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1 Introduction

In recent years, two non-classical views about negation have gained
considerable traction in the philosophical literature.1 The paracomplete view
holds that excluded middle (EM) is invalid, while the paraconsistent view
holds that explosion (EX) is invalid.2 Both run contrary to classical logic in
distinct but dual ways.

A ∴ B ∨ ¬B (EM) A ∧ ¬A ∴ B (EX)

This paper contributes to the study of paracompleteness and paraconsis-
tency. We present two logics that address the following questions in novel
ways. How can the paracomplete theorist characterize the formulas that
defy excluded middle while maintaining that not all formulas are of this
kind? How can the paraconsistent theorist characterize the formulas that
obey explosion while still maintaining that there are some formulas not of
this kind?

Our jumping-off point is the observation that (EM) and (EX) are
concerned not with negation ‘in a vacuum’ but the way in which negation
interacts with conjunction, in one case, and with disjunction in the other.
This is, in part, an artifact of how we have presented these argument forms
in order to emphasize their duality in a single-conclusion setting. Explosion
is usually presented as an argument form leading from an inconsistent set
of premises, {A,¬A}, to arbitrary conclusions B. In a multiple-conclusion
setting we could present excluded middle as the dual argument form leading

1See, e.g., Dummett (1959), da Costa (1974), Kripke (1975), Priest (2006), Field (2008),
Beall (2015).

2Throughout the paper, I use capital letters A,B,C as metavariables over formulas
and capital letters X,Y, Z for sets of formulas. The displayed argument forms (EM) and
(EX) are intended to be read with their premises on the left and their conclusions on the
right.
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from arbitrary premises, A, to a dilemmatic set of conclusions {B,¬B}.
We will not, however, work with multiple-conclusion logics in this paper,
so we opt to present explosion in a slightly unusual way.3 More generally,
throughout the paper we aim to capture, as far as possible, the integral
duality between paracomplete and paraconsistent logics. This opens a new
avenue for thinking about how logical resources may bear on the expressive
questions raised above. We approach the task of characterizing formulas
that violate explosion and excluded middle via the treatment of conjunction
and disjunction.

The plan of the paper is as follows. For each of our two logics, we
give some motivating remarks, articulate its semantics, and compare it to
more familiar logics. Much of the paper will then be devoted to proof
theory. We explore two kinds of proof theory: axiomatic Hilbert systems
and tableaux systems. A proof system of each type is developed and shown
to be adequate to its respective target semantics. These systems are largely
independent. Either one could be studied without reference to the other,
they simply provide an array of tools for working with our two logics. We
highlight, in particular, how these logics can describe and reason about their
characteristic non-classical phenomena.

2 Paracomplete Hybrid Logic MH

2.1 Semantics and Noteworthy Features

In the first half of the paper, we explore the propositional logic MH. We use
the letter ‘M’ to evoke paracompleteness and ‘N’ to evoke paraconsistency,
while the letter ‘H’ indicates a kind of hybridized logic. The logic we define in
this section is paracomplete but non-paraconsistent with a hybrid of features
found in the well-known logics K3 (Kleene, 1952) and I2 (Sette and Carnielli,
1995), so we call it MH. The matrix semantics for MH has the same negation
operation as K3 and I2, the conjunction of K3, and the implication of I2.

Disjunction, however, has unfamiliar behavior in this logic, so we want
to give some brief motivating remarks about its semantics. We take the
K3 semantics for negation, conjunction, and disjunction as background and
argue for a small modification to its treatment of disjunction. This is
premised on the supposition that there are violations of excluded middle.

3In our paraconsistent logic (and many others) we can exchange any conjunction of
premises (A1 ∧ . . . ∧ An) with the set of premises {A1, . . . , A2} salva validitate. This is
one reason there should be no harm in our presentation of explosion: it is equivalent to
the standard presentation for all intents and purposes.
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Suppose, then, that it is rationally permissible to reject some dilemma
(A ∨ ¬A). That is to say, logic does not, in itself, compel us to accept
such a formula. In that case, it is appropriate to call A a locus of
rational incompleteness, or more simply an incomplete formula. On most
views, incomplete formulas are exceptional, arising from quirks of mind and
language such as vagueness or undecidability. Many formulas B are complete
in the sense that we ought, instead, to reject ¬(B ∨ ¬B) with respect
to such formulas. The properties of completeness and incompleteness,
so understood, serve a diagnostic semantic role, i.e. incomplete formulas
are exactly those that ground the failure of excluded middle. Hence,
unlike a formula and its negation—which, by hypothesis, can be jointly
rejected—regarding a formula to be either complete or incomplete seems to
be categorically required. One posit that easily accommodates all of these
assumptions is that ¬(A ∨ ¬A) ought to be accepted (in model-theoretic
terms, be designated) just when A is incomplete. Given the standard
three-valued definition of negation, however, that requires that when A is
incomplete, (A∨¬A) is false. Moreover, if explosion remains valid, then the
K3 semantics for negation, conjunction, and disjunction is almost wholly
correct with one exception: a disjunction of incomplete formulas is false.
That is the approach of MH.

In less philosophical terms, we can also see this logic as a solution to
an engineering problem along the lines of da Costa (1974). Suppose we
are interested in a particular articulation of the paracomplete conviction:
we want a propositional logic in which excluded middle is invalid but
where assertion of this fact is non-contradictory, viz. a premise of the form
¬(A∨¬A) does not necessarily entail any arbitrary conclusions whatsoever.
It also ought to be straightforward to extend the logic with quantifiers,
etc. MH solves this problem. And while it is not the only possible
solution, Beziau and Franceschetto (2015, p.137) point out that the type
of semantics we use ‘minimizes molecularization (molecular propositions
behaving classically)’. So, it has a number of attractive purely formal
qualities.

The signature of MH is below, with a set of formulas FORM defined in
the usual way.

| pi | ¬ | ∧ | ∨ | → |

We also introduce a biconditional in the usual way (A ↔ B) =df. (A →
B) ∧ (B → A). The set of semantic values of MH is S = {1, 12 , 0}, the
set of designated values is D = {1}, and an MH valuation is any function
v : FORM → S closed under the following operations.
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¬ ∧ 1 1
2 0 ∨ 1 1

2 0 → 1 1
2 0

1 0 1 1 1
2 0 1 1 1 1 1 1 0 0

1
2

1
2

1
2

1
2

1
2 0 1

2 1 0 1
2

1
2 1 1 1

0 1 0 0 0 0 0 1 1
2 0 0 1 1 1

We define the consequence relation of MH as follows.

X �MH C iff on all MH valuations v, either v(A) /∈ D for some A ∈ X
or v(C) ∈ D

Before delving into proof-theoretic matters, we highlight some features
of potential interest in this logic. MH has a paracomplete but non-
paraconsistent negation as exemplified by the failure of excluded middle
(a) and the presence of explosion (b). It also has asymmetrically defined
conjunction and disjunction connectives for which the customary inferences
(c)-(g) hold, but for which only some of the DeMorgan laws hold (h) while
others fail (i). The conditional satisfies conditional proof (j) and classical
logical equivalents are intersubstitutible (k).

(a) A 2MH B ∨ ¬B

(b) A ∧ ¬A �MH B

(c) A ∧B �MH A

(d) A �MH B and A �MH C =⇒ A �MH B ∧ C

(e) A �MH A ∨B

(f) A �MH C and B �MH C =⇒ A ∨B �MH C

(g) A ∧ (B ∨ C) �MH (A ∧B) ∨ (A ∧ C)

(h) ¬(A ∧B) �MH ¬A ∨ ¬B

(i) ¬(A ∨B) 2MH ¬A ∧ ¬B

(j) X,A �MH B =⇒ X �MH A→ B

(k) A↔ B,¬A↔ ¬B �MH Ψ(A)↔ Ψ(B)
where Ψ(B) is obtained from Ψ(A) by replacing zero or more instances
of A with B.
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The failure of (i) is symptomatic of the fact that, in virtue of its disjunction
operation, MH has the resources to express when a formula is incomplete
as follows: v(¬(A ∨ ¬A)) ∈ D iff v(A) = 1

2 . In many paracomplete but
non-paraconsistent logics, denying an instance of excluded middle entails a
contradiction, which is trivializing. This results from the DeMorgan law
that fails to hold in MH. Denying an instance of excluded middle is, thus,
non-trivial in MH because doing so carries no contradictory implications.
As a result, we can define an incompleteness operator ▽A =df. ¬(A ∨ ¬A)
that has the following features in MH.

(j) A �MH (B ∨ ¬B) ∨▽B

(k) A↔ ¬A �MH ▽A

(l) ▽A ∧▽B �MH ▽(A ∧B)

(m) ▽(A ∨B) �MH ▽A ∨▽B

(n) ¬(A ∨B) �MH (¬A ∧ ¬B) ∨▽(A ∧B)

(o) A,▽B �MH ¬(A→ B)

(p) ▽A, (A→ B) 2MH ¬B → ¬A

If we think of ▽ as expressing rational incompleteness, i.e. that one should
neither assert nor deny such formulas, then most of these laws are intuitively
correct. We have a law of ‘excluded thirds’ that says that any formula
can either be asserted, denied, or neither of these because it is a locus of
incompleteness (j). We get a near-cousin of our missing DeMorgan law (n),
which arises from the formal strategy of MH, viz. to extract expressive power
from a novel treatment of disjunction. The formulas with respect to which
a theory is incomplete are those that are equivalent to their own negations
(k) and incompleteness restricts contraposition (o)-(p).

Our conditional generalizes material implication, insofar as a conditional
formula is true just when its antecedent is undesignated or its consequent
is designated. As a result, MH has strong implicational laws, tautologies,
and vacuous entailments like A �MH B → B, all of which fail in the strong
Kleene logic K3. It has the rule of absorption A → (A → B) �MH A → B
which fails even in the three-valued  Lukasiewicz logic  L3. So it is a strong
paracomplete logic. On the other hand, there are other inferences that fail
in MH, such as (A → B) → B 2MH A ∨ B, but that hold in  Lukasiewicz
logic. Although MH and  L3 each strictly extends Kleene’s logic, neither is
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properly contained in the other. MH also, notably, retains classical meta-
inferences such as proof by cases (f), which fail in supervaluational logics
with an ’indeterminacy’ operator.4 Having thus situated MH in the logical
terrain, we turn to its proof theory.

2.2 Hilbert System HMH

In this subsection, we develop a Hilbert system HMH and show that it is
sound and complete for our paracomplete hybrid logic MH. Any uniform
substitution of formulas into metavariable positions in one of the following
schemas is an axiom of HMH.

(Ax.1) A→ (B → A)

(Ax.2) (A→ (B → C))→ ((A→ B)→ (A→ C))

(Ax.3) (A ∧B)→ A

(Ax.4) (A ∧B)→ B

(Ax.5) (A→ B)→ ((A→ C)→ (A→ (B ∧ C)))

(Ax.6) A→ (A ∨B)

(Ax.7) B → (A ∨B)

(Ax.8) (A→ C)→ ((B → C)→ ((A ∨B)→ C))

(Ax.9) ¬¬A↔ A

(Ax.10) (A ∨ ¬A) ∨▽A

(Ax.11) (A→ B) ∨ ¬(A→ B)

(Ax.12) (A ∨ ¬A)→ ((A→ B)→ (¬B → ¬A))

(Ax.13) ¬(A ∧B)↔ (¬A ∨ ¬B)

(Ax.14) ¬(A ∨B)↔ ((¬A ∧ ¬B) ∨ (▽A ∧▽B))

(Ax.15) (¬A ∨▽A)→ (A→ B)

(Ax.16) (A ∧ (¬B ∨▽B))→ ¬(A→ B)

4See Williamson (1994, p.152).
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We also have a rule of modus ponens.

(MP) A→ B,A =⇒ B

A derivation in HMH from the set of assumptions X to conclusion C is a
finite sequence of formulas A1, . . . , An such that An = C and such that every
Ai in the sequence is either a member of X, an axiom of HMH, or follows
from previous formulas in the sequence by MP. We write the following to
express that such a derivation exists.

X `HMH C

A formula that is derivable from the empty set is a theorem of HMH.
HMH has a deduction theorem because it contains the full axioms

of intuitionistic implication. It also has a law reflecting the fact that
‘incompleteness’ is fixed over negation. We note two different explosion
theorems and other useful derived rules below. These results are established
in the appendix.

