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Hybridized sine cosine algorithm 
with convolutional neural networks 
dropout regularization application
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Deep learning has recently been utilized with great success in a large number of diverse application 
domains, such as visual and face recognition, natural language processing, speech recognition, and 
handwriting identification. Convolutional neural networks, that belong to the deep learning models, 
are a subtype of artificial neural networks, which are inspired by the complex structure of the human 
brain and are often used for image classification tasks. One of the biggest challenges in all deep 
neural networks is the overfitting issue, which happens when the model performs well on the training 
data, but fails to make accurate predictions for the new data that is fed into the model. Several 
regularization methods have been introduced to prevent the overfitting problem. In the research 
presented in this manuscript, the overfitting challenge was tackled by selecting a proper value for 
the regularization parameter dropout by utilizing a swarm intelligence approach. Notwithstanding 
that the swarm algorithms have already been successfully applied to this domain, according to the 
available literature survey, their potential is still not fully investigated. Finding the optimal value of 
dropout is a challenging and time‑consuming task if it is performed manually. Therefore, this research 
proposes an automated framework based on the hybridized sine cosine algorithm for tackling this 
major deep learning issue. The first experiment was conducted over four benchmark datasets: 
MNIST, CIFAR10, Semeion, and UPS, while the second experiment was performed on the brain tumor 
magnetic resonance imaging classification task. The obtained experimental results are compared 
to those generated by several similar approaches. The overall experimental results indicate that the 
proposed method outperforms other state‑of‑the‑art methods included in the comparative analysis in 
terms of classification error and accuracy.

Artificial intelligence (AI) has the goal of creating human-level artificial intelligence (HLAI)1 and currently, the 
leading AI subdomain is machine learning, more precisely deep learning. This type of AI is not focused on rep-
resenting human behavior as the main goal suggests, but rather focuses on providing practically usable results. 
In this way, deep learning has achieved the levels of human performance regarding specified tasks, however, the 
HLAI has not yet been  achieved2. It particularly excels in the tasks of computer vision, natural language process-
ing (NLP), and speech recognition.

For the program of this sort to successfully accomplish tasks such as mentioned, its architecture should imitate 
the behavior of the human nervous  system3–5. As an attempt to create such architecture, convolutional neural 
networks (CNNs) have been  created6. The CNNs are inspired by the animal visual cortex and consist of several 
layers, where each layer, except the first input layer, takes the output of the previous one and sends it to the next 
one. This behavior forms the basics of the CNN model, as the input becomes more filtered with each layer. This 
provides more detailed outputs after each layer, while reducing the input complexity to an easier form to process, 
and at the same time without losing any of the critical feature data. The classic example of this process is with the 
forming of edges on the first layer, and later on respectively with each layer, the corners and sets of edges, parts 
of objects and sets of corners and contours, and on the final layer recognition of full objects based on the sets of 
the previous forming parts is achieved.
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However, deep learning models, especially deep neural networks, such are CNNs, suffer from some short-
comings. Two of the most important drawbacks of these models are hyperparameters’ tuning and the overfitting 
 issue7. For each specific task, a CNN with certain architecture should be generated, because CNN architecture 
that performs well on every problem does not exist. The architecture is defined with the number and types of 
layers, the number of neurons in each layer, the loss function learning rate, type of activation function, etc. These 
components, which are not trainable, are known as hyperparameters’ and it is very challenging to find their 
proper values for a specific task. This issue is known in the literature as hyperparameters’  tuning8.

The major source of the overfitting issue is that during the training, the model’s weight and biases become 
well adjusted for a limited amount of training data, which makes the model inefficient in making predictions 
for previously unseen observations (testing data). In other words, the model will not be able to generalize well. 
This issue can be also viewed from the perspective of bias variance trade-off9.

For solving the issue of overfitting several regularization techniques have been  proposed7. However, one of the 
most efficient methods, especially for complex structures such are CNNs, is  dropout10. The basic idea behind the 
dropout is removing random units (neurons) from the CNNs along with all their input and output connections. 
The dropout is controlled by the parameter known as the dropout probability ( dp ∈ [0, 1) ) that determines the 
percentage of units that are discarded from the model.

However, the dropout probability is another CNNs hyperparameter that should be tuned for each particular 
problem (dataset). One practical way to address this issue is to use an automated framework that will generate 
optimal or sub-optimal dropout probability value for a given CNN’s structure and the dataset, instead of finding 
this value manually by performing “trial and error”. A Group of algorithms that can be very efficient in executing 
such tasks are metaheuristics.

In this manuscript, an automated framework for determining a proper dp value for CNN’s dropout layer, 
based on the swarm intelligence approaches is presented. From the literature examination, it can be noticed 
that the first framework for dropout regularization by swarm intelligence was proposed by de Rosa et. al. in 
 20177, where the authors implemented firefly algorithm (FA), cuckoo search (CS), bat algorithm (BA), particle 
swarm optimization (PSO) for tackling this issue. However, it also can be noticed the lack of swarm intelligence 
applications for this task and it can be concluded that the swarm intelligence potential in determining optimal 
(sub-optimal) dropout probability ratio in CNNs was not investigated enough.

The research proposed in this manuscript represents an extension of the investigation shown  in11, where 
the proposed swarm intelligence-based framework for dropout regularization was evaluated for only MNIST 
and CIFAR-10 datasets. In this manuscript, automated dropout regularization CNNs framework, based on the 
hybridized sine cosine algorithm (SCA) with the well-known firefly algorithm (FA) swarm metaheuristics, was 
brought forward and it was first validated against MNIST, CIFAR-10, UPS, and Semeion datasets.

In the second experiment, the proposed algorithm has been validated on magnetic resonance images (MRI) 
classification task. The SCA is a relatively efficient algorithm proposed in 2016 by  Mirjalili12, and since it in its 
basic implementation exhibits some deficiencies, an improved, hybrid SCA version was devised for the purpose 
of this research. Before applying hybrid SCA for dropout regularization, simulations with CEC2019 benchmark 
instances were conducted and these results are reported as well in the manuscript. Also, to further investigate the 
performance of other swarm intelligence algorithms for this problem, besides basic SCA and proposed hybrid 
SCA, recent whale optimization (WOA) swarm algorithm is implemented and tested for this problem as well.

In the very introduction of this manuscript, some terminology ambiguous should be uncovered. According 
to some sources, the SCA belongs to the group of math-inspired population-based  metaheuristics13, while some 
other sources put the SCA in the group of swarm  intelligence14. In this manuscript, since the hybridization with 
other swarm algorithm was performed, the SCA is categorized as a swarm intelligence approach.

