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Abstract In statistical data mining research, datasets often have nonlinearity and at the same time high-dimensionality. It
has become difficult to analyze such datasets in a comprehensive manner using traditional statistical methodologies. In this
paper, a novel wrapper method called SVM-ICOMPPERF -RFE based on a hybridized support vector machine (SVM) and
recursive feature elimination (RFE) with information-theoretic measure of complexity (ICOMP) is introduced and developed
to classify high-dimensional data sets and to carry out subset selection of the features in the original data space for finding
the best subset of features which are discriminating between the groups. Recursive feature elimination (RFE) ranks features
based on information complexity (ICOMP) criterion. ICOMP plays an important role not only in choosing an optimal kernel
function from a portfolio of many other kernel functions, but also in selecting important subset(s) of features. The potential
and the flexibility of our approach are illustrated on two real benchmark data sets, one is ionosphere data which includes
radar returns from the ionosphere, and another is aorta data which is used for the early detection of atheroma most commonly
resulting heart attack. Also, the proposed method is compared with other RFE based methods using different measures (i.e.,
weight and gradient) for feature rankings.
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1. Introduction

In many classification problems there are very high-dimensional input datasets and finding the best subset of the

original input features or variables which mostly contribute to the separation of the classes or groups is a challenge.

Therefore, the problem of feature selection is a difficult combinatorial problem in Machine Learning and it has

very of high practical importance in many applications.

Kernel-based methods have gained popularity for classification, clustering, and regression analysis in machine

learning since the introduction of support vector machine (SVM) during the early 1990s, after obtaining support

vectors (SVs) to classify a data set, questions such as: “How do we know which features are more responsible

for, and important to, the classification?” has often been raised. This is due to the fact that the mapping is not

one-to-one and onto in SVM. The application of a kernel function is thus an uninvertible process, and there is no

way to go from the feature space back to the original space. Because of this geometry, SVM does not land itself
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in an automated internal relevant feature selection easily. Hence algorithms for feature selection play an important

role in SVM .

In the literature of Machine Learning, as discussed in [11] in detail, there are two main approaches to solve the

feature selection problem: (a) the filter approach, and (b) the wrapper approach. Both approaches differ in the way

they evaluate a given feature subset. The filter method uses some relevance measure, which is independent of the

performance of the learning algorithm. On the other hand, in the wrapper method each feature subset is taken into

consideration with the classifier. That is, the features are evaluated by estimating the generalization performance

(i.e. the expected risk) of the learning machine.

In this paper, the wrapper method called SVM-ICOMPPERF -RFE, which combines recursive feature

elimination and an information-theoretic measure of complexity (ICOMP) criterion especially designed for SVM

based on feature selection developed by [12] is considered and emphasized. In the usual RFE, backward feature

elimination is performed to find say, m, features which lead to the largest margin of class separation. This

combinatorial problem is solved in a greedy fashion. In the two-class case the RFE algorithm begins with the set of

all features and successively eliminates the feature which induces the smallest change based on sensitivity analysis

for an appropriately defined cost function which is a measure of predictive ability (and is inversely proportional to

the margin). Then, the RFE algorithm at each step eliminates the feature which keeps this quantity small. Assuming

that the change of the set of support vectors when removing only one feature is negligible.

An information-theoretic measure of complexity (ICOMP) criterion [3, 4, 5, 6, 7] is used in RFE rankings of the

features as an effective measure. ICOMP plays an important role not only in choosing an optimal kernel function

from a portfolio of many other kernel functions, but also in selecting important subset(s) of features. It takes into

account both the badness of fit? or the lack of fit? and the model complexity at the same time in one criterion

function.

The proposed method is compared with two different RFE based methods [12, 32, 10] with two real benchmark

data sets.

The rest of the organization of this paper is as follows. In Section 2, the background of SVM [30, 27, 9] and the

several forms of the kernel functions are presented. In Section 3, the information complexity (ICOMP) criterion

to choose the optimal kernel function and to select the best subset of features using HSVM-RFE is introduced.

Section 4 discusses recursive feature elimination (RFE) technique and provides algorithms for three RFE based

methods. In Section 5, numerical examples are provided to study the efficiency of the proposed method with two

real benchmark data sets. The proposed method and two existing RFE based methods are compared in Section 6.

This paper is concluded by Section 7.

2. Support Vector Machine (SVM)

Consider the case of classifying a set of linearly separable data into two groups. Assume a set of training data is

given by {(x1, y1), · · · , (xn, yn)} where xi is an input vector, yi ∈ (−1, 1) is a binary class index, and n is the

size of training data. SVM finds optimal separating hyperplane that maximizes the margin between the classes

[30]. Then, a decision boundary (i.e. classifier) that partitions the underlying vector space into two classes can be

represented by the following hyperplane:

wTx+ b = 0,

where w is the weight vector and b is the bias. The objective of SVM is to find maximum margin(M) decision

boundary between two parallel hyperplanes, wTx+ b = 1 and wTx+ b = −1. An example of SVM is illustrated

in Figure 1. Since the margin is given by 2/∥w∥, the corresponding optimization problem can be written as follows:

