
744 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 5, SEPTEMBER 2012

Hybridizing Differential Evolution and Particle
Swarm Optimization to Design Powerful

Optimizers: A Review and Taxonomy
Bin Xin, Member, IEEE, Jie Chen, Member, IEEE, Juan Zhang, Hao Fang, and Zhi-Hong Peng

Abstract—Differential evolution (DE) and particle swarm op-
timization (PSO) are two formidable population-based optimiz-
ers (POs) that follow different philosophies and paradigms, which
are successfully and widely applied in scientific and engineering
research. The hybridization between DE and PSO represents a
promising way to create more powerful optimizers, especially for
specific problem solving. In the past decade, numerous hybrids of
DE and PSO have emerged with diverse design ideas from many
researchers. This paper attempts to comprehensively review the
existing hybrids based on DE and PSO with the goal of collection
of different ideas to build a systematic taxonomy of hybridization
strategies. Taking into account five hybridization factors, i.e., the
relationship between parent optimizers, hybridization level, oper-
ating order (OO), type of information transfer (TIT), and type of
transferred information (TTI), we propose several classification
mechanisms and a versatile taxonomy to differentiate and ana-
lyze various hybridization strategies. A large number of hybrids,
which include the hybrids of DE and PSO and several other rep-
resentative hybrids, are categorized according to the taxonomy.
The taxonomy can be utilized not only as a tool to identify dif-
ferent hybridization strategies, but also as a reference to design
hybrid optimizers. The tradeoff between exploration and exploita-
tion regarding hybridization design is discussed and highlighted.
Based on the taxonomy proposed, this paper also indicates several
promising lines of research that are worthy of devotion in future.

Index Terms—Differential evolution (DE), evolutionary opti-
mization, exploration and exploitation, hybridization strategies,
memetic algorithms (MAs), particle swarm optimization (PSO),
population-based metaheuristics, taxonomy.

I. INTRODUCTION

O
PTIMIZATION has long been a popular topic in scientific

research. This is mainly because we human beings are of-

ten in pursuit of perfection, such as maximal profit and minimal

Manuscript received March 21, 2011; accepted June 23, 2011. Date of pub-
lication August 8, 2011; date of current version August 15, 2012. This work
was supported by the National Science Fund for Distinguished Young Schol-
ars under Grant 60925011 and the National Natural Science Foundation of
China 60805035/F0306. This paper was recommended by Associate Editor
J. Lazansky.

B. Xin is with the School of Automation, Beijing Institute of Technology, and
with the Key Laboratory of Complex System Intelligent Control and Decision,
Ministry of Education, Beijing 100081, China, and also with the Decision and
Cognitive Sciences Research Centre, Manchester Business School, the Univer-
sity of Manchester, Manchester M15 6PB, U.K. (e-mail: brucebin@bit.edu.cn).

J. Chen, J. Zhang, H. Fang, and Z.-H. Peng are with the School of Au-
tomation, Beijing Institute of Technology, and also with the Key Laboratory
of Complex System Intelligent Control and Decision, Ministry of Educa-
tion, Beijing 100081, China (e-mail: chenjie@bit.edu.cn; zhjuan@bit.edu.cn;
fangh@bit.edu.cn; peng@bit.edu.cn).

Digital Object Identifier 10.1109/TSMCC.2011.2160941

cost. Besides, the practical problems are vastly varied so that

it is hard to find a universal optimizer without any changes to

best solve all problems. The diversity of problems contributes

to the diversity of optimizers to a large extent. Therefore, it

is not unusual to see that numerous optimizers have emerged

since Dantzig proposed the simplex method for the linear pro-

gramming problem in 1947 as an inception of optimization

research [1]. Now, increasingly, problems turn out to be nonlin-

ear, nonconvex, multimodal, discontinuous, and even dynamic.

For these complicated problems, stochastic optimizers become

favored as they have no dependence on the differentiability,

continuity, and convexity of objective functions. Besides, many

stochastic optimizers have good performance in global opti-

mization. In the family of stochastic optimizers, well-known

typical optimizers include the genetic algorithm (GA) [2], evo-

lutionary strategy (ES) [3] (CMA-ES [4] in particular), evo-

lutionary programming (EP) [5], simulated annealing (SA) [6],

ant-colony optimization (ACO) [7], particle swarm optimization

(PSO) [8], differential evolution (DE) [9], estimation of distri-

bution algorithm (EDA) [10], and so on. All of them have many

variants, which have excellent performance. These variants are

based on various improvement strategies.

Hybridization is one of the most efficient strategies to im-

prove the performance of many optimizers [11]–[15]. In genet-

ics, hybridization is the process to combine different varieties

or species of organisms to create a hybrid (biology). In evolu-

tionary algorithms (EAs), hybridization refers to merging two

or more optimization techniques into a single algorithm. In the

research field of combinatorial optimization, hybrid optimiz-

ers are also termed as hybrid metaheuristics [15]–[18]. In the

past decade, hybrid optimizers have attracted persistent atten-

tion from scholars that are interested in design of optimizers

and their applications [11]–[18]. As Raidl claimed in his unified

view of hybrid metaheuristics [18], it seems that choosing an

adequate hybrid approach is determinant to achieve top perfor-

mance in solving most difficult problems.

Like the crossover operator in GAs [2], hybridization con-

tributes to population diversity but the population here means

the family of optimizers. There are many successful examples

of hybridization in the evolution process of this family (e.g.,

[19]–[28]). A common template for hybridization is provided

by memetic algorithms (MAs), which combine the respective

advantages of global search and local search (LS) [19]. Due to

excellent performance, MAs have been favored by many schol-

ars in their research on different optimization problems [29].

However, MAs only represent a special class in the family of

1094-6977/$26.00 © 2011 IEEE

XIN et al.: HYBRIDIZING DIFFERENTIAL EVOLUTION AND PARTICLE SWARM OPTIMIZATION TO DESIGN POWERFUL OPTIMIZERS 745

hybrid optimizers. There are manifold possibilities of hybridiz-

ing different optimizers, which follow diverse philosophies and

paradigms.

This review paper aims to establish a comprehensive taxon-

omy of hybridization strategies by the review of existing hybrid

optimizers that are based on two powerful POs—DE and PSO.

