �uD, we
immediately get

Θh =(ω, curl�v + L�E(�v))Th
+ 〈[[�v · �n]], p〉Eh

− (�f,�v)Th

=(ω, curl�v + L�E(�v))Th
+ (grad p − �f,�v)Th

since �v ∈ �V k
h ,

=(ω, curl�v + L�E(�v))Th
+ (− �curl ω,�v)Th

by (3.2),

=(ω, L�E(�v))Th
− 〈ω, [[�v × �n]]〉Eh

by integration by parts,

=(PΣk
h
ω, L�E(�v))Th

− 〈ω, [[�v × �n]]〉Eh

=〈�E[[�v × �n]], [[PΣk
h
ω × �n]]〉EI

h
+ 〈({{PΣk

h
ω}} − ω), [[�v × �n]]〉Eh

,

by the definition of the lifting L�E, (4.3). This means that Θh = Rh(ω,�v) and so
the first equation in (4.22) holds true.

Equation (4.23) follows in a completely analogous fashion. This completes the
proof. �

4.4.2. Error analysis for the velocity and vorticity. To obtain the error estimates
for the velocity and the vorticity, we introduce the set

(4.24) �Zh(�w) = {�v ∈ �V k
h : Bh(�v, q) = 〈�w · �n, q〉EB

h
, q ∈ Qk

h},
where �w is any given function with a well-defined normal component in the bound-
ary of Ω. From the equations of the mixed formulation (4.11), we can see that the

approximate velocity �uh can be characterized as the element of the set �Zh(�uD) such
that

(4.25) Ah(�uh, �v) = Fh(�v),
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for all �v ∈ �Zh(�0). Note that this is nothing but a compact form of the formulation of
the original unhybridized LDG method after the elimination of the vorticity. This
follows from the definition of the method and from the fact that

�Zh(�w) = {�v ∈ �V k
h : 〈�v · �n, q〉EB

h
= 〈�w · �n, q〉EB

h
, q ∈ Qk

h}.

Since, by Lemma 4.6, we have that

Ah(�u,�v) = Fh(�v) + Rh(ω,�v),

for all �v ∈ Zh(�0), we proceed as in [33] and [34] and apply the technique proposed
by Strang to analyze nonconforming methods to obtain that

‖ �u − �uh ‖1,h ≤
(
1 +

CA,cont

CA,coer

)
inf

�v∈�Zh(�uD)
‖ �u − �v ‖1,h +

1

CA,coer
sup

�v∈�Zh(�0)

|Rh(ω,�v)|
‖�v ‖1,h

.

Here we have used the continuity of Ah in (4.12) and the coercivity property (4.20)

on �Zh(�0) ⊂
(

�V k
h ∩ H0(div; Ω)

)
.

The error estimate for the velocity then follows immediately if we show that

inf
�v∈�Zh(�uD)

‖ �u − �v ‖1,h ≤ C hmin{k,s} ‖ �u ‖s+1,(4.26)

sup
�v∈�V k

h

|Rh(ω,�v)|
‖�v ‖1,h

≤ C hmin{k,s} ‖ �u ‖s+1.(4.27)

The properties in (4.26) and (4.27) are proven in Section 6.3.
Now, it only remains to obtain the estimate for the vorticity from that of the ve-

locity. Indeed, in view of the definition of the approximate vorticity (4.5) and (4.4),
we have that, on each element K ∈ Th,

ω − ωh = curl(�u − �uh) + L�E(�u − �uh),

and hence

‖ω − ωh‖0 ≤
(√

2 + Clift

)
‖�u − �uh‖1,h,

where we used the stability property (4.16) for the lifting operator L�E.

4.4.3. Error analysis for the pressure. To obtain the estimate of the error p − ph

in the approximation of the pressure in the interior of the elements, we proceed as
follows. Note that, by the definition of the approximate pressure ph and Lemma 4.6,
we have

Bh(�v, p − ph) = −Ah(�u − �uh, v) + Rh(ω,�v),

for all �v ∈ �V k
h ∩ H0(div; Ω). Here we have used that Bh(�v, p − ph) = 0 for �v ∈

�V k
h ∩ H0(div; Ω). Then, from the inf-sup condition in (4.21) we obtain

sup
�v∈�V k

h ∩H0(div;Ω)

Bh(�v, p − ph)

‖�v‖1,h
≥ CB,is‖PQk

h
p − ph ‖L2(Ω)/R,

where we recall that PQk
h

is the L2-projection onto Qk
h. With the continuity prop-

erty (4.12), we immediately conclude that

‖PQk
h

p − ph ‖L2(Ω)/R ≤ CA,cont

CB,is
‖ �u − �uh ‖1,h +

1

CB,is
sup

�v∈�V k
h ∩H0(div;Ω)

|Rh(ω,�v)|
‖�v ‖1,h

.
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The error estimate for p − ph now follows from the estimate of the error of the
velocity, the estimate (4.27) of Rh, and the well-known approximation result

‖ p − PQk
h

p ‖L2(Ω)/R ≤ C hmin{k,s} ‖ p ‖s.

This concludes the description of the main steps in the error analysis. In Section 6
we prove in full detail the auxiliary results that remain to be proven.

5. The Schur-complement matrix for the pressure

In this section, we discuss a subtle but important issue related to the actual
solution of the matrix equation associated to the hybridized LDG method. This
issue does not appear in the classical mixed methods for the Stokes system.