(Iden) A→ A

(IFN) ▽A↔▽¬A

(MEX) ¬A→ (A→ B) and ▽A→ (¬A→ B)

(Adj) A,B =⇒ A ∧B

(Tran) A→ B,B → C =⇒ A→ C

(Perm) A→ (B → C) =⇒ B → (A→ C)

(MRed) A→ (¬A ∨▽A) =⇒ ¬A ∨▽A

(IncC) ▽(A ∧B) =⇒ (A ∨▽A) and (B ∨▽B)

(IncD) ▽(A ∨B) =⇒ (¬A ∨▽A) and (¬B ∨▽B)

Following the example of Goldberg et al. (1974), we give a Henkin-style
completeness proof for HMH with respect to MH. We need a few definitions
and lemmas.

• A set of formulas X is HMH-trivial iff X `HMH A for all A; it is
HMH-non-trivial otherwise.
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• A set of formulas X is maximal HMH-non-trivial iff it is HMH-non-
trivial and X ∪ {B} is HMH-trivial for all formulas B /∈ X.

• An HMH-filter is a set of formulas that contains all MH axioms and is
closed under MP.

Lemma 2.2.1. If X is maximal HMH-non-trivial, then X is an HMH-filter.

Proof. Fix any maximal HMH-non-trivial set X. Let A be either an MH
axiom or a formula such that there are (B → A) ∈ X and B ∈ X. In both
cases X `HMH A. Suppose, however, that A /∈ X. Then by maximality,
X ∪ {A} is HMH-trivial, hence X,A `HMH C for all C. In that case, by
the deduction theorem, X `HMH A → C for all C and so, by MP, we have
X `HMH C for all C. But this contradicts the non-triviality of X. Thus,
A ∈ X.

Clearly, a maximal HMH-non-trivial set contains all theorems and is
closed under derivability. For example, such sets are closed under adjunction
and transitivity. We also show that such sets are prime, which will be useful
to know in what follows.

Corollary (Primeness). If X is maximal HMH-non-trivial, then X is prime;
in particular, with respect to any formula C, exactly one of C ∈ X, ¬C ∈ X,
or ▽C ∈ X.

Proof. Fix any maximal HMH-non-trivial set X with (A∨B) ∈ X. Suppose,
however, that A /∈ X and B /∈ X. Then by maximality, both X ∪ {A} and
X ∪ {B} are HMH-trivial. So, by RBC, we have X,A ∨ B `HMH C for all
C. But since (A ∨ B) ∈ X already it follows that X `HMH C for all C,
contradicting the non-triviality of X. Thus, either A ∈ X or B ∈ X. In
particular, if X is any maximal HMH-non-trivial set, then with respect to
any formula C, at least one of C ∈ X, ¬C ∈ X, or ▽C ∈ X by Ax.10 and
Lemma 2.2.1, and at most one of C ∈ X, ¬C ∈ X, or ▽C ∈ X by the
explosion theorems MEX.

The next three lemmas will help simplify the rest of the presentation.

Lemma 2.2.2. If X is maximal HMH-non-trivial and ▽(A∧B) ∈ X, then
either we have both ▽A,▽B ∈ X or both ▽A,B ∈ X or both A,▽B ∈ X.

Proof. Fix maximal HMH-non-trivial set X with ▽(A ∧ B) ∈ X. Then
both (A ∨▽A) ∈ X and (B ∨▽B) ∈ X by Lemma 2.2.1 and IncC. So,
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either A ∈ X or ▽A ∈ X by primeness, and either B ∈ X or ▽B ∈ X by
primeness. This gives us four possibilities: either we have both A,B ∈ X or
both ▽A,▽B ∈ X or both ▽A,B ∈ X or both A,▽B ∈ X. But the first
case is not really possible as it would trivialize X by adjunction, MEX, and
Perm.

Lemma 2.2.3. If X is maximal HMH-non-trivial and ▽(A∨B) ∈ X, then
either we have both ▽A,¬B ∈ X or both ¬A,▽B ∈ X.

Proof. Fix maximal HMH-non-trivial set X with ▽(A ∨ B) ∈ X. Then
both (¬A ∨▽A) ∈ X and (¬B ∨▽B) ∈ X by Lemma 2.2.1 and IncD. So,
either ¬A ∈ X or ▽A ∈ X by primeness, and either ¬B ∈ X or ▽B ∈ X by
primeness. This gives us four possibilities: either we have both ¬A,¬B ∈ X
or both ▽A,▽B ∈ X or both ▽A,¬B ∈ X or both ¬A,▽B ∈ X. But
the first two cases are not really possible. If both ¬A,¬B ∈ X, then
(¬A ∧ ¬B) ∈ X by adjunction, hence ((¬A ∧ ¬B) ∨ (▽A ∧ ▽B)) ∈ X
by Ax.6. If both ▽A,▽B ∈ X, then (▽A∧▽B) ∈ X by adjunction, hence
((¬A ∧ ¬B) ∨ (▽A ∧▽B)) ∈ X by Ax.7. In either case, ¬(A ∨B) ∈ X by
Ax.14, which would trivialize X by adjunction and MEX.

Lemma 2.2.4. If X is maximal HMH-non-trivial and either ¬(¬A∨▽A) ∈
X or ▽(¬A ∨▽A) ∈ X, then A ∈ X.

Proof. Fix maximal HMH-non-trivial set X with ¬(¬A ∨▽A) ∈ X. Then
(¬¬A∧¬▽A) ∈ X or (▽¬A∧▽▽A) ∈ X by Ax.14 and primeness. In the
first case, A ∈ X by simplification and Ax.9. The second case is not really
possible as it would trivialize X by IFN and MEX. A similar result holds if
we start with ▽(¬A ∨▽A) ∈ X and apply IncD and MEX.

We can now establish the following important relationship.

Lemma 2.2.5. If X is HMH-non-trivial, then X is satisfied on some MH
valuation.

Proof. Fix any HMH-non-trivial set of formulas X. We want to extend
this set to a maximal HMH-non-trivial superset X∗. Let A1, . . . , An be an
enumeration of FORM and define X∗ recursively as follows.

X0 = X

Xn+1 =

{
Xn ∪ {An} if this is HMH-non-trivial
Xn otherwise
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X∗ =
⋃
n∈N

Xn

Succession preserves non-triviality by design, so each of the Xi for i ∈ N
is HMH-non-trivial. In that case, the limit X∗ must be HMH-non-trivial as
well. Otherwise we would have X∗ `HMH p ∧ ¬p and, since derivations are
finite, that would require Xi `HMH p ∧ ¬p for some Xi, in which case that
Xi would be trivial by MEX.

Fix an MH valuation vX∗ defined as follows for each atomic formula p.
By the established primeness of any maximal HMH-non-trivial set, this is a
well-defined valuation.

vX∗(p) =


1 if p ∈ X∗

0 if ¬p ∈ X∗
1
2 if ▽p ∈ X∗

We show that this valuation extends to all formulas A as follows.

vX∗(A) =


1 if A ∈ X∗

0 if ¬A ∈ X∗
1
2 if ▽A ∈ X∗

(I) Base case: holds by definition.

(II) First inductive case: A is a formula of the form B ∧ C.

(a) Suppose that A ∈ X∗, i.e. that (B ∧ C) ∈ X∗. By simplification
B ∈ X∗ and C ∈ X∗. Then vX∗(B) = vX∗(C) = 1 by IH, and so
vX∗(B ∧ C) = vX∗(A) = 1.

(b) Suppose that ¬A ∈ X∗, i.e. that ¬(B ∧ C) ∈ X∗. Then by
Ax.14 and closure (¬B ∨ ¬C) ∈ X∗. By primeness ¬B ∈ X∗ or
¬C ∈ X∗. If ¬B ∈ X∗, then vX∗(B) = 0 by IH. If ¬C ∈ X∗, then
vX∗(C) = 0 by IH. Thus, in every case, vX∗(B∧C) = vX∗(A) = 0.

(c) Suppose that ▽A ∈ X∗, i.e. that ▽(B ∧ C) ∈ X∗. Then
either we have both ▽B,▽C ∈ X∗ or both ▽B,C ∈ X∗ or
both B,▽C ∈ X∗ by Lemma 2.2.2. If both ▽B,▽C ∈ X∗,
then vX∗(B) = vX∗(C) = 1

2 by IH. If both ▽B,C ∈ X∗, then
vX∗(B) = 1

2 and vX∗(C) = 1 by IH. If both B,▽C ∈ X∗,
then vX∗(B) = 1 and vX∗(C) = 1

2 by IH. Thus, in every case,
vX∗(B ∧ C) = vX∗(A) = 1

2 .
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(III) Second inductive case: A is a formula of the form B ∨ C.

(a) Suppose that A ∈ X∗, i.e. that (B ∨ C) ∈ X∗. By primeness
B ∈ X∗ or C ∈ X∗. If B ∈ X∗, then vX∗(B) = 1 by IH.
If C ∈ X∗, then vX∗(C) = 1 by IH. Thus, in every case,
vX∗(B ∨ C) = vX∗(A) = 1.

(b) Suppose that ¬A ∈ X∗, i.e. that ¬(B ∨C) ∈ X∗. Then by Ax.14
and closure ((¬B ∧ ¬C) ∨ (▽B ∧ ▽C)) ∈ X∗. By primeness
and simplification either we have both ¬B,¬C ∈ X∗ or both
▽B,▽C ∈ X∗. If both ¬B,¬C ∈ X∗, then vX∗(B) = vX∗(C) =
0 by IH. If both ▽B,▽C ∈ X∗, then vX∗(B) = vX∗(C) = 1

2 by
IH. Thus, in every case, vX∗(B ∨ C) = vX∗(A) = 0.

(c) Suppose that ▽A ∈ X∗, i.e. that ▽(B ∨ C) ∈ X∗. Then either
we have both ▽B,¬C ∈ X∗ or both ¬B,▽C ∈ X∗ by Lemma
2.2.3. If both ▽B,¬C ∈ X∗, then vX∗(B) = 1

2 and vX∗(C) = 0
by IH. If both ¬B,▽C ∈ X∗, then vX∗(B) = 0 and vX∗(C) = 1

2
by IH. Thus, in every case, vX∗(B ∨ C) = vX∗(A) = 1

2 .

(IV) Third inductive case: A is a formula of the form B → C.

(a) Suppose that A ∈ X∗, i.e. that (B → C) ∈ X∗. Then by
MEX, Perm, Ax.16, Tran, and MRed we have (¬(B ∧ (¬C ∨
▽C)) ∨ ▽(B ∧ (¬C ∨ ▽C))) ∈ X∗ and so either (1) ¬(B ∧
(¬C ∨ ▽C)) ∈ X∗ or (2) ▽(B ∧ (¬C ∨ ▽C)) ∈ X∗. If (1)
holds, then either ¬B ∈ X∗ or ¬(¬C ∨▽C) ∈ X∗ by Ax.13 and
primeness. In the first case, vX∗(B) = 0 by IH. In the second
case, (¬¬C ∧¬▽C) ∈ X∗ or (▽¬C ∧▽▽C) ∈ X∗ by Ax.14 and
primeness, but the latter trivializes X∗; thus, in fact, we have
¬¬C ∈ X∗ and so C ∈ X∗ and so vX∗(C) = 1 by IH. If (2) holds,
then by Lemma 2.2.2 we have both ▽B,▽(¬C ∨▽C) ∈ X∗ or
both ▽B, (¬C ∨▽C) ∈ X∗ or both B,▽(¬C ∨▽C) ∈ X∗. In
the first and second cases, vX∗(B) = 1

2 by IH. In the third case,
C ∈ X∗ by MP and so vX∗(C) = 1 by IH. Thus, in every case,
vX∗(B → C) = vX∗(A) = 1.

(b) Suppose that ¬A ∈ X∗, i.e. that ¬(B → C) ∈ X∗. Then by MEX,
Ax.15, Tran, and MRed we have (¬((¬B ∨▽B)∨C)∨▽((¬B ∨
▽B) ∨ C)) ∈ X∗ and so either (1) ¬((¬B ∨ ▽B) ∨ C) ∈ X∗

or (2) ▽((¬B ∨ ▽B) ∨ C) ∈ X∗. If (1) holds, then either
(¬(¬B∨▽B)∧¬C) ∈ X∗ or (▽(¬B∨▽B)∧▽C) ∈ X∗ by Ax.14
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and primeness. In the first case, B ∈ X∗ by Lemma 2.2.4 and
¬C ∈ X∗, so vX∗(B) = 1 and vX∗(C) = 0 by IH. In the second
case, B ∈ X∗ by Lemma 2.2.4 and ▽C ∈ X∗, so vX∗(B) = 1 and
vX∗(C) = 1

2 by IH. If (2) holds, then by Lemma 2.2.3 we have
both ▽(¬B∨▽B),¬C ∈ X∗ or both ¬(¬B∨▽B),▽C ∈ X∗. In
both cases, B ∈ X∗ by Lemma 2.2.4 and we either have ¬C ∈ X∗

or ▽C ∈ X∗ and so vX∗(B) ∈ D and vX∗(C) /∈ D by IH. Thus,
in every case, vX∗(B → C) = vX∗(A) = 0.