Minimize 1
2∥w∥2 + C

∑n

i=1 ξi

Subject to {
yi(w

Txi + b) ≥ 1− ξi, i = 1, 2, . . . , n
ξi ≥ 0, i = 1, 2, . . . , n
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Figure 1. Illustration of linear SVM for nonlinearly separable case.

where ξi is the positive slack variable and C (> 0) is a pre-defined regularization coefficient. The linearly-

constrained optimization problem can be solved as a dual problem that maximizes the following function:

L(α) =

n∑

i=1

αi −
1

2

n∑

i=1

n∑

i=1

αiαjyiyjK (xi,xj) ,

subject to the constraint

n∑

i=1

αixi = 0, , i = 1, 2, · · · , n

0 ≤ αi ≤ C, i = 1, 2, · · · , n.

Once the optimum values (α∗, b∗) are obtained, based on the training set of points, a new point xnew of the test

data set is classified by the following decision rule:

Class1 if D(xnew) =
∑n

i=1 α
∗
i yiK(xi,xnew) + b∗ < 0

Class2 if D(xnew) =
∑n

i=1 α
∗
i yiK(xi,xnew) + b∗ > 0,

where D(·) is a classifier based on the training data set. K(xi,xnew) is the kernel trick proposed by [1]. The kernel

trick maps input data in the original space with nonlinearly into a high-dimensional feature space. The Table 1

presents some common kernel functions.

3. Information-Theoretic Measure of Complexity

An information-theoretic measure of complexity called ICOMP has been proposed by Bozdogan [3, 4, 5, 7] as a

decision rule for model selection such as AIC [2], and BIC [24]. The development and construction of ICOMP is

based on a generalization of the covariance complexity index originally introduced by [29]. Instead of penalizing

the number of free parameters directly, ICOMP penalizes the covariance complexity of the model. It is defined by

ICOMP = −2 logL(θ̂k) + 2C(Σ̂Model),
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Table 1. Kernel functions.

Function K(X,Y) Parameters

Linear
(
XTY + b

)a
a = 1, b = 0

Polynomial (degree=2)
(
XTY + b

)a
a = 2, b = 1

Polynomial (degree=3)
(
XTY + b

)a
a = 3, b = 1

Gaussian exp
(
−
(

1
ab ∥X−Y∥

2
)c)

a = 2, b = c = 1

Cauchy
(
1+ 1

a
∥X−Y∥

2
)−1

a = 1

Inverse Multi-Quadric
(
∥X−Y∥

2
+ a2

)− 1
2

a = 1

where L(θ̂k) is the maximized likelihood function, θ̂k is the maximum likelihood estimate of the parameter vector

θk under the model Mk, and C represents a real-valued complexity measure and Ĉov(θ̂k) = Σ̂Model represents

the estimated covariance matrix of the parameter vector of the model. ICOMP should not be confused with the

stochastic complexity (SC) or the minimum description length (MDL) of Rissanen [21, 22, 23], although they both

use the notion of complexity of a model class based on coding theory. The detailed information-theoretic measure

of complexity (ICOMP) is recapitulated in the subsections for the benefit of the readers who may not be familiar

with ICOMP criterion.

3.1. Mutual Information in High Dimensions

For a random vector, the complexity is defined as follows.

Definition: The complexity of a random vector is a measure of the interdependency between its components.

A continuous p-variate distribution is used with joint density function f(x) = f(x1, ..., xp) and marginal density

functions fj(xj), j = 1, .., p. Following [15], and [13], the information measure of dependence is defined as

follows:

I(x) = I(x1, ..., xp) = Ef [log
f(x1, . . . , xp)

f1(x1) · · · fp(xp)
]

=

∫ +∞

−∞

· · ·

∫ +∞

−∞

f(x1, . . . , xp) log
f(x1, . . . , xp)

f1(x1) · · · fp(xp)
dx1 · · · dxp

where I(x) is the Kullback-Leibler information divergence [16] against independence. The properties of the

Kullback-Leibler information divergence are as follows:

• I(x) ≡ I(x1, . . . , xp) ≥ 0 i.e., the expected mutual information is nonnegative.

• I(x) ≡ I(x1, . . . , xp) = 0 if and only if f(x1, . . . , xp) = f1(x1) · · · fp(xp) for every p-tuple (x1, . . . , xp), i.e.,

if and only if the random variables x1, . . . , xp are mutually statistically independent.

The KL divergence is related to Shannon’s entropy [25] by the important identity

I(x) ≡ I(x1, . . . , xp) =

p∑

j=1

H(xj)−H(x1, . . . , xp) (1)

where H(xj) is the marginal entropy, and H(x1, . . . , xp) is the global or joint entropy.

[31] calls this latter quantity the strength of structure and a measure of inter-dependence.
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To define the information-theoretic measure of complexity of a multivariate distribution, let f(x) =
f(x1, . . . , xp) be a multivariate Gaussian density function given by

f(x) = f(x1, . . . , xp)

= (2π)−
p

2 |Σ|
− 1

2 exp

{
−
1

2
(x− µ)TΣ−1(x− µ)

}
,

where µ = (µ1, µ2, ..., µp)
T , −∞ < µj < ∞, j = 1, 2, ..., p and Σ > 0 (positive definite).