From the weak formulation (4.11), it is easy to see that the matrix equation of
the hybridized LDG method is of the form

(
A Bt

B 0

) (
U

P

)
=

(
F

G

)
,

where U and P are the vectors of coefficients of the velocity �uh and the pressure ph

with respect to their corresponding finite element basis, respectively. A popular
method used to solve this system of equations is the Uzawa method, which is
nothing but a simplified version of the steepest descent method applied to the
Schur-complement matrix for the pressure.

Unfortunately, we cannot use such a method since the Schur-complement matrix
for the pressure is not defined, given that the matrix A is not invertible. Indeed,
we can see in the proof of Theorem 4.1 that its inverse is only defined in the kernel
of the matrix B. This suggests the following remedy. Let us define the mapping

Mh,ε : �V k
h �→ Qk

h by

Mh,ε(�v)|e = ε−1
e [[�v · �n]]|e for e ∈ Eh,

for some strictly positive function piecewise-constant function ε ∈ L2(Eh). It is

then clear that the approximate solution (�uh, ph) ∈ �V k
h × Qk

h/R also satisfies the
weak formulation{

Ah(�uh, �v) + Bh(�uh, Mh,ε(�v)) + Bh(�v, ph) = Fh(�v) + Gh(Mh,ε(�v)),

Bh(�uh, q) = Gh(q),

for all (�v, q) ∈ �V k
h × Qk

h/R. The matrix equation of this new formulation is of the
form

(5.1)

(
Aε Bt

B 0

)(
U

P

)
=

(
Fε

G

)
,

where Aε can now be proven to be symmetric and positive definite (and thus in-
vertible). Indeed, since

(5.2) Bh(�u, Mh,ε(�v)) =
∑

e∈Eh

ε−1
e 〈 [[�u · �n]], [[�v · �n ]]〉e,

the matrix Aε is readily seen to be symmetric. Furthermore, we easily see that, for

any �v ∈ �V k
h ,

Ah(�v,�v) + Bh(�v, Mh,ε(�v)) ≥ 0,

and that we have equality if and only if Ah(�v,�v) = 0 and Bh(�v, Mh,ε(�v)) = 0. The
second equation implies that �v is in the kernel of the matrix B. Since A is positive
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definite on this subspace according to (4.20), the first equation implies that �v = �0.
This shows that the matrix Aε is positive definite.

Consequently, the Schur-complement matrix for the pressure, Sε = B A−1
ε Bt, can

be formed and used to efficiently solve for the unknowns. To bound the condition
number of Sε, we will use the following inf-sup stability result.

Theorem 5.1. There is a constant CB,is independent of the mesh size such that

sup
�v∈�V k

h

Bh(�v, q)

‖�v ‖1,h
≥ CB,ishmin ‖ q ‖L2(Eh;h)/R, q ∈ Qk

h,

where hmin = minK∈Th
hK .

The detailed proof of Theorem 5.1 can be found in Section 7. Here we show how
these results allow us to bound the condition numbers of Aε and Sε.

Theorem 5.2. The augmented stiffness matrix for the velocity, Aε, as well as the

Schur-complement matrix for the pressure, Sε = B A−1
ε Bt, are symmetric, positive

definite matrices. Moreover, their condition number is of order h−2 provided

εe = fe he for e ∈ Eh,

and the mesh is quasi-uniform. Here the positive piecewise-constant functions f and

f−1 are uniformly bounded.

Thus, we can apply a minimization algorithm to the Schur-complement matrix
for the pressure of the new system. Note also that new system of equations is
associated with the application of the classical augmented Lagrangian method to
the original equations.

For classical mixed methods, the condition number of the Schur-complement
matrix for the pressure is of order one. The fact that in our case it is of order h−2

is directly associated with the fact that our approximate velocity is divergence-free.
A similar result was obtained by Dörfler [19] for a nonconforming method whose
approximate velocity was weakly divergence-free. He found that the condition
number of the stiffness matrix for the velocity was of order h−4 instead of order h−2,
as is the case for classical weakly divergence-free methods.

Proof of Theorem 5.2. In what follows, we drop the subindex ε, since in this result,
this piecewise-constant function has been chosen. As already discussed, the ma-
trix A is symmetric and positive definite. By construction, the Schur-complement
matrix S is symmetric. Furthermore, in view of the inf-sup condition in Theo-
rem 5.1, it is positive definite as well; see [9] for details.

Next, let us prove the claimed upper bounds on the condition numbers of A

and S, denoted by κA and κS, respectively. We start by estimating κA, which can
be expressed as follows:

κA =
maxV �=0

V
t
AV

VtV

minV �=0
VtAV

VtV

.

Since VtAV = Ah(�v,�v) + Bh(�v, Mh(�v)), by the continuity properties of Ah and Bh

in (4.12) and (4.13) and the definition of Mh, we immediately have that

VtAV ≤ CA,cont‖�u‖1,h‖�v‖1,h, �u,�v ∈ �V k
h ,
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for a continuity constant CA,cont that is independent of the mesh size. Furthermore,
the coercivity result (4.17), the definition of the operator Mh, and the equivalence
result in Proposition 4.5 yield

(5.3) VtAV ≥ CA,coer‖�v‖2
1,h, �v ∈ �V k

h ,

for a coercivity constant CA,coer that is independent of the mesh size. We thus can
conclude that

CA,coer‖�v‖2
1,h ≤ VtAV ≤ CA,cont‖�v‖2

1,h.

