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Abstract

Plasmon coupling and hybridization in complex nanostructures constitutes a fertile

playground for controlling light at the nanoscale. Here, we present a semi-analytical

model to describe the emergence of hybrid plasmon modes guided along 2D nano-slits.

In particular, we find two new coupled plasmonic resonances arising from symmetric

and antisymmetric hybridizations of the edge plasmons of the constituent half-sheets.

These give rise to an antibonding and a bonding mode, lying above and below the
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energy of the bare edge plasmon. Our treatment is notably generic, being able to

account for slits of arbitrary width, and remains valid irrespective of the 2D conductive

material (e.g., doped graphene, 2D transition metal dichalcogenides, or phosphorene).

We derive the dispersion relation of the hybrid modes of a 2D nano-slit along with

the corresponding induced potential and electric field distributions. We also discuss

the plasmonic spectrum of a 2D slit together with the one from its complementarity

structure, that is, a ribbon. Finally, the case of a nano-slit made from an anisotropic

2D material is considered. Focusing on black phosphorus (which is highly anisotropic),

we investigate the features of its plasmonic spectrum along the two main crystal axes.

Our results offer insights into the interaction of plasmons in complex 2D nanostructures,

thereby expanding the current toolkit of plasmonic resonances in 2D materials, and

paving the way for the emergence of future compact devices based on atomically thin

plasmonics.

Keywords

two-dimensional materials, plasmonics, graphene plasmons, hybridization, black phosphorus,

nanostructures

Surface plasmons, collective oscillations of the electronic density in conductors, have

been under the spotlight of the nanophotonics community over the last decade1 owing to

their ability to confine optical fields below the diffraction limit.2,3 As of today, the annual

number of plasmon-related publications is approaching a five-digit figure.4 Moreover, with the

emergence of new opportunities on the horizon—such as plasmons in layered two-dimensional

(2D) materials5–7 and quantum plasmonics8,9—the interest in the subject is likely to remain

elevated over the next decade.4

The potential surface plasmons have to squeeze light into subwavevelength regimes leads

to large electric field enhancements, which can be of several orders of magnitude, thereby
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promoting strong light-matter interactions in nanoscale environments. On the other hand,

the local increase in the electric field strength near plasmonic nanostructures makes them

particularly well-suited for biochemical sensing and surface-enhanced Raman scattering

(SERS) applications.10–13 Other ensuing phenomena includes the manifestation of large nano-

optical forces,14,15 enhanced nonlinearities,16,17 and modification of the spontaneous emission

rate of quantum emitters.8,18,19

It is well known that the degree of field localization attained by surface plasmons is sub-

stantially higher within small gaps between metallic structures, e.g., inside metal grooves,20,21

plasmonic dimers and bow-ties,22,23 or in the so-called particle on a mirror geometry.24,25

Indeed, in the latter configuration, sub-nanometric gaps with extremely small modal volumes

have been reported using either self-assembled molecular monolayers26,27 or atomically thin

2D crystals.28,29 However, and despite its many alluring properties, three-dimensional (3D)

metal-based plasmonics currently faces two main obstacles which have been hampering its

natural evolution from research laboratories to everyday technological devices relying on

surface plasmons. The first, and often the most important, is unarguably the relatively short

life-time of plasmons, since metals are inherently lossy. The other is associated with the

limited tunability of the plasmon resonance, that tends to remain essentially fixed for a

given geometry and material. In this panorama, graphene and other 2D materials beyond

graphene (for instance, doped transition metal dichalcogenides (TMDCs), black phosphorus,

etc), have recently been recognized as potential solutions for the aforementioned shortcomings

of 3D noble metals.4,30 This view is supported by theoretical calculations which predict that

graphene is able to sustain long-lived plasmonic excitations,7,30–33 owing to its remarkable

optoelectronic properties.31,34 At the same time, the electronic density of its charge-carriers

can be dynamically tuned by means of electrostatic gating.35–37 The latter provides active

control over the plasmon resonance (which is proportional to
√
EF , where EF denotes the

Fermi energy of graphene), and therefore may be conveniently varied on-demand. Yet, while

the tunability issue was experimentally shown to be lifted by using graphene as a plasmonic
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• waveguiding

• plasmonic sensing

• optical manipulation

• quantum control

• ...
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Figure 1: Illustration of the proposed 2D nano-slit using different 2D crystals, including
doped graphene, transition metal dichalcogenides (TMDCs) and black phosphorus (BP), and
also hexagonal boron nitride (BN). While the latter does not support plasmon-polaritons, it
can sustain phonon-polaritons, and thus we include it here since their treatment is analogous.
Although only monolayers are portrayed, our framework is also applicable to their few-layer
counterparts as long as a 2D conductivity can be attributed to them.