To build a unified nomenclature, we term any optimizer that is

based on hybridization between DE and PSO as DEPSO. To

date, it is impossible to list all kinds of hybrids within a paper of

tens of pages, since there are too many hybrids that exist in the

literature (about 1450 000 related works according to the Google

search result with the index terms “hybrid algorithm” and “opti-

mization”). One reason we choose DEPSO as the representative

for hybrid optimizers to build the taxonomy is that both PSO

and DE are POs that involve masses of hybridization factors.

Besides, a large number of DEPSO variants have been proposed

in the literature, laying a solid foundation for the establishment

of a comprehensive taxonomy. Moreover, as pointed out later,

the proposed taxonomy that is based on DEPSO can be easily

applied to other hybrid optimizers. In order to provide a com-

prehensive reference to design powerful hybrid optimizers, we

pool diverse ideas of scholars who have contributed to DEPSO’s

development. The contribution of this paper is that it provides

readers not only a review on hybridization of DE and PSO, but

more importantly a broader sight and a tool on how to differen-

tiate and design different hybrid optimizers by a comprehensive

systematic taxonomy of hybridization strategies.

This paper is structured as follows. In Section II, a brief in-

troduction on PSO and DE is presented. In Section III, previous

works on DEPSO are reviewed. In Section IV, a new taxonomy

of hybridization strategies is proposed in an attempt to provide a

common terminology and classification mechanisms. Most ex-

isting DEPSOs to date and other typical hybrid optimizers are

categorized according to the taxonomy. In Section V, we present

a discussion about some common issues of hybrid optimizers

(not restricted to DEPSO) and indicate a number of topics that

are worthy of future research. In Section VI, we conclude the

paper.

II. DIFFERENTIAL EVOLUTION AND PARTICLE

SWARM OPTIMIZATION

A. Classical Differential Evolution

The DE proposed by Storn and Price [9], [30] is a formidable

PO, which has been widely applied in practice [30]–[35]. It

was established on the framework of GAs and inspired by the

Nelder–Mead simplex method [30]. It has three operators—

mutation, crossover, and selection—which are similar to GAs.

However, the mutation in DE is a distinct innovation. It is

based on the difference of different individuals, borrowing ideas

from the Nelder–Mead simplex method. A general notation for

DE is DE/x/y/z, where x specifies the base vector to be mu-

tated, y is the number of difference vectors used, and z denotes

the crossover scheme [30]. The most classical DE variant is

DE/rand/1/bin. In this variant, for the mutation of the ith indi-

vidual in the DE population{xi |i = 1, 2, . . . ,PS}, three differ-

ent individuals xr1 , xr2 , and xr3 with r1 �= r2 �= r3 �= i will

be randomly (rand) chosen from the population to generate a

new vector. The new vector can be expressed as follows:

zi = xr1
︸︷︷︸

base

+F · (xr2 − xr3)
︸ ︷︷ ︸

indiv .diff .

(1)

where F is the so-called scaling factor, which is a positive

constant. A general setting for this factor is F ∈ [0, 2]. However,

Storn and Price suggest F ∈ [0.5, 1] as such a setting may result

in good optimization effectiveness [9]. In addition, there are

many advanced DE variants, which are based on the dynamic

tuning of this parameter (e.g., [36] and [37], see also the survey

[32] on DE for more introduction).

After mutation, a binominal (bin) crossover operates on the

vector zi and the target vector xi to generate the final vector ui

in the following way:

ui,d =

{
zi,d , if randd

i ≤ CR or d == rni ;

xi,d , otherwise
(2)

where xi,d , zi,d , and ui,d are the dth dimensional components

of the vectors xi , zi , and ui , respectively; CR is the predefined

crossover probability, which is usually set to a fixed value in

(0,1) or changes dynamically within (0,1); rni is a number that

is randomly selected from the index set {1, 2, . . . , D} and used

to ensure that the trial vector ui is different from the original

solution xi .

Finally, ui will be compared with xi , and the better one will

be selected to be a member of the DE population for the next

generation. This replacement scheme is de facto a one-to-one

tournament selection.

Another typical DE variant is DE/best/2/bin [9]. It shares

much similarity with DE/rand/1/bin except for the mutation

strategy. The DE/best/2 mutation can be described as follows:

zi = xbest
︸ ︷︷ ︸

base

+F · (xr1 − xr2 + xr3 − xr4)
︸ ︷︷ ︸

individual difference

(3)

where xbest is the best individual in the current population;

xr1 , xr2 , xr3 , and xr4 are four different individuals that are

randomly chosen from the current population. The following

two DE mutation strategies are also used in the literature.

1) DE/current-to-best/1(DE/target-to-best/1) [30], [37]

zi = xi + λ · (xbest − xi)
︸ ︷︷ ︸

base

+F · (xr1 − xr2)
︸ ︷︷ ︸

individual difference

. (4)

2) DE/mid-to-better/1 [38], [39]

zi = (xi + xbetter)/2 + λ · (xbetter − xi)
︸ ︷︷ ︸

base

+F

· (xr1 − xr2)
︸ ︷︷ ︸

individual difference

. (5)

Here, xbetter is an individual that is randomly selected from

the DE population, and its fitness is better than (or equal to)

that of xi ; and λ is a scale coefficient with 0 < λ < 1, and it is

often set to the same value as F . More DE variants can be found

in [30] and [31].

746 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 5, SEPTEMBER 2012

B. Classical Particle Swarm Optimization

The particle swarm optimizer that is proposed by Kennedy

and Eberhart is also a powerful tool in search and optimiza-

tion [8]. During the past decade, PSO has been successfully

and widely applied in the practice of science and engineer-

ing (e.g., [40]–[43]), which demonstrates the superiority of this

algorithm. Originally, PSO was inspired by the cooperative be-

havior of animal groups, such as bird flocks. In PSO, many parti-

cles form a swarm, which flies through D-dimensional problem

space. Each particle has its own velocity and fitness value. Parti-

cles accumulate their own experiences about the problem space

and, meanwhile, learn from each other according to their fitness

values. The iteration equations for the velocity and position in

PSO with inertia weight (PSO-w) [44] are given as follows:

vk+1
i,d = w · vk

i,d
︸ ︷︷ ︸

inertia

+ c1 · rand1 · (pbestk
i,d − xk

i,d)
︸ ︷︷ ︸

individual cognition

+ c2 · rand2 · (nbestk
i,d − xk

i,d)
︸ ︷︷ ︸

social learning

(6)

xk+1
i,d = xk

i,d + vk+1
i,d (7)

where xk
i = [xk

i,1 , x
k
i,2 , . . . , x

k
i,D]T and vk

i = [vk
i,1 , v

k
i,2 , . . . ,

vk
i,D]T represent the position and velocity of the ith particle at

the kth generation (i = 1, 2, . . . ,PS; PS is the population size),

respectively; pbestk
i = [pbestk

i,1 ,pbestk
i,2 , . . . ,pbestk

i,D]T is

the best position that is found so far by the ith particle;

nbestk
i = [nbestk

i,1 ,nbestk
i,2 , . . . ,nbestk

i,D]T is the best po-

sition that is found by particles in the neighborhood of the ith
particle; and rand1 and rand2 are the random numbers that are

uniformly distributed in [0,1].