Furthermore, from the Poincaré inequality in [7] and standard inverse estimates,
we obtain

‖�v ‖2
1,h

‖�v ‖2
0

∈
[

1

C2
P

, C2
inv h−2

min

]
,

with constants CP and Cinv that are independent of the mesh size. Similarly, by
the regularity of the mesh,

‖�v ‖2
0

VtV
∈

[
h2

min

Creg
, Creg h2

max

]
,

with a constant Creg that is independent of the mesh size. Combining these esti-
mates yields

κA ≤
(

CA,cont C2
P C2

inv C2
reg

CA,coer

) (
h2

max

h4
min

)
= O(h−2),

provided the mesh is quasi-uniform.

Next, we let us bound κS =
maxQ �=0

QtSQ

QtQ

minQ �=0
QtSQ

QtQ

. Let us begin by noting that we have

QtSQ

QtQ
=

QtBV

QtQ
=

(
Bh(�v, q)

‖�v ‖1,h ‖ q ‖L2(Eh;h)/R

)( ‖�v ‖1,h

‖ q ‖L2(Eh;h)/R

) (
‖ q ‖2

L2(Eh;h)/R

QtQ

)
,

where AV = Bt Q, that is,

(5.4) Ah(�v, �w) + Bh(�v, Mh(�w)) = Bh(�w, q) ∀�w ∈ �V k
h .

Since, by the regularity of the mesh, we have

‖ q ‖2
L2(Eh;h)/R

QtQ
∈

[
h2

min

Creg
, Creg h2

max

]
,

with a constant Creg independent of the mesh size. Furthermore, from the continuity
and inf-sup stability for Bh in (4.13) and Theorem 5.1, respectively, we conclude
that

Bh(�v, q)

‖�v ‖1,h ‖ q ‖L2(Eh;h)/R

∈ [CB,is hmin, CB,cont] .

Hence, we obtain

κS ≤
(

C2
B,cont CA,coer C2

reg

C2
B,is CA,cont

) (
h2

max

h4
min

)
= O(h−2),

provided the mesh is quasi-uniform and provided we show that

(5.5)
‖�v ‖1,h

‖ q ‖L2(Eh;h)/R

∈
[

CB,is

CA,cont
hmin,

CB,cont

CA,coer

]
.
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To prove property (5.5), we first take �w = �v in (5.4), use (5.3) and (4.13), and get

‖�v ‖2
1,h ≤ C−1

A,coerBh(�v, q) ≤ C−1
A,coerCB,cont‖�v‖1,h‖q‖L2(Eh;h)/R.

Furthermore, from the inf-sup condition in Theorem 5.1 and the weak form of the
problem in (5.4), we conclude that

CB,ishmin‖q‖L2(Eh;h)/R ≤ sup
�w∈�V k

h

Bh(�w, q)

‖�w‖1,h
= sup

�w∈�V k
h

Ah(�v, �w) + Bh(�v, Mh(�w))

‖�w‖1,h
.

Hence, we obtain that

CB,ishmin‖q‖L2(Eh;h)/R ≤ CA,cont‖�v‖1,h.

These estimates show property (5.5) and complete the proof of Theorem 5.2. �

6. Auxiliary results in the proofs of Theorems 4.1 and 4.2

In this section, we complete the proofs of the auxiliary results that we used in
Section 4.4 to derive the error estimates in Theorems 4.1 and 4.2.

6.1. The norm equivalence result in Proposition 4.5. To prove the result in
Proposition 4.5, we are going to use the following result shown in [31, Theorem 2.2].

Lemma 6.1. For each �v ∈ �V k
h there is a function �A�v ∈ �V k

h ∩ H1
0 (Ω)2 such that

‖�v − �A�v‖2
1,h ≤ C

∑

e∈Eh

h−1
e ‖[[�v ⊗ �n]]‖2

0,e,

with a constant C independent of the mesh size.

Proof of Proposition 4.5. We first note that that the inequality on the right-hand
side is trivial and that we only need to establish the one on the left-hand side.

To do so, we set

�V k,c
h = �V k

h ∩
[
H0(div; Ω) ∩ H0(curl; Ω)

]
,

where

H0(curl; Ω) = {�v ∈ L2(Ω)2 : curl�v ∈ L2(Ω), �v × �n = 0 on Γ }.

Clearly,
[
�V k

h ∩ H1
0 (Ω)2

]
⊂ �V k,c

h . Moreover, the result in [22, Lemma I.2.5 and Re-
mark I.2.7] ensures the algebraic and topological equality of H0(div; Ω)∩H0(curl; Ω)
and H1

0 (Ω)2. This implies that there exist constants c1 and c2 such that

(6.1) c1‖�v‖1 ≤ ‖�v‖⋆ ≤ c2‖�v‖1 ∀�v ∈ �V k,c
h .

Let �V k,⊥
h be the orthogonal complement of �V k,c

h in �V k
h with respect to the norm ‖·‖⋆.

Hence,

(6.2) �V k
h = �V k,c

h ⊕ �V k,⊥
h .

Now, fix �v in �V k
h arbitrary. We decompose �v into �v = �vc +�v⊥, according to (6.2).

We have

‖�v‖2
1,h ≤ C

[
‖�v − �A�v‖2

1,h + ‖�A�v −�vc‖2
1 + ‖�vc‖2

1

]

≤ C
[ ∑

e∈Eh

h−1
e ‖[[�v ⊗ �n]]‖2

0,e + ‖�A�v −�vc‖2
⋆ + ‖�vc‖2

⋆

]
.
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Here we have used the triangle inequality, the approximation result in Lemma 6.1,
and the norm equivalence property in (6.1). Since, on each edge e ∈ Eh,

‖[[�v ⊗ �n]]‖2
0,e = ‖[[�v × �n]]‖2

0,e + ‖[[�v · �n]]‖2
0,e = ‖[[�v⊥ × �n]]‖2

0,e + ‖[[�v⊥ · �n]]‖2
0,e,

we have ∑

e∈Eh

h−1
e ‖[[�v ⊗ �n]]‖2

0,e ≤ ‖�v⊥‖2
⋆.