(c) The third option, ▽A ∈ X∗, i.e. ▽(B → C) ∈ X∗, is not
really possible. For if it holds, then by MEX and Perm we have
((B → C)→ D) ∈ X∗ for all D, by MEX we have (¬(B → C)→
D) ∈ X∗ for all D, hence (((B → C) ∨ ¬(B → C)) → D) ∈ X∗

by Ax.8. Then D ∈ X∗ for all D by Ax.11, contradicting the
non-triviality of X∗.

(V) Fourth inductive case: A is a formula of the form ¬B. In case B is
atomic or it has conjunction, disjunction, or implication as its main
connective, this is covered by steps (II)b, (III)b, and (IV)b. The
remaining case is where B itself is of the form ¬C.

(a) Suppose that A ∈ X∗, i.e. that ¬¬C ∈ X∗. Then by Ax.9 and
closure C ∈ X∗ and so, by IH, vX∗(C) = vX∗(¬¬C) = vX∗(A) =
1.

(b) Suppose that ¬A ∈ X∗, i.e. that ¬¬¬C ∈ X∗. Then by Ax.9
and closure ¬C ∈ X∗ and so, by IH, vX∗(C) = vX∗(¬¬C) =
vX∗(A) = 0.

(c) Suppose that ▽B ∈ X∗, i.e. that ▽¬¬C ∈ X∗. Then by IFN
and closure ▽C ∈ X∗ and so, by IH, vX∗(C) = vX∗(¬¬C) =
vX∗(A) = 1

2 .

It follows that A ∈ X∗ iff vX∗(A) ∈ D for all formulas A. This shows that
X∗ and any of its subsets, including our original set X, are satisfied on some
MH valuation.

This is all that we need to establish completeness for our Hilbert system.

Theorem 2.2.6 (Completeness of HMH). If X �MH A, then X `HMH A.

Proof. Suppose that X �MH A. Then there is no MH valuation on which
v(B) ∈ D for all B ∈ X and v(A) /∈ D. In that case, X ∪ {¬A ∨ ▽A}
is unsatisfied on all MH valuations. It follows by Lemma 2.2.5 that
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X ∪ {¬A ∨ ▽A} is HMH-trivial. Then X,¬A ∨ ▽A `HMH A and so we
have X `HMH ¬A → A and X `HMH ▽A → A by RBC and the deduction
theorem. We also have X `HMH A → A by the Iden theorem, hence
X `HMH ((A ∨ ¬A) ∨ ▽A) → A by Ax.8 and MP. Therefore, by Ax.10
and MP we have X `HMH A.

Theorem 2.2.7 (Soundness of HMH). If X `HMH A, then X �MH A.

Proof Sketch. This result is more straightforward. Let X `HMH A and
fix any HMH derivation from X to A that witnesses the fact. By induction
on the length of derivations, we can show that if an MH valuation v assigns
v(B) = 1 for all B ∈ X , then v(A) = 1. For the base case, A can only be an
HMH axiom. It is straightforward if tedious to show that every axiom is an
MH tautology. For the inductive case, we only need the fact that if v(C) = 1
and v(C → D) = 1 then v(D) = 1, i.e. that MP preserves designation.

This demonstrates the adequacy of HMH with respect to MH. Since
derivations in HMH are finite, it follows quickly that consequence in MH is
compact. This will be helpful in the next section.

Corollary (Compactness of MH). X �MH A iff X ′ �MH A for some finite
X ′ ⊆ X.

Hilbert systems, of course, have their limitations. Derivations are clunky
and not always apparent. For that reason, we now go on to develop a
tableaux system as well.

2.3 Tableaux System TMH

In this subsection, we develop a tableaux system TMH and show that it, too,
is sound and complete for MH. Our tableaux are downward-branching trees
of signed formulas. The metalanguage includes the signs⊕ and	, informally
representing the semantic status of having a designated or undesignated
value.

Given a finite premise set X and conclusion C, the root of the TMH tree
from X to C is a list consisting of B⊕ for all B ∈ X and C	. Starting
from this initial list, we apply the expansion rules below to construct the
tree. The expansion rules are sorted by the sign and main connective of
the signed formulas to which they may be applied. At each stage of the
construction, a signed formula is resolved if the appropriate expansion rule
has been applied to it; otherwise it is unresolved. In pen-and-paper exercises,
one can keep track of this by marking resolved formulas with, e.g., a check
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mark. Each stage of the construction proceeds by selecting an unresolved
signed formula A ⊕ /	, then listing the signed formulas generated by the
appropriate expansion rule at all end-points of the tree below A⊕/	’s node.

(A ∧B)⊕

A⊕
B⊕

(A ∧B)	

B	A	

¬(A ∧B)⊕

¬B⊕¬A⊕
¬(A ∧B)	

¬A	
¬B	

(A ∨B)⊕

B⊕A⊕

(A ∨B)	

A	
B	

¬(A ∨B)⊕

¬A⊕
¬B⊕

A	
¬A	
B	
¬B	

¬(A ∨B)	

B	
¬B	
¬A⊕

A	
¬A	
¬B⊕

B⊕A⊕

(A→ B)⊕

B⊕A	

(A→ B)	

A⊕
B	

¬(A→ B)⊕

A⊕
B	

¬(A→ B)	

B⊕A	

¬¬A⊕

A⊕

¬¬A	

A	
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A branch of a TMH tree is any path from an end-point back up the root.
We can think of an expanding branch of the tree as a search for an MH
counter-model to the original argument. At any stage of the construction,
a branch is closed if, for any formula A, both A⊕ and A	 occur on that
branch or both A⊕ and ¬A⊕ occur on that branch. Such a branch has failed
to produce a viable counter-model. When every rule that can be applied
has been applied, the tree is finished. Every rule generates a finite number
of extensions of any branch where it is applied. The formulas generated by
an expansion rule are always syntactically simpler than the formula at the
node where it was applied. So, regardless of how complex the premises of
an argument, it will always have a finite, finished TMH tree.

If every branch of a finished tree is closed, the tree is closed; otherwise
it is open. The argument from arbitrary premise set X to conclusion C is
provable in TMH iff there is some finite X ′ ⊆ X such that all TMH trees
from X ′ to C are closed.5 We write the following to express that such an
argument is provable in TMH.

X `TMH C

We now proceed to give a Smullyan-style completeness proof for TMH with
respect to MH. We first need the following lemma.

Lemma 2.3.1. Fix any open branch R of an open, finished TMH tree.
Define the induced interpretation of R to be the MH valuation vR that assigns
semantic values to each atomic formula p as follows.

vR(p) =


1 if p⊕ is on R
0 if ¬p⊕ is on R
1
2 otherwise

Since R is open, at least one of each pair of positively signed literals, p⊕ and
¬p⊕, does not occur on the branch. So, the valuation is well-defined. By
induction on formula complexity, we show that for all formulas A:

vR(A) ∈ D if A⊕ is on R and vR(A) /∈ D if A	 is on R

Proof.

(I) Base case: A is some atomic formula p.

5In such a system, if one tree is closed, any finished tree with the same root is also
closed.
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(a) Suppose p⊕ is on R. Then vR(p) ∈ D by definition of vR.

(b) Suppose p	 is on R. Then, since R is open, p⊕ is not on R. If
¬p⊕ is on R, then vR(p) = 0 by definition of vR. If ¬p⊕ is not on
R, then vR(p) = 1

2 by definition of vR. Either way, vR(p) /∈ D.

(II) First inductive case: A is a formula of the form ¬B.

(a) Suppose B is some atomic p.

i. Suppose ¬p⊕ is on R. Then vR(p) = 0 by definition of vR,
hence vR(¬p) ∈ D.

ii. Suppose ¬p	 is on R. Then, since R is open, ¬p⊕ is not on
R. If p⊕ is on R, then vR(p) = 1 by definition of vR. If p⊕
is not on R, then vR(p) = 1

2 by definition of vR. Either way,
vR(p) 6= 0 and so vR(¬p) /∈ D.

(b) Suppose B is itself a complex formula of the form ¬C.

i. Suppose ¬¬C⊕ is on R. Then, since the tree is finished, C⊕
is on R. So, vR(C) ∈ D by IH, hence vR(¬¬C) ∈ D.

ii. Suppose ¬¬C	 is on R. Then, since the tree is finished, C	
is on R. So, vR(C) /∈ D by IH, hence vR(¬¬C) /∈ D.

(c) Suppose B is a formula of the form C ∧D.

i. Suppose ¬(C ∧D)⊕ is on R. Then, since the tree is finished,
either ¬C⊕ is on R or ¬D⊕ is on R. So, either vR(¬C) ∈ D
or vR(¬D) ∈ D by IH, and so either vR(C) = 0 or vR(D) = 0,
hence vR(¬(C ∧D)) ∈ D.

ii. Suppose ¬(C ∧D)	 is on R. Then, since the tree is finished,
both ¬C	 and ¬D	 are on R. So, both vR(¬C) /∈ D and
vR(¬D) /∈ D by IH, and so both vR(C) 6= 0 and vR(D) 6= 0,
hence vR(¬(C ∧D)) = 0, i.e. vR(¬(C ∧D)) /∈ D.

(d) Suppose B is a formula of the form C ∨D.

i. Suppose ¬(C ∨D)⊕ is on R. Then, since the tree is finished,
either (1) all of C	 and ¬C	 and D	 and ¬D	 are on
R or else (2) ¬C⊕ and ¬D⊕ are on R. So, by IH we have
that either (1) vR(C) /∈ D and vR(¬C) /∈ D and vR(D) /∈ D
and vR(¬D) /∈ D in which case vR(C) = vR(D) = 1

2
or else (2) vR(¬C) ∈ D and vR(¬D) ∈ D in which case
vR(C) = vR(D) = 0. Either way, vR(C ∨ D) = 0 and so
vR(¬(C ∨D)) ∈ D.
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ii. Suppose ¬(C ∨D)	 is on R. Then, since the tree is finished,
either (1) C⊕ is on R or (2) D⊕ is on R or (3) all of C	
and ¬C	 and ¬D⊕ are on R or (4) all of D	 and ¬D	 and
¬C⊕ are on R. So, by IH we have that either (1) vR(C) ∈ D
or (2) vR(D) ∈ D or (3) vR(C) /∈ D and vR(¬C) /∈ D and
vR(¬D) ∈ D in which case vR(C) = 1

2 and vR(D) = 0 or (4)
vR(D) /∈ D and vR(¬D) /∈ D and vR(¬C) ∈ D in which case
vR(D) = 1

2 and vR(C) = 0. Either way, vR(C ∨D) 6= 0 and
so vR(¬(C ∨D)) /∈ D.

(e) Suppose B is a formula of the form C → D.

i. Suppose ¬(C → D)⊕ is on R. Then, since the tree is finished,
both C⊕ and D	 are on R. So, both vR(C) ∈ D and vR(D) /∈
D by IH, hence vR(C → D) = 0 and vR(¬(C → D)) ∈ D.

ii. Suppose ¬(C → D)	 is on R. Then, since the tree is finished,
either C	 is on R or D⊕ is on R. So, either vR(C) /∈ D or
vR(D) ∈ D by IH, hence vR(C → D) = 1 and vR(¬(C →
D)) /∈ D.

(III) Second inductive case: A is a formula of the form B ∧ C.

(a) Suppose (B ∧ C)⊕ is on R. Then, since the tree is finished, both
B⊕ and C⊕ are on R. So, both vR(B) ∈ D and vR(C) ∈ D by IH,
hence vR(B ∧ C) ∈ D.

(b) Suppose (B ∧C)	 is on R. Then, since the tree is finished, either
B	 is on R or C	 is on R. So, either vR(B) /∈ D or vR(C) /∈ D by
IH, hence vR(B ∧ C) /∈ D.