medium,35–37 so far the realization of graphene plasmons31–33 with long life-times remains

elusive.38,39 Such a fact is thought to be direct consequence of a combination of defects and

disorder introduced during the growth and/or nanolithography stages, resulting in samples

with hindered crystallinity and thereby lower mobilities. Nevertheless, there are reasons to

stay optimistic about the promised low-loss graphene plasmonics. Nanofabrication techniques

continue to improve, and recently highly confined graphene plasmons with reduced damping

were experimentally realized using graphene encapsulated in hexagonal boron nitride (hBN).40

Graphene plasmons have been observed in various configurations including graphene

ribbons, disks or anti-dot arrays.35–37,41–45 In addition, quasi-1D plasmons sustained at the

edge of a semi-infinite graphene layer have been theoretically studied in Refs. 46,47, based

on previous works by Fetter on 2D electron liquids.48,49

In this work, we investigate plasmonic excitations arising in a nano-slit produced in a 2D

material capable of sustaining plasmons, such as doped graphene, 2D TMDCs, or phosphorene

4



(a black phosphorus monolayer); a scheme of the proposed structure(s) is depicted in Figure

1. The system can be fabricated by stripping a nanoribbon out of an otherwise homogeneous

2D layer, and therefore it is well within reach of current nanolithography techniques. As a

more spectacular approach, we here mention the possibility for nanoparticle-assisted writing

of nano-slits in graphene.50 Finally, ultra-small nanowidths can be achieved by etching from

a grain boundary.51 We further note that, in the spirit of Babinet’s principle,52–54 our system

can be regarded as the complementarity structure to that of a 2D nanoribbon. For small

nano-slit gaps, the Coulomb interaction between edge plasmons in opposite 2D half-sheets

gives rise to new hybrid plasmon modes of the compound system. Here, we demonstrate that

the coupled plasmon resonances that emerge in such a structure split the dispersion relation of

the bare edge plasmon into two new branches: one with lower energy and another with higher

energy, akin to a bonding and an antibonding mode in molecular orbital theory. These findings

are in line with plasmon hybridization models in metallic nanostructures, introduced in the

1960s55 and further developed by Nordlander and co-workers.56 Our results, shown below,

rely on a semi-analytical theory based on Green’s functions and an orthogonal polynomial

expansion31,44,49,57. This technique allows an accurate and reliable determination of the

plasmonic spectrum, as well as the spatial distribution of the potential and corresponding

electric field of the modes.31,44 Naturally, this information may then be used to estimate other

related physical quantities, ranging from optical forces to the photonic density of states. Our

treatment is comprehensive, encompassing both isotropic and anisotropic atomically thin

layers. Furthermore, we have also used commercial-grade full-wave numerical simulations

(Lumerical and COMSOL)58,59 to benchmark our semi-analytical results, to which we have

observed an excellent agreement. A particularly attractive feature of our quasi-analytic model

is that it entails a universal description of the plasmonic properties of nano-slits made in

generic 2D crystals. This is because, as we detail below, the characteristics of the plasmon

resonances depend uniquely on the system’s geometry. Consequently, a single calculation is

enough to uncover the plasmonic properties in 2D slits of all sizes. Such scale-invariance is

5



courtesy of the electrostatic limit.60,61 The consideration of the nonretarded regime here is

fully justified since it provides an accurate description of plasmons in 2D materials as the

corresponding plasmon wavevectors are typically much larger than k0 = ω/c.31–33 In passing,

we remark that our notion of a 2D material could in principle also be extended to ultra-thin

metallic films (which support a low-frequency plasmon).62–64

Results and Discussion

Theoretical Background. We consider an individual nano-slit carved out of an arbitrary

2D crystal, as sketched in Figure 1. We start by giving a brief account of the employed

semi-analytic theory. The mathematical details are left as Supporting Information, where they

are thoroughly dissected in an all-encompassing fashion. In what follows, we work in the quasi-

static limit since the effect of retardation is negligible when studying plasmons in atomically

thin materials in typical experiments. Therefore, self-sustained plasmonic excitations in

the system are governed by Poisson’s equation, ∇2Φ(r) = −̺(r)/(ǫǫ0). The translation

invariance along the y-direction (cf. Figure 1) enables us to express the electrostatic potential

as Φ(r) = φ(x, z)eikyy (and similarly for the charge-density, ̺(r) = ρ(x, z)eikyy), where a

time-dependence of the form e−iωt is implicit hereafter. Hence, the Poisson’s equation now

takes the form
[

∂2

∂x2
+

∂2

∂z2
− k2

y

]