As a short hand, let

x ∼ Np(µ,Σ).

Then the joint entropy H(x) = H(x1, ..., xp) from equation (1) for the case in which µ = 0 is given by

H(x) = H(x1, ..., xp) = −

∫

Rp

f(x) log f(x)dx (2)

=

∫

Rp

f(x)

[
p

2
log(2π) |Σ|+

1

2
(x− µ)TΣ−1(x− µ)

]
dx

=
p

2
log(2π) |Σ|+

1

2
tr

[∫

Rp

f(x)Σ−1(x− µ)(x− µ)T dx

]
.

Then, since E[(x− µ)(x− µ)T ] = Σ, the joint entropy is

H(x) = H(x1, ..., xp) =
p

2
log(2π) +

p

2
+

1

2
log |Σ|

=
p

2
[log(2π) + 1] +

1

2
log |Σ| .

From equation (2), the marginal entropy H(xj) is

H(xj) = −

∫ +∞

−∞

f(xj) log f(xj)dxj

=
1

2
log(2π) +

1

2
+

1

2
log(σ2

j ), j = 1, 2, . . . , p,

where σ2
j is the variance of the jth variable.

3.2. Initial Definition of Covariance Complexity

[29, p. 61] provides a reasonable initial definition of complexity of a covariance matrix Σ for the multivariate

Gaussian distribution. This measure is given by:

I(x1, ..., xp) ≡ C0(Σ) =

p∑

j=1

H(xj)−H(x1, ..., xp)

=

p∑

j=1

[
1

2
log(2π) +

1

2
log(σjj) +

1

2

]
−

p

2
log(2π)−

1

2
log |Σ| −

p

2
.

This reduces to
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C0(Σ) =
1

2

p∑

j=1

log(σjj)−
1

2
log |Σ| , (3)

where σjj ≡ σ2
j , is the variance of the jth variable, and is the jth diagonal element of Σ.

The characteristics of covariance complexity C0 are as follows:

• C0 (Σ) = 0 if and only if Σ is a diagonal matrix.

• C0 (Σ) = ∞ if and only if |Σ| = 0.

• The first term of equation (3) is not invariant under orthonormal transformations.

As pointed out by [29], the result in equation (3) is not an effective measure of the amount of complexity in the

covariance matrix Σ, since:

• C0(Σ) depends on the coordinates of the original random variables x1, ..., xp.

• The first term of C0(Σ) in equation (3) would change under orthonormal transformations.

3.3. Definition of Maximal Covariance Complexity

To improve upon C0(Σ) in equation (3), we propose the following.

Proposition: A maximal information theoretic measure of complexity of a covariance matrix Σ of a multivariate

Gaussian distribution is defined as follows:

C1(Σ) = max
T

C0(Σ) = max
T

{H(x1) + · · ·+H(xp)−H(x1, ..., xp)}

=
p

2
log

[
tr(Σ)

p

]
−

1

2
log |Σ|

=
p

2
log

λa

λg

,

where the maximum is taken over the orthonormal similarity transformation, T of the overall coordinate systems

x1, ..., xp and λa and λg are arithmetic and geometric means of the eigenvalues. The properties of maximal

information-theoretic measure of complexity are as follows:

• C1 (Σ) is the log ratio between the arithmetic and geometric mean of the eigenvalues.

• C1 (Σ) incorporates the two most basic scalar measures of multivariate scatter - trace and determinant.

• C1 (Σ) → 0 as Σ → Ip.

• As interaction between variables increases, so does C1 (Σ).

3.4. Modified Maximal Covariance Complexity

Following [29], the geometric definition of covariance complexity is defined by the Frobenius norm given by

CF (Σ) =
1

s
∥Σ∥

2
−

(
tr(Σ)

s

)2

,

where ∥Σ∥
2
= tr(ΣTΣ), the square of the Frobenius norm of Σ.

In terms of the eigenvalues (or singular values), CF (Σ) reduces to

CF (Σ) =
1

s

s∑

j=1

(λj − λa)
2,
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where s is the rank of Σ, λj is the jth eigenvalue of Σ > 0, j = 1, 2, . . . , s and λa is arithmetic mean of the

eigenvalues. Note that CF (Σ) ≥ 0 with CF (Σ) = 0 only when all λj = λa.
C1(Σ) can be approximated in terms of the eigenvalues λj , j = 1, 2, . . . , s by

C1(Σ) ∼=
1

4

s∑

j=1

(
λj − λa

λa

)2.

Since in the feature space we are dealing with orthonormal matrices, to prevent the C1 complexity not to go

to zero, we relate C1 and CF as a second order equivalent measure of complexity denoted by C1F . Hence, the

modified maximal entropic complexity C1F (Σ) is defined as follows:

C1F (Σ) =
s

4

CF (Σ)

( tr(Σ)
s

)2
=

s

4

1
s
∥Σ∥

2
−
(

tr(Σ)
s

)2

( tr(Σ))
s

)2
.