Taking into consideration basic research assumptions, the motivation of the proposed investigation is to 
further improve CNN’s classifications performance and to avoid overfitting by establishing better dropout regu-
larization than other methods which results are reported in the literature by utilizing novel SCA metaheuristics. 
In line with the common practice in computer science when devising and testing the new or modified algorithm, 
the novel metaheuristics has first been validated on a set of challenging CEC2019 benchmark functions. After-
wards, the proposed algorithm was applied on the problem of dropout probability estimation and tested on four 
benchmark datasets. Finally, the algorithm has been validated on a practical MRI classification task. Therefore, 
according to empirical results presented in “CEC2019 benchmark simulations” and “CNN dropout regulariza-
tion simulations” Sections , the contribution of the proposed research is twofold: classification accuracy of CNN 
model used in simulations is enhanced and novel state-of-the-art SCA metaheuristics was devised.

Remain sections of the proposed manuscript are structured as follows: “Background and related work” Section 
gives a brief theoretical background of CNNs and dropout regularization along with relevant literature review 
from the swarm intelligence domain. The goal of  “Proposed method” Section is to provide a basic description 
of the original SCA and its drawbacks, as well as to introduce insight into the proposed hybrid SCA metaheuris-
tics. “CEC2019 benchmark simulations” Section provides experimental results and comparative analysis of the 
proposed method for standard CEC2019 benchmarks following with “CNN dropout regularization simulations” 
Section, where the results obtained from simulations for CNN’s dropout regularization are reported. Finally, 
“Conclusion” Section  concludes this paper and shows directions of potential further research from this area.

Background and related work
Human beings are not able to process any of information absorbed by labeling, tagging, and putting it into tables. 
This creates a limitation for the accurate representation of the information obtained in the computational form. 
It is inefficient and too complex to process for an individual and to translate the obtained information from the 
photograph into words and in a way that a program can process them. For this reason, the CNN technology has 
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been widely applied for use in visual  tasks15 and nowadays it is the most commonly utilized deep learning  model6. 
The recent advancements employ facial  recognition16–19, document  analysis20,21, medical images classification 
and  diagnostics22–24, and an important task of analyzing climate change and extreme weather  conditions25,26 
among many other.

The CNN, besides the input layer, consists of three basic types of layers: convolution, pooling, and the fully-
connected (dense) layers. The convolution layers filter the data by applying the convolution operation and the 
features are extracted by the filters of sizes always smaller than input. The most common filter (kernel) sizes are 
3 × 3, 5 × 5, and 7 × 7. When kernels are applied to the input, feature maps are generated. Mathematical repre-
sentation of the convolution operation on the input vector is represented as follows:

where z[l]i,j,k stands for the value of the output feature of the k-th feature map at location i, j. Representation of the 
input is given as x at the location i, j, w denotes the filters, and bias is b.

Following up the convolution operation is the activation given as:

where the g(·) is the non-linear function using the output.
Pooling layers can be global or local and the two most applied types are max and average pooling layers. The 

pooling function is used to reduce the resolution:

Fully connected layers in CNNs perform the same operations as in classic ANNs. Typical CNN may consist of 
several dense layers, where the last layer performs classification by using the softmax for multi-class classification 
and the sigmoid or tanh activation function for binary classification tasks.

Despite the diverse application that CNN technology offers, it is not without shortcomings. As previously 
noted in  “Introduction” Section, CNNs suffer from overfitting and require ways of avoiding such  scenarios10,27. 
The most common methods used to address overfitting  are7: model simplification, early stopping, data augmen-
tation, and regularization. Many regularization techniques have been proposed, e.g.  L128 and L2 regularization 
(weight-decay)28 and  dropout10. To drop a unit from a layer means that it is removed with all of its connections. 
The neurons to be dropped are selected randomly and temporarily removed from the training process. The 
absence of these neurons is believed to result in a network with better generalization because it becomes less 
sensitive to the weight of those neurons. The basis is to exclude randomly selected hidden individuals during 
the training phase. The goal is to force neighboring neurons to take over the workload from missing neurons 
which leads to an increase in independent internal representations. This process is only performed ahead of the 
classification layer upon the last fully-connected layers. The feed-forward operation is performed as the follow-
ing equation:

where the symbols represent the following terms: l is the l-th hidden layer of the network, z and y are input and 
output vectors respectively, w is the weight vector, b is bias, and g represents the activation function.

The feed-forward operations are used after the dropout regularization as  follow11:

where r denotes the vector of independent Bernoulli random variables.
Parameter dropout probability (dp), which controls the number of dropped neurons expressed as a percent-

age, is not trainable and represents CNN’s hyperparameter. Since its value is continuous within the range [0, 1], 
finding a proper value of this parameter for a specific problem at hand (dataset) is an NP-hard challenge. Finding 
the proper value of this parameter falls into the category of both CNNs challenges, overfitting avoidance by using 
dropout regularization and hyperparameter optimization. Metaheuristics, especially nature-inspired ones like 
swarm intelligence showed as efficient methods for tackling NP-hard problems.

Swarm intelligence are population-based, stochastic algorithms that simulate groups of natural organisms 
such as a flock of birds, fish, and whales, a group of bats and butterflies, colonies of ants and bees, etc. These algo-
rithms perform the search process by investigating within the boundaries of previously discovered parts of the 
search space (exploitation, intensification) and by exploring novel search regions (exploration, diversification)29.
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Swarm intelligence algorithms have been applied for solving various real-world numerical optimization prob-
lems from different domains such as wireless sensor networks (WSNs)30–33, cloud and edge  computing34,35, image 
 thresholding36, and many  others37. The most current and prominent research field is from the domain of hybrid 
methods between swarm intelligence and machine learning. Researches from this domain have grown rapidly 
during the past few years and some examples include hyperparameters’  optimization8,38,39, feature  selection40, 
predicting time series, e.g. the number of COVID-19  cases41,42 and ANNs  training43,44.

Proposed method
This section first gives details of the SCA metaheuristics. Afterward, observed shortcomings of its basic version 
are elaborated. Finally, details of the proposed method that overcomes deficiencies of the basic SCA are provided.

The original SCA method. The inspiration for SCA is taken from the mathematical model of those two 
important trigonometric  functions12. Solutions’ positions in the population are updated based on the sine and 
cosine functions outputs which makes them oscillate around the best solution. These functions return values 
between − 1 and + 1, which is the mechanism that keeps the solutions fluctuating. An algorithm starts by ran-
domly generating various candidate solutions within the boundaries of the search space in the initialization 
phase. Exploration and exploitation are controlled differently throughout the execution by random adaptive 
variables.

Solutions’ position update process is performed in each iteration by using the following  equations12:

where Xt
i  and Xt+1

i  denote the current solution’s position in the i-th dimension at t-th and i + 1-th iteration, 
respectively, r1−3 are pseudo-randomly generated numbers, the P∗i  represents destination point’s position (current 
best approximation of an optimum) in the i-th dimension, while symbol | | denotes the absolute value.