Then, by the triangle inequality, the trivial bound ‖ · ‖⋆ ≤ C2‖ · ‖1,h, the approxi-
mation property in Lemma 6.1, and the previous estimate,

‖�A�v −�vc‖2
⋆ ≤ C

[
‖�v − �A�v‖2

⋆ + ‖�v −�vc‖2
⋆

]
≤ C

[
‖�v − �A�v‖2

1,h + ‖�v⊥‖2
⋆

]

≤ C
[ ∑

e∈Eh

h−1
e ‖[[�v ⊗ �n]]‖2

0,e + ‖�v⊥‖2
⋆

]
≤ C‖�v⊥‖2

⋆.

Gathering these bounds and using the orthogonality of the decomposition (6.2) with
respect to ‖ · ‖⋆, we obtain ‖�v‖2

1,h ≤ C
[
‖�v⊥‖2

⋆ + ‖�vc‖2
⋆

]
≤ C‖�v‖2

⋆. This completes
the proof. �

6.2. The inf-sup condition for Bh. To complete the proof of the error estimate
for the pressure, it only remains to prove the inf-sup condition for Bh in (4.21). To
do that, we first note that

Bh(�w, q) = Bh(�w, PQk
h
q),

for any �w ∈ �V k
h ∩ H0(div; Ω) and q ∈ L2(Ω). Hence, to prove (4.21) it is enough to

construct a velocity field �v ∈ �V k
h ∩ H0(div; Ω) such that

(6.3) ‖PQk
h
q‖L2(Ω)/R ≤ Bh(�v, PQk

h
q), ‖�v‖1,h ≤ C.

To do that, we first use the continuous inf-sup condition to find a field �v ∈ H1
0 (Ω)2

such that

‖PQk
h
q‖L2(Ω)/R ≤ Bh(�v, PQk

h
q), ‖�v‖1 ≤ C;

see, e.g., [9] or [22]. Then let �v = �Ik�v be the BDM projection of �v of degree k; see [9,

Section III.3.3] for details. Clearly, �v ∈ �V k
h ∩H0(div; Ω), and, by the definition of �Ik,

(
PQk

h
q, div�v

)

Th

= −
(
grad(PQk

h
q),�v

)

Th

+
∑

K∈Th

〈
�v · �nK , PQk

h
q
〉

∂K

= −
(
grad(PQk

h
q), �v

)

Th

+
∑

K∈Th

〈
�v · �nK , PQk

h
q
〉

∂K

=
(
PQk

h
q, div�v

)

Th

,

which shows that Bh(�v, PQk
h
q) = Bh(�v, PQk

h
q). Furthermore, it can be readily seen

that ‖�v‖1,h ≤ C‖�v‖1, which yields the result in (6.3).

6.3. Approximation results. Next, we prove the approximation results in (4.27)
and (4.26).
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6.3.1. The estimate of Rh in (4.27). For functions �v ∈ �V k
h , the estimate

Rh(ω,�v) ≤ C hmin{k,s} ‖�v‖1,h‖ω‖s ≤ C hmin{k,s}‖�v‖1,h‖�u‖s+1,

with C independent of the mesh size, is readily obtained from the weighted Cauchy–
Schwarz inequality and the following standard approximation property for the L2-
projection PΣk

h
onto Σk

h:

‖ω − PΣk
h
ω‖2

0,e ≤ Ch
2min{k,s}−1
K ‖ω‖2

s,K , e ∈ ∂K, K ∈ Th.

This shows (4.27).

6.3.2. The approximation inequality in (4.26). To show (4.26), we proceed as fol-

lows. Let �Ik�u denote the BDM projection of �u of degree k; see [9, Section III.3.3].

By construction of this projection, we have �Ik�u ∈ H(div; Ω). Furthermore, the
commuting diagram property in [9, Proposition III.3.7] gives

div(�Ik�u) = Pk−1 div �u = 0 on each K ∈ Th,

with Pk−1 denoting the L2-projection onto the space of piecewise polynomials of

degree k−1. This shows that �Ik�u ∈ �V k
h ∩H(div; Ω). Finally, for a boundary edge e,

the definition of �Ik ensures that
〈
�Ik�u · �n, q

〉

e
= 〈�uD · �n, q〉e , q ∈ Pk(e).

Hence, we have �Ik�u ∈ �Zh(�uD) and can use �v = �Ik�u to bound the infimum in (4.26).

The approximation properties of �Ik can be found in [9, Proposition III.3.7]: there
holds

(6.4) ‖�u − �Ik�u‖m,K ≤ Ch
min{k,s}+1−m
K ‖�u‖s+1,K , m = 0, 1, K ∈ Th,

with a constant independent of the mesh size. Using the multiplicative trace in-
equality and the above approximation result, we conclude that, for an edge e of an
element K ∈ Th,

h−1
e ‖�u − �Ik�u‖2

0,e ≤ Ch−2
K ‖�u − �Ik�u‖2

0,K + Ch−1
K ‖�u − �Ik�u‖0,K‖�u − �Ik�u‖1,K

≤ Ch
2min{k,s}
K ‖�u‖2

s+1,K .
(6.5)

Using (6.4)–(6.5), we immediately obtain

inf
�v∈�Zh(�uD)

‖�u − �v‖1,h ≤ ‖�u − �Ik�u‖1,h ≤ Chmin{k,s}‖�u‖s+1.