In terms of the eigenvalues, C1F (Σ) is given by

C1F (Σ) =
s

4

1
s
tr(ΣTΣ)−

(
tr(Σ)

s

)2

( tr(Σ)
s

)2

=
s

4

1

sλ
2

a

s∑

j=1

(λj − λa)
2

=
1

4λ
2

a

s∑

j=1

(λj − λa)
2.

where s = rank(Σ). The properties of the modified maximal entropic complexity C1F are as follows:

• C1F (Σ) is scale-invariant and C1F (Σ) ≥ 0 with C1F (Σ) = 0 only when all λj = λa.
• C1F (Σ) measures the relative variation in the eigenvalues rather than absolute variation of the eigenvalues.

3.5. ICOMP as a Performance Measure: ICOMPPERF

Singularity of the estimated covariance matrix is a common problem that has recently attracted many researchers’

work. Because of this, many methods have been proposed to make the covariance matrix well-conditioned so

that we can estimate the covariance matrix. The usual response to singular or ill-conditioned covariance matrix

estimates is the “naive” ridge regularization, Σ̂∗ =
[
Σ̂+ αIp

]
, which works to counteract the ill-conditionedness

by adjusting the eigenvalues of Σ̂. The ridge parameter, α, is typically chosen to be very small. This, of course,

begs the questions

• How large of a perturbation do we need?

• How small a perturbation can we get away with?

This is a case where simplicity is not necessarily a good thing; it does not solve the problem with many real

datasets. Yet another approach that does not seem to work well in practice is to augment Σ̂ with a multiple of the

kernel matrix, as suggested by [17]. After much experimentation with a variety of different methods to improve

the condition of the covariance matrix, a stabilization method [28] is applied to resolve the ill-conditioning of a

covariance matrix. After the stabilization procedure, the two-stage stabilization and smoothing process is applied

to provide a well-conditioned covariance matrix which is both nonsingular and positive definite.
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• Stage 1. Stabilization algorithm [28]:

1. Perform spectral decomposition of Σ̂ = VΛVT , where V is the matrix with eigenvectors and Λ has

eigenvalues on the diagonal.

2. Calculate the mean eigenvalue λ = (
p∑

i=1

λi)/p.

3. Form a new matrix of eigenvalues as

Λ∗ =




max(λ1, λ̄) 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 max(λp, λ̄)




4. Finally, recompose the new stabilized matrix

Σ̂STA = VΛ∗VT .

• Stage 2: Compute the Stabilized and Smoothed Convex Sum Covariance Estimator

The second step is to feed the stabilized covariance matrix into a smoothed convex sum covariance matrix estimator

(CSE) was proposed based on the quadratic loss function used by [20] and later by [8]. The stabilized and smoothed

convex sum covariance estimator (STA-CSE) is as follows:

Σ̂STA CSE =
n

n+m
Σ̂STA + (1−

n

n+m
)D̂STA,

where D̂STA = ( 1
p
tr(Σ̂STA))Ip. For p ≥ 2, m is chosen to be

0 < m <
2[p(1 + β)− 2]

p− β
,

where

β =
(tr(Σ̂STA))

2

tr(Σ̂2
STA)

.

This estimator improves upon Σ̂STA by shrinking all the estimated eigenvalues of Σ̂STA toward their common

mean. The motivation of using both stabilization and smoothing of the covariance matrix in the ranking process

of RFE subset selection is to extract more information since a reduced rank problem occurs in the kernel based

methods. To remedy the current existing problems in the usual kernel based methods, the use of both stabilization

and smoothing the covariance matrix is an attractive approach.

The choice of the best mapping function is not so simple and automatic. In the literature, a valid method for

selecting the appropriate kernel function does not yet exist. The goal of SVM is to minimize the probability

of misclassification error. Intuitively, then, the penalty term for a poorly-fitting model would be based on the

classification error rate. In SVM problems, the error variance, σ2 is estimated by the mean squared difference

between actual group labels (yi) and predicted group labels (ŷi) given by

σ̂2 =
1

n

n∑

i=1

(yi − ŷi)
2.
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Now following the work of [14], the information-measure of complexity as performance measure of SVM is

defined as follows:

ICOMPPERF = n log 2π + n log(σ̂2) + n+ 2C1F (Σ̂STA CSE),

where Σ̂STA CSE is the stabilized and smoothed convex sum covariance matrix estimator (STA-CSE) given by

Σ̂STA CSE =
n

n+m
Σ̂STA + (1−

n

n+m
)D̂STA, D̂STA = ( 1

p
tr(Σ̂STA))Ip,

and

C1F (Σ̂STA CSE) =
1

4λ
2

a

s∑

j=1

(λj − λa)
2.