φ(x, z) = e
n(x)

ǫǫ0
δ(z) , (1)

where we have explicitly written the charge-density in terms of a delta function and a surface

carrier density, i.e., ρ(x, z) = −en(x)δ(z). The latter can then be expressed as a function of

the in-plane electrostatic potential (see Supporting Information), which, together with the

Green’s function for a planar interface renders a self-consistent integro-differential equation

for the induced (in-plane) potential, ϕ(x) = φ(x, z = 0).31 Such an equation does not possess

an analytical solution, but one can still make further analytical progress by exploiting: i) the

mirror symmetry of the considered nanostructure with respect to the plane bisecting the slit
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(defined by x = 0); and, ii) by expanding the potential in one of the half-sheets using a basis

containing Laguerre polynomials.31,61,65 In particular, taking x > 0 without loss of generality,

we write ϕ+(x) = e−ky(x−a)
∑

∞

n=0 cnLn(2ky[x− a])—please refer to Supporting Information

for a detailed description. These steps are pivotal, and enable us to cast the above stated

integro-differential equation into an elementary linear algebra eigenproblem, reading66

ǫ1 + ǫ2
2ky

iπωǫ0
σ2D(ω)

cn =
∞
∑

m=0

Unm cm , (2)

where the set of coefficients {cn} is determined by finding the eigenvectors of the matrix U,

whose matrix elements Unm are defined explicitly in the Supporting Information. On the

other hand, the eigenvalues of U, hereupon dubbed λ̃, uniquely determine the dispersion of

the hybrid plasmon excitations guided along the 2D nano-slit, via

ǫ1 + ǫ2
2ky

iπωǫ0
σ2D(ω)

= λ̃(β) . (3)

Clearly, Eq. (3) is completely general irrespective of the particular form of σ2D(ω). Thus,

provided that one possesses an expression for the 2D conductivity, the plasmonic spectrum

directly follows from the condition (3). We stress that, in its present form, Eqs. (2) and (3)

assume that the surface conductivity is isotropic. We shall relax this assumption later in the

paper, when considering the case of a nano-slit made from an anisotropic 2D material.

Plasmon Dispersion. We now consider—for the sake of illustration and physical

insight—a 2D nano-slit made of graphene with a frequency-dependent conductivity given

by the Drude model, namely σ2D(ω) =
ie2EF

π~2ω
(assuming negligible losses). Introducing this

formula in Eq. (3) yields a closed-form expression for the dispersion of the graphene plasmon

resonances in the system

Ω(ky) =

√

2

π
λ̃(β)Ωbulk(ky) , (4)

where Ωbulk(ky) =
√

4αEF ~cky
ǫ1+ǫ2

is the nonretarded dispersion relation of plasmons propagating
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half-sheet half-sheet

2D slit antibonding

2D slit bonding

(c)

Figure 2: Dispersion relation of hybrid edge plasmons supported by a 2D nano-slit waveguide.
The spectrum consist of two plasmonic bands, corresponding to a bonding (odd) and an
antibonding (even) mode originating from the interaction between edge plasmons in opposite
2D half-sheets. (a) Spectrum of coupled plasmons in a 2D nano-slit, stemming from Eq. (4),
where Ωa ≡ Ωbulk(a

−1). (b) Plasmon dispersion for a representative w = 2a = 50nm graphene
nano-slit calculated via Eq. (3), where we have employed Kubo’s formula at T = 300K for the
conductivity of graphene (other parameters are EF = 0.5 eV, Γ = 3.7 meV, and ǫ1 = ǫ2 = 1).
The colored circles correspond to data points obtained from full-wave numerical simulations
based on FDE analysis (in frequency domain).58 As per our quasi-analytical model, a number
of Nmax = 20 terms were included for the truncation of the matrix U—see Eq. (2)—, and
shown to be sufficient in order to obtain a converged solution. (c) Plasmon hybridization
scheme and calculated induced charge-densities67 of the plasmon modes, obtained using our
model.

with wavevector ky in bulk (i.e., continuous) graphene31–33 (α ≃ 1/137 denotes the fine-

structure constant). If the atomically thin layer is instead a 2D conductor with parabolic

dispersion, then expression (4) still holds but now with Ωbulk(ky) =
√

4πα(~c)3ky
ǫ1+ǫ2

ne

m∗c2
, where

ne and m∗ are the carrier density and effective mass, respectively68. The reader should

appreciate that, under its elegant and compact form, Eq. (4) entails a comprehensive

description of the effect of the nano-slit’s width in the coupling and subsequent hybridization

of the modes sustained at opposite edges of the structure. Such information is contained

in the eigenvalues λ̃(β), which essentially depend on the dimensionless parameter β = kya,

or, in other words, on the slit width to plasmon wavelength ratio. Therefore, the complete

knowledge of the plasmonic spectrum can be fetched by diagonalizing the matrix U for a
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set of β-values, and then inserting the determined eigenvalues into Eq. (4). The outcome

of such operation is shown in Figure 2. As a guide to the eye, we have also included the

spectrum of edge plasmons supported by an individual 2D half-sheet (green dashed line),

as well as the plasmonic band of the corresponding bulk 2D plasmon (black dashed line).