(IV) Third inductive case: A is a formula of the form B ∨ C.

(a) Suppose (B ∨C)⊕ is on R. Then, since the tree is finished, either
B⊕ is on R or C⊕ is on R. So, either vR(B) ∈ D or vR(C) ∈ D by
IH, hence vR(B ∨ C) ∈ D.

(b) Suppose (B ∨ C)	 is on R. Then, since the tree is finished, both
B	 and C	 are on R. So, both vR(B) /∈ D and vR(C) /∈ D by IH,
hence vR(B ∨ C) /∈ D.

(V) Fourth inductive case: A is a formula of the form B → C.

(a) Suppose (B → C)⊕ is on R. Then, since the tree is finished, either
B	 is on R or C⊕ is on R. So, either vR(B) /∈ D or vR(C) ∈ D by
IH, hence vR(B → C) ∈ D.
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(b) Suppose (B → C)	 is on R. Then, since the tree is finished, both
B⊕ and C	 are on R. So, both vR(B) ∈ D and vR(C) /∈ D by IH,
hence vR(B → C) /∈ D.

Theorem 2.3.2 (Completeness of TMH). If X �MH A, then X `TMH A.

Proof. Let X 0TMH A. Fix any finite X ′ ⊆ X. Then there is an open
TMH tree from X ′ to A by definition of provability in TMH. Fix any open
branch R of this tree with its induced interpretation vR. Since the initial list
is the root of every branch, we have B⊕ on R for all B ∈ X ′ and we have
A	 on R. It follows by Lemma 2.3.1 that vR(B) ∈ D for all B ∈ X ′ and
vR(A) /∈ D, hence X ′ 2MH A. Generalizing, there is no finite X ′ ⊆ X such
that X ′ �MH A. Thus, X 2MH A by the compactness of MH.

Theorem 2.3.3 (Soundness of TMH). If X `TMH A, then X �MH A.

Proof Sketch. The soundness of our tableaux system is easier to establish.
The proof makes use of a small lemma. For any branch R of a TMH tree,
define a faithful interpretation to be an MH valuation v that assigns v(A) ∈ D
if A⊕ is on R and v(A) /∈ D if A	 is on R. We can show that if v is faithful
to any initial segment of a branch, when an expansion rule is applied, v
is faithful to at least one extension of that segment, and therefore to one
branch with that segment. We infer soundness from this as follows. Suppose
that X 2MH A. Then there is an MH valuation v such that v(B) ∈ D for
all B ∈ X but v(A) /∈ D. Fix any finite X ′ ⊆ X and any finished TMH
tree from X ′ to A. By definition v is faithful to the root of this tree, so
it is faithful to at least one entire branch R of the tree. If R were a closed
branch, it would either have A⊕ and A	 on it for some formula A, or it
would have A⊕ and ¬A⊕ on it for some formula A. But this is impossible
as it requires either that v(A) ∈ D and v(A) /∈ D, or that v(A) ∈ D and
v(¬A) ∈ D. Generalizing, there is no finite X ′ ⊆ X such that all TMH trees
from X ′ to A are closed. Therefore, X 0TMH A.

This demonstrates the adequacy of TMH with respect to MH.

3 Paraconsistent Hybrid Logic NH

3.1 Semantics and Noteworthy Features

In the second half of the paper, we shift our focus to the propositional logic
NH. We use the same naming conventions as before. The logic we define in
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this section is paraconsistent but non-paracomplete with a hybrid of features
found in the well-known logics LP (Priest, 1979) and P2 (Marcos, 2005),6 so
we call it NH. The matrix semantics for NH has the same negation operation
as LP and P2, the disjunction of LP, and the implication of P2.

Conjunction, however, has unfamiliar behavior in this logic, so we want
to give some brief motivating remarks about its semantics. We take the
LP semantics for negation, disjunction, and conjunction as background and
argue for a small modification to its treatment of conjunction. This is
premised on the supposition that there are violations of explosion. Suppose,
then, that it is rationally permissible to accept some contradiction (A∧¬A).
That is to say, logic does not, in itself, compel us to reject such a formula. In
that case, it is appropriate to call A a locus of rational inconsistency, or more
simply an inconsistent formula. On most views, inconsistent formulas are
exceptional, arising from quirks of mind and language such as generalization
and self-reference. Many formulas B are consistent in the sense that we
ought, instead, to accept ¬(B ∧ ¬B) with respect to such formulas. The
properties of consistency and inconsistency, so understood, serve a diagnostic
semantic role, i.e. inconsistent formulas are exactly those that ground the
failure of explosion. Hence, unlike a formula and its negation—which,
by hypothesis, can be jointly accepted—regarding a formula to be both
consistent and inconsistent seems to be categorically ruled out. One posit
that easily accommodates all of these assumptions is that ¬(A∧¬A) ought
to be rejected (in model-theoretic terms, be undesignated) just when A
is inconsistent. Given the standard three-valued definition of negation,
however, that requires that when A is inconsistent, (A ∧ ¬A) is just true.
Moreover, if explosion remains valid, then the LP semantics for negation,
disjunction, and conjunction is almost wholly correct with one exception: a
conjunction of inconsistent formulas is just true. That is the approach of
NH.

In less philosophical terms, we can also see this logic as a solution to
the engineering problem of da Costa (1974). Suppose we are interested
in a particular articulation of the paraconsistent conviction: we want a
propositional logic in which explosion is invalid but where assertion of
this fact is non-vacuous, viz. a conclusion of the form ¬(A ∧ ¬A) does
not necessarily follow from any arbitrary set of premises whatsoever. It
also ought to be straightforward to extend the logic with quantifiers, etc.
NH solves this problem. And while it is certainly not the only possible
solution, Beziau and Franceschetto (2015, p.137) point out that the type

6A natural variation on the logic P1 first studied by Sette (1973).
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of semantics we use ‘minimizes molecularization (molecular propositions
behaving classically)’. So, it has a number of attractive purely formal
qualities.

The signature of NH is below, with a set of formulas FORM defined in
the usual way.

| pi | ¬ | ∧ | ∨ | → |

We also introduce a biconditional in the usual way (A ↔ B) =df. (A →
B) ∧ (B → A). The set of semantic values of NH is S = {1, 12 , 0}, the set
of designated values is D = {1, 12}, and an NH valuation is any function
v : FORM → S closed under the following operations.

¬ ∧ 1 1
2 0 ∨ 1 1

2 0 → 1 1
2 0

1 0 1 1 1
2 0 1 1 1 1 1 1 1 0

1
2

1
2

1
2

1
2 1 0 1

2 1 1
2

1
2

1
2 1 1 0

0 1 0 0 0 0 0 1 1
2 0 0 1 1 1

We define the consequence relation of NH as follows.

X �NH C iff on all NH valuations v, either v(A) /∈ D for some A ∈ X
or v(C) ∈ D

Before turning to proof-theoretic matters, we highlight some features of
potential philosophical interest in this logic. NH has a paraconsistent but
non-paracomplete negation as exemplified by the failure of explosion (a)
and the presence of excluded middle (b). It also has asymmetrically defined
conjunction and disjunction connectives for which the customary inferences
(c)-(g) hold, but for which only some of the DeMorgan laws hold (h) while
others fail (i). The conditional satisfies conditional proof (j) and classical
logical equivalents are intersubstitutible (k).

(a) A ∧ ¬A 2NH B

(b) A �NH B ∨ ¬B

(c) A ∧B �NH A

(d) A �NH B and A �NH C =⇒ A �NH B ∧ C

(e) A �NH A ∨B
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(f) A �NH C and B �NH C =⇒ A ∨B �NH C

(g) A ∧ (B ∨ C) �NH (A ∧B) ∨ (A ∧ C)

(h) ¬A ∧ ¬B �NH ¬(A ∨B)

(i) ¬A ∨ ¬B 2NH ¬(A ∧B)

(j) X,A �MH B =⇒ X �MH A→ B

(k) A↔ B,¬A↔ ¬B �MH Ψ(A)↔ Ψ(B)
where Ψ(B) is obtained from Ψ(A) by replacing zero or more instances
of A with B.

The failure of (i) is symptomatic of the fact that, in virtue of its conjunction
operation, NH has the resources to express when a formula is consistent
as follows: v(¬(A ∧ ¬A)) ∈ D iff v(A) 6= 1

2 . In many paraconsistent but
non-paracomplete logics, it is vacuous to deny a contradiction because any
such claim is a tautology. This results from the DeMorgan law that fails to
hold in NH. Denying an explicit contradiction is, thus, non-vacuous in NH
because not all premises guarantee the consistency of arbitrary conclusions.
As a result, we can define a consistency operator ○A =df. ¬(A ∧ ¬A) with
the following features in NH.

(j) (A ∧ ¬A) ∧○A �NH B

(k) ¬(A↔ ¬A) �NH ○A

(l) ○A ∧○B �NH ○(A ∧B)

(m) ○(A ∨B) �NH ○A ∨○B

(n) ¬A ∨ ¬B �NH ¬(A ∧B) ∨ ¬○(A ∧B)

(o) A,¬B,○B �NH ¬(A→ B)

(p) ○A, (A→ B) 2NH ¬B → ¬A

If we think of ○ as expressing rational consistency, i.e. that one must
not both assert and deny such formulas despite the possibility of non-
trivially holding other inconsistent commitments, then most of these laws
are intuitively correct. We have a law of ‘consistent explosion’ that says that
no formula can, inconsistently, be both asserted and denied when it is also
held to be consistent (j). We get a near-cousin of our missing DeMorgan law
(n), which arises from the formal strategy of NH, viz. to extract expressive
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power from a novel treatment of conjunction. The formulas with respect
to which a theory is consistent are those that are inequivalent to their own
negations (k) and consistency restricts contraposition (o)-(p).

Our conditional generalizes material implication, insofar as a conditional
formula is true just when its antecedent is undesignated or its consequent
is designated. As a result, NH validates stronger implicational forms of
reasoning than LP, such as modus ponens, as well as genuinely trivializing
entailments, such as ¬(A → A) �NH B. It has the rule of conditional
weakening A �MH B → A which fails even in the three-valued almost-
relevant logic RM3. So it is a strong paraconsistent logic. On the other hand,
certain other inferences fail in NH, such as ¬A∧¬B 2NH ¬((A→ B)→ B),
but which hold in RM3 Although NH and RM3 each strictly extends Priest’s
logic of paradox, neither is properly contained in the other. NH also,
notably, respects the intersubstitutivity of ○A and ○¬A for any pair of
contradictories A and ¬A, which notoriously fails in DaCosta’s hierarchy of
paraconsistent logics.7 Having thus situated NH in the logical terrain, we
turn to its proof theory.

3.2 Hilbert System HNH

In this subsection, we develop a Hilbert system HNH and show that it is
sound and complete for our paraconsistent hybrid logic NH. Any uniform
substitution of formulas into metavariable positions in one of the following
schemas is an axiom of HNH. We note that (Ax.1)-(Ax.9) are common to
both of our Hilbert systems.

(Ax.1) A→ (B → A)

(Ax.2) (A→ (B → C))→ ((A→ B)→ (A→ C))

(Ax.3) (A ∧B)→ A

(Ax.4) (A ∧B)→ B

(Ax.5) (A→ B)→ ((A→ C)→ (A→ (B ∧ C)))

(Ax.6) A→ (A ∨B)

(Ax.7) B → (A ∨B)

(Ax.8) (A→ C)→ ((B → C)→ ((A ∨B)→ C))

7See Marcos (2005, p.56).
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(Ax.9) ¬¬A↔ A

(Ax.17) ○(A ∧ ¬A)

(Ax.18) ○(A→ B)

(Ax.19) ○A→ ((B → A)→ (¬A→ ¬B))

(Ax.20) (¬A ∧ ¬B)↔ ¬(A ∨B)

(Ax.21) (¬A ∨ ¬B)↔ (¬(A ∧B) ∨ ((A ∧ ¬A) ∧ (B ∧ ¬B)))

(Ax.22) (○A ∧ ¬A)→ (A→ B)

(Ax.23) (A ∧ (○B ∧ ¬B))→ ¬(A→ B)

We also have a rule of modus ponens.

(MP) A→ B,A =⇒ B

A derivation in HNH from the set of assumptions X to conclusion C is a
finite sequence of formulas A1, . . . , An such that An = C and such that every
Ai in the sequence is either a member of X, an axiom of HNH, or follows
from previous formulas in the sequence by MP. We write the following to
express that such a derivation exists.