The PSO parameter w is the so-called inertia weight, and a

common setting of this parameter is w∗ = 0.7298, which cor-

responds to the constriction factor that is proposed by Clerc

and Kennedy [45]. Concerning another setting that is frequently

adopted in the literature, the inertia weight is dynamically ad-

justed, decreasing from a number around 1 to a smaller number

around zero [46], [47]. c1 and c2 are acceleration coefficients,

which are also termed as the cognitive factor and the social fac-

tor, respectively. Both of them are set to 0.7298 × 2.05 ≈ 1.496
in the PSO with the constriction factor (PSO-cf) [45].

One kernel of PSO is population topology, which is also

termed as neighborhood or information topology, specifying

the social structure of particle swarm [48]–[50]. Information

such as the best position that is found by some particle can only

be transferred to its neighbors that are determined by population

structure. The population topology has obvious effects on the

spreading speed of information and the convergence of particle

swarm [48]. Different population topologies correspond to dif-

ferent PSO versions [49], [50]. The most well-known topology

models are Gbest and Lbest. In the Gbest model, each parti-

cle’s neighborhood covers the whole swarm and all particles are

connected with each other. Usually, “gbest”is used to repre-

sent the best position found by the whole swarm. In the Lbest

model, particles are not fully connected and each particle has

fewer neighbors than its Gbest counterpart. The “Ring” topol-

ogy in which each particle is connected to two neighbors to

form a “ring,” and the von Neumann topology in which each

particle has four neighbors on a two-dimensional (2-D) lattice

(left, right, above, and below) are typical Lbest topologies [50].

Obviously, the Gbest model can be regarded as a special case of

the Lbest model.

C. Unified Views on Particle Swarm Optimization

and Differential Evolution

A unified view is advantageous to understand the similari-

ties and differences of diverse optimizers and identify the fun-

damental ingredients for hybridization. From the introduction

given earlier, it is easy to see that both DE and PSO are POs,

manipulating multiple solutions in parallel. Sun et al. pointed

out that the essence of population-based optimizers is to con-

struct the sampling probability distribution from which the next

population is generated [51]. Regarding the sampling distribu-

tion of DE and PSO, several scholars have conducted some

pioneering research [52]–[55]. Ali et al. derived the probability

distribution of trial points in DE and proposed a point genera-

tion scheme to approximate the distribution [52]. Poli analyzed

the sampling distribution of a classical PSO with the assump-

tion of stagnation and used it to explain the search behavior of

PSO [53]. Particularly, Kennedy proposed a simplified PSO ver-

sion [named barebones PSO (BBPSO)] with an attempt to more

concisely reflect the essence of the PSO paradigm, i.e., the social

interaction of individuals [54]. In this compact PSO, the velocity

formula is eliminated, while the sampling distribution of classi-

cal PSO is retained by the employment of a Guassian sampling

approach. Kennedy suggests the normal distribution xk+1
i,d ∼

N
(
(pbestk

i,d + nbestk
i,d)/2, |pbestk

i,d − nbestk
i,d |

)
for the

Guassian sampling on each dimension [54]. It is evident that

the direct sampling approach still encompasses the collaborative

interaction of population members [55]. Omran et al. borrowed

the idea of Kennedy’s BBPSO to design a self-adaptive bare-

bones DE based on DE/rand/1/bin [56]. The base vector and

individual difference of DE/rand/1/bin are taken as the mean

and standard deviation of the Gaussian sampling distribution

for the barebones DE, respectively.

In terms of the sampling approach, there is a big difference be-

tween DE and PSO. The sampling of PSO integrates individual

cognition (pbest) and social collaboration (nbest). In contrast,

individual experience (pbest) is seemingly not utilized in DE to

guide its sampling behavior. DE relies on differential mutation

and crossover to generate trial points by means of the usage of

the difference of randomly selected individuals to perturb base

vectors. However, it is worth noting that the one-to-one tourna-

ment selection that is employed by DE ensures any individual

to be its own up-to-date pbest. Stated another way, at any time

k, pbestk
i = xk

i (i = 1, 2, . . . ,PS) hold in DE. (This is usually

not the case for PSO.) In view of this fact, we can deem the

sampling of DE as a combination of pbest and perturbed base

vectors [see (1) and (2)]. Particularly, in DE/best/2/bin, the base

vector is the so-far-best individual (i.e., gbest). Therefore, this

DE variant shares some similarity with the Gbest PSO in terms

of the sampling approach.

XIN et al.: HYBRIDIZING DIFFERENTIAL EVOLUTION AND PARTICLE SWARM OPTIMIZATION TO DESIGN POWERFUL OPTIMIZERS 747

In [57], Xie and Zhang proposed a swarm algorithm frame-

work (SWAF) that is realized by agent-based modeling, regard-

ing each individual (agent) as a barebones cognitive architec-

ture, which gains knowledge by the appropriate deployment of

a set of simple rules. In fact, the SWAF provides us a template

from the perspective of cognition to comprehend the similarities

and differences of diverse population-based metaheuristics that

include PSO and DE. In the SWAF, PSO, and DE, to employ

different generate-and-test rules, are both regarded as socially

biased individual learning heuristics [57].

On the implementation of diverse metaheuristics, Taillard

et al. set forth a unifying view from the perspective of adap-

tive memory-based programming [58]. Although the concept of

memory is usually regarded as a kernel in tabu search [59] and it

is usually not stressed in the DE and PSO literature, both DE and

PSO have to maintain a memory to record personal best infor-

mation. Calégari et al. proposed a taxonomy of EAs, taking into

account multiple classification criteria, such as population siz-

ing strategy and population structure [60]. Both DE and PSO can

adopt a static (constant) or dynamic population size [61]–[65];

howbeit, they differ in terms of population structure as DE orig-

inally does not differentiate population topologies.