These two equations are used in combination by using control parameter r4:

where r4 represents a randomly generated number between 0 and 1.
It is noted that for every component of each solution in the population, new values for pseudo-random 

parameters r1−4 are generated.
Four random parameters control the algorithm’s search process and they influence current and the best solu-

tion positions. The balance between solutions is required to efficiently converge towards the global optima and 
it is achieved by changing the range of the based functions in an ad-hoc manner. The sine and cosine functions 
exhibit cyclic patterns which allow for reposition around the solution. This behavior guarantees exploitation. 
The algorithm needs to be enabled to search outside of their corresponding destinations which is possible due to 
the changes in ranges of sine and cosine functions. Furthermore, the solution requires its position not to overlap 
with the areas of other solutions.

For better quality of randomness, the values for parameter r2 are generated within the range [0, 2�] and that 
guarantees exploration. The Eq. (13) controls the balance between diversification and exploitation.

where t is the current iteration, T represents the maximum number of iterations in a run, while a is a constant.

Limitation of basic SCA and proposed hybrid algorithm. The SCA metaheuristics is relatively simple 
and it does not incorporate many control parameters, yet manages to obtain outstanding results for bound-
constrained and constrained  benchmarks12, as well as for various practical  challenges13.

Notwithstanding the good exploitation and exploration performance of original SCA, by executing extensive 
empirical simulations with standard Congress on Evolutionary Computation (CEC) instances, it was observed 
that in some runs. the algorithm in later iterations converges to the optimal region and does not have enough 
cycles to perform there a fine-tuned exploitation. This is mainly because the basic search equation (Eq. 12), 
either by executed with sine, either by cosine operations, is oriented towards the current best approximation of 
the optimum ( P∗i  ) for each solutions’ parameter i. Moreover, notwithstanding that the basic SCA’s search is very 
efficient in exploitation, there is still some space for improvements.

Taking into account observed drawbacks of the original SCA, with an expense of increasing algorithms’ 
complexity, the following changes were incorporated in the basic SCA: 

1. the opposition-based learning (OBL) mechanism is applied to current best solution P∗ and
2. search equation from the well-known FA metaheuristics, that proved excellent exploitation  capabilities45,46, 

is used in the basic SCA search process along with sine and cosine search equations.

(10)Xt+1
i =Xt

i + r1 · sin(r2) · |r3 · P
∗t
i − Xt

i |

(11)Xt+1
i =Xt

i + r1 · cos(r2) · |r3 · P
∗t
i − Xt

i |

(12)Xt+1
i =

{

Xt+1
i = Xt

i + r1 · sin(r2) · |r3 · P
∗t
i − Xt

i |, r4 < 0.5

Xt+1
i = Xt

i + r1 · cos(r2) · |r3 · P
∗t
i − Xt

i |, r4 ≥ 0.5,

(13)r1 = a− t
a

T
,



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6302  | https://doi.org/10.1038/s41598-022-09744-2

www.nature.com/scientificreports/

The OBL mechanism is introduced  in47 and it was proven that it can substantially enhance the metaheuristics 
search process. For each i-th component of the solution X, the opposite individual Xo is generated by using Eq. 14.

where lbi and ubi are lower and upper bounds of component i, respectively.
It would be computationally expensive if the OBL is applied to every solution in population in each iteration, 

so this mechanism is applied only for the current best solution in the following way: in each iteration, the opposite 
current best solution P∗o is created, then if the fitness of P∗o is better than the fitness of P∗ , the P∗o is designated 
as the new current best P∗ . In this way, if in earlier iterations the algorithm misses the optimum domain, there 
are high chances the current’s best opposite would hit the optimum.

On top of the first change, in each iteration the following FA search equation is used with the equal probability 
along with sine and cosine search  mechanisms48:

where xt+1
i  parameter β0 denotes the attractiveness at a distance r = 0 , α marks a randomization parameter, κ 

represents a random number drawn from either uniform or Gaussian distribution, and ri,j represents the distance 
between two observed fireflies i and j. It is noted that contrarily to the original FA, the solution Xj is chosen 
randomly from the population.

The proposed method uses dynamic parameter alpha as it was suggested  in48. In this way, a trade-off between 
exploitation and exploration is being adjusted in favor of intensification as the iterations progress, as shown in 
Eq. (16). More details regarding the FA’s control parameters can be captured  from48.

With the FA’s search equation, the basic SCA equation 12 is updated as follows:

The proposed method is named opposition best SCA firefly search (OBSCA-FS) and its pseudo-code is given 
in Algorithm 1.

Some practical limitations of the proposed method include additional control parameters and more function 
evaluations in each iteration, which is considered in experiments for a fair comparative analysis.

The OBSCA‑FS complexity. The amount of fitness function evaluations (FFEs) is commonly used as a measure 
to describe the complexity of the swarm intelligence metaheuristics approaches, due to the fact that the evalu-

(14)Xo
i = lbi + ubi − xi

(15)xt+1
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ation of the objective function represents the most computationally expensive operation, as discussed  by49. The 
complexity is typically expressed in terms of FFE over the number of solutions N and number of iterations T.

The proposed OBSCA-FS algorithm utilizes just one additional solution evaluation in each iteration during 
the execution, when the opposite solution of the current best solution is being generated. Consequently, if N 
denotes the number of solutions, and T represents the number of iterations, the complexity of the OBSCA-FS 
can be formulated as O(N)+ O(T · (N + 1)) . Thus, the proposed algorithm slightly increases the complexity 
of the original algorithm.

Moreover, the slight increase in complexity over the basic algorithms is justified because the OBSCA-FS 
algorithm exhibits significant performance improvements over both basic algorithms, SCA and FA. The enhance-
ments are obvious both for benchmark function set and for the dropout regularization machine learning task, 
as described in  “CEC2019 benchmark simulations” and “CNN dropout regularization simulations” Sections.

Ethics approval. The authors declare that they their work is compliant with ethical standards.

Consent to participate. All authors have given their consent for this research.

Consent for publication. All authors have given their consent for publication of this work.

CEC2019 benchmark simulations
Following proper experimental design, the proposed method was first validated on standard unconstrained 
benchmarks before it is applied for a real-world problem. In the case of devised OBSCA-FS, a group of 10 rela-
tively novel Congress on Evolutionary Computation 2019 (CEC2019)50 benchmarks was utilized and simulation 
results along with comparative analysis and statistical tests are presented in this section.

The results of the proposed OBSCA-FS are compared to the original SCA and FA, and other eight state-of-
the-art metaheuristics (EHOI, EHO, SSA, GOA, WOA, BBO, MFO, PSO). For the purpose of this research, all 
above mentioned approaches were implemented and tested. Results of all opponents, including the original SCA, 
were obtained through extensive simulations. In an effort for this research, original FA was also implemented 
and tested.