X `HNH C

A formula that is derivable from the empty set is a theorem of HNH.
HNH has a deduction theorem because it contains the full axioms of

intuitionistic implication. It also has a law of excluded middle and a law
reflecting the fact that ‘consistency’ is fixed over negation. We note several
other useful theorems and derived rules below. These results are established
in the appendix.

(Iden) A→ A

(CFN) ○A↔ ○¬A

(NEX) ○A→ ((A ∧ ¬A)→ B)

(Dial) ¬○A→ A and ¬○A→ ¬A

(Adj) A,B =⇒ A ∧B
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(Tran) A→ B,B → C =⇒ A→ C

(Perm) A→ (B → C) =⇒ B → (A→ C)

(NRed) A→ ¬A =⇒ ¬A

(ConC) ○(A ∧B) =⇒ (A ∧B)→ (○A ∨ ¬○B)
and ○(A ∧B) =⇒ ¬(A ∧B)→ ((¬A ∧○A) ∨ (¬B ∧○B))

(ConD) ○(A ∨B) =⇒ (A ∨B)→ ((A ∧○A) ∨ (B ∧○B))
and ○(A ∨B) =⇒ ¬(A ∨B)→ ((¬A ∧○A) ∧ (¬B ∧○B))

As with our previous axiom system, and again following the example of
Goldberg et al. (1974), we give a Henkin-style completeness proof for HNH
with respect to NH. We need a few definitions and lemmas.

• A set of formulas X is HNH-trivial iff X `HNH A for all A; it is HNH-
non-trivial otherwise.

• A set of formulas X is maximal HNH-non-trivial iff it is HNH-non-
trivial and X ∪ {B} is HNH-trivial for all formulas B /∈ X.

• An HNH-filter is a set of formulas that contains all NH axioms and is
closed under MP.

Lemma 3.2.1. If X is maximal HNH-non-trivial, then X is an HNH-filter.

The can be proven just as it was in Lemma 2.2.1. A maximal HNH-non-
trivial set contains all theorems and is closed under derivability, e.g. such
sets are closed under adjunction and transitivity. We show that they are
also prime.

Corollary (Primeness). If X is maximal HNH-non-trivial, then X is prime;
in particular, with respect to any formula C, exactly one of C,○C ∈ X or
¬C,○C ∈ X or C,¬C ∈ X.

Proof. The first part runs as before: if X is maximal HNH-non-trivial
with (A ∨ B) ∈ X, then having both A /∈ X and B /∈ X is impossible on
pain of X’s triviality. In particular, if X is maximal HNH-non-trivial, then
with respect to any formula C, either C or ¬C ∈ X and either ○C ∈ X
or ¬○C ∈ X by Lemma 3.2.1 and LEM. This gives us four possibilities:
both C,○C ∈ X or both ¬C,○C ∈ X or both C,¬○C ∈ X or both
¬C,¬○C ∈ X. But the last two cases are equivalent to the inconsistent
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case C,¬C ∈ X by the definition of ○ and Ax.9. We can have at most
one of C,○C ∈ X or ¬C,○C ∈ X or C,¬C ∈ X because any combination
would be trivializing by adjunction, Ax.22, and NEX.

The next two lemmas will help simplify the rest of the presentation.

Lemma 3.2.2. If X is maximal HNH-non-trivial and ○(A ∧ B) ∈ X,
then if (A ∧ B) ∈ X we either have all of A,○A,B,○B ∈ X or all of
A,¬A,B,¬B ∈ X, and if ¬(A∧B) ∈ X we have both ¬A,○A ∈ X or both
¬B,○B ∈ X.

Proof. Fix maximal HNH-non-trivial set X with ○(A ∧ B) ∈ X.
Suppose that (A ∧ B) ∈ X. Then both A,B ∈ X by simplification and
both (○A ∨ ¬○B), (○B ∨ ¬○A) ∈ X by Lemma 3.2.1, ConC, and the
commutativity of conjunction. Then by primeness and non-triviality, either
we have both ○A,○B ∈ X or we have both ¬○A,¬○B ∈ X which suffices
for ¬A,¬B ∈ X. So, we either have all of A,○A,B,○B ∈ X or all of
A,¬A,B,¬B ∈ X. On the other hand, suppose that ¬(A ∧ B) ∈ X. Then
(¬A ∧○A) ∨ (¬B ∧○B) ∈ X by Lemma 3.2.1 and ConC, so we have both
¬A,○A ∈ X or both ¬B,○B ∈ X by primeness and simplification.

Lemma 3.2.3. If X is maximal HNH-non-trivial and ○(A ∨B) ∈ X, then
if (A ∨ B) ∈ X we either have both A,○A ∈ X or both B,○B ∈ X, and if
¬(A ∨B) ∈ X we have all of ¬A,○A,¬B,○B ∈ X.

Proof. Fix maximal HNH-non-trivial set X with ○(A ∨ B) ∈ X. Suppose
that (A ∨B) ∈ X. Then ((A ∧○A) ∨ (B ∧○B)) ∈ X by Lemma 3.2.1 and
ConD, so either we have both A,○A ∈ X or both B,○B ∈ X by primeness
and simplification. On the other hand, suppose that ¬(A∨B) ∈ X. Then we
have all of ¬A,○A,¬B,○B ∈ X by Lemma 3.2.1, ConD, and simplification.

We can now establish the following important relationship.

Lemma 3.2.4. If X is HNH-non-trivial, then X is satisfied on some NH
valuation.

Proof. Fix any HNH-non-trivial set of formulas X. We want to extend
this set to a maximal HNH-non-trivial superset X∗. Let A1, . . . , An be an
enumeration of FORM and define X∗ recursively as follows.

X0 = X
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Xn+1 =

{
Xn ∪ {An} if this is HNH-non-trivial
Xn otherwise

X∗ =
⋃
n∈N

Xn

Succession preserves non-triviality by design, so each of the Xi for i ∈ N
is HMH-non-trivial. In that case, the limit X∗ must be HMH-non-trivial as
well. Otherwise we would have X∗ `HMH ○p∧(p∧¬p) and, since derivations
are finite, that would require Xi `HMH ○p ∧ (p ∧ ¬p) for some Xi, in which
case that Xi would be trivial by NEX.

Fix an NH valuation vX∗ defined as follows for each atomic formula p.
By the established primeness of any maximal HNH-non-trivial set, this is a
well-defined valuation.

vX∗(p) =


1 if both p,○p ∈ X∗

0 if both ¬p,○p ∈ X∗
1
2 if both p,¬p ∈ X∗

We show that this valuation extends to all formulas A as follows.

vX∗(A) =


1 if both A,○A ∈ X∗

0 if both ¬A,○A ∈ X∗
1
2 if both A,¬A ∈ X∗

(I) Base case: holds by definition.

(II) First inductive case: A is a formula of the form B ∧ C.

(a) Suppose that both A,○A ∈ X∗, i.e. that both (B∧C),○(B∧C) ∈
X∗. Then we either have all of B,○B,C,○C ∈ X∗ or all of
B,¬B,C,¬C ∈ X∗ by Lemma 3.2.2. If B,○B,C,○C ∈ X∗,
then vX∗(B) = vX∗(C) = 1 by IH. If B,¬B,C,¬C ∈ X∗, then
vX∗(B) = vX∗(C) = 1

2 by IH. Thus, in every case, vX∗(B ∨C) =
vX∗(A) = 1.

(b) Suppose that both ¬A,○A ∈ X∗, i.e. that both ¬(B ∧C),○(B ∧
C) ∈ X∗. Then either we have both ¬B,○B ∈ X∗ or both
¬C,○C ∈ X∗ by Lemma 3.2.2. If ¬B,○B ∈ X∗, then vX∗(B) =
0 by IH. If ¬C,○C ∈ X∗, then vX∗(C) = 0 by IH. Thus, in every
case, vX∗(B ∨ C) = vX∗(A) = 0.
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(c) Suppose that both A,¬A ∈ X∗, i.e. that both (B∧C),¬(B∧C) ∈
X∗. Then by simplification both B,C ∈ X∗ and by Ax.21 we
have (¬B ∨ ¬C) ∈ X∗. We know that either ○B ∈ X∗ or
¬○B ∈ X∗ and either ○C ∈ X∗ or ¬○C ∈ X∗ by LEM. If
○B ∈ X∗, then (○B ∧ ¬¬B) ∈ X∗ by Ax.9 and adjunction, and
so (¬B → ¬C) ∈ X∗ by Ax.22, hence ((¬B ∨ ¬C) → ¬C) ∈ X∗

by Iden and Ax.8, therefore ¬C ∈ X∗. In that case, vX∗(B) = 1
and vX∗(C) = 1

2 by IH. If ○C ∈ X∗, then by similar reasoning
to above ¬B ∈ X∗ and so vX∗(B) = 1

2 and vX∗(C) = 1 by
IH. If both ¬○B,¬○C ∈ X∗, then both ¬B,¬C ∈ X∗ by
Dial and so vX∗(B) = vX∗(C) = 1

2 by IH. Thus, in every case,
vX∗(B ∧ C) = vX∗(A) = 1

2 .

(III) Second inductive case: A is a formula of the form B ∨ C.

(a) Suppose that both A,○A ∈ X∗, i.e. that both (B∨C),○(B∨C) ∈
X∗. Then either we have both A,○A ∈ X∗ or both B,○B ∈ X∗

by Lemma 3.2.3. If both A,○A ∈ X∗, then vX∗(A) = 1 by IH,
hence vX∗(B ∨ C) = vX∗(A) = 1. Likewise if both B,○B ∈ X∗.

(b) Suppose that both ¬A,○A ∈ X∗, i.e. that both ¬(B ∨C),○(B ∨
C) ∈ X∗. Then we have all of ¬A,○A,¬B,○B ∈ X∗ by Lemma
3.2.3 and so ¬A,○A,¬B,○B ∈ X∗. Hence, vX∗(A) = vX∗(B) =
0 by IH, hence vX∗(B ∨ C) = vX∗(A) = 0.

(c) Suppose that both A,¬A ∈ X∗, i.e. that both (B∨C),¬(B∨C) ∈
X∗. Then by Ax.20 and simplification, both ¬B ∈ X∗ and
¬C ∈ X∗. We know that either ○B ∈ X∗ or ¬○B ∈ X∗ and
either ○C ∈ X∗ or ¬○C ∈ X∗ by LEM. If ○B ∈ X∗, then
(B → C) ∈ X∗ by Ax.22 and so ((B∨C)→ C) ∈ X∗ by Iden and
Ax.8, thus C ∈ X∗. In that case, vX∗(B) = 0 and vX∗(C) = 1

2 by
IH. If ○C ∈ X∗, then by similar reasoning to above B ∈ X∗ and
so vX∗(B) = 1

2 and vX∗(C) = 0 by IH. If both ¬○B,¬○C ∈ X∗,
then both B,C ∈ X∗ by Dial and so vX∗(B) = vX∗(C) = 1

2 by
IH. Thus, in every case, vX∗(B ∨ C) = vX∗(A) = 1

2 .

(IV) Third inductive case: A is a formula of the form B → C.

(a) Suppose that both A,○A ∈ X∗, i.e. that both (B → C),○(B →
C) ∈ X∗. Then ¬(B → C)→ ¬((¬○B ∨B) ∧ (○C ∧ ¬C)) ∈ X∗

by Ax.1 and Ax.19. We have (¬○B ∨ B) → B ∈ X∗ by Dial,
Iden, and Ax.8, so ((¬○B∨B)∧(○C∧¬C))→ (B → C) ∈ X∗ by
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Ax.23. Hence, ((¬○B∨B)∧(○C∧¬C))→ ¬((¬○B∨B)∧(○C∧
¬C)) ∈ X∗ by transitivity. Then ¬((¬○B∨B)∧(○C∧¬C)) ∈ X∗

by NRed, which guarantees that either we have ¬(¬○B∨B) ∈ X*
or ¬(○C ∧ ¬C) ∈ X∗. In the first case, by Ax.20 and Ax.9 we
have both ○B,¬B ∈ X∗ and so vX∗(B) /∈ D. In the second
case, by Ax.6, Ax.21, Dial, Iden, and Ax.8, we have C ∈ X∗,
and so, regardless of whether ○C ∈ X∗ or ¬○C ∈ X∗, we have
vX∗(C) ∈ D. Thus, in every case, vX∗(B → C) = vX∗(A) = 1.