We stress that the results presented in Figure 2a are valid for an arbitrary (isotropic) 2D

crystal (with the appropriate choice of Ωbulk, as discussed above). Notice that, as we have

anticipated, the hybridization between the edge modes of the two half-planes results in a

splitting of the unperturbed half-sheet edge plasmons into a pair of new hybrid modes. These

arise from antisymmetric and symmetric hybridizations of the bare edge plasmons, giving rise

to a bonding and an antibonding branch, lying below and above, respectively, the plasmon

band of a single half-sheet—cf. Figure 2. As the name suggests, in the case of the bonding

mode the induced charge-density in opposite semi-infinite layers oscillate in anti-phase (odd

symmetry), whereas for the antibonding mode such oscillations are in-phase (even symmetry).

Naturally, these resonances emerge at different frequencies (for a fixed propagation constant),

hence giving rise to the aforementioned energy splitting, as illustrated in Figure 2c.

It is apparent from Figure 2 that, at large wavevectors (in relation to the momentum-scale

introduced by a−1, i.e., for kya ≫ 1), both resonances converge asymptotically to that of an

edge plasmon in an individual half-plane. In this limit the Coulomb interaction between the

neighboring edges falls off rapidly, and therefore the two semi-infinite 2D sheets decouple.

Indeed, within this regime, the eigenvalue λ̃(β → ∞) ≡ λ̃(0) becomes independent of β = kya.

As a result, the dispersion relation of the modes of the 2D slit reduces to the plasmon of the

unpatterned system multiplied by a proportionality constant, that is, Ω(ky) = Cte · Ωbulk(ky).

This behavior can be seen directly by inspecting the (analytical) integral kernel of the

matrix elements Unm, thanks to the amount of analytical progress performed here—check

Supporting Information. This signifies that at large kya the 2D nano-slit modes tend to

become indistinguishable from that of an single half-sheet. Using our quasi-analytical theory

we have obtained Cte =
√

2λ̃(0)/π = 0.905 (see Supporting Information for more details)
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which is in outstanding agreement with the value of Cte = 0.906 reported in the literature for

edge plasmons supported by a 2D half-plane69.

It should also be stressed that Figure 2a depicts the dispersion of the hybrid plasmon

modes of the system in dimensionless units, thus enabling the determination of the plasmonic

spectrum in 2D nano-slits of any width, and irrespective of the type of plasmon-supporting

2D material. Necessarily, the exact positions of the resonances depend on the details of the

model used for the 2D conductivity, but the general features outlined above should remain

qualitatively the same. If the physics of the material cannot be captured by the Drude model,

then one simply needs to take a step back and solve Eq. (3) directly, using an expression

for the conductivity within the appropriate framework. In that context, Figure 2b shows

the solution of the condition (3) for a 50nm-wide graphene nano-slit where the graphene

has been modeled using Kubo’s formula for the conductivity at finite temperature.31 In the

same figure, we compare the results of our semi-analytical theory against data obtained from

numerical full-wave electrodynamic simulations using a commercially available finite-difference

eigenmode (FDE) solver58 (circles). The observed agreement between both techniques is

quite remarkable. Such a fact, together with the ability to reproduce the β → ∞ limit,

demonstrates the ability of our quasi-analytical model to accurately describe plasmonic

excitations in 2D nano-slits. All of this with the added advantage a semi-analytical method

provides in portraying a clear and intuitive picture of the physics, without the necessity of

relying on often time-consuming numerical simulations.