Experimental results for the same set of benchmark functions were previously reported  in51. Nevertheless, 
simulations presented in this research have been recreated to validate results  from51 and to provide firm grounds 
for a more objective comparative analysis. Algorithms  in51 were executed by using N=50 and T=500, and this 
experimental setup could result in biased comparative analysis due to the fact that not all methods use the same 
amount of FFEs in one iteration. To solve this potential problem, this research utilizes the termination condi-
tion that was set according to the total used FFEs for all observed methods. To establish similar experimental 
preconditions as  in51, the maxFFEs number was set to 25.000 ( 50 · 500).

The summary of OBSCA-FS control parameters’ adjustments used in experiments is shown in Table 1. The 
same control parameters were used also in FA’s evaluations.

Obtained experimental results and comparison for mean and standard deviation values for 10 CEC2019 func-
tions are provided in Table 2, where for better readability best results for the mean indicator are marked bold.

Reported results in Table 2 communicate the superior performance of proposed OBSCA-FS when compared 
to other state-of-the-art approaches. For almost all instances, the OBSCA-FS managed to establish the best mean 
value. The only exceptions are CEC03 benchmark, where all approaches obtained the same mean indicator value 
and CEC08 in which case the results reported for EHOI are the best, while original FA performed slightly bet-
ter than OBSCA-FS. Furthermore, based on experimental data it can be concluded that the OBSCA-FS hybrid 
method substantially improves the performance of both algorithms, SCA and FA, which is at the same time the 
basic goal of devising hybrid methods.

However, when comparing different methods it is not enough just to state that one method is better than the 
other in terms of results, it also should be determined whether the enhancements are statistically significant. 
Following this assumption, a Friedman  test52,53 and two-way analysis of variance by ranks is performed to validate 
the significant difference between proposed OBSCA-FS and other adversary metaheuristics. The Friedman test 
results for eleven approaches applied to 10 functions are provided in Table 3.

From Table 3 can be noticed that the proposed OBSCA-FS is advanced in terms of performance than the other 
10 algorithms with an average rank of 1.7. The basic FA and SCA have average rankings of 6.4 and 9.8, respec-
tively. Also, the Friedman statistics ( χ2

r = 51.2 ) is greater than the χ2 critical value with 10 degrees of freedom 
(18.3), at significance level α = 0.05 , therefore the null hypothesis ( H0 ) is rejected and it can be concluded that 
the proposed OBSCA-FS obtains results which are significantly different than other 10 methods.

However,  in54 is reported that the Iman and Davenport’s  test55 may be more precise than the χ2 having this in 
mind, Iman and Davenport’s test was also executed. Calculated statistic of 9.46E + 00 , which is greater than the 
F-distribution critical value ( F(9, 9× 10) = 1.93E + 00 ). Therefore, Iman and Davenport’s test also rejects H0 . 
In the case of both tests, the p− value is less than the significance level. Summary of results for both statistical 
tests is given in Table 4.

As the null hypothesis is rejected by Friedman and Iman and Davenport tests, we proceeded with the non-par-
ametric post-hoc procedure, with Holm’s step-down procedure, and the obtained results are reported in Table 5.

Table 5 shows that the proposed method significantly outperformed all compared methods at significance 
level α = 0.1 , as well as all algorithms except EHOI at significance level α = 0.05.

Figure 1 illustrates a head-to-head convergence comparison between the proposed OBSCA-FS, second best 
approach (EHOI) and relevant basic metaheuristics, with respect to the results on the 10 benchmark functions. 
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Since OBSCA-FS is a hybrid of SCA and FA, convergence graphs for those two methods were included as well. 
The plots illustrate how the fitness evaluation decreases over the course of iterations for each test function in turn.

It is important to notice from the convergence graphs that the proposed algorithm combines the best elements 
of the FA and SCA metaheuristics. It is obvious from the Fig. 1 that OBSCA-FS converges faster from both FA 
and SCA, therefore establishing itself as more efficient metaheuristics. However, according to the no free lunch 
theorem, there is no general metaheuristics that will be a perfect solution for all problems. This can be seen on 
convergence graph for the benchmark F8, where basic FA obtained better results than the proposed OBSCA-FS. 
Nevertheless, this behavior is normal and expected, as there is always a trade-off.

CNN dropout regularization simulations
This section is divided into two parts. In the first part, research findings and comparative analysis from experi-
ments with four standard benchmark datasets are shown, while the second part provides details for dropout 
regularization experiments with specific MRI dataset.

Dropout simulations for benchmark datasets. The model used in conducted experiments is the same 
as the one proposed in the referenced  paper7, where the performance of distinguished bat algorithm (BA), 
cuckoo search (CS), FA, and particle swarm optimization (PSO) swarm intelligence metaheuristics for drop-
out regularization challenge was reported. In this manuscript, the same experimental environment as  in7 was 
established due to the fair comparative analysis. As acclaimed in  “Introduction” Section, the potential of swarm 
intelligence approaches for this problem was not fully investigated and the aim of this experiment is to fur-

Table 1.  Control parameter summary.

Parameter description Value

Population size N 49

Maximum iteration number T 500

Parameter r1 Changes according to Eq. (13)

Parameter r2 ∈ [0, 2π]

Parameter r3 ∈ [0, 1]

Parameter r4 ∈ [0, 1]

FA’s Absorption coefficient γ 1

FA’s attractiveness parameter at r = 0 β0 1

FA’s randomization parameter α Changes according to Eq. (16)

FA’s Initial α value α0 0.5

Table 2.  Result comparison of different well-known metaheuristics on CEC2019 benchmark functions.