(b) Suppose that both ¬A,○A ∈ X∗, i.e. that both ¬(B →
C),○(B → C) ∈ X∗. Then we have ○¬(B → C) ∈ X∗ by CFN
and so (B → C) → ¬((○B ∧ ¬B) ∨ C) ∈ X∗ by Ax.1, Ax.19,
and Ax.9. We have ((○B ∧ ¬B) ∨ C)→ (B → C) ∈ X∗ by Ax.1
and Ax.22 and so ((○B ∧ ¬B) ∨ C)→ ¬((○B ∧ ¬B) ∨ C) ∈ X∗

by transitivity. Then ¬((○B ∧ ¬B) ∨ C) ∈ X∗ by NRed, which
guarantees both B,¬C ∈ X∗ by Ax.20, Ax.21, primeness, and
Dial. We know that either ○C ∈ X∗ or ¬○C ∈ X∗, but the
latter trivializes X∗ by Dial and Ax.1; thus, in fact, we must
have ○C ∈ X∗. Then, regardless of whether ○B ∈ X∗ or
¬○B ∈ X∗, we have vX∗(B) ∈ D and vX∗(C) /∈ D by IH,
therefore vX∗(B → C) = vX∗(A) = 0.

(c) The third option, that both A,¬A ∈ X∗, i.e. both (B →
C),¬(B → C) ∈ X∗, is not really possible. For if it holds, then
since (((B → C) ∧ ¬(B → C))→ D) ∈ X∗ for all formulas D by
Ax.18 and NEX, we would have D ∈ X∗ for all D by adjunction
and closure, contradicting the non-triviality of X∗.

(V) Fourth inductive case: A is a formula of the form ¬B. In case B is
atomic or it has conjunction, disjunction, or implication as its main
connective, this is covered by steps (II)b, (III)b, and (IV)b. The
remaining case is where B itself is of the form ¬C.

(a) Suppose that both A,○A ∈ X∗, i.e. that both ¬¬C,○¬¬C ∈ X∗.
Then by Ax.9 and CFN both C,○C ∈ X∗ and so, by IH,
vX∗(C) = vX∗(¬¬C) = vX∗(A) = 1.

(b) Suppose that both ¬A,○A ∈ X∗, i.e. that both ¬¬¬C,○¬¬C ∈
X∗. Then by Ax.9 and CFN both ¬C,○C ∈ X∗ and so, by IH,
vX∗(C) = vX∗(¬¬C) = vX∗(A) = 0.

(c) Suppose that both A,¬A ∈ X∗, i.e. that both ¬¬C,¬¬¬C ∈ X∗.
Then by Ax.9 and closure both C,¬C ∈ X∗ and so, by IH,
vX∗(C) = vX∗(¬¬C) = vX∗(A) = 1

2 .
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It follows that A ∈ X∗ iff vX∗(A) ∈ D for all formulas A. This shows that
X∗ and any of its subsets, including our original set X, are satisfied on some
NH valuation.

This is all that we need to establish completeness for our Hilbert system.

Theorem 3.2.5 (Completeness of HNH). If X �NH A, then X `HNH A.

Proof. Suppose that X �NH A. Then there is no NH valuation on which
v(B) ∈ D for all B ∈ X and v(A) /∈ D. In that case, X ∪ {¬A ∨ ○A}
is unsatisfied on all NH valuations. It follows by Lemma 3.2.4 that
X ∪ {¬A ∨ ○A} is HNH-trivial. Then X,¬A ∨ ○A `HNH A and so we
have X `HNH ¬A → A by RBC and the deduction theorem. Therefore, by
NRed and Ax.9 we have X `HNH A.

Theorem 3.2.6 (Soundness of HNH). If X `HNH A, then X �NH A.

Proof Sketch. This result is more straightforward. Let X `HNH A and
fix any HNH derivation from X to A that witnesses the fact. By induction
on the length of derivations, we can show that if an NH valuation v assigns
v(B) = 1 for all B ∈ X , then v(A) = 1. For the base case, A can only be an
HNH axiom. It is straightforward if tedious to show that every axiom is an
NH tautology. For the inductive case, we only need the fact that if v(C) = 1
and v(C → D) = 1 then v(D) = 1, i.e. that MP preserves designation.

This demonstrates the adequacy of HNH with respect to NH. Since
derivations in HNH are finite, we again get a quick compactness result for
NH.

Corollary (Compactness of NH). X �NH A iff X ′ �NH A for some finite
X ′ ⊆ X.

3.3 Tableaux System TNH

In this subsection, we develop a tableaux system TNH and show that it,
too, is sound and complete for NH. As before, our tableaux are downward-
branching trees of signed formulas, using signs ⊕ and 	 for designated and
undesignated value.

Given a finite premise set X and conclusion C, the root of the TNH tree
from X to C is a list consisting of B⊕ for all B ∈ X and C	. Starting from
this initial list, we apply the expansion rules below to construct the tree.
Apart from the expansion rules, which differ, the construction process for
these trees is the same as described in §2.3.
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(A ∧B)⊕

A⊕
B⊕

(A ∧B)	

B	A	

¬(A ∧B)⊕

B⊕
¬B⊕
¬A	

A⊕
¬A⊕
¬B	

B	A	

¬(A ∧B)	

A⊕
¬A⊕
B⊕
¬B⊕

¬A	
¬B	

(A ∨B)⊕

B⊕A⊕

(A ∨B)	

A	
B	

¬(A ∨B)⊕

¬A⊕
¬B⊕

¬(A ∨B)	

¬B	¬A	

(A→ B)⊕

B⊕A	

(A→ B)	

A⊕
B	

¬(A→ B)⊕

A⊕
B	

¬(A→ B)	

B⊕A	

¬¬A⊕

A⊕

¬¬A	

A	

We can think of an expanding branch as a search for an NH counter-
model to the original argument. At any stage of the construction, a branch
is closed if, for any formula A, both A⊕ and A	 occur on that branch
or both A	 and ¬A	 occur on that branch. Such a branch has failed to
produce a viable counter-model. When every rule that can be applied has
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been applied, the tree is finished. Every argument has a finite, finished TNH
tree.

If every branch of a finished tree is closed, the tree is closed; otherwise
it is open. The argument from arbitrary premise set X to conclusion C is
provable in TNH iff there is some finite X ′ ⊆ X such that all TNH trees
from X ′ to C are closed.8 We write the following to express that such an
argument is provable in TNH.

X `TNH C

We again proceed to give a Smullyan-style completeness proof for TNH with
respect to NH. We first need the following lemma.

Lemma 3.3.1. Fix any open branch R of an open, finished TNH tree. Define
the induced interpretation of R to be the NH valuation vR that assigns
semantic values to each atomic formula p as follows.

vR(p) =


1 if ¬p	 is on R
0 if p	 is on R
1
2 otherwise

Since R is open, at least one of each pair of negatively signed literals, p	
and ¬p	, does not occur on the branch. So, the valuation is well-defined.
By induction on formula complexity, we show that for all formulas A:

vR(A) ∈ D if A⊕ is on R and vR(A) /∈ D if A	 is on R

Proof.

(I) Base case: A is some atomic formula p.

(a) Suppose p⊕ is on R. Then, since R is open, p	 is not on R. If
¬p	 is on R, then vR(p) = 1 by definition of vR. If ¬p	 is not on
R, then vR(p) = 1

2 by definition of vR. Either way, vR(p) ∈ D.

(b) Suppose p	 is on R. Then vR(p) /∈ D by definition of vR.

(II) First inductive case: A is a formula of the form ¬B.

(a) Suppose B is some atomic p.

8In such a system, if one tree is closed, any finished tree with the same root is also
closed.
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i. Suppose ¬p⊕ is on R. Then, since R is open, ¬p	 is not on
R. If p	 is on R, then vR(p) = 0 by definition of vR. If p	
is not on R, then vR(p) = 1

2 by definition of vR. Either way,
vR(p) 6= 1 and so vR(¬p) ∈ D.

ii. Suppose ¬p	 is on R. Then vR(p) = 1 by definition of vR,
hence vR(¬p) /∈ D.

(b) Suppose B is itself a complex formula of the form ¬C.

i. Suppose ¬¬C⊕ is on R. Then, since the tree is finished, C⊕
is on R. So, vR(C) ∈ D by IH, hence vR(¬¬C) ∈ D.

ii. Suppose ¬¬C	 is on R. Then, since the tree is finished, C	
is on R. So, vR(C) /∈ D by IH, hence vR(¬¬C) /∈ D.

(c) Suppose B is a formula of the form C ∧D.

i. Suppose ¬(C ∧D)⊕ is on R. Then, since the tree is finished,
either (1) C	 is on R or (2) D	 is on R or (3) all of C⊕
and ¬C⊕ and ¬D	 are on R or (4) all of D⊕ and ¬D⊕ and
¬C	 are on R. So, by IH, we have that either (1) vR(C) /∈ D
or (2) vR(D) /∈ D or (3) vR(C) ∈ D and vR(¬C) ∈ D and
vR(¬D) /∈ D in which case vR(C) = 1

2 and vR(D) = 1 or (3)
vR(D) ∈ D and vR(¬D) ∈ D and vR(¬C) /∈ D in which case
vR(D) = 1

2 and vR(C) = 1. Hence, vR(C ∧ D) 6= 1 and so
vR(¬(C ∧D)) ∈ D.

ii. Suppose ¬(C ∧D)	 is on R. Then, since the tree is finished,
either (1) ¬C	 and ¬D	 are on R or (2) all of C⊕ and ¬C⊕
and D⊕ and ¬D⊕ are on R. So, by IH, we have that either (1)
vR(¬C) /∈ D and vR(¬D) /∈ D in which case vR(C) = 1 and
vR(D) = 1 or (2) vR(C) ∈ D and vR(¬C) ∈ D and vR(D) ∈ D
and vR(¬D) ∈ D in which case vR(C) = 1

2 and vR(D) = 1
2 .

Hence, vR(C ∧D) = 1 and so vR(¬(C ∧D)) /∈ D.

(d) Suppose B is a formula of the form C ∨D.

i. Suppose ¬(C ∨D)⊕ is on R. Then, since the tree is finished,
both ¬C⊕ and ¬D⊕ are on R. So, vR(¬C) ∈ D and
vR(¬D) ∈ D by IH, and so vR(C) 6= 1 and vR(D) 6= 1. Hence,
vR(C ∨D) 6= 1 and so ¬(C ∨D) ∈ D.

ii. Suppose ¬(C ∨D)	 is on R. Then, since the tree is finished,
either ¬C	 or ¬D	 is on R. So, either vR(¬C) /∈ D or
vR(¬D) /∈ D by IH, and so either vR(C) = 1 or vR(D) = 1.
Hence, vR(C ∨D) = 1 and so ¬(C ∨D) /∈ D.
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(e) Suppose B is a formula of the form C → D.

i. Suppose ¬(C → D)⊕ is on R. Then, since the tree is finished,
both C⊕ and D	 are on R. So, both vR(C) ∈ D and vR(D) /∈
D by IH, hence vR(C → D) = 0 and vR(¬(C → D)) ∈ D.

ii. Suppose ¬(C → D)	 is on R. Then, since the tree is finished,
either C	 is on R or D⊕ is on R. So, either vR(C) /∈ D or
vR(D) ∈ D by IH, hence vR(C → D) = 1 and vR(¬(C →
D)) /∈ D.

(III) Second inductive case: A is a formula of the form B ∧ C.

(a) Suppose (B ∧ C)⊕ is on R. Then, since the tree is finished, both
B⊕ and C⊕ are on R. So, both vR(B) ∈ D and vR(C) ∈ D by IH,
hence vR(B ∧ C) ∈ D.

(b) Suppose (B ∧C)	 is on R. Then, since the tree is finished, either
B	 is on R or C	 is on R. So, either vR(B) /∈ D or vR(C) /∈ D by
IH, hence vR(B ∧ C) /∈ D.

(IV) Third inductive case: A is a formula of the form B ∨ C.

(a) Suppose (B ∨C)⊕ is on R. Then, since the tree is finished, either
B⊕ is on R or C⊕ is on R. So, either vR(B) ∈ D or vR(C) ∈ D by
IH, hence vR(B ∨ C) ∈ D.

(b) Suppose (B ∨ C)	 is on R. Then, since the tree is finished, both
B	 and C	 are on R. So, both vR(B) /∈ D and vR(C) /∈ D by IH,
hence vR(B ∨ C) /∈ D.