Potential and Electric-Field Distributions. The solution of the eigenproblem posed

by Eq. (2) not only determines the plasmonic spectrum from the eigenvalues λ̃(β), but also

endow us the scalar potential within the 2D layer directly, by virtue of the eigenvectors of U

(whose entries contain the set of expansion coefficients {cn}). From here, the electrostatic
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Figure 3: In-plane electrostatic potential along u = kyx − β, i.e., φ(u, ζ = 0), akin to the
(a) bonding and (b) antibonding hybrid edge plasmons modes, for β = kya = 0.4. The
corresponding panels at the right indicate the electrostatic potential Φ(u, kyy, 0) evaluated
within the 2D material. All plots are normalized to the respective maximums.

potential in the entire coordinate space follows from

φ(u, ζ) = − 1

2λ̃(β)

{
∫

∞

0

dvKη(β; u, v, ζ)

[

∂2ϕ+(v)

∂v2
− ϕ+(v)

]

+
∂ϕ+(v)

∂v

∣

∣

∣

∣

v=0

Kη(β; u, 0, ζ)

}

, (5)

where we have introduced the dimensionless variables u = ky(x − a), v = ky(x
′ − a),

and ζ = kyz for numerical convenience and generality, while also defining Kη(β; u, v, ζ) =

K0(
√

(u− v)2 + ζ2) + ηK0(
√

(u+ v + 2β)2 + ζ2). Both the bonding and antibonding modes

can be obtained in this way upon choosing the parameter η appropriately (η = 1 for the

antibonding and η = −1 for the bonding), together with the corresponding λ̃(β) and cn’s.

Figure 3 illustrates the plasmon-induced in-plane potential, for β = 0.4 (for other values the

behavior is qualitatively similar). The corresponding resonant frequencies can be obtained

from Figure 2 by reading the intersection of the vertical line kya = 0.4 with the dispersion

curves. From Figure 3 it is clear that—as already noted above—the bonding (antibonding)

mode possesses a potential distribution which is odd (even) with respect to the plane bisecting

the nano-slit, with the former exhibiting a nodal line in the middle of the gap.

Finally, the electric field induced by the plasmon oscillations in the system may be readily
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derived from Eq. (5) by taking the gradient of the potential, E(r) = −∇Φ(r), which gives

(componentwise)

Ex(u,Υ, ζ) = −ky cosΥ
∂

∂u
φ(u, ζ) , (6a)

Ey(u,Υ, ζ) = ky sinΥ φ(u, ζ) , (6b)

Ez(u,Υ, ζ) = −ky cosΥ
∂

∂ζ
φ(u, ζ) , (6c)

where Υ = kyy. In possession of the previous expressions, the electric field originating from

each of the plasmon resonances can be fully determined at any given point in space. The

spatial distributions of all three components of the electric field in the xz- (uζ)-plane are

depicted in Figure 4 (see the caption for details). This figure summarizes the main features of

each of the hybrid edge plasmon modes in 2D nano-slits. The field components corresponding

to the bonding mode are shown in the uppermost panels, while the ones corresponding to

the antibonding mode are pictured in the lower part of the figure. In the main panels we

have also superimposed the vector fields, represented by the arrows, associated with each

plasmonic excitation. Naturally, the symmetries entailed in the electrostatic potential also

emerge here. Interestingly, notice the similarity of the bonding eigenmode with that of an

electric dipole oriented across the gap formed by the nano-slit. In contrast, the other resultant

mode hybridization resembles two electric monopoles separated by a distance equal to the

width of the gap separating the two half-sheets.70 Finally, we note that in an experimental

setting, a particular plasmonic resonance may appear as “bright” or “dark” under plane-wave

illumination depending on the polarization of the incident field. Such criteria could be used,

for instance, to select a single mode a priori.

Complementary 2D Structures: Slit and Ribbon. The 2D nano-slit geometry

considered here may also be perceived as the inverse (or complementary) structure to a 2D

nanoribbon. Therefore, it is instructive to compare the character of the guided plasmon

modes supported by these complementary 2D nanostructures (both assumed to be infinitely

12



-1                                              1
-1               0                1

bonding

antibonding

Figure 4: Density plots of the electric field distributions corresponding to the two hybrid
edge plasmon modes of a 2D nano-slit. These are calculated using the quasi-analytic theory
described in the text—see Eqs. (5) and (6). We take β = kya = 0.4, and in the plots
the cross-section of the slit is shown. The black solid line indicates the 2D plasmonic
material. The three uppermost panels display the electric field akin to the bonding mode,
whereas the ones at the bottom depict the same quantities for the antibonding mode. The
vectorial plots superimposed onto the two main panels illustrate the full 2D vector field,
E(u, ζ) = Ex(u, ζ)ux + Ez(u, ζ)uz, while the background, in rainbow colors, shows the y-
component of the electric field (the component parallel to the edges of the nano-slit). The
length of the arrows is proportional to the norm of the electric-field vector at that point,
|E(u, ζ)|, in logarithmic scale. Each one of the individual panels are normalized to their own
maximum values, and the region depicted in the smaller panels has the same dimensions as
the main plots.

long, for the sake of simplicity).