Function Stats EHOI EHO SCA SSA GOA WOA BBO MFO PSO FA OBSCA-FS

CEC01
Mean 4.76E+04 1.35E+07 9.83E+09 3.21E+09 1.61E+10 1.03E+10 3.52E+10 7.17E+09 6.75E+11 7.43E+04 4.83E+03

Std 2.14E+03 7.91E+06 6.95E+09 1.42E+09 8.99E+9 9.14E+09 2.32E+10 8.69E+09 2.34E+11 4.49E+03 4.21E+03

CEC02
Mean 1.70E+01 1.72E+01 1.75E+01 1.73E+01 1.74E+01 1.73E+01 8.87E+01 1.74E+01 8.56E+02 2.85E+01 2.41E+00

Std 3.66E−16 7.29E−15 5.19E−03 6.55E−05 3.23E−02 1.95E−03 2.45E+01 4.17E−15 3.87E+02 3.21E+02 5.32E+01

CEC03
Mean 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01

Std 3.95E−16 7.44E−16 3.25E−04 3.11E−15 6.47E−04 7.94E−06 5.25E−07 4.38E−05 4.12E−04 5.22E−01 4.03E−01

CEC04
Mean 1.28E+01 1.55E+01 8.32E+02 3.25E+01 1.51E+02 2.65E+02 6.95E+01 1.38E+02 6.92E+01 3.89E+01 1.00E+01

Std 4.26E+00 8.52E+00 3.85E+02 1.09E+01 1.13E+02 1.39E+02 2.99E+01 1.15E+02 5.43E+01 2.32E−01 1.19E+00

CEC05
Mean 1.05E+00 1.07E+00 2.23E+00 1.35E+00 1.33E+00 1.67E+00 1.31E+00 1.13E+00 1.55E+00 1.13E+00 1.01E+00

Std 3.25E−03 2.41E−02 7.81E−02 2.33E−01 1.21E−01 3.86E−02 9.63E−02 6.56E−02 1.18E−01 4.26E−02 2.17E−02

CEC06
Mean 8.33E+00 9.45E+00 1.04E+01 3.79E+00 6.19E+00 9.14E+00 5.78E+00 4.92E+00 1.03E+01 1.05E+01 1.86E+00

Std 6.23E−01 1.31E+00 8.15E+00 1.23E+00 1.33E+00 1.05E+00 2.99E−01 2.13E+00 3.35E+00 6.20E−01 4.46E−02

CEC07
Mean 1.42E+02 1.81E+02 6.38E+02 2.89E+02 2.87E+02 4.53E+02 4.92E+00 3.19E+02 5.97E+02 4.91E+02 3.85E+00

Std 1.13E+02 1.51E+02 2.78E+02 2.25E+02 1.75E+02 2.25E+02 1.21E+00 2.15E+02 1.89E+02 1.23E+02 8.36E+01

CEC08
Mean 2.69E+00 3.15E+00 5.77E+00 5.08E+00 5.49E+00 5.75E+00 4.81E+00 5.45E+00 5.10E+00 2.78E+00 2.83E+00

Std 9.15E−02 1.44E+00 7.29E−01 7.83E−01 5.14E−01 7.29E−01 1.03E+00 5.62E−01 7.33E−01 8.99E−01 9.13E−01

CEC09
Mean 2.29E+00 2.41E+00 8.75E+01 2.38E+00 2.45E+00 5.16E+00 3.75E+00 2.46E+00 2.65E+00 4.95E+00 1.73E+00

Std 5.55E−03 2.18E−02 5.63E+01 5.33E−02 6.41E−02 5.29E−01 3.14E−01 6.76E−02 8.45E−02 2.83E−01 1.54E−02

CEC10
Mean 1.92E+01 2.11E+01 2.08E+01 2.03E+01 2.00E+01 2.05E+01 2.07E+01 2.02E+01 2.06E+01 2.02E+01 1.32E+01

Std 3.49E+00 7.29E+00 6.45E+00 8.19E+00 6.67E+00 3.52E−01 7.13E−00 6.66E−01 9.81E+02 9.13E−02 1.56E−02
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ther examine its potential in this domain, as well as to validate the proposed state-of-the-art hybrid OBSCA-FS 
method against this practical challenge.

The testing framework was developed in Python with its core and data science libraries and API’s keras, 
scikitlearn, numpy, scipy along with pandas and matplotlib for visualization. The machine that was used for 
testing has a 6 × NVIDIA GTX 1080 GPU with Intel® CoreTM i7-8700K CPU, 64GB RAM, and Windows 10 OS.

For validation, 4 standard datasets were used: MNIST (http:// yann. lecun. com/ exdb/ mnist/), Semeion (https:// 
archi ve. ics. uci. edu/ ml/ datas ets/ Semei on+ Handw ritten+ Digit), USPS (http:// statw eb. stanf ord. edu/ tibs/ ElemS 
tatLe arn/ datas ets/ zip. info. txt) and CIFAR10 (http:// www. cs. toron to. edu/ kriz/ cifar. html). For more details regard-
ing characteristics and the number of available observations in each dataset, please refer to the provided links.

Two different CNN architectures as  in7, as it is provided in the default Caffe examples, are utilized: one for 
MNIST, Semeion, and USPS and one for the CIFAR-10 dataset. The only difference is that in both models addi-
tional dropout layer is added and in the case of USPS and Semeion datasets, the kernel size of 3× 3 instead of 
5× 5 is used for convolution layers because these two datasets have lower resolution. Example instances of two 
models are given in Figs. 2 and 3.

In all simulations besides the dropout probability (dp) for the dropout layer, which is subject to optimiza-
tion, L1 regularization (penalty) α and L2 regularization (weight decay) � were also employed. For training the 
models, RMSProp optimizer was executed with a learning rate η . The parameters’ tuple ( η , α , � ) was fixed and 
only dp was optimized. Therefore, solutions’ encoding is very straightforward and every solution consists of only 
one parameter with values ∈ [0, 1].

Table 3.  Friedman ranks for the comparable method over 10 CEC2019 instances.

Function EHOI EHO SCA SSA GOA WOA BBO MFO PSO FA OBSCA-FS

CEC01 2 4 7 5 9 8 10 6 11 3 1

CEC02 4 4 8 4 7 4 10 4 11 9 1

CEC03 6 6 6 6 6 6 6 6 6 6 6

CEC04 2 3 11 4 9 10 7 8 6 5 1

CEC05 2.5 2.5 11 6 8 10 7 5 9 4 1

CEC06 6 8 11 2 5 7 4 3 10 9 1

CEC07 3 4 11 5 6 8 2 7 10 9 1

CEC08 1 4 11 7 8 10 5 9 6 2 3

CEC09 2 3 11 4 5 9 8 6 7 10 1

CEC10 2 9 11 3 4.5 7 4.5 7 10 7 1

Average 3.05 4.75 9.8 4.6 6.75 7.9 6.35 6.1 8.6 6.4 1.7

Rank 2 4 11 3 8 9 6 5 10 7 1

Table 4.  Friedman and Iman-Davenport test results ( α = 0.05).

Friedman value χ
2 critical value p-value Iman-Davenport value F critical value p-value

5.12E+01 1.83E+01 1.11E−16 9.46E+00 1.93E+00 1.11E−13

Table 5.  Holm’s step-down procedure result.