Greistorfer and Voβ proposed a “pool” template to cover di-

verse classes of metaheuristics [18], [66]. The template uses the

metaphor of “pool” to describe the set of candidate solutions that

are possibly chosen as ingredients for subsequent recombination

methods or as start solutions for improvement methods (IMs).

In fact, the pool is a concept that is equivalent to the memory,

which Taillard et al. emphasized in [58]. Various metaheuris-

tics can be differentiated in terms of IM, solution combination

method (SCM), and the use and update of the pool. We can also

comprehend the similarities and differences between DE and

PSO according to this template. First, as mentioned earlier, nei-

ther classical DE nor classical PSO employs IMs though there

exist several advanced variants of DE and PSO, which incorpo-

rate LS techniques as an improvement strategy [67]–[71]. Sec-

ond, DE takes differential mutation and crossover as its SCM,

while the SCM of PSO is a random combination of pbest and

nbest.

As for the pool, both DE and PSO keep only a pool of pbest

information, which contains nbest and gbest information, that

is to say, any visited solution that is inferior to pbest will be

discarded and not used in subsequent samplings. The use and

update of the pool here implies a somewhat greedy selection

scheme and a higher selection pressure. Purely relying on the

pbest information to guide the search may result in loss of

valuable information that is contained in other samplings and

miss some opportunities to achieve a more efficient exploration

or exploitation. An in-depth utilization of the search history that

includes those inferior solutions provides us a viable way to

improve the performance of optimizers.

To summarize, DE and PSO are similar in terms of the

basic features of POs. They differ mainly in terms of sam-

pling approach. DE depends on a difference-based perturba-

tion and crossover to achieve its sampling, while PSO follows

the paradigm to combine individual cognition and population-

topology-dependent social learning.

III. PREVIOUS DEPSOS

Following the terminology in GAs, we regard DE and PSO

as the parents of DEPSO. As a burgeoning optimizer, DEPSO

has shown its prominent advantage and prosperity, which are

witnessed by the diversity of DEPSO variants and their ap-

plications [28], [72]–[126]. Besides, DEPSO has been further

hybridized with other optimizers, giving birth to more compli-

cated hybrids [127]–[129]. In the past decade, many scholars

have made contributions to DEPSO research. In the sequel, we

will review existing DEPSOs by grouping them into three cate-

gories according to their basic features: 1) collaboration-based

DEPSO; 2) embedding-based DEPSO; and 3) assistance-based

DEPSO. The classification criterion here only considers the re-

lationship between parent optimizers for hybridization.

Collaboration here means that parent optimizers cooper-

ate with each other in problem space to seek the optimum,

they share or exchange accumulated information during their

search, and their own operating manners are maintained, re-

spectively. In contrast, the operating manners of parent optimiz-

ers in embedding-based hybrids will be changed and cannot be

separated explicitly. In this case, it is hard to separate their con-

tribution to fitness improvement since the parents are integrated

into a holistic hybrid optimizer. In contrast, assistance leads to

a very special hybridization strategy in which one parent will

not generate new sampling points in search space but serve as

an assistance of another parent. For example, one parent under

the assistance relationship may work in the parameter space

of another one. It should be noted that a point in search space

can be regarded as a sampling point only if it undergoes fitness

evaluation. Usually, the assistant will keep its own operating

manner, which is a very important feature for distinguishing

“assistance” from “embedding.” The following is a mathemati-

cal formulation of the three kinds of parent relationship:

Collaboration

{

Parent A fA : S
(nA (t))
s �→ S

(nA (t+1))
s [Sob]

Parent B fB : S
(nB (t))
s �→ S

(nB (t+1))
s [Sob]

Assistance-Parent B

fB : S(nA (t))
s

ParentAfA :S �→S
−−−−−−−−−→ S(nB (t+1))

s [Sob]

Embedding-Parent A and B

fA⊕B : S(nA (t))
s �→ S(nB (t+1))

s [Sob]

where fA and fB represent the mapping of parents A and B,

respectively; Ss and Sob are the solution space and the ob-

jective space, respectively; S
(n)
s = Ss

1
×Ss

2
× · · · × Ss

n
; n(t)is

the population size (the optimizer adopts a static population

sizing strategy if n(t) = const, and a dynamic strategy other-

wise); [Sob] indicates that solutions that are generated will go

through objective evaluation. In the case of assistance, parent

A as the assistant of parent B can work in different spaces, i.e.,

S ∈ {Sp , Sop , Ss , Sit , . . .} (where Sp is parameter space, Sop

is operator (optimizer) space, and Sit is information topology

space), and the mapping fA reflects the complete operation of

parent A. The whole mapping in the case of assistance can be

regarded as a composite mapping fB ◦ fA , and the operations

748 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 5, SEPTEMBER 2012

of parents can be differentiated. In the case of embedding, fA⊕B

represents a nonseparable hybrid mapping in which parents A

and B are integrated into a new holistic operator.

In order to differentiate various DEPSOs conveniently, we

will name a given DEPSO by combining the initial of the last

name of each scholar, who created the DEPSO, into a suffix that

follows the terminology “DEPSO.”

A. Collaboration-Based DEPSOs

In [72], a combined swarm DE algorithm (namely DEPSO-H)

is proposed, which is a hybrid optimizer based on PSO and DE.

To the best of our knowledge, DEPSO-H is the first DEPSO that

is reported in the literature. In this DEPSO, particle positions

are updated only if their offspring have better fitness. DE acts

on the current positions of particles in the PSO swarm at speci-

fied intervals. Here, the DE algorithm is DE/rand/1/bin, and the

PSO algorithm is a variant of the Gbest PSO. A very similar

DEPSO (namely DEPSO-RJAMB) was proposed by Ramesh

et al. to solve economic dispatch problems [73]. Its DE and

PSO parents share and update the current positions of particles

in their respective manners. Ramesh et al. claimed that DEPSO-

RJAMB combines the vibrancy and explorative nature of PSO

with the superior exploitative nature of hybrid DE (HDE). Note

that the HDE is de facto a memetic DE that is proposed by Lin

et al., which hybridizes DE/rand/1/bin with a LS method (steep-

est descent search) [130].