The ribbon system has been object of intensive study, specially inasmuch as graphene is

concerned, where it has been shown that graphene ribbons sustain a set of discrete plasmon

resonances.12,31,35,36,60,71,72 Each of such plasmon excitations are propagating along the ribbon

direction, while resembling linear monopoles, dipoles, and higher-order multipoles in the

transverse direction. These arise from the confinement of the plasmon wavenumber across

the ribbon width, thus mimicking standing waves confined in a one-dimensional box. This

contrasts with what we have found for the 2D nano-slit, and it simply reflects the absence of
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a finite size in the latter case (since the nano-slit is composed by two semi-infinite planes).

Figure 5 shows the dispersion of the hybrid edge plasmons of a 2D slit together with the

plasmonic spectrum of a ribbon. We have plotted the dispersion relations in dimensionless

units to facilitate the direct comparison between ribbons and slits of the same, but arbitrary,

width w = 2a. In what follows, we shall focus on the two lowest energy ribbon plasmons,

which are the ones that admit a degree of similitude with respect to the modes of a slit.

Indeed, analogous to the bonding and antibonding plasmon modes in a 2D slit, the monopole-

0.0 0.5 1.0 1.5 2.0 2.5
kya

0.0

0.5

1.0

1.5

2.0

2.5

Ω
/
Ω

a

slit antibonding

slit bonding

ribbon monopole

ribbon dipole

ribbon quadrupole

ribbon octopole

0.0 0.2 0.4 0.6 0.8 1.0
kya

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 5: Plots of the dispersion relation of the hybrid edge modes in 2D nano-slits (solid
lines) together with the plasmonic spectrum of a nanoribbon (dashed lines). The latter is
computed using a similar technique, described elsewhere.31 The panel at the right is a zoomed
version of the shaded area in the left panel. The thin green dashed line represents the edge
plasmon in a single half-sheet, and serves as an eye-guide.

and dipole-like ribbon resonances can also be understood as symmetric and antisymmetric

hybridizations between the individual half-sheet plasmons living in opposite edges. This

interpretation is further substantiated by the fact that both the dispersion of the slit hybrid

modes and that of the aforementioned ribbon resonances approach the dispersion curve of the

half-sheet edge plasmon at large kya—see Figure 5. In that limit, the plasmons in antipodal

edges of the slit/ribbon effectively decouple and become indistinguishable from the edge
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plasmon of a single semi-infinite plane.

At this point, it is worth mentioning the differences and similarities between the 2D

nano-slit and nanoribbon with their equivalent 3D versions, that is, the metal-insulator-metal

(MIM) and the insulator-metal-insulator (IMI) structures, respectively. Simply put, we note

that the former can be regarded as the lower dimensional form of the latter. In particular, like

the 2D versions discussed here, the MIM and IMI waveguides also accommodate symmetric

and antisymmetric hybridizations of the two surface plasmons of the individual insulator-metal

interfaces. In addition, although perhaps not surprisingly, both the 2D slit and the MIM

waveguide exhibit a low-frequency plasmon in which the induced charge-density oscillates in

anti-phase, whereas for the high-frequency mode they oscillate in-phase; and vice-versa in the

ribbon and IMI configurations. However, despite such lookalike features—save for the ones

related to the distinct dimensionalities—there are some important differences. First, contrary

to the ribbon, the IMI waveguide does not support standing wave like resonances within

the thin-film. This can be attributed to the very effective screening within the 3D metal, as

opposed to the reduced screening of a 2D ribbon (nevertheless, as soon as the IMI waveguide

is patterned into a strip of a thin (but still 3D) film, such standing wave excitations promptly

emerge). Lastly, the most interesting distinction between the 2D nano-slit/MIM and their

corresponding inverse structures is in what the breaking of complementarity is concerned. It is

well-known that, in traditional IMI/MIM waveguides, the dispersion of their plasmon modes

is identical in the nonretarded limit.64 This property is direct consequence of the Babinet’s

principle of complementarity structures. The complementarity of IMI/MIM waveguides is

immediately broken upon inclusion of retardation effects64—see also Supporting Information.

Incidentally, notice that the situation is remarkably different in the 2D case. Here, both the

2D slit and ribbon plasmon modes are essentially electrostatic in nature (i.e., retardation

effects are negligible), but complementarity seems to be broken nonetheless—cf. Figure 5.

This feature has no parallel in the corresponding 3D versions. Strictly speaking, Babinet’s

principle is only exactly valid for perfect conductors.52 Thus, the breaking of complementarity
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may be possibly attributed to the significant extension of the induced electric field within the

2D material, which is comparatively larger than for a 3D metal owing to the skin effect (so

that the latter is closer to a perfect conductor).