First, the hybrid covariance estimate is calculated, and then the diagonal matrix of the largest singular values as

a reduced rank approximation of Σ̂STA CSE is computed. By minimizing ICOMPPERF , the classification error

is minimized under the best fitting model. Also, ICOMPPERF is used to choose an optimal kernel function. One

of the major motivations of introducing the information measure of complexity (ICOMP) criterion is based on the

fact that in SVM-RFE subset selection problems the number of features is same from one subset to another. In such

cases the models in terms of the number of parameters are considered to be equivalent. In equivalent models, AIC,

BIC, or MDL type criteria do not have provision of distinguishing one equivalent model from another. Since their

penalty terms are fixed, and not varying. In the literature cross-validation-based criteria has been used for feature

selection. These type of criteria due to the high-dimensionality of the feature space are too time-consuming. The

proposed method shortens the feature selection time.

4. Recursive Feature Elimination (RFE)

A feature selection method based on RFE has been developed by [12] which is called SVM-RFE. SVM-RFE is

an application of a recursive feature elimination based on sensitivity analysis using an appropriately defined cost

function (w : weight). The SVM-Gradient-RFE method [32, 10] used the gradient as the cost function. In this

paper, our cost function that we would like to use is the ICOMPPERF . In our approach, the least sensitive feature

which has the minimum value of the ICOMPPERF is eliminated first. This eliminated feature becomes ranking

p (p: number of features). Later, the machine is retrained on the remaining p− 1 features and then the feature

with the minimum value of ICOMPPERF is eliminated. The process continuous in an iterative fashion until no

feature is left in that subset. This means that at the end of this iterative ranking scheme all the features are ranked

according to ICOMPPERF criterion. This is different than the Guyon’s ranking scheme [12] where only weights

have been considered without taking into account the model fit and the complexity of the model. This eliminated

feature becomes ranking p− 1. By doing this process repeatedly until no feature is left, the features will be ranked.

SVM-RFE Algorithm

Let X = (x1, · · · ,xn)
T

be a training set with y = (y1, · · · , yn)
T

.

1. Construct a training model X = X (:, s), where s is the subset of features; s = 1, 2, · · · , p.

2. Until all values of the cost function are obtained with the number of non-ranked features, compute the cost

function for all subset

C(i) = (1/2)αTHα− (1/2)αTH(−i)α,

where H = yiyjK (xi,xj), and H(−i) is H matrix without the ith feature.

3. Find the feature k with the smallest cost function value, and add k into the ranked subset, r and remove k from

a subset, s.

4. Repeat 1-3 until subset, s is empty.
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SVM Gradient-RFE Algorithm

Let X = (x1, · · · ,xn)
T

be a training set with y = (y1, · · · , yn)
T

.

1. Construct a training model X = X (:, s), s is the subset of features; s = 1, 2, · · · , p.

2. Until all values of the average sum of the angles are obtained with the number of non-ranked features,

(i) compute the gradient, ∇(−i)g (x) without ith feature

∇(−i)g (x) =
∑

m∈SV

αmym∇(−i)K (xm,x) .

(ii) compute the sum of angles between ∇(−i)g(x) and em, γ

γ(i) =
∑

m∈SV

∠(∇(−i)g(x), em),

where (−i) means without the ith feature, em is unit vectors, and

∠
(
∇(−i)g (x) , em

)
= minβ∈{0,1}{βπ + (−1)

β
arccos(

⟨∇(−i)g(x)·em⟩

∥∇(−i)g(x)∥
)}.

(iii) compute the average sum of the angles A(i) = 1− 2
π
· γ(i)
|SV | .

3. Find the feature k with the smallest the average sum of the angle A(i), add k into the ranked subset, r and

remove k from subset, s.

4. Repeat 1-3 until subset, s is empty.

Proposed SVM-ICOMPPERF -RFE Algorithm

Let X = (x1, · · · ,xn)
T

be a training set with y = (y1, · · · , yn)
T

.

1. Construct a training model X = X (:, s), s is the subset of features; s = 1, 2, · · · , p.

2. Until all ICOMPPERF values are obtained with the number of non-ranked features, compute ICOMPPERF

based on the error rate obtained from SVM. The ICOMPPERF is given by

ICOMPPERF = n log 2π + n log(σ̂2
(−i)) + n+ 2C1F (Σ̂STA CSE(−i)),

where σ̂2
(−i) is the estimated error variance without the ith feature and Σ̂STA CSE(−i) is the stabilized and smoothed

convex sum covariance matrix estimator without the ith feature in the model.

3. Find the feature k with the smallest ICOMPPERF , add k into the ranked subset, r and remove k from subset, s.

4. Repeat 1-3 until subset, s is empty.

5. Numerical Results

In data mining literature, data partitioning is an important issue to find proper models for new data sets. In general,

one can use different data partitioning to get different results. Most of such data partitioning schemes do not

take into account of randomness that may affect the performance of the results which can be different. In the

analysis, to avoid partitioning dependency, the data is randomly partitioned into 20% as one set and 80% as another

set based on Pareto’s principle [18]. Two experiments are performed with two different sets; 20%/80% and vice

versa as training/test sets. The feature rankings corresponding to kernel functions are determined and reported for

those different sets. Also, the smallest value of ICOMPPERF , and the 95% confidence intervals (CIs) given by

X̄error ± 1.96σ̂error for the training and test errors are reported. Ionosphere and Aorta datasets are used for these

experiments. Figures 2 illustrates radar refraction by ionosphere and heart anatomy.
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Figure 2. Illustration of radar refraction by ionosphere and heart anatomy.