Another typical example is the DEPSO that is proposed by

Zhang and Xie [28] (namely DEPSO-ZX). In this DEPSO, PSO

and DE also alternate in a deterministic way, but DE acts on

the personal best positions of particles in contrast to the cur-

rent particle positions in DEPSO-H. DE follows PSO at each

generation, and it is expected to further improve the personal

best positions of PSO. Note that the DE and PSO in DEPSO-

ZX are DE/best/2/bin and the classical PSO with the Gbest

model, respectively. The primary operations of DEPSO-ZX can

be described, in sequence, by (6) and (7) and the following DE

operations:

zi = xbest +F ·(pbestr1 −pbestr2 +pbestr3 −pbestr4)

(8)

ui,d =

{
zi,d , if randd

i ≤ CR or d == rni

pbesti,d , otherwise
(9)

where the denotations are the same as those in (2) and (3).

DEPSO-ZX has been successfully applied in multimodal im-

age registration [74], modeling of gene regulatory networks

[75], structure optimization of a high-temperature supercon-

ducting cable [76], and design of finite-impulse response fil-

ters [77]. Besides, DEPSO-ZX was even further hybridized with

PSO and ES to form a more complicated hybrid [128], [129].

In [78], Moore and Venayamoorthy proposed a DEPSO (namely

DEPSO-MV), which shares the same idea with DEPSO-ZX,

but its DE and PSO parents are DE/rand/2/bin and a modified

PSO with “Ring” topology, respectively. DEPSO-MV is used in

the multiobjective optimization of combinational logic circuits

design.

In [79], a DEPSO (namely DEPSO-LWJH) that is similar to

DEPSO-ZX is proposed and it is used to train artificial neural

networks. Like DEPSO-ZX, the PSO in this hybrid is also based

on the Gbest model. Differently, its DE parent is DE/current-to-

best/1/bin. In particular, DEPSO-LWJH adopts a chaotic LS to

improve its local exploitation ability. Huang et al. also adopted

the same hybridization strategy to design their DEPSO (namely

DEPSO-HWLR) [80]. Besides, DEPSO-HWLR incorporates

the technique of the parallel finite-element method (PFEM) to

address the back-analysis issue of mechanics parameters in en-

gineering projects. Other analogs of DEPSO-ZX include the

DEPSO-LCW proposed by Liu et al. to handle constrained nu-

merical and engineering optimization problems [81], and the

DEPSO-XXW proposed by Xu et al. for partitional cluster-

ing [82]. In [83], a similar scheme of evolution of the personal

experience of particles (pbest) by DE is proposed (the resul-

tant DEPSOs are all named DEPSO-EPV); however, DE will

only be applied to the personal best positions, which have been

improved as compared with previous generation.

Liu et al. used DE to perturb the positions of particles with the

purpose of keeping population diversity [84]. In their DEPSO

(namely DEPSO-LHTC), DE follows PSO in each generation

to change the current positions of particles. Xu and Gu also

proposed a collaboration-based DEPSO, namely DEPSO-XG,

in which PSO and DE evolve the whole population alternately

[85]. In particular, Xu and Gu incorporated the average pbest

position and velocity of particles into the velocity regulation of

the classical PSO [cf., (10)]. The DE operations in DEPSO-XG

involve two populations: the original DE population and an extra

population to record those trial vectors inferior to their target

vectors. The “inferior” vectors will be reused in a so-called prior

crossover operation to generate intermediate vectors and update

particle positions:

vk+1
i,d = w · vk

i,d
︸ ︷︷ ︸

inertia

+ c1 · rand1 · (pbestk
i,d − xk

i,d)
︸ ︷︷ ︸

individual cognition

+ c2 · rand2 · (nbestk
i,d − xk

i,d)
︸ ︷︷ ︸

social learning

+ c3 · rand3 · (pbestk
d − xk

i,d)
︸ ︷︷ ︸

average pbest attraction

+ c4 · rand4 · (vk
d − vk

i,d)
︸ ︷︷ ︸

average velocity attraction

(10)

where pbestk
d =

∑P S

i = 1
pbestk

i , d

PS and vk
d =

∑P S

i = 1
v k

i , d

PS .

Ning et al. introduced differential mutation operator into a ba-

sic PSO in order to alleviate the so-called premature convergence

of the classical PSO [86]. At each generation of their DEPSO

(namely DEPSO-NZL) [86], PSO runs first, and DE/best/2/bin

follows to improve the current positions of particles.

Caponio et al. designed a DEPSO (namely DEPSO-CNT) by

the use of PSO to provide DE a so-called super-fit individual

[87]. DEPSO-CNT was established on a DE framework that is

hybridized with PSO and two local searchers. PSO works only

XIN et al.: HYBRIDIZING DIFFERENTIAL EVOLUTION AND PARTICLE SWARM OPTIMIZATION TO DESIGN POWERFUL OPTIMIZERS 749

at the beginning of the whole search process, refining a part of

the initial population and replacing the worst solution with the

refined best one. Local searchers will be adaptively chosen by

means of a probabilistic scheme, which relies on an index that

measures the quality of the super-fit individual with respect to

the rest of the population [87]. The performance of DEPSO-

CNT was validated in the optimal drive design for a direct

current motor and the design of a digital filter. Ali et al. also

proposed a two-phase DEPSO (namely DEPSO-APA) in which

DE mainly in charge of exploration runs first [88]. DEPSO-APA

will switch from DE/rand/1/bin to basic PSO (Gbest topology)

according to a predefined threshold for the identification of DE’s

convergence. Once the fitness difference of the best and worst

DE individuals reaches the threshold, PSO will act on half of

the DE population that consists of elite solutions to achieve the

final exploitation of promising regions.

Gong et al. hybridized DE/best/2/bin with a PSO variant,

which removes traditional velocity terms and adopts time-

variant acceleration coefficients [89]. Their DEPSO (namely

DEPSO-GZQ) was proposed to solve multiobjective environ-

mental/economic power dispatch problems. The motivation be-

hind DEPSO-GZQ is an effective synergy of PSO’s exploration

ability and the exploitation ability of DE/best/2/bin. The DE

and PSO parents of DEPSO-GZQ share and update an external

archive, which records nondominated solutions that are found so

far. Particularly, the crowding distance, as an index of the solu-

tion diversity in multiobjective space, is utilized to differentiate

the quality of nondominated solutions. Grobler and Engelbrecht

also proposed a DEPSO, namely DEPSO-GE, to solve multi-

objective optimization problems [90]. Like DEPSO-GZQ, the

DE and PSO parents of DEPSO-GE also interact via an external

archive. However, they are assigned different objectives to op-

timize. Another DEPSO for multiobjective optimization is the

DEPSO-JC that is proposed by Jiang and Cai [91], employing

PSO and DE as regeneration methods. A new acceptance rule

that is called distance/volume fitness was proposed to update the

external archive of the multiobjective DEPSO.