This proves (4.26).

7. The inf-sup condition for Bh

In this section, we first prove a slightly stronger version of the stability result in
Proposition 3.2 and then show the inf-sup condition in Theorem 5.1.
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7.1. The stability result in Proposition 3.2. To prove Proposition 3.2, we
introduce, for each element K ∈ Th, the following local forms: BK(�v, q) = 〈�v ·
�nK , q〉∂K , and the local spaces Qk

h(K) = {q ∈ L2(∂K) : q|e ∈ Pk(e), e ∈ ∂K}.
We show the following result from which Proposition 3.2 immediately follows after
suitably scaling the local field �v.

Proposition 7.1. There is a constant C independent of the mesh size such that

for any K ∈ Th and q ∈ Qk
h(K) there is a velocity field �v ∈ �Jk(K) with

BK(�v, q) ≥ C
1

|∂K| ‖q − m∂K(q)‖2
0,∂K

and

‖�v‖2
0,K + h2

K‖ grad�v‖2
0,K ≤ C

1

|∂K| ‖q − m∂K(q)‖2
0,∂K .

Here we recall that m∂K(q) = 1
|∂K| 〈1, q〉∂K .

Proof. We proceed in several steps.
Step 1 : We begin by introducing an operator that will be crucial in our proof. To

this end, let K̂ = {x = (x1, x2) : 0 < x1 < 1, 0 < x2 < 1−x1} denote the reference

triangle. We denote the vertices of K̂ by Pi, i = 1, 2, 3; we further set P4 = P1.
The edge that connects Pi and Pi+1 is denoted by ei.

Given real numbers {Λi}3
i=1 and a function λ ∈ L2(∂K̂), we define the polyno-

mial Ψ ∈ Pk+1(K̂) by

Ψ(Pi) = Λi, i = 1, 2, 3,(7.1)

〈Ψ, r〉ei
= 〈λ, r〉ei

, r ∈ Pk−1(ei), i = 1, 2, 3,(7.2)

(Ψ, w)
K̂

= 0, w ∈ Pk−2(K̂).(7.3)

In order to see that the conditions (7.1)–(7.3) uniquely define Ψ, it is enough
to show that Λi = 0, i = 1, 2, 3, and λ = 0 imply Ψ = 0. In that case, however,

conditions (7.1) and (7.2) imply that Ψ vanishes on ∂K̂. Hence, Ψ is of the form
Ψ(x) = b(x)ΨI(x), where b is the cubic bubble function b(x) = x1x2(1 − x1 − x2)
and ΨI is a polynomial of degree k − 2. Condition (7.3) then yields

(b ΨI , w)
K̂

= 0, w ∈ Pk−2(K̂).

Since b > 0 on K̂, this implies that ΨI = 0. Consequently, we have Ψ = 0.
Next, we claim that

(7.4) ‖Ψ‖2
2,K̂

≤ Ĉ

[ 3∑

i=1

Λ2
i +

3∑

i=1

‖λ‖2
0,ei

]
,

with a constant Ĉ only depending on the polynomial degree k.
Using similar arguments as before, it can be seen that the expression ϕ �→ ‖ϕ‖E ,

given by

‖ϕ‖2
E =

3∑

i=1

ϕ(Pi)
2 +

3∑

i=1

‖P ei

k−1ϕ‖2
0,ei

is a norm on PE
k (K̂) = {ϕ ∈ Pk(K̂) | (ϕ, w)

K̂
= 0 ∀w ∈ Pk−2(K̂)}. Here P ei

k−1 is the

L2-projection on the edge ei onto the polynomial space Pk−1(ei). Since all norms
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are equivalent on the finite-dimensional space PE
k (K̂), we conclude that

‖Ψ‖2
2,K̂

≤ Ĉ‖Ψ‖2
E ,

with a constant Ĉ only depending on the polynomial degree k. Since Ψ(Pi) = Λi

by (7.1) and P ei

k−1Ψ = P ei

k−1λ on ei by (7.2), we obtain

‖Ψ‖2
2,K̂

≤ Ĉ

[ 3∑

i=1

Λ2
i +

3∑

i=1

‖P ei

k−1λ‖2
0,ei

]
.

The bound (7.4) follows by noting that ‖P ei

k−1λ‖0,ei
≤ ‖λ‖0,ei

.
Step 2 : We are now ready to show the result of Proposition 7.1 on the reference

element K̂. To that end, let q ∈ Qk
h(K̂). Using the results of Step 1, we define the

polynomial Ψ ∈ Pk+1(K̂) by

Ψ(Pi) = −[q]Pi
, i = 1, 2, 3,

〈Ψ, r〉ei
= −〈qtei

, r〉ei
, r ∈ Pk−1(ei), i = 1, 2, 3,

(Ψ, w)
K̂

= 0, w ∈ Pk−2(K̂).

Here [q]Pi
denotes the jump of q at the vertex Pi given by

[q]Pi
= q|ei

(Pi) − q|ei−1
(Pi), i = 1, 2, 3,

where we have set e0 = e3. Furthermore, qtei
denotes the derivative of q in the

direction of the unit vector tei
tangential to ei.