(V) Fourth inductive case: A is a formula of the form B → C.

(a) Suppose (B → C)⊕ is on R. Then, since the tree is finished, either
B	 is on R or C⊕ is on R. So, either vR(B) /∈ D or vR(C) ∈ D by
IH, hence vR(B → C) ∈ D.

(b) Suppose (B → C)	 is on R. Then, since the tree is finished, both
B⊕ and C	 are on R. So, both vR(B) ∈ D and vR(C) /∈ D by IH,
hence vR(B → C) /∈ D.

Theorem 3.3.2 (Completeness of TNH). If X �MH A, then X `TMH A.
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Proof. Let X 0TMH A. Fix any finite X ′ ⊆ X. Then there is an open
TNH tree from X ′ to C by definition of provability in TNH. Fix any open
branch R of this tree with its induced interpretation vR. Since the initial
list is the root of every branch, we have B⊕ on R for all B ∈ X ′ and we
have A	 on R. It follows by Lemma 3.3.1 that vR(B) ∈ D for all B ∈ X and
vR(A) /∈ D, hence X ′ 2MH A. Generalizing, there is no finite X ′ ⊆ X such
that X ′ �MH C. Thus, X 2MH A by the compactness of NH.

Theorem 3.3.3 (Soundness of TNH). If X `TMH A, then X �MH A.

Proof Sketch. The soundness proof, again, makes use of a small lemma.
For any branch R of a TNH tree, define a faithful interpretation to be an NH
valuation v that assigns v(A) ∈ D if A⊕ is on R and v(A) /∈ D if A	 is on R.
It is straightforward to show that if v is faithful to an initial segment of any
branch, then when an expansion rule is applied, v is faithful to at least one
extension of that segment, and therefore to one branch with that segment.
We infer soundness as follows. Suppose that X 2NH A. Then there is an NH
valuation v such that v(B) ∈ D for all B ∈ X but v(A) /∈ D. Fix any finite
X ′ ⊆ X and any finished TNH tree from X ′ to A. By definition v is faithful
to the root of this tree, so it is faithful to at least one branch R of the tree.
If R were a closed branch, it would either have A⊕ and A	 on it for some
formula A, or it would have A	 and ¬A	 on it for some formula A, both
of which are impossible. Generalizing, there is no finite X ′ ⊆ X such that
all TNH trees from X ′ to A are closed. Therefore, X 0TNH A.

This demonstrates the adequacy of TNH with respect to NH. Although
tableaux systems may not be considered the most natural representation of
reasoning, they do have the advantage of serving as a decision procedure for
our logics.

4 Conclusion

This incursion into unfamiliar territory has shown a new way to look at
paracomplete and paraconsistent views on negation and rationality. What
is the behavior of incompleteness, i.e. how ought it to affect our reasoning
when we introduce contradictories both of which may be rejected? What is
the behavior of consistency, i.e. how ought it to affect our reasoning when we
introduce contradictories which may not both be accepted? The two logics
we have explored here offer novel and interesting ways to get to grips with
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such phenomena.9

Appendix

Meta-inferences that hold in both HMH and HNH

Since the following proofs apply to both Hilbert systems, we drop subscripts on the
turnstile here.

The Deduction Theorem: X,A ` C ⇐⇒ X ` A→ C

The RLD simply follows from MP. For the LRD, suppose that X,A ` C.
Recall that a derivation of X,A ` C is a sequence of formulas A1, . . . , An such
that An = C and every Ai in the sequence is either a member of X ∪{A}, an
axiom, or follows from previous formulas in the sequence by MP. We prove by
induction on i = 1, 2, . . . that X ` A→ Ai, and so X ` A→ C in particular.

(I) Base case: for i = 1 either A1 ∈ X ∪ {A} or A1 is an axiom.

(a) If A1 ∈ X ∪ {A}, we have either A1 = A or A1 6= A.

i. If A1 = A, then since ∅ ` A→ A (see the Iden theorem below),
we have X ` A→ A, i.e. X ` A→ A1.

ii. If A1 6= A, then since A1 ` A → A1 from Ax.1 and MP and
since A1 ∈ X, we have X ` A→ A1.

(b) If A1 is an axiom, we have ∅ ` A→ A1 from Ax.1 and MP, and so
X ` A→ A1.

(II) Inductive case: for i > 1 there are three possibilities, two of which are
similar to the above. The third possibility is that there are Aj and
Ak = (Aj → Ai) earlier in the sequence from which Ai follows by MP.
We have the following induction hypothesis for 1 ≤ h < i.

(IH) X ` A→ Ah

In particular, we have X ` A→ Aj and X ` A→ (Aj → Ai). We can
then chain these derivations together and extend them by the following
steps.

...

• A→ Aj

9This work originated from discussions with my fellow postgrads, Doug Owings and
Aaron Cotnoir, and my then-supervisor, Jc Beall, while I was still completing my Ph.D.
at the University of Connecticut many years ago. Owings (2012), in particular, presented
some ideas about non-classical logic that were then entirely new to me and spurred my
thoughts in directions that ultimately culminated in this paper. Any errors or omissions
in the final product, however, are entirely my responsibility.
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...

• A→ (Aj → Ai)

...

• (A→ (Aj → Ai))→ ((A→ Aj)→ (A→ Ai)) Ax.2

• (A→ Aj)→ (A→ Ai) MP

• A→ Ai MP

RBC (Reasoning by Cases): X,A ` C and X,B ` C ⇐⇒ X,A ∨B ` C

(I) For the LRD, let X,A ` C and X,B ` C. Then, by the deduction
theorem, we have X ` A → C and X ` B → C and so, by Ax.8 and
MP, we have X ` (A∨B)→ C. Thus, again by the deduction theorem,
we have X,A ∨B ` C.

(II) For the RLD, let X,A ∨ B ` C. Then, by the deduction theorem,
we have X ` (A ∨ B) → C. It follows easily by Ax.6 and Tran that
X ` A→ C and so, again by the deduction theorem, we have X,A ` C.
It follows similarly by Ax.7, etc., that X,B ` C.

Theorems and Derived Rules in both HMH and HNH

Iden: A→ A

(1) A→ ((A→ A)→ A) Ax.1

(2) (A→ (A→ A))→ (A→ A) Ax.2, 1, MP

(3) A→ (A→ A) Ax.1

(4) A→ A 2, 3, MP

Adj: A,B =⇒ A ∧B

(1) A ASS.

(2) B ASS.

(3) A→ (B → A) Ax.1

(4) B → A 1, 3, MP

(5) (B → A)→ ((B → B)→ (B → (A ∧B))) Ax.5

(6) (B → B)→ (B → (A ∧B)) 4, 5, MP

(7) B → B Iden
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(8) B → (A ∧B) 6, 7, MP

(9) A ∧B 2, 8, MP

Tran: A→ B,B → C =⇒ A→ C

(1) A→ B ASS.

(2) B → C ASS.

(3) A→ (B → C) Ax.1, 2, MP

(4) (A→ B)→ (A→ C) Ax.2, 3, MP

(5) A→ C 1, 4, MP

Perm: A→ (B → C) =⇒ B → (A→ C)

(1) A→ (B → C) ASS.

(2) (A→ B)→ (A→ C) Ax.2, 1, MP

(3) ((A→ B)→ (A→ C))→ (B → (A→ B)→ (A→ C)) Ax.1

(4) B → ((A→ B)→ (A→ C)) 2, 3, MP

(5) (B → (A→ B))→ (B → (A→ C)) Ax.2, 4, MP

(6) B → (A→ B) Ax.1

(7) B → (A→ C) 5, 6, MP

Theorems and Derived Rules only in HMH

IFN: in one direction, viz. ▽A→▽¬A

(1) ¬A→ (A ∨ ¬A) Ax.7

(2) ¬¬A→ (A ∨ ¬A) Ax.9, Ax.6, Tran

(3) (¬A ∨ ¬¬A)→ (A ∨ ¬A) Ax.8, 1, 2, MP

(4) (¬A ∨ ¬¬A) ∨ ¬(¬A ∨ ¬¬A) Ax.10, Def.▽

(5) ((¬A ∨ ¬¬A)→ (A ∨ ¬A))→ (¬(A ∨ ¬A)→ ¬(¬A ∨ ¬¬A))

Ax.12, 4, MP

(6) ¬(A ∨ ¬A)→ ¬(¬A ∨ ¬¬A) 3, 5, MP

IFN: in the other direction, viz. ▽¬A→▽A
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(1) A→ (¬A ∨ ¬¬A) Ax.9, Ax.7, Tran

(2) ¬A→ (¬A ∨ ¬¬A) Ax.6

(3) (A ∨ ¬A)→ (¬A ∨ ¬¬A) Ax.8, 1, 2, MP

(4) (A ∨ ¬A) ∨ ¬(A ∨ ¬A) Ax.10

(5) ((A ∨ ¬A)→ (¬A ∨ ¬¬A))→ (¬(¬A ∨ ¬¬A)→ ¬(A ∨ ¬A))

Ax.12, 4, MP

(6) ¬(¬A ∨ ¬¬A)→ ¬(A ∨ ¬A) 3, 5, MP

MEX: ¬A→ (A→ B) and ▽A→ (¬A→ B)

(1) ¬A→ (¬A ∨▽A) Ax.6

(2) (¬A ∨▽A)→ (A→ B) Ax.15

(3) ¬A→ (A→ B) 1, 2, Tran

(4) ▽A→▽¬A IFN

(5) ▽¬A→ (¬¬A ∨▽¬A) Ax.7

(6) (¬¬A ∨▽¬A)→ (¬A→ B) Ax.15

(7) ▽A→ (¬A→ B) 4, 5, 6, Tran

MRed: A→ (¬A ∨▽A) =⇒ ¬A ∨▽A

(1) A→ (¬A ∨▽A) ASS.

(2) ¬A→ (¬A ∨▽A) Ax.6

(3) ▽A→ (¬A ∨▽A) Ax.7

(4) ((A ∨ ¬A) ∨▽A)→ (¬A ∨▽A) Ax.8, 1, 2, 3, MP

(5) (A ∨ ¬A) ∨▽A Ax.10

(6) ¬A ∨▽A 4, 5, MP

IncC: ▽(A ∧B) =⇒ (A ∨▽A) and (B ∨▽B)

(1) ▽(A ∧B) ASS.

(2) ¬A→ (¬A ∨ ¬B) Ax.6

(3) ¬B → (¬A ∨ ¬B) Ax.7

(4) ¬(A ∧B)→ ((¬¬A ∨▽¬A) ∧ (¬¬B ∨▽¬B)) MEX, 1, MP

(5) (¬A ∨ ¬B)→ ((¬¬A ∨▽¬A) ∧ (¬¬B ∨▽¬B)) Ax.13, 4, Tran

(6) ¬A→ (¬¬A ∨▽¬A) 2, 5, Ax.4, Tran
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(7) ¬¬A ∨▽¬A 6, Red

(8) ¬¬A→ (A ∨▽A) Ax.9, Ax.6, Tran

(9) ▽¬A→ (A ∨▽A) IFN, Ax.7, Tran

(10) A ∨▽A Ax.8, 7, 8, 9, MP

(11) ¬B → (¬¬B ∨▽¬B) 3, 5, Ax.4, Tran

(12) ¬¬B ∨▽¬B 11, Red

(13) ¬¬B → (B ∨▽B) Ax.9, Ax.6, Tran

(14) ▽¬B → (B ∨▽B) IFN, Ax.7, Tran

(15) B ∨▽B Ax.8, 12, 13, 14, MP

IncD: ▽(A ∨B) =⇒ (¬A ∨▽A) and (¬B ∨▽B)

(1) ▽(A ∨B) ASS.