Comparison p-value Rank 0.05/(k-i) 0.1/(k-i)

OBSCA-FS versus SCA 2.37E−08 0 0.005000 0.01000

OBSCA-FS versus PSO 1.46E−06 1 0.005556 0.01111

OBSCA-FS versus WOA 1.46E−05 2 0.006250 0.01250

OBSCA-FS versus GOA 3.31E−04 3 0.007143 0.01429

OBSCA-FS versus FA 7.66E−04 4 0.008333 0.01667

OBSCA-FS versus BBO 8.59E−04 5 0.010000 0.02000

OBSCA-FS versus MFO 1.50E−03 6 0.012500 0.02500

OBSCA-FS versus EHO 1.98E−02 7 0.016667 0.03333

OBSCA-FS versus SSA 2.52E−02 8 0.025000 0.05000

OBSCA-FS versus EHOI 1.81E−01 9 0.050000 0.10000

http://yann.lecun.com/exdb/mnist/
https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit
https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit
http://statweb.stanford.edu/tibs/ElemStatLearn/datasets/zip.info.txt
http://statweb.stanford.edu/tibs/ElemStatLearn/datasets/zip.info.txt
http://www.cs.toronto.edu/kriz/cifar.html


9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6302  | https://doi.org/10.1038/s41598-022-09744-2

www.nature.com/scientificreports/

(a) CEC01 (b) CEC02

(c) CEC03 (d) CEC04

(e) CEC05 (f) CEC06

(g) CEC07 (h) CEC08

(i) CEC09 (j) CEC10

23

Figure 1.  Convergence speed graphs of the 10 CEC 2019 benchmark functions as direct comparison between 
proposed OBSCA-FS and relevant metaheuristics.
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Figure 2.  Example instance of MNIST, Semeion and USPS model.
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Figure 3.  Example instance of CIFAR10 model.
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The classification error rate is used as the fitness function, therefore a problem is formulated as a minimiza-
tion challenge. With the goal of visualizing proposed methodology, general OBSCA-FS and fitness calculation 
flow-charts are shown in Fig. 4.

Additionally, with the goals of straightforward comparative analysis, in the context that all metaheuristics are 
tested under the same conditions, and of establishing referenced (baseline) models, standard Caffe architecture 
with and without dropout is also included in comparison and for other metaheuristics, standard default Caffe 
parameters for η , α , and � were used. These parameters over utilized datasets are summarized in Table 6.

All datasets were split into the training, validation, and testing sets. For determining the fitness of each 
individual, the classification accuracy of the test set is used. In all experiments, the categoricalcrossentropy loss 
function is employed and for the CIFAR-10 dataset model is trained in 4,000, while for the remaining 3 datasets, 
10,000 epochs are used for training. Model details and the number of samples along with the batch size are sum-
marized in Table 7.

For the purpose of this experiment, all approaches that were included in the comparative analysis were imple-
mented and tested. Control parameters for BA, FA, CS, and PSO that were used in the comparative analysis can 
be retrieved  from7. Proposed OBSCA-FS was tested with the same parameters as presented in Table 1. Moreover, 
as already stated, to further investigate swarm algorithms’ performance for tackling dropout regularization issue, 

Figure 4.  Proposed methodology for dp regularization.
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Table 6.  The CNN η , α and � adjustments for simulations.

Dataset η α � dp

CIFAR-10 0.001 0.9 0.004 [0, 1]

MNIST 0.01 0.9 0.00005 [0, 1]

Semeion 0.001 0.9 0.00005 [0, 1]

USPS 0.01 0.9 0.00005 [0, 1]

the EHO, WOA, SSA, GOA, BBO and SCA metaheuristics were also implemented and tested with the suggested 
parameters for bound-constrained optimization in relevant publications. The control parameters values are 
summarized in Table 8. All metaheuristics approaches were executed with a total number of 77 FFEs. The study 

Table 7.  Configuration of the datasets used in experiments.

Dataset Training set samples (batch size) Validation set samples (batch size) Testing set (batch size) Epochs

CIFAR-10 20,000 (100) 30,000 (100) 10,000 (100) 4000

MNIST 20,000 (64) 40,000 (100) 10,000 (100) 10,000

Semeion 200 (2) 400 (400) 993 (993) 10,000

USPS 2406 (32) 4885 (977) 2007 (2007) 10,000

Table 8.  Configuration of control parameters of the metaheuristics that were implemented and included in 
the comparative analysis.

Algorithm Control parameters and their values

BA56 fmin = 0 , fmax = 2 , A = 0.5 , rand = 0.5

CS57 β = 1.5 , p = 0.25 , α = 0.8

PSO58 c1 = 1.7 , c2 = 1.7 , w = 0.7

EHO59 noclan = 5 , α = 0.5 , β = 0.1 , noelite = 2

WOA60 Initial value of a = 2.0 , linearly decreasing to 0

SSA61 c1 non-linearly decreasing from 2 to 0, c2 and c3 rand from [0,1]

GOA62 c linearly decreasing from 1 to 0

BBO63 hmp = 1 , imp = 0.1 , nbhk = 2

FA48 γ = 1.0 , β0 = 1.0 , α = 0.2

SCA12 a = 2 , r1 linearly decreasing from 2 to 0

Table 9.  Comparative results of the suggested OBSCA-FS method and other metaheuristics approaches in 
terms of mean classification accuracy.

Method

MNIST Semeion USPS CIFAR-10

acc. dp acc. dp acc. dp acc. dp

Caffe 99.07 0 97.62 0 95.80 0 71.47 0

Dropout Caffe 99.18 0.5 98.14 0.5 96.21 0.5 72.08 0.5

BA 99.14 0.491 98.35 0.692 96.45 0.762 71.49 0.633

CS 99.14 0.489 98.21 0.544 96.31 0.715 71.21 0.669

PSO 99.16 0.493 97.79 0.371 96.33 0.725 71.51 0.621

EHO 99.13 0.475 98.11 0.481 96.24 0.682 71.15 0.705

WOA 99.15 0.489 98.23 0.561 96.32 0.722 71.23 0.685

SSA 99.19 0.499 98.31 0.642 96.41 0.753 71.58 0.529

GOA 99.16 0.492 98.15 0.513 96.15 0.481 70.95 0.849

BBO 99.13 0.474 98.16 0.515 96.17 0.483 71.08 0.768

FA 99.18 0.495 98.29 0.619 96.42 0.758 71.55 0.583

SCA 99.17 0.496 98.25 0.580 96.29 0.705 71.54 0.597

OBSCA-FS 99.28 0.524 98.48 0.722 96.93 0.838 72.54 0.394
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proposed  in7 evaluated methods with N = 7 and T = 10 , which also yielded a total of 77 FFEs (7 + 7 × 10). Cross-
validation with 20 runs was carried out for the purpose of providing statistical Friedman’s non-parametric test 
and average results over 20 independent runs are reported.

The average value of accuracy along with the mean value of dp obtained in the MNIST, Semeion, USPS and 
CIFAR-10 datasets simulations are reported in Table 9. Best obtained accuracy among metaheuristics-based 
approaches is marked bold. From the presented table, it can be seen that the average accuracy is not consistent 
over the observed datasets. This is mostly because of the different and distinctive nature of each dataset included 
in the experiments, in terms of the overall number of images in the dataset, the amount of features, and the 
contents of images.