The apparent breakage of complementarity in mutually inverse 2D nanostructures is not

only interesting from a fundamental viewpoint, but it may also be important in practice

when building complex plasmonic structures with mixed solid-inverse geometries, say, for

instance, a vertical stack of 2D nano-slit together with a nanoribbon. To the best of our

knowledge, such in-depth studies in 2D plasmonic structures are still lacking in the literature

(while, e.g., plasmons in graphene nanoholes and nanodisks have been previously studied37,42,

the breaking of complementarity was not investigated). We believe this to be an important

topic, certainly deserving future investigations.

Nano-slits of Anisotropic 2D Crystals. In our discussion so far, we have implicitly

assumed that the conductivity of the contemplated 2D material is isotropic. This is indeed

the case for graphene and group-VI TMDCs such as MoS2, WS2, or MoSe2. Nevertheless, that

remains but a particular case of a broader picture. Notably, there has been a growing interest

in the plasmonics of anisotropic 2D materials, either as a platform to enhance and tune their

inherent optical birefringence73–75 or in the context of hyperbolic nanophotonics.76,77 Examples

of anisotropic 2D materials include black phosphorus (bP),78,79 trichalcogenides like TiS3,
75,80

and group-VII TMDCs (for instance, ReS2).
81 Among these, few-layer black phosphorus and

its monolayer version—phosphorene—have been the subject of remarkable attention from

the nanophotonics community, owing both to its high carrier mobility and attractive optical

properties.79 For this reason, we will dedicate the next lines to the study of nano-slits made

from anisotropic 2D crystals, subsequently focusing on the case of phosphorene.

The key aspect differentiating this case from the isotropic scenario considered above, lies

in the fact that the surface conductivity of the atomically thin material is now a tensor.

Conveniently, one can still profit from the work performed earlier in the isotropic setting by

implementing a few basic modifications in order to contemplate the medium’s anisotropy. We
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shall refrain ourselves from enumerating the mathematical details here, but they are provided

in the Supporting Information. The corollary of such procedure is an eigenvalue problem

resembling the one posed by Eq. (2), where now the matrix U is augmented by the addition

of another matrix accounting for the anisotropy of the system. As before, the dispersion of

the plasmon eigenmodes of the anisotropic 2D nano-slit are determined by the eigenvalues of

the total matrix. Denoting these by ξ, we find that the spectrum of the guided modes in a

doped phosphorene nano-slit follows

ΩbP(ky) =

√

2 ξ(β)

π
Ω2DEG(ky) , (7)

where Ω2DEG(ky) refers to the dispersion relation of plasmons in a homogeneous and isotropic

2DEG. All the details of the anisotropy and specificities of the 2D crystal are therefore

contained in the “anisotropic eigenvalues”, ξ. Indeed, the same formalism used for phosphorene

can also be applied to other anisotropic materials, or even otherwise isotropic materials under

the application of uniaxial strain, which effectively breaks the isotropy.

The low-energy bandstructure of monolayer bP can be approximated by that of an ordinary

parabolic 2D semiconductor, whose conductivity can be constructed in terms of the carrier

effective masses along the high-symmetry directions (zigzag and armchair).76,78,79 Figure 6

shows the dispersion relation of anisotropic plasmons supported by a phosphorene nano-slit

doped with electrons. The figure depicts two distinct situations: one where the edges of the

slit run along the zigzag direction (left panel), and another in which the nano-slit is parallel

to the armchair direction (right panel)—see also figure’s insets. From Figure 6, it is clear that

although the overall features already seen in the isotropic case remain—namely the existence

of a bonding and an antibonding mode, respectively below and above the dispersion of the

half-sheet plasmon—the behavior of the eigenmode spectra is strikingly different depending

on the orientation of the 2D nano-slit with respect to the phosphorene’s crystal axes. The

dramatic contrast between the plasmon dispersion and hybridization in the two cases depicted
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Figure 6: Plasmon eigenmode spectrum of the hybrid modes in a electron doped phosphorene
nano-slit. Both the case of a nano-slit patterned along the zigzag and the armchair directions
is shown. We have assigned negative values of ky to represent the hybrid plasmonic modes
sustained at a zigzag slit, and positive values of ky to identify the eigenmodes of an armchair
nano-slit. In our calculations, we take the following parameters for the (anisotropic) electron
effective masses: mZZ = 0.7m0 and mAC = 0.15m0,

78,79 for the electronic bands along the
zigzag and armchair directions, respectively. Additionally, here Ωa = Ω2DEG(ky = a−1) (see
Supporting Information).

in Figure 6 reflects the strong anisotropy of black phosphorus (which in turn stems from

its puckered honeycomb lattice). Hence, while the dispersion curves associated with the

hybrid modes of a zigzag slit are barely indistinguishable from each other (and also from the

half-sheet and bulk phosphorene plasmon) in the scale of Figure 6, the splitting between the

bonding and antibonding modes of an armchair phosphorene nano-slit is substantial. This

arises because, for instance in the latter case, the charge carrier effective mass is substantially

lighter along the slit’s edges (armchair) and it is heavier in the direction perpendicular to it.