Niu and Li proposed a coevolutionary DEPSO, namely

DEPSO-NL, employing DE and PSO to evolve their respec-

tive subpopulations. Its DE parent (DE/rand/1/bin) and PSO

parent (classical Gbest PSO) interact by sharing the global best

solution that is found so far [92], [93]. The same idea was also

adopted by Zhang et al. who created a chaotic coevolutionary

DEPSO (namely DEPSO-ZZS) [94]. In particular, DEPSO-ZZS

employs Tent-map-based chaotic perturbation, which follows

both DE (DE/current-to-best/1/bin) and PSO (Gbest) to update

DE individuals and particle positions, respectively. Wang et al.

also proposed a similar DEPSO (namely DEPSO-WYZ), which

maintains three subpopulations that are evolved, respectively,

by classical PSO and two DE variants [95]. The three subpop-

ulations share the global best solution during their evolution.

Another analog is the DEPSO-SC that is proposed by Sen-

tinella and Casalino, incorporating three EAs, which include

the GA, PSO, and DE, to solve spacecraft trajectory optimiza-

tion problems [96], [97]. The three optimizers work in parallel

and, periodically, let their best individuals migrate to other sub-

populations. Yang et al. hybridized a quantum-behaved PSO

with DE/rand/2/bin to create a coevolutionary DEPSO (namely

DEPSO-YMN) in which the DE parent evolves elite individuals

and the PSO evolves common individuals [98]. The evolution

of common individuals is guided by the pbest of elite solutions,

while the DE-based evolution of elites contains the perturbation

based on the difference of common individuals. Recently, Peng

et al. proposed a general coevolutionary framework, namely

population-based algorithm portfolio (PAP), to combine differ-

ent population-based search algorithms [99]. Four optimizers,

which involve a self-adaptive DE and classical PSO, are cho-

sen as candidate parent optimizers to test the efficiency of PAP.

Within the PAP framework, parents exchange the elite solutions

that are distributed in different subpopulations by the migration

mechanism usually employed in niching GAs. Their findings

based on experimental analysis demonstrate that the PAP has

obvious superiority over the homogeneous parallel hybridiza-

tion of any parent optimizer. Peng et al. also pointed out that the

complementarity of parents is a key issue to ensure the superior

performance of their PAP [99].

In [100], a novel coevolutionary DEPSO (namely DEPSO-

HW) is proposed based on diploid genetic theory to solve the

open vehicle routing problem. In DEPSO-HW, PSO evolves the

so-called dominant chromosomes, while DE evolves recessive

chromosomes. When a recessive chromosome is better than its

corresponding dominant chromosome, they will be exchanged

into opposite subpopulations. Wu et al. proposed a distinctive

coevolutionary DEPSO (namely DEPSO-WGHZ) by introduc-

ing the mutation operator of DE within the framework of the

cultural algorithm into PSO [101]. The average fitness of all

particles is utilized to divide the whole swarm into two subpop-

ulations, which are evolved, respectively, by PSO and DE [101].

The DE parent of DEPSO-WGHZ resembles DE/rand/1/bin, but

its crossover operator is removed. In addition, the differential

mutation that is affected by three kinds of knowledge in belief

space is implemented as an influence function to evolve inferior

particles whose fitness is lower than average.

Recently, Hao et al. constructed a new DEPSO (namely

DEPSO-HGH) [39]. In this hybrid optimizer, DE and PSO are

regarded as two operators to generate candidate solutions, and

they act on the level of dimensional components of individuals.

Stated another way, each dimensional component of a candi-

date solution can be generated in either DE or PSO manner. The

choice of generation manners depends on a predefined prob-

ability (CR) as shown in (11)–(13). In addition, the DE and

PSO parents of DEPSO-HGH are DE/mid-to-better/1/bin and

the PSO-cf mentioned in Section II:

PSO :

⎧

⎪⎪⎨

⎪⎪⎩

vk+1
i,d = w · vk

i,d + c1 · rand1 · (pbestk
i,d − xk

i,d)

+ c2 · rand2 · (gbestk
d − xk

i,d)

zk+1
i,d = xk

i,d + vk+1
i,d

(11)

DE : yk+1
i,d =

xk
i,d + xk

r1,d

2
+ F · (xk

r1,d −xk
i,d +xk

r2,d −xk
r3,d)

(12)

750 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 5, SEPTEMBER 2012

uk+1
i,d =

{
yk+1

i,d , if rand < CR

zk+1
i,d , otherwise.

(13)

where the denotations are the same as those in (1)–(7), gbestk
d

is the dth component of the global best position gbest at the

kth generation, and it is required that the fitness of xr1 is not

worse than that of xi .

The DEPSO that is designed by De et al. (namely DEPSO-

DRKC) [102] combined the self-adaptive Pareto DE that is

proposed by Abbass et al. [131] and a basic PSO with random

inertia weight. In the evolutionary loop of DEPSO-DRKC, DE

operates on some selected dimensions to refine current parti-

cle positions, as well as modulate particle velocities, and PSO

follows to regulate the current positions of particles. DEPSO-

DRKC was employed to maximize camera coverage area in the

coordination of robot ants.

In [103], two DEPSOs are presented. The first DEPSO

(namely DEPSO-OES1) is somewhat similar to DEPSO-HGH.

The DE (DE/rand/1/bin) and PSO (PSO-cf) in it also alternate

in a stochastic way, but both DE and PSO act on the level of a

whole individual, that is to say, each individual at each genera-

tion has only one updating method of its current position (DE or

PSO). Besides, the probability of selecting an updating method

and the scaling factor in DE are dynamic and adaptive. A similar

DEPSO (DEPSO-KL) was proposed by Kim and Lee [104]. At

each generation, each individual selects the updating method of

its current position, either PSO-cf or DE/best/1/bin, according

to a predefined probability. Kim and Lee also employed the re-

inforcement learning method, i.e., Q-Learning, to adjust three

primary parameters of DEPSO-KL [104]. Another DEPSO akin

to DEPSO-OES1 is the one that is proposed by Dhahri et al.