(2) A→ (A ∨B) Ax.6

(3) B → (A ∨B) Ax.7

(4) (A ∨B)→ ((¬A ∨▽A) ∧ (¬B ∨▽B)) MEX, 1, MP

(5) A→ (¬A ∨▽A) 2, 4, Ax.2, Tran

(6) B → (¬B ∨▽B) 3, 4, Ax.2, Tran

(7) ¬A ∨▽A 5, Red

(8) ¬B ∨▽B 6, Red

Theorems and Derived Rules only in HNH

CFN: in one direction, viz. ○A→ ○¬A

(1) (¬A ∧ ¬¬A)→ A Ax.4, Ax.9, Tran

(2) (¬A ∧ ¬¬A)→ ¬A Ax.3

(3) (¬A ∧ ¬¬A)→ (A ∧ ¬A) Ax.5, 1, 2, MP

(4) ○(A ∧ ¬A) Ax.17

(5) ((¬A ∧ ¬¬A)→ (A ∧ ¬A))→ (¬(A ∧ ¬A)→ ¬(¬A ∧ ¬¬A))

Ax.19, 4, MP

(6) ¬(A ∧ ¬A)→ ¬(¬A ∧ ¬¬A) 1, 15, MP

CFN: in the other direction, viz. ○¬A→ ○A
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(1) (A ∧ ¬A)→ ¬A Ax.4

(2) (A ∧ ¬A)→ ¬¬A Ax.3, Ax.9, Tran

(3) (A ∧ ¬A)→ (¬A ∧ ¬¬A) Ax.5, 1, 2, MP

(4) ○(¬A ∧ ¬¬A) Ax.17

(5) ((A ∧ ¬A)→ (¬A ∧ ¬¬A))→ (¬(¬A ∧ ¬¬A)→ ¬(A ∧ ¬A))

Ax.19, 4, MP

(6) ¬(¬A ∧ ¬¬A)→ ¬(A ∧ ¬A) 1, 15, MP

NEX: ○A→ ((A ∧ ¬A)→ B)

(1) ○(A ∧ ¬A) Ax.17

(2) ○A→ ○(A ∧ ¬A) Ax.1, 1, MP

(3) ○A→ ¬(A ∧ ¬A) Ax.9, Def.○

(4) ○A→ (○(A ∧ ¬A) ∧ ¬(A ∧ ¬A)) Ax.5, 2, 3, MP

(5) (○(A ∧ ¬A) ∧ ¬(A ∧ ¬A))→ ((A ∧ ¬A)→ B) Ax.22

(6) ○A→ ((A ∧ ¬A)→ B) 4, 5, Tran

LEM: A ∨ ¬A

(1) ¬((A ∧ ¬A) ∧○A) Ax.17, Def.○

(2) ○A ∨ ¬○A Ax.6, Ax.21, 1, MP

(3) ○A→ (¬A ∨ ¬¬A) Ax.6, Ax.21, Tran

(4) ¬A→ (A ∨ ¬A) Ax.7

(5) ¬¬A→ (A ∨ ¬A) Ax.9, Ax.6, Tran

(6) (¬A ∨ ¬¬A)→ (A ∨ ¬A) Ax.8, 4, 5, MP

(7) ○A→ (A ∨ ¬A) 3, 6, Tran

(8) ¬○A→ A Ax.9, Ax.3, Tran

(9) ¬○A→ (A ∨ ¬A) Ax.6, 8, Tran

(10) (○A ∨ ¬○A)→ (A ∨ ¬A) Ax.8, 7, 9, MP

(11) A ∨ ¬A 2, 10, MP

Dial: ¬○A→ A and ¬○A→ ¬A

(1) ¬○A→ (A ∧ ¬A) Ax.9

(2) (A ∧ ¬A)→ A Ax.3
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(3) ¬○A→ A 1, 2, Tran

(4) (A ∧ ¬A)→ ¬A Ax.4

(5) ¬○A→ ¬A 1, 4, Tran

NCon: ¬A→ (○A→ ¬(A ∧B))

(1) ¬A→ (○A→ ¬A) Ax.1

(2) (A ∧B)→ A Ax.3

(3) ○A→ ((A ∧B)→ A) Ax.1, 2, MP

(4) ○A→ (((A ∧B)→ A)→ (¬A→ ¬(A ∧B))) Ax.19

(5) (○A→ ((A ∧B)→ A))→ (○A→ (¬A→ ¬(A ∧B))) Ax.2, 4, MP

(6) ○A→ (¬A→ ¬(A ∧B)) 3, 5, MP

(7) (○A→ ¬A)→ (○A→ ¬(A ∧B)) Ax.2, 6, MP

(8) ¬A→ (○A→ ¬(A ∧B)) 1, 7, Tran

NRed: A→ ¬A =⇒ ¬A

(1) A→ ¬A ASS.

(2) ¬A→ ¬A Iden

(3) (A ∨ ¬A)→ ¬A Ax.8, 1, 2, MP

(4) ¬A LEM, 3, MP

ConC: positive case, viz. ○(A ∧B) =⇒ (A ∧B)→ (○A ∨ ¬○B)

(1) ○(A ∧B) ASS.

(2) ○¬(A ∧B) CFN, 1, MP

(3) ¬○A→ ¬A Dial

(4) ¬A→ (¬(A ∧B) ∨ ((A ∧ ¬A) ∧ (B ∧ ¬B))) Ax.6, Ax.21, Tran

(5) ¬(A ∧B)→ (○B → ¬(A ∧B)) Ax.1

(6) ((A ∧ ¬A) ∧ (B ∧ ¬B))→ ¬B Ax.4, Ax.4, Tran

(7) ¬B → (○B → ¬(A ∧B)) NCon

(8) ((A ∧ ¬A) ∧ (B ∧ ¬B))→ (○B → ¬(A ∧B)) 6, 7, Tran

(9) (¬(A ∧B) ∨ ((A ∧ ¬A) ∧ (B ∧ ¬B)))→ (○B → ¬(A ∧B))

Ax.8, 5, 8, MP

(10) ¬○A→ (○B → ¬(A ∧B)) 3, 4, 9, Tran
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(11) (¬○A ∧○B)→ (○B → ¬(A ∧B)) Ax.3, 10, Tran

(12) ((¬○A ∧○B)→ ○B)→ ((¬○A ∧○B)→ ¬(A ∧B)) Ax.2, 11, MP

(13) (¬○A ∧○B)→ ¬(A ∧B) Ax.4, 12, MP

(14) ¬¬(A ∧B)→ ¬(¬○A ∧○B) Ax.19, 2, 13, MP

(15) (A ∧B)→ (○A ∨ ¬○B) Ax.9, Ax.6, Ax.21, 14, Tran

ConC: negative case, viz. ○(A∧B) =⇒ ¬(A∧B)→ ((¬A∧○A)∨(¬B∧○B))

(1) ○(A ∧B) ASS.

(2) (¬(¬A ∧○A) ∧ ¬(¬B ∧○B))→ ¬(¬A ∧○A) Ax.3

(3) ¬(¬A ∧○A)→ (¬¬A ∨ ¬○A) Ax.6, Ax.21, Tran

(4) ¬¬A→ A Ax.9

(5) ¬○A→ A Dial

(6) (¬¬A ∨ ¬○A)→ A Ax.8, 4, 5, MP

(7) (¬(¬A ∧○A) ∧ ¬(¬B ∧○B))→ A 2, 3, 6, Tran

(8) (¬(¬A ∧○A) ∧ ¬(¬B ∧○B))→ ¬(¬B ∧○B) Ax.4

(9) ¬(¬B ∧○B)→ (¬¬B ∨ ¬○B) Ax.6, Ax.21, Tran

(10) ¬¬B → B Ax.9

(11) ¬○B → B Dial

(12) (¬¬B ∨ ¬○B)→ B Ax.8, 10, 11, MP

(13) (¬(¬A ∧○A) ∧ ¬(¬B ∧○B))→ B 8, 9, 12, Tran

(14) (¬(¬A ∧○A) ∧ ¬(¬B ∧○B))→ (A ∧B) Ax.5, 6, 13, MP

(15) ¬(A ∧B)→ ¬(¬(¬A ∧○A) ∧ ¬(¬B ∧○B)) Ax.19, 1, 14, MP

(16) ¬(¬(¬A ∧○A) ∧ ¬(¬B ∧○B))→ (¬¬(¬A ∧○A) ∨ ¬¬(¬B ∧○B))

Ax.6, Ax.21, Tran

(17) (¬¬(¬A ∧○A) ∨ ¬¬(¬B ∧○B))→ ((¬A ∧○A) ∨ (¬B ∧○B))

Ax.9, Ax.6, Ax.7, Ax.8, MP

(18) ¬(A ∧B)→ ((¬A ∧○A) ∨ (¬B ∧○B)) 15, 16, 17, Tran

ConD: positive case, viz. ○(A ∨B) =⇒ (A ∨B)→ ((A ∧○A) ∨ (B ∧○B))

(1) ○(A ∨B) ASS.

(2) ○¬(A ∨B) CFN, 1, MP

(3) (¬(A ∧○A) ∧ ¬(B ∧○B))→ ¬(A ∧○A) Ax.3
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(4) ¬(A ∧○A)→ (¬A ∨ ¬○A) Ax.6, Ax.21, Tran

(5) ¬A→ ¬A Iden

(6) ¬○A→ ¬A Dial

(7) (¬A ∨ ¬○A)→ ¬A Ax.8, 5, 6, MP

(8) (¬(A ∧○A) ∧ ¬(B ∧○B))→ ¬A 3, 4, 7, Tran

(9) (¬(A ∧○A) ∧ ¬(B ∧○B))→ ¬(B ∧○B) Ax.4

(10) (¬(B ∧○B)→ (¬B ∨ ¬○B) Ax.6, Ax.21, Tran

(11) ¬B → ¬B Iden

(12) ¬○B → ¬B Dial

(13) (¬B ∨ ¬○B)→ ¬B Ax.8, 11, 12, MP

(14) (¬(A ∧○A) ∧ ¬(B ∧○B))→ ¬B 9, 10, 13, Tran

(15) (¬(A ∧○A) ∧ ¬(B ∧○B))→ (¬A ∧ ¬B) Ax.5, 8, 14, MP

(16) (¬(A ∧○A) ∧ ¬(B ∧○B))→ ¬(A ∨B) Ax.20, 15, Tran

(17) ¬¬(A ∨B)→ ¬(¬(A ∧○A) ∧ ¬(B ∧○B)) Ax.19, 2, 16, MP

(18) (A ∨B)→ ¬(¬(A ∧○A) ∧ ¬(B ∧○B)) Ax.9, 17, Tran

(19) ¬(¬(A ∧○A) ∧ ¬(B ∧○B))→ (¬¬(A ∧○A) ∨ ¬¬(B ∧○B))

Ax.6, Ax.21, Tran

(20) (¬¬(A ∧○A) ∨ ¬¬(B ∧○B))→ ((A ∧○A) ∨ (B ∧○B))

Ax.9, Ax.6, Ax.7, Ax.8, MP

(21) (A ∨B)→ ((A ∧○A) ∨ (B ∧○B)) 18, 19, 20, Tran

ConD: negative case, viz. ○(A∨B) =⇒ ¬(A∨B)→ ((¬A∧○A)∧(¬B∧○B))

(1) ○(A ∨B) ASS.

(2) ¬(¬A ∧○A)→ (¬¬A ∨ ¬○A) Ax.6, Ax.21, Tran

(3) ¬¬A→ (A ∨B) Ax.9, Ax.6, Tran

(4) ¬○A→ (A ∨B) Dial, Ax.6, Tran

(5) (¬¬A ∨ ¬○A)→ (A ∨B) Ax.8, 3, 4, MP

(6) ¬(¬A ∧○A)→ (A ∨B) 2, 5, Tran

(7) ¬(¬B ∧○B)→ (¬¬B ∨ ¬○B) Ax.6, Ax.21, Tran

(8) ¬¬B → (A ∨B) Ax.9, Ax.7, Tran

(9) ¬○B → (A ∨B) Dial, Ax.7, Tran

(10) (¬¬B ∨ ¬○B)→ (A ∨B) Ax.8, 8, 9, MP

(11) ¬(¬B ∧○B)→ (A ∨B) 7, 10, Tran
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(12) (¬(¬A ∧○A) ∨ ¬(¬B ∧○B))→ (A ∨B) Ax.8, 6, 11, MP

(13) ¬(A ∨B)→ ¬(¬(¬A ∧○A) ∨ ¬(¬B ∧○B)) Ax.19, 1, 12, MP

(14) ¬(¬(¬A ∧○A) ∨ ¬(¬B ∧○B))→ (¬¬(¬A ∧○A) ∧ ¬¬(¬B ∧○B))

Ax.20

(15) (¬¬(¬A ∧○A) ∧ ¬¬(¬B ∧○B))→ ((¬A ∧○A) ∧ (¬B ∧○B))

Ax.3, Ax.4, Ax.9, Ax.5, MP

(16) ¬(A ∨B)→ ((¬A ∧○A) ∧ (¬B ∧○B)) 13, 14, 15, Tran
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