The findings presented in Table 9 point out the superior performance of the suggested OBSCA-FS approach 
in regard to the dp value that has been subjected to the optimization. On the MNIST dataset, the suggested 
OBSCA-FS approach achieved the superior accuracy of 99.28% with obtained dp value of 0.524. On the same 
dataset, other metaheuristics algorithms determined the dp value below the value of the standard Dropout Caffe 
dp = 0.5 . In this scenario, the findings indicate that the dp value should be just over 0.5 to obtain better accuracy 
values, and the suggested OBSCA-FS approach was the only algorithm that has achieved it.

On the Semeion dataset, the suggested OBSCA-FS algorithm achieved the best accuracy of 98.48%, by obtain-
ing the dp value of 0.722. In this case, it can be concluded that the accuracy increases with values of dp, that are 
over the standard Dropout Caffe value 0.5. The runner-up approach was BA, that was able to achieve the accuracy 
of 98.35% by dp = 0.692 . The basic Caffe method that does not utilize the dropout ( dp = 0 ) was able to achieve 
97.62% accuracy, while the Dropout Caffe ( dp = 0.5 ) obtained the accuracy of 98.14%.

Similar results are observed on the USPS dataset as well. The suggested OBSCA-FA method again obtained 
the best accuracy of 96.93% with determined dp value of 0.838. Similarly to the first two observed datasets, the 
accuracy increases with the increase of dp value. The second best result has been obtained by BA, that achieved 
96.45 % by dp = 0.762 . The basic Caffe and Dropout Caffe were significantly behind the proposed OBSCA-FA, 
with the accuracy lesser by approx. 1.1% and 0.7%, respectively.

Lastly, in the case of CIFAR-10 dataset, a different pattern can be observed. The findings indicate that, if the 
dp is greater than the Dropout Caffe ( dp = 0.5 ), the performance starts to decrease, while the accuracy drops 
down. In other words, the network drops out neurons, and it starts to lose the ability to generalize well. On the 
other side, if the dp value is too small, again, the accuracy will decrease (similar to the basic Caffe with dp = 0 ). 
The best performances for the CIFAR-10 dataset are achieved for the dp values slightly lesser than 0.5. The 
proposed OBSCA-FA approach scored the best accuracy of 72.54% with the dp = 0.394 . Moreover, it was the 
only approach that was able to find the dp value below 0.5 boundary, while other metaheuristics approaches got 
stuck with the dp values in range [0.5, 1].

Finally, it is worth noticing that the OBSCA-FS approach, as a hybrid between SCA and FA, significantly 
outperformed both basic metaheuristics versions in all performed tests. This way, the enhancements of the 
OBSCA-FS over the original implementations of SCA and FA, observed on the unconstrained benchmark func-
tions tests, were also confirmed on the practical task of optimizing the dropout regularization.

Average convergence speed graphs for implemented OBSCA-FS, SCA, FA and three other representative 
metaheuristics (PSO, BA and SSA) for mean classification error for MNIST, CIFAR-10, Semeion, and USPS 
datasets, generated over 20 independent runs with 77 FFEs, are provided in Fig. 5.

Similarly, as in unconstrained experiments, a Friedman test and two-way analysis of variance by ranks are 
performed. Results are shown in Table 10. From presented statistical tests can be observed that the proposed 
OBSCA-FS established with the rank 1, the SSA proved as the second-best metaheuristics, while the rank of 3 
obtained the original FA metaheuristics.

After completing the necessary calculations, the Iman and Davenport test score was 36.95, and it was com-
pared to the F-distribution critical value ( F(9, 9× 10) = 1, 820 ). As the test returns considerably larger value, 
this test rejects H0 . Additionally, the Friedman statistics ( χ2

r = 181, 50 ) is greater than the χ2 critical value with 
ten degrees of freedom (1, 82), with the significance level α = 0.05.

Finally, the null hypothesis ( H0 ) can be rejected. This indicates that OBSCA-FS performances were signifi-
cantly superior over the rest of the metaheuristics included in the experiments.

Lastly, although not being the main topic of this research described in this paper, another mini experiment 
has been conducted, to further evaluate the performances of the proposed OBSCA-FS algorithm. In this addi-
tional experiment, all four parameters from the Table 6, namely dp (dropout probability), η (learning rate), α 
(L1 regularization) and � (L2 regularization - weight decay), have been subjected to the optimization process, 
without taking the standard default Caffe parameter values. The parameter ranges that were used in the experi-
ments were dp = [0, 1] , η = [0, 1] , α = [0, 1] and � = [0, 1].

The experiment utilized the same setup, the same number of runs and the same amount of training as the 
main benchmark experiments described above. The accuracy results obtained by the basic SCA were as follows: 
99.19% on the MNIST dataset, 98.28% on the Semeion dataset, 96.33% on the USPS dataset, and 71.56% on the 
CIFAR-10 dataset. On the other hand, the accuracy values achieved by the proposed OBSCA-FS method were 
as follows: 99.32% in the case of MNIST dataset, 98.55% on the Semeion dataset, 97.03% on the USPS dataset, 
and finally, 72.69% on the CIFAR-19 dataset. The improvement of the accuracy results for both the basic SCA 
and the proposed OBSCA-FS methods are minor, leading to the conclusion that the default values for η , α and � 
used by the Caffe are well adjusted. However, in case of all four parameters being subjected to the optimization 
process, every metaheuristics solution is being encoded with four continuous parameters. This significantly 
increases the complexity of the method, while the minor improvements of the accuracy are not justifying it.
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(a) MNIST Err. (b) CIFAR-10 Err.

(c) Semeion err. (d) USPS Err.

Figure 5.  Convergence graph of MNIST, CIFAR-10, Semeion and USPS datasets for average classification error 
for OBSCA-FS, SCA and WOA.

Dropout simulations for MRI benchmark dataset. In a similar way as presented  in64, MRI dataset was 
used to further validate the proposed approach. The benchmark dataset (https:// figsh are. com/ artic les/ datas et/ 
brain_ tumor_ datas et/ 15124 27) is comprised of 3064 T1-weighted MRIs with Glioma, Meningioma, and Pitui-
tary brain tumor classes, obtained from 233 subjects by Cheng et.  al65. This research employed the same image 
processing as  in64: pixel values for all images were normalized to scale [0, 1], followed by the data augmentation 
approach to increase the volume of the training set. The dimensions of images were set to 128× 128 pixels. Data 
augmentation step included the generation of fake data by randomly modifying the original images, and the 
addition of this generated data to the initial dataset. In this research, random modifications included rotating 
the original image by 10, 20, or 30 degrees in a random direction, translating the image by 15 pixels, resizing the 
original image, mirroring, and finally, using combinations of modifications at once.