We then set �v = �curl Ψ. Evidently, �v ∈ �Jk(K̂). Integration by parts and the
defining properties of Ψ yield

〈
�v · �n

K̂
, q

〉
∂K̂

=
〈

�curl Ψ · �n
K̂

, q
〉

∂K̂
=

3∑

i=1

〈grad Ψ · tei
, q〉ei

=
3∑

i=1

〈
Ψtei

, q
〉

ei

=
3∑

i=1

(
−

〈
Ψ, qtei

〉
ei

+ Ψq|Pi+1

Pi

)
=

3∑

i=1

(
‖qtei

‖2
0,ei

+ [q]2Pi

)
.

From (7.4), we further have

‖�v‖2
0,K̂

+ ‖ grad�v‖2
0,K̂

≤ Ĉ‖Ψ‖2
2,K̂

≤ Ĉ
3∑

i=1

[
‖qtei

‖2
0,ei

+ [q]2Pi

]
.

The expressions q �→
( ∑3

i=1 ‖qtei
‖2
0,ei

+[q]2Pi

) 1
2 and q �→ ‖q−m

∂K̂
(q)‖

0,∂K̂
are both

norms on the finite-dimensional space Qk
h(K̂)/R. Hence, they are equivalent and

we obtain

(7.5) B
K̂

(�v, q) ≥ Ĉ‖q − m
∂K̂

(q)‖2
0,∂K̂

,

as well as

(7.6) ‖�v‖2
0,K̂

+ ‖ grad�v‖2
0,K̂

≤ Ĉ‖q − m
∂K̂

(q)‖2
0,∂K̂

,

with a constant Ĉ only depending on the polynomial degree k. The results in (7.5)–

(7.6) show the desired estimates on the reference element K̂.
Step 3 : Let us now show the result of Proposition 7.1 for an arbitrary element K

in Th. To this end, fix q ∈ Qk
h(K). We denote by FK the affine transformation that

maps K̂ onto K and by q̂ the function in L2(∂K̂) given by q̂ = q ◦ FK . Since FK
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is affine, we have q̂ ∈ Qk
h(K̂). By Step 1, there is a velocity field �̂v in �Jk(K̂) such

that (7.5) and (7.6) are satisfied on K̂. We then use the Piola transform to define
the velocity field �v on K by

�v =
1

| detDFK |DFK
�̂v ◦ F−1

K .

Here DFK is the Jacobian matrix of the transformation FK . Since we have div�v =
1

| det DFK | d̂iv�̂v (see [9, Section III.1.3]), the field �v belongs to the space �Jk(K). Using

the properties of the Piola transform in [9, Lemma III.1.5] and a density argument
as in equation (3.4.25) of [35], it can be seen that

BK(�v, q) = B
K̂

(�̂v, q̂).

Hence, using a standard scaling argument we obtain

BK(�v, q) = B
K̂

(�̂v, q̂) ≥ C‖q̂ − m
∂K̂

(q̂)‖2
0,∂K̂

= C inf
κ∈R

‖q̂ − κ‖2
0,∂K̂

≥ C|∂K|−1 inf
κ∈R

‖q − κ‖2
0,∂K = C|∂K|−1‖q − m∂K(q)‖2

0,∂K .
(7.7)

Similarly, we have from [9, Lemma III.1.7]

‖�v‖2
0,K + h2

K‖ grad�v‖2
0,K ≤ C

[
‖�̂v‖2

0,K̂
+ ‖ grad �̂v‖2

0,K̂

]
.

Therefore,

‖�v‖2
0,K + h2

K‖ grad�v‖2
0,K ≤ C‖q̂ − m

∂K̂
(q̂)‖2

0,∂K̂
≤ C inf

κ∈R

‖q̂ − κ‖2
0,∂K̂

≤ C|∂K|−1 inf
κ∈R

‖q − κ‖2
0,∂K

= C|∂K|−1‖q − m∂K(q)‖2
0,∂K ≤ BK(�v, q),

by (7.7). This completes the proof of Proposition 7.1. �

7.2. Proof of Theorem 5.1. Let us now prove the inf-sup condition for Bh in
Theorem 5.1. We proceed in several steps.

Step 1 : Motivated by the result in Proposition 7.1, on Qk
h/R, we define the norm

||| · |||Qk
h/R by

||| · |||2Qk
h/R

=
∑

K∈Th

1

|∂K| ‖q − m∂K(q)‖2
0,∂K .

Proposition 7.2. There is a constant C independent of the mesh size such that

sup
�v∈�V k

h

Bh(�v, q)

‖�v‖1,h
≥ Chmin||| q |||Qk

h/R, q ∈ Qk
h/R,

with hmin = minK∈Th
hK .

Proof. Let q ∈ Qk
h/R. Proposition 7.1 ensures the existence of a velocity field

�v ∈ �V k
h such that

(7.8) B(�v, q) =
∑

K∈Th

BK(�v, q) ≥ C||| q |||2Qk
h/R

and ∑

K∈Th

[
h−2

K ‖�v‖2
0,K + ‖ grad�v‖2

0,K

]
≤ Ch−2

min||| q |||2Qk
h/R

.
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From the multiplicative trace inequality, we conclude that for each edge e of an
element K ∈ Th there holds

h−1
e ‖�v‖2

0,e ≤ C‖�v‖0,K

[
h−2

K ‖�v‖0,K+h−1
K ‖ grad�v‖0,K

]
≤ Ch−2

K ‖�v‖2
0,K+C‖ grad�v‖2

0,K .