Ionosphere Data

The ionosphere data is radar data which was collected by a system in Goose Bay, Labrador [26]. The system

measures radar returns from the ionosphere. The data consists of 351 observations and 34 features with binary

classes; good and bad returns. Figure 3 shows the scatter plots of the data with groups identified by blue (circle)

and red (cross) colors. As shown in Figure 3, the separation in dimension 5 against dimensions 13, 19 and

dimensions 18, 29 are quite poor. Tables 2 and 3 show performances of experiments based on ICOMPPERF .

In Table 2, the polynomial kernel with degree 3 on the 20% set shows a narrower confidence interval than other

kernel functions for both training and test sets. As shown in Tables 2 and 3, the smallest ICOMPPERF values

are obtained at the polynomial kernel with degree 3 for the 20% set and for the 80% set. Tables 4 and 5 show the

best subset selection based on the smallest ICOMPPERF values. The training and test errors of the best subsets

in both partitioned sets are within the 95% error confidence intervals.

Figure 3. Grouped scatter plots for ionosphere data.
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Table 2. Top subset features selected with 20% set using SVM-RFE ranking.

Kernel Best Subset ICOMPPERF CI for Training CI for Test

Linear {27, 12} 121.14 [0.03046, 0.33089] [0.12241, 0.38356]

Cauchy {1− 9, 11− 34} 87.61 [0.08101, 0.36773] [0.25495,0.42540]

Polynomial(d=2) {2− 20, 22− 30, -47953.45 [0, 0.23670] [0.06150, 0.31593]

32− 34}

Polynomial(d=3) {2, 3, 8, 12− 14, −47957.44 [0, 0.14278] [0.10669, 0.21464]

18, 20, 22, 24− 32}

Table 3. Top subset features selected with 80% set using SVM-RFE ranking.

Kernel Best Subset ICOMPPERF CI for Training CI for Test

Linear {7} 606.94 [0.09676, 0.23190] [0.09271, 0.26610]

Cauchy {3} 441.65 [0.02329, 0.20342] [0,0.38375]

Polynomial(d=2) {5, 14} 454.56 [0,0.13966] [0, 0.18645]

Polynomial(d=3) {5} 441.51 [0,0.09553] [0.02858,0.02696]

Aorta Data

The aorta data are from medical imaging for a study of heart tissue. Hardening of the arteries is the leading cause

of death and debility in the industrial world. Nuclear magnetic resonance (NMR) imaging has a role in diagnosing

of arteries for prognosis of heart attack. The NMR aorta data was used by [19]. The dataset sampled from 418

patients on 20 different characteristics. The first group consists of 194 patients who exhibited early atheroma, and

the second group consists of 224 patients who were healthy. Figure 4 shows grouped scatter plots for the poor

separation of dimension 3 against dimensions 13, 19 and against dimensions 10, 20 (group1: blue, group2: red),

respectively. Tables 6 and 7 show that the best subset based on ICOMPPERF is obtained at the Cauchy kernel

in the 20% set and inverse multi-quadratic kernel in the 80% set. The confidence intervals are obtained based on

ICOMPPERF . The confidence intervals, are significantly narrow intervals in both of the sets. Tables 8 and 9

show the best subset selected based on ICOMPPERF .

6. Comparison with Other RFE Based Methods

To compare three different RFE based methods; SVM-RFE, SVM-Gradient-RFE, SVM-ICOMPPERF -RFE, the

ionosphere and aorta datasets are used with the same kernel functions that are used in Tables 2, 3, 6, and 7.

The datasets are randomly partitioned into two cases; 20%/80% and 80%/20% as training/test sets. Tables 10

and 11 present comparisons of three RFE based methods using the ionosphere data with four different kernel

functions in two different cases. The average error rate represents misclassification error rate for test set. The SVM-

ICOMPPERF -RFE is the clear winner for most kernel functions except the linear kernel in the 80%/20% case.

The best performance is obtained using the Cauchy kernel in the two cases with 88.12% and 93.28% accuracies.

Tables 12 and 13 present comparisons of the three RFE based methods using the aorta data with four different

kernel functions in two different cases. As shown in Tables 12 and 13, the SVM-ICOMPPERF -RFE is the

best method for the polynomial kernel (degree=2) with 99.99% accuracy for the 20%/80% case, the polynomial

kernel (degree=2) with 99.88% accuracy for the 80%/20% case, and the inverse multi-quadratic kernel with 100%
accuracy for the 80%/20% case.
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Table 4. Subset selection based on ICOMPPERF with 20% set (Polynomial: degree=3).