The dataset was originally comprised of 3064 axial images divided into three classes: 708 meningioma, 1426 
glioma, and 930 pituitary tumor images. Upon completion of the data augmentation process, every category 
consisted of 1521 images that were utilized for training phase, and 115 that were used for the testing phase, with 
the total amount of images being 4908. Additional information about the image pre-processing and dataset 
splitting can be obtained  from64.

Table 10.  Friedman ranks for the comparable method over 4 CNN classification instances.

Function Caffe Dropout Caffe BA CS PSO EHO WOA SSA GOA BBO FA SCA OBSCA-FS

MNIST 13 3.5 9.5 9.5 6.5 11.5 8 2 6.5 11.5 3.5 5 1

Semeion 13 10 2 7 12 11 6 3 9 8 4 5 1

USPS 13 10 2 7 5 9 6 4 12 11 3 8 1

CIFAR-10 8 2 7 10 6 11 9 3 13 12 4 5 1

Average 11.75 6.375 5.125 8.375 7.375 10.625 7.25 3 10.125 10.625 3.625 5.75 1

Rank 13 6 4 9 8 11 7 2 10 12 3 5 1

https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
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The same fitness function formulation as in simulations for standard datasets is used and for more details 
refer to  “Dropout simulations for benchmark datasets” Section.

The proposed OBSCA-FS algorithm was tested for the dropout rate and validated against several cutting-edge 
metaheuristics approaches. The utilized CNN topology was derived from previous research published  in66, that 
was dealing with the hyperparameters’ optimization for this particular dataset. The CNN structure shown in 
Fig. 6 obtained the best results  in66, and it was consequently utilized in this research for testing and optimizing 
the dropout probability parameter. Finally, the CNN uses the Adam optimizer and the learning rate lr = 0.0005 , 
again as the product of  research66.

Research published  in64 is evolving 50 ( N = 50 ) candidate CNN structures in 15 rounds T = 15 , that for 
most metaheuristics algorithms corresponds to a total number of 800 FFEs ( N + N · T ). However, due to the 
fact that not all metaheuristics algorithms utilize the same amount of FFEs in every round of execution, in the 
proposed research maxFFEs = 800 was used as the terminating condition. The control parameters for opposing 
metaheuristics approaches were obtained from the original publications and are shown in Table 11.

The proposed OBSCA-FS driven CNN was also compared to other cutting-edge, non-metaheuristics 
approaches, including SVM + RFE, Vanilla preprocessing + shallow CNN, LeNet-5, VGG19 and DenseNet. 
Since those models are considered to be state of the art, they were tested with default parameters.

The simulation results are presented in the Table 12, where the best accuracy and dropout probability have 
been reported. The presented findings indicate that the proposed OBSCA-FS approach obtained the best average 

Figure 6.  The CNN structure utilized for MRI dataset.

Table 11.  Control parameters’ values for metaheuristics methods included in the experiments.

Metaheuristics Parameters’ values

GA64 pc = 0.5 , pm = 0.2

FA48 α = 0.5 , β = 0.2 , γ = 1.0

mFA39 α = 0.5 , β = 0.2 , γ = 1.0 , TL = 20 FFEs

BA56 Qmin = 0 , Qmax = 2 , A = 0.5 , r = 0.5

EHO59 noclan = 5 , α = 0.5 , β = 0.1 , noelite = 2

WOA60 a1 linearly decreasing from 2 to 0, a2 linearly decreasing from -1 to -2, b=1

SCA12 a = 2 , r1 linearly decreasing from 2 to 0

Table 12.  MRI tumor grades classification comparative analysis.

Approach Accuracy (%) Dropout

SVM +  RFE67 71.2

Vanilla preprocessing + shallow  CNN68 91.4

CNN LeNet-569 74.9

VGG1970 92.6

DenseNet71 92.7

CNN +  GA64 94.9 0.33

CNN +  mFA39 96.9 0.39

CNN +  BA56 95.6 0.37

CNN +  EHO59 94.8 0.31

CNN +  WOA60 95.5 0.36

CNN +  HHO66 96.5 0.38

CNN +  eHHO66 98.3 0.41

CNN +  FA39 96.1 0.37

CNN +  SCA12 96.8 0.40

CNN + OBSCA-FS 98.6 0.43
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accuracy and the dropout probability of 0.43, clearly outperforming all traditional and metaheuristics approaches 
included in the research.

Figure 7 depicts the box plots for all approaches that were taken in the comparative analysis. It can be noted 
that the proposed OBSCA-FS approach obtained the best solution diversity. In other words, it has the highest 
stability over 10 runs, with the smallest standard deviation. Additionally, once more the proposed OBSCA-FS 
significantly outperformed both SCA and FA methods. Figure 8 shows normalized confusion matrix for two 
best approaches on the MRI dataset, namely the CNN + OBSCA-FS and CNN + eHHO.

Figure 7.  MRI dataset—best solutions diversity over 10 runs results.

Figure 8.  Confusion matrix for OBSCA-FS and eHHO, the two approaches that scored the best results on the 
MRI dataset.
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Conclusion
The research presented in this manuscript proposes a novel automated approach for selecting the regularization 
dropout parameter dp in CNN’s by utilizing the hybridized SCA metaheuristics. The basic SCA is hybridized 
with the FA’s search equation, moreover, the opposite best solution is generated in each iteration to improve the 
algorithm’s exploration abilities.

The proposed OBSCA-FS method was first evaluated on 10 recent CEC2019 bound-constrained benchmarks 
and compared with other state-of-the-art approaches tested with the same experimental data. Reported results, 
as well as conducted statistical tests, deliver the proof that the proposed method performs significantly better 
than other approaches. Moreover, it was shown that the OBSCA-FS outscores basic SCA and FA metaheuristics.

Performance of OBSCA-FS was further validated on practical CNN’s application for optimizing dropout 
probability value, which is very important in preventing overfitting, as one of the most distinguished challenges 
from the machine and deep learning area. Reported classification accuracy over MNIST, CIFAR-10, Semieon, 
and USPS datasets clearly shows that the proposed OBSCA-FS has great potential in this domain. The second 
experiment included the OBSCA-FS practical implementation for MRI classification. The obtained results con-
firmed the performances of the proposed method as superior.

Due to the great potential of the introduced OBSCA-FS algorithm, in future research, it will be tested on 
other machine learning challenges and adapted for solving other practical NP-hard problems from the real-world 
environment. Moreover, the CNN’s regularization will be tackled further by using OBSCA-FS and other similar 
approaches by fine-tuning other parameters like η , α and �.
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