This readily implies that

(7.9) ‖�v‖2
1,h ≤

∑

K∈Th

[
h−2

K ‖�v‖2
0,K + ‖ grad�v‖2

0,K

]
≤ Ch−2

min||| q |||2Qk
h/R

.

The assertion now follows from the inequalities (7.8) and (7.9). �

Step 2 : The following result was inspired by a similar result proven in [24].

Lemma 7.3. There is a constant independent of the mesh size such that

||| q |||Qk
h/R ≥ C‖q‖L2(Eh;h)/R

for any q ∈ Qk
h/R, with the norm ‖q‖L2(Eh;h)/R given in (4.15).

Proof. We proceed as in the proof of Theorem 2.3 in [24] and define for q ∈ Qk
h

the lifted element vq as follows: for any K ∈ Th let vq|K be the unique polynomial
in Pk(K) that satisfies

(grad vq, gradw)K +
1

|∂K| 〈vq, w〉∂K =
1

|∂K| 〈q, w〉∂K ∀w ∈ Pk(K).

The assertion follows from the following three inequalities: for q ∈ Qk
h, there holds

‖q‖L2(Eh;h)/R ≤ C inf
κ∈R

‖vq − κ‖0,(7.10)

inf
κ∈R

‖vq − κ‖0 ≤ C
[ ∑

K∈Th

‖ grad vq‖2
0,K +

∑

e∈EI
h

h−1
e ‖[[vq�n]]‖2

0,e

] 1
2 ,(7.11)

[ ∑

K∈Th

‖ grad vq‖2
0,K +

∑

e∈EI
h

h−1
e ‖[[vq�n]]‖2

0,e

] 1
2 ≤ C||| q |||Qk

h/R.(7.12)

It remains to show (7.10)–(7.12).
The bound (7.10): As in the proof of Theorem 2.3 in [24], it follows from a local

scaling argument that ‖q‖L2(Eh;h) ≤ C‖vq‖0. Furthermore, if q = κ on Eh for a
constant κ ∈ R, we have vq = κ. Hence, we obtain from the previous estimate

‖q − κ‖L2(Eh;h) ≤ C‖vq−κ‖0 = C‖vq − κ‖0.

Taking the infimum over R shows the bound (7.10).
The bound (7.11): This bound follows from the fact that

inf
κ∈R

‖vq − κ‖0 = ‖vq − κvq
‖0,

where κvq
= 1

|Ω| (1, vq), and the corresponding discrete Poincaré inequality, namely,

(7.13) ‖vq − κvq
‖2
0 ≤ C

[ ∑

K∈Th

‖ grad vq‖2
0,K +

∑

e∈EI
h

h−1
e ‖[[vq �n]]‖2

0,e

]
;

see [7] for details.
The bound (7.12): We recall that if q is constant on ∂K, then vq is constant

on K. Hence, a local scaling argument yields

(7.14) ‖ grad vq‖2
0,K ≤ C

1

|∂K| ‖q − m∂K(q)‖2
0,∂K .
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Further, it can be shown as in equation (2.13) of [24] that

1

|∂K| ‖vq − q‖2
0,∂K ≤ C

1

|∂K| ‖q − m∂K(q)‖2
0,∂K .

For an interior edge e shared by two elements K and K ′, this inequality allows us
to conclude that

1

he
‖[[vq�n]]‖2

0,e ≤ 1

he
‖(vq|K − q) − (vq|K′ − q)‖2

0,e

≤ C
1

|∂K| ‖q − m∂K(q)‖2
0,∂K + C

1

|∂K ′| ‖q − m∂K′(q)‖2
0,∂K′ .

(7.15)

Adding the local bounds in (7.14) and (7.15) over all elements and edges, respec-
tively, yields the bound (7.12).

This completes the proof. �

Step 3 : Combining Proposition 7.2 and Lemma 7.3 results in the inf-sup in
Theorem 5.1.

8. Numerical experiments

In this section, we present numerical experiments that show that the theoretical
orders of convergence are sharp. We also display the orders of convergence of the
L2-norm of the error in the velocity and the error in the approximation of the
pressure on the edges.

The exact solution we take is the two-dimensional analytical solution of the
incompressible Navier–Stokes equations obtained by Kovasznay in [32], namely,

�u(x1, x2) = (1 − eλx1 cos 2πx2,
λ
2π eλx1 sin 2πx2), p(x1, x2) = 1

2e2λx1 + C,

where λ = Re/2−
√

Re2/4 + 4π2 and Re is the Reynolds number. The Kovasznay
solution is also a solution of the Stokes problem

− 1

Re
∆�u + grad p = �f, div �u = 0 in Ω,

with �f = −(�u · ∇)�u. Of course, we take as Dirichlet boundary conditions for the
velocity the restriction of the Kovasznay velocity to ∂Ω.

In our numerical experiments, we consider the domain Ω = (−1/2, 3/2)× (0, 2).
The meshes we take are refinements of a uniform mesh of 32 congruent triangles.
Each refinement is obtained by dividing each triangle into four congruent triangles.