Rank Feature ICOMPPERF Training Error Test Error

1 3 185.9418 0.2 0.19217

2 14 163.3763 0.2143 0.14235

3 24 125.9411 0.1 0.1566

4 26 185.4274 0.1143 0.15302

5 13 190.4090 0.0714 0.15658

6 28 158.2199 0.0571 0.2171

7 2 254.1286 0.1 0.1637

8 8 171.2137 0.0571 0.1459

9 20 123.1558 0.0286 0.1495

10 30 143.0001 0.0143 0.1424

11 12 -47854.7927 0 0.1886

12 18 48313.953 0.0286 0.1708

13 27 136.8903 0.0143 0.1068

14 31 273.9907 0.0429 0.1388

15 25 -47934.01 0 0.1174

16 29 201.188 0 0.1352

17 32 48348.9985 0.0571 0.1779

18 22 −47957.4425 0 0.1708
19 6 48366.0982 0.0571 0.1779

20 16 96.5792 0.0143 0.1851

21 5 -47867.1294 0 0.1566

22 4 48260.6735 0.0143 0.1495

23 11 -47852.1665 0 0.2242

24 10 196.314 0 0.1566

25 34 200.772 0 0.1388

26 1 48249.2818 0.0143 0.1459

27 19 -47847.3168 0 0.1957

28 33 185.951 0 0.121

29 21 205.575 0 0.1637

30 7 204.57 0 0.2135

31 23 208.216 0 0.1388

32 9 188.548 0 0.1744

33 17 48266.3703 0.0143 0.1388

34 15 -47870.1323 0 0.1566

Figure 5 shows line plots of error rates for the test set with the Cauchy kernel function which gives smallest

average error rates using the ionosphere data shown in Tables 10 and 11. Figure 6 shows line plots of error rates for

the test set with the polynomial kernel (degree=2) and inverse multi-quadratic kernel functions, which give smallest

average error rates using the aorta data shown in Tables 12, and 13. The SVM-ICOMPPERF -RFE is competitive

with both SVM-RFE and SVM-Gradient-RFE as shown in Figure 5. Also, SVM-ICOMPPERF -RFE outperforms

both SVM-RFE and SVM-Gradient-RFE with few features as shown in Figure 6.
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Table 5. Subset selection based on ICOMPPERF with 80% set (Polynomial: degree=3).

Rank Feature ICOMPPERF Training Error Test Error

1 5 441.5118 0.1708 0.1714
2 4 541.7953 0.0890 0.1143

3 14 698.4002 0.0676 0.1714

4 34 838.3473 0.0819 0.0857

5 33 717.6374 0.0605 0.1143

6 30 754.7581 0.0534 0.0857

7 18 752.3821 0.0463 0.1286

8 22 769.0320 0.0427 0.0857

9 6 772.8447 0.0391 0.0571

10 16 768.1328 0.0356 0.0857

11 31 697.4870 0.0249 0.0714

12 32 795.0805 0.0249 0.1143

13 26 834.1837 0.0285 0.0857

14 25 603.7533 0.0142 0.1571

15 10 950.3118 0.0249 0.0429

16 12 640.0070 0.0142 0.1429

17 8 717.9700 0.0107 0.1286

18 20 797.0560 0.0107 0.0429

19 2 679.8700 0.0071 0.0714

20 29 801.4970 0.0071 0.1286

21 24 911.7650 0.0107 0.1143

22 28 682.2560 0.0071 0.1143

23 21 907.2940 0.0107 0.0571

24 3 689.8410 0.0071 0.0714

25 27 911.3660 0.0107 0.1000

26 7 501.0110 0.0036 0.1286

27 23 994.9170 0.0071 0.1000

28 19 817.5010 0.0071 0.1143

29 13 612.9350 0.0036 0.0857

30 17 1008.7330 0.0071 0.0429

31 11 808.4890 0.0071 0.0714

32 15 623.0110 0.0036 0.0857

33 1 1001.9020 0.0071 0.0429

34 9 628.2170 0.0036 0.1143

Table 6. Top subset features selected with 20% set using SVM-RFE ranking.

Kernel Best Subset ICOMPPERF CI for Training CI for Test

Cauchy {4} −57785.1 [0,0] [0,0.00767]

Gaussian {12, 13, 14, 17} -57071 [0,0.1171] [0,0.2881]

Polynomial(d=2) {4} -57679 [0,0] [0,0.0270]

Inv. Multi-Quadratic {7, 15, 17, 20} -57414.62 [0,0.0434] [0,0.2467]
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Figure 4. Grouped scatter plots for aorta data.

Table 7. Top subset features selected with 80% set using SVM-RFE ranking.

Kernel Best Subset ICOMPPERF CI for Training CI for Test

Cauchy {7, 15, 20} -228526.1 [0,0.1254] [0,0.2610]

Gaussian {2} -229734.4 [0,0] [0,0.0103]

Polynomial(d=2) {4} -229608 [0,0] [0,0]

Inv. Multi-Quadratic {4} −229759.2 [0,0] [0,0]

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

Cauchy with 20% Set

# of Variables based on Ranking

E
rr

o
r 

R
a
te

SVM-RFE

SVM-GRAD-RFE

SVM-ICOMP-RFE

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

Cauchy with 80% Set

# of Variables based on Ranking

E
rr

o
r 

R
a
te

SVM-RFE

SVM-GRAD-RFE

SVM-ICOMP-RFE

(a) (b)

Figure 5. Best results of SVM-ICOMPPERF -RFE using ionosphere data: (a) Cauchy kernel function with 20% set (b)
Cauchy kernel function with 80% set.