Naturally, the situation is reversed in the case of a zigzag nano-slit.

As before, our quasi-analytic results for the anisotropic phosphorene nano-slit, embodied

in Figure 6, were benchmarked and subsequently validated by rigorous electrodynamic

simulations based on the finite-element method (a comparison is shown in the Supporting

Information).59
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Therefore, in this manner, we have demonstrated that our semi-analytical model is

extensible to nano-slits made from anisotropic 2D materials as well. Such a fact further

enhances the applicability and versatility of our method to describe plasmonic excitations in

a wide variety of 2D plasmonic materials, both with and without anisotropy. We therefore

anticipate that our work may contribute to the development of anisotropic 2D plasmonics,

since even the nanostructuring of challenging materials, such as phosphorene, is now well

within reach of current experimental capabilities.82

Conclusions and Outlook

In conclusion, we have conducted a comprehensive theoretical description of the plasmon-

mediated interaction and subsequent hybridization of plasmons in 2D nano-slits. Using a

semi-analytical model, we have shown the emergence of two distinct waveguide-like eigenmodes

of the compound system. These consist in a bonding and an antibonding plasmon resonance

originating from the cross-talk between the two edge plasmons sustained at opposite margins

of the slit. We fully characterize the dispersion relation of such modes, as well as the ensuing

potential and electric field distributions. In order to gauge the accurateness of our technique,

we also performed full-wave numerical simulations, which remarkably corroborated the results

of the former. We note, however, that our semi-analytical framework paints a clearer and

intuitive picture of the underlying physics. Furthermore, it also possesses the advantage

of being universal, in the sense that—with a single calculation—it renders the plasmon

dispersion for 2D slits of any width, and made from an arbitrary 2D material. Going beyond

the assumption of a nano-slit constructed from an isotropic 2D medium, the case of a black

phosphorus (a strongly anisotropic 2D crystal) nano-slit was also investigated.

Moreover, the slit considered herein can be recognized as the inverse geometry of a ribbon.

Therefore, we mutually compared our findings for the slit with the ones for the ribbon case,

in the light of Babinet’s principle of complementarity. Restricting our considerations to the
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plasmon dispersions, we have observed that Babinet’s principle is only strictly satisfied in the

asymptotic limit kya → ∞. In opposition, in 3D IMI/MIM waveguides, complementarity is

maintained within the nonretarded limit. This interesting subject remains largely unexplored

in two dimensions, and further research would thus be valuable. Additionally, the combination

of complementarity geometries could greatly augment the zoo of 2D plasmonic nanostructures.

In passing, let us underline that the theory described here is within a stone’s throw to

be exercised in many applications, for instance, to control the decay of quantum emitters

(via Purcell enhancement) or for quantum information processing.9,83,84 The high degree

of localization of the electric field near the nano-slit’s edges also makes this 2D structure

extremely well-suited for plasmonic sensing and SERS. Other applications include the optical

manipulation and trapping of nanoparticles in the vicinity of the 2D nano-slit, due to the

large gradients in the electric field intensity. Within the dipole approximation, and neglecting

the scattering force, the near-field optical force exerted on the said particle is proportional

to ∇|E|2 (and to the real-part of the particle’s polarizability).15 Hence, it is immediately

apparent from Figure 4 that a dielectric particle will be subjected to significant near-field

forces in the neighborhood of the 2D nano-slit (in particular, the trapping potential is deepest

at electric field intensity maximums).

Summing up, we have demonstrated that 2D nano-slits are attractive candidates to exploit

light-matter interactions at the nanometer scale using the continuously growing family of 2D

materials, ranging from deep subwavelength waveguiding and sensing to quantum optical

control.

In closing, we emphasize that although here we have focused mostly on plasmon-polaritons,

our theory can also be readily used to describe other polaritonic excitations in atomically thin

crystals, such as phonon-polaritons in thin hBN slabs, or exciton-polaritons in TMDCs.6,7

We believe that our investigation contributes with a new building block—a one-atom-thick

nano-slit—to the 2D toolkit of hybrid plasmon resonances, thereby expanding our freedom

and capabilities to design new tunable plasmonic systems based on flatland plasmonics.
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