Table 1. History of convergence for Kovasznay flow with Re = 10.

mesh ‖eω‖0 ‖e�u‖1,h ‖ep‖L2(Ω)/R
‖e�u‖0 ‖ep‖L2(Eh;h)/R

k ℓ error order error order error order error order error order

0 7.7e+00 – 1.4e+01 – 2.2e+00 – 7.3e-01 – 2.5e+01 –
1 3.4e+00 1.19 8.8e+00 0.71 1.3e+00 0.70 3.9e-01 0.93 8.1e+00 1.63

1 2 2.2e+00 0.60 4.4e+00 1.00 7.3e-01 0.90 6.6e-02 2.50 5.7e+00 0.50
3 1.1e+00 1.07 2.1e+00 1.05 3.7e-01 0.97 1.4e-02 2.25 2.6e+00 1.13
4 5.2e-01 1.03 1.0e+00 1.02 1.8e-01 0.99 3.1e-03 2.10 1.2e+00 1.06
5 2.5e-01 1.01 5.0e-01 1.01 9.4e-02 0.99 7.5e-04 2.06 6.1e-01 1.02
0 3.7e+00 – 8.0e+00 – 7.4e-01 – 2.9e-01 – 1.0e+01 –
1 9.7e-01 1.94 3.1e+00 1.34 2.4e-01 1.59 7.0e-02 2.00 2.5e+00 2.06

2 2 2.6e-01 1.91 8.8e-01 1.85 6.7e-02 1.86 1.2e-02 2.61 6.2e-01 2.00
3 7.6e-02 1.76 2.4e-01 1.86 1.7e-02 1.96 1.7e-03 2.71 1.9e-01 1.74
4 2.0e-02 1.87 6.2e-02 1.93 4.3e-03 1.99 2.4e-04 2.87 5.0e-02 1.88
0 1.3e+00 – 3.2e+00 – 1.7e-01 – 7.8e-02 - 6.2e+00 –
1 1.2e-01 3.42 4.5e-01 2.82 3.0e-02 2.54 6.0e-03 3.70 3.1e-01 4.33

3 2 1.6e-02 2.92 5.4e-02 3.04 4.2e-03 2.85 3.4e-04 4.15 4.4e-02 2.80
3 1.9e-03 3.04 5.9e-03 3.20 5.4e-04 2.96 1.8e-05 4.24 4.7e-03 3.24
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Figure 1. Approximation of the vorticity for Kovasznay flow with
Re = 10: Original mesh (left) and mesh of level 1 (right); poly-
nomial degree of the vorticity: k = 0 (top), k = 1 (middle), and
k = 2 (bottom). Ten isolines are shown ranging from ω = −20.74
to ω = +20.74.

We say that the mesh has level ℓ if it is obtained from the original mesh by ℓ of
these refinements. In all our tests, the stabilization parameter D has been chosen
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Figure 2. Streamlines of the approximate velocity for Kovasznay
flow with Re = 10: Original mesh (left) and mesh of level 1 (right);
polynomial degree of the velocity: k = 1 (top), k = 2 (middle),
and k = 3 (bottom).

as in (4.1) with d = 1 and the parameter �E has been set to �0; the inequality
(4.2) is thus trivially satisfied. Finally, the resulting linear system of equations has
been solved iteratively by applying the method of conjugate gradients to the Schur
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complement matrix of the pressure for the augmented system (5.1) (see Section 5)
with a suitably chosen parameter ε.

In Table 1, we display the errors and convergence history of the method for
Kovasznay flow with Re = 10. For fixed polynomial degree k, we see that the orders
of convergence of the L2-norm of the error in the vorticity, ‖eω‖0, of
the H1-like norm of the error in the velocity, ‖e�u‖1,h, and the L2-norm of the
error in the pressure in the interior, ‖ep‖L2(Ω)/R, are of the optimal order
of k. These rates clearly confirm our theoretical results in Theorems 4.1 and 4.2.
We also see that the L2-error in the velocity, ‖e�u‖0, converges with the optimal
order k + 1. Furthermore, the L2-like norm of the error in the pressure on the
edges, ‖ep‖L2(Eh;h)/R, converges with order k, which is suboptimal with respect to

the approximation properties of Qk
h; see the discussion in Remark 4.4. Note that to

obtain the errors for the pressures we make sure to take the proper constants out.
In Figure 1, we show the approximate vorticity on the meshes of level 0 (left)

and 1 (right), respectively. We have plotted the discontinuous approximations as
they are computed without smoothing them out or making them continuous; all of
them with the very same Tecplot layout (URL http:\\www.tecplot.com). Similarly,
in Figure 2, we plot the streamlines of the approximate velocity. (The differences
in the velocities can be better seen in their streamlines than in vector plots.) In
all these figures, but especially in Figure 2, we see a clear improvement of the
approximations as we go from k = 1 to k = 3.

9. Extensions

Note that although we chose meshes made of triangles, we could have easily
considered squares or rectangular elements. Note also that the hybridization tech-
nique we have presented for the Stokes problem can be applied to other problems
with the same structure. Maybe the simplest example is the computation of an

approximation �uh to the L2-projection of a vector field �f into H(div0; Ω), �u. To
see this, we only have to realize that we can write

�u + grad p = �f, div �u = 0 in Ω; p = 0 on Γ;

and so, if �v ∈ H(div0; Ω), we have that (�u,�v) = (�f,�v). We then approximate �u by

�uh ∈ �Vh ⊂ H(div0; Ω) by using the above weak formulation. We immediately see
that �uh converges to �u with an optimal rate. Moreover, the hybridization procedure

allows us to avoid the construction of the space �Vh and solve instead for the pressure
on the edges. The Schur-complement matrix for the pressure is well defined, can
be computed directly, and has a condition number of order h−2 provided that the
mesh is quasi-uniform.

The extension of this work to the three-dimensional case is almost straightfor-
ward, except for a few nontrivial technical results. It is going to be considered in a
forthcoming paper. Also, the extension of this approach to the Maxwell equations
and to the Navier–Stokes equations constitutes the subject of ongoing work.
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