7. Conclusion and Discussion

In this paper, a novel SVM-ICOMPPERF -RFE method is proposed using an information complexity

(ICOMPPERF ) criterion. SVM-RFE is used in conjunction with ICOMPPERF not only to choose an optimal
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Table 8. Subset selection based on ICOMPPERF with 20% set (Cauchy).

Rank Feature ICOMPPERF Training Error Test Error

1 4 −57785.101 0 0

2 14 236.839 0 0

3 20 238.263 0 0

4 5 238.381 0 0

5 12 238.382 0 0

6 10 238.382 0 0

7 11 238.381 0 0.006

8 13 238.382 0 0.003

9 17 238.382 0 0.006

10 9 238.381 0 0

11 1 238.382 0 0

12 19 238.382 0 0

13 18 238.381 0 0

14 16 238.382 0 0

15 3 238.382 0 0

16 6 238.381 0 0.003

17 2 238.382 0 0

18 8 238.382 0 0.012

19 15 238.381 0 0

20 7 238.382 0 0

Table 9. Subset selection based on ICOMPPERF with 80% set (Inv. Multi-Quadratic).

Rank Feature ICOMPPERF Training Error Test Error

1 4 −229759.22 0 0

2 7 941.35 0 0

3 15 945.22 0 0

4 20 946.32 0 0

5 16 947.29 0 0

6 5 947.53 0 0

7 17 947.71 0 0

8 10 947.77 0 0

9 14 947.82 0 0

10 6 947.8 0 0

11 8 947.84 0 0

12 18 947.85 0 0

13 11 947.83 0 0

14 13 947.85 0 0

15 1 947.84 0 0

16 12 947.86 0 0

17 9 947.84 0 0

18 2 947.84 0 0

19 19 947.84 0 0

20 3 947.85 0 0
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Figure 6. Best results of SVM-ICOMPPERF -RFE using aorta data: (a) Polynomial kernel (degree=2) function with 20%

set (b) Inverse Multi-Quadratic kernel function with 80% set.

Table 10. Comparison using ionosphere data with 20%/80%.

SVM-RFE SVM-Gradient-RFE SVM-ICOMPPERF -RFE

Average Average Average

Error Rate Error Rate Error Rate

Linear 0.22273 0.19552 0.19510

Cauchy 0.16381 0.16140 0.11880

Polynomial(d=2) 0.19992 0.18903 0.17522

Polynomial(d=3) 0.21572 0.21195 0.18830

Table 11. Comparison using ionosphere data with 80%/20%.

SVM-RFE SVM-Gradient-RFE SVM-ICOMPPERF -RFE

Average Average Average

Error Rate Error Rate Error Rate

Linear 0.15546 0.15420 0.16177

Cauchy 0.08908 0.09454 0.06723

Polynomial(d=2) 0.16933 0.13445 0.13277

Polynomial(d=3) 0.17941 0.15840 0.13656

Table 12. Comparison using aorta data with 20%/80%.

SVM-RFE SVM-Gradient-RFE SVM-ICOMPPERF -RFE

Average Average Average

Error Rate Error Rate Error Rate

Cauchy 0.00374 0.13488 0.04880

Gaussian 0.05749 0.13084 0.10195

Polynomial(d=2) 0.05404 0.11033 0.00015

Inv. Multi-Quadratic 0.02784 0.12590 0.05434
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Table 13. Comparison using aorta data with 80%/20%.

SVM-RFE SVM-Gradient-RFE SVM-ICOMPPERF -RFE

Average Average Average

Error Rate Error Rate Error Rate

Cauchy 0.01548 0.07738 0.04167

Gaussian 0.02083 0.06310 0.03393

Polynomial(d=2) 0.03095 0.05 0.00119

Inv. Multi-Quadratic 0.03929 0.06845 0

kernel function from a portfolio of many other kernel functions, but also to select important subset(s) of features.

The numerical examples on two benchmark datasets show that the proposed hybridized method exhibits a

promising performance for feature subsetting and the optimal kernel selection. This method provides a unification

of both ICOMPPERF as the feature selection criterion and RFE as the search algorithm. In this framework,

ICOMPPERF is a key cost function. Furthermore, the hybrid covariance matrix known as stabilized and smoothed

convex sum covariance estimator (STA-CSE) is used to avoid the singularity in the kernel based methods. In the

literature related to recursive feature elimination such stabilization issues have not been addressed before. As shown

in Tables 10, 11, 12, and 13, the comparisons of feature ranking methods demonstrate that SVM-ICOMPPERF -

RFE is a promising way to obtain the best subset of features. Further research is being currently carried out to

extend these new results from binary SVM to multi-class SVM environment. The results of this research findings

will be reported under a separate paper in different application areas.
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