(namely DEPSO-DAK) [105]. Its PSO parent will be selected

according to a predefined probability to improve the worst indi-

viduals in current population. DEPSO-DAK was applied to the

design of beta basis function neural networks. In the DEPSO

that is proposed by Pant et al. (namely DEPSO-PTGA) [106],

PSO will be activated to evolve an individual only if DE does

not bring the improvement of its fitness.

Khamsawang et al. proposed four versions of DEPSO

(DEPSO-KWJ) with the same goal of the use of DE to improve

the exploration ability of PSO [107]. It was claimed that the mu-

tation operators of DE will be activated if the velocity values of

particles are near zero or violate predefined bounds. According

to the formulas that are presented in [107], Khamsawang et al.

used the difference of individuals, instead of an entire differen-

tial mutation, to regulate the velocity of particles. In other words,

the difference-based velocity regulation does not involve base

vectors. However, since the velocity that is modulated by DE

will be added to the current position as shown in (7), we can also

regard the operation as a differential mutation with the current

position being its base vector. Takano and Hagiwara proposed

an integrated framework to effectively combine the merits of

several evolutionary computations that include the GA, PSO,

and DE [108]. The framework holds several individual pools,

and each pool corresponds to one EC. Each incorporated EC has

its own evaluated value (EV), and it changes according to the

best fitness value at each generation. The number of individuals

in each EC changes according to the EV. All individuals have

their own lifetime to reselect EC, and the probability of each EC

to be selected depends on the EV. We term their hybrid, here, as

DEPSO-TH for unification though the term GADEPSO seems

more suitable to express its hybridization. Xin et al. proposed

an adaptive DEPSO, namely DEPSO-XCPP, which achieves

on-the-fly adaptation of evolution methods for individuals in a

statistical learning way, according to the relative success ratio of

PSO versus DE in a previous learning period [109]. The idea to

employ statistical learning to choose evolution methods can also

be applied to the adaptation of control parameters, evolutionary

operators (e.g., the differential mutation [37], [132]), and LS

techniques [19], [24], [133], [134].

B. Embedding-Based DEPSOs

A typical embedding-based DEPSO is the PSO with dif-

ferentially perturbed velocity (namely DEPSO-DKC; PSODV

in [110]) that is proposed by Das et al. The embedding way in

PSODV is shown as follows:

vk+1
i,d =

⎧

⎪⎨

⎪⎩

w · vk
i,d + β · δd + c2 · rand2 · (gbestk

d − xk
i,d),

if rand < CR

vk
i,d , otherwise

(14)

uk+1
i,d = xk

i,d + vk+1
i,d (15)

where δd = xk
r1,d − xk

r2,d is the dth component of the differ-

ence vector of two randomly selected individuals xr1 and xr2

with r1 �= r2 �= i, β is the scaling factor, CR is the predefined

crossover probability, and the definitions of vk
i,d , w, xk

i,d , c2,

rand2, and ud
i are the same as those mentioned in (1)–(7). Note

that the selection operator that is used in DE/rand/1/bin is also

employed in this DEPSO to operate on the trial vector ui and the

corresponding individual xi . It was reported that DEPSO-DKC

has been successfully applied to spatial clustering with obstacles

constraints [111] and fault diagnosis of gear-box [112].

Li claimed that the parameter-free HDE that he proposed

in [113] (namely DEPSO-L) is derived from the mechanisms

of PSO (viz., topologies, inertia weight, neighborhood best,

and personal best). The crossover operation of DE is removed,

while its selection operation is retained. The primary operations

of DEPSO-L are presented in (16) and (17)

xk+1
i,d = nbestk

i,d + rand1 · (pbestk
i,d − xk

i,d) + rand2 · vk
i,d

(16)

vk+1
i =

{
vk

i , if xk+1
i == xk

i

xk+1
i − xk

i , otherwise.
(17)

From (16), it seems that DEPSO-L follows the paradigm of dif-

ferential mutation with nbest being its base vector. However, the

difference term in (16) is actually the PSO’s individual cogni-

tion as shown in (6), not the individual difference that usually

exists in diverse DE variants [cf., (1), (3)–(5)]. Besides, the

term “velocity” in DEPSO-L turns out to be passive since it is

derived from the difference of the same particle’s positions at

XIN et al.: HYBRIDIZING DIFFERENTIAL EVOLUTION AND PARTICLE SWARM OPTIMIZATION TO DESIGN POWERFUL OPTIMIZERS 751

contiguous time instants [cf., (17)], instead of being modulated

by inertia, individual cognition, and social learning [cf., (6)].

Shu and Li introduced PSO’s topology and velocity regulation

into DE/best/1/bin to construct an embedding-based DEPSO

(namely DEPSO-SL) [114]. The primary operations of DEPSO-

SL are shown in (18)–(20), with the base vector of DE/best/1/bin

(i.e., gbest) being replaced by nbesti , which is determined by

a Ring topology. Velocity, here, is defined as the difference of

the same trial vector’s positions at contiguous time instants [cf.,

(20)]. From (19), it seems as if there is an inertia part in DEPSO-

SL like that in (6); howbeit, the “inertia” here is not used for

velocity regulation but for the perturbation of trial vectors:

uk+1
i,d =

⎧

⎪⎨

⎪⎩

nbestk
i,d + F · (xk

r1,d − xk
r2,d),

if rand < CR or d == rni

xk
i,d , otherwise

(18)

uk+1
i = uk+1

i + w · rand · vk
i (19)

vk+1
i = uk+1

i − uk
i . (20)

Das et al. proposed a neighborhood-based differential mutation

operator, which introduces PSO’s population topology into DE

(the DEPSO variant, here, is termed as DEPSO-DACK) [115].

The primary operations of DEPSO-DACK (i.e., its novel differ-

ential mutation operator) are shown as follows:

Lk+1
i = xk

i + α · (nbestk
i − xk

i) + β · (xk
p − xk

q) (21)

Gk+1
i = xk

i + α · (gbestk − xk
i) + β · (xk

r1 − xk
r2) (22)

zk+1
i = w · Gk+1

i + (1 − w) · Lk+1
i (23)

where p, q ∈ [i − r, i + r] with p �= q �= i (where r is neighbor-

hood radius), indicating that the individuals for the difference

operation in (21) are selected from the neighborhood of the tar-

get individual xk
i . The local-neighborhood-based mutant vector

Lk+1
i and the global-neighborhood-based mutant vector Gk+1

i

favor exploration and exploitation, respectively. As (23) shows,

the hybrid mutant vector zk+1
i is a balance between exploration

and exploitation capabilities.

Xu et al. also proposed an embedding-based DEPSO (namely

DEPSO-XLFWW) whose primary operation is shown in (24)

[116]. DEPSO-XLFWW seems very concise, and it inherits the

crossover operation and the format of differential mutation in

DE. Strictly speaking, however, it does not employ differential

mutation. Instead, it applies a PSO version without velocity and

individual cognition, which formally shares certain similarity

with the differential mutation operator DE/rand/1:

xk+1
i,d =

⎧

⎪⎨

⎪⎩

xk
i,d + c2 · rand2 · (gbestk

d − xk
i,d),

if rand < CR or d == rni

xk
i,d , otherwise

(24)

where the denotations are the same as those in (1)–(7).

C. Assistance-Based DEPSOs

Kannan et al. [117] proposed a distinctive DEPSO (namely

DEPSO-KSSP; C-PSO in [117]). Its PSO parent takes the form

of classical PSO [cf., (6) and (7)]. The DE algorithm in it is

employed to select three control parameters (i.e., w, c1, and c2)

online for PSO. In other words, DE serves as a metaoptimizer

for the optimization of PSO’s search behavior. The DE popula-

tion is randomly initialized and, then, evolves along with particle

swarm. The evaluation of a DE individual (i.e., a PSO parameter

setting) is attached to the fitness evaluation of the corresponding

particle. Denote by parai = [wi , c1i , c2i]
T the ith DE individ-

ual. Then, the primary operations of DE in DEPSO-KSSP can

be described as follows.

Differential mutation:

zk
i = parak

r1 + F · (parak
r2 − parak

r3). (25)

Crossover:

uk+1
i,d =

{
zk
i,d , if randd

i ≤ CR or d == rni

parak
i,d , otherwise.

(26)

The idea to employ a metaoptimizer to optimize (regulate) the

search behavior of another optimizer used to be adopted by

Grefenstette for the optimization of GA’s control parameters

[135]. In Grefenstette’s research, a meta-GA is employed to

tune the parameters of another GA.

Jiang et al. put forward a novel hybridization strategy, which

uses DE to operate on the velocity of particles [118]. As Jiang

et al. pointed out, the population diversity of PSO is highly

dependent on the velocity of particles, indicating that an ap-

propriate control scheme of the particle velocity can benefit the

global convergence of PSO. The primary operations of their

DEPSO (namely DEPSO-JWJ) include basic PSO operations

[cf., (6) and (7)] and the following:

vk+1
i,d =

⎧

⎪⎨

⎪⎩

vk
i,d + F · (vk

r1,d − vk
r2,d + vk

r3,d − vk
r4,d),

if rand < CR or d == rni

vk
i,d , otherwise

(27)

xk+1
i,d = rand · pbestk

i,d + (1 − rand) · gbestk
d + vk+1

i,d . (28)

According to (27), we can term the DE parent of DEPSO-JWJ

as DE/current/2/bin by following the nomenclature that is men-

tioned in Section II-A. The operations that are shown in (27) and

(28) will be implemented only if PSO is trapped into stagnation.

The operation shown in (28) is not a part of DE but a BBPSO

perturbed by the velocity that is generated by DE. To sum up,

the DE parent in this DEPSO serves as an assistant of PSO to

regulate the velocity of particles.

The second DEPSO that is proposed in [103] by Omran et al.

(namely DEPSO-OES2) combined the BBPSO that is proposed

by Kennedy [54] and DE as follows:

xk+1
i,d =

{
pk

i,d + rand1 · (xk
r1,d − xk

r2,d), if rand > pr

pbestk
r3,d , otherwise

(29)

pk
i,d = rand2 · pbestk

i,d + (1 − rand2) · nbestk
i,d (30)

where pr is the predefined recombination probability, and the

other denotations are the same as those in (1)–(7). If the neigh-

borhood topology is based on the Gbest model, the term nbestk
i,d

in (30) will be replaced by gbestk
d . The operation of BBPSO

is reflected by (30), a direct stochastic combination of pbesti

752 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 5, SEPTEMBER 2012

and nbesti on each dimension. Obviously, the point that is gen-

erated by BBPSO, i.e., pk
i = [pk

i,1 , p
k
i,2 , . . . , p

k
i,D]T , is taken as

the base vector for the DE operation that is reflected by (29).

Therefore, the role of BBPSO in DEPSO-OES2 is an assistant,

providing base vectors for DE. DEPSO-OES2 (named bare-

bones DE by its inventors) was applied to unsupervised image

classification [119].

Wickramasinghe and Li proposed an assistance-based

DEPSO (namely DEPSO-WL) for multiobjective optimization

by using DE/rand/1/bin to choose the leaders (i.e., nbesti) for

PSO-cf at each generation [120]. The trial vector that is gener-

ated by DE is taken as the leader in PSO. It should be noted that

the trial vector will not undergo fitness evaluation, indicating

that the selection operator of DE is removed and the trial vector

is not a real sampling point. In this sense, DE is an assistant of

PSO to provide the ingredient (i.e., nbesti) for its operation.

However, once the trial vector is evaluated, the DE parent will

contribute to fitness improvement as a major participant in the

search of high-quality solutions rather than merely an assistant

of PSO, and in this case, the resultant DEPSO will be based on

collaboration.

Some intricate DEPSOs may involve more than one kind of

parent relationship. For example, in the DEPSO that is proposed

by Zhang et al. [121] (namely DEPSO-ZNLOD), DE and PSO

on one hand are hybridized in an embedding way and, on the

other hand, work together under a collaboration relationship.

The DE operations in DEPSO-ZNLOD are shown as follows:

zk
i = nbestk

i + Fi · (pbestk
r1 − pbestk

r2) (31)

yk
i,d =

{
zk
i,d , if rand < CR or d == rni

xk
i,d , otherwise

(32)

xk+1
i = yk

i (33)

vk+1
i = xk+1

i − xk
i (34)

pbestk+1
i =

{
xk+1

i , if fitness(xk+1
i) > fitness(pbestk

i)

pbestk
i , otherwise.

(35)

It is obvious that PSO’s population topology is embedded into

DE by taking nbest as the base vector for differential muta-

tion [cf., (31)]. Therefore, the aforementioned DE is actually an

embedding-based DEPSO (cf., DEPSO-DACK [115]). More-

over, DEPSO-ZNLOD employs the classical PSO as a method

to evolve the whole population. In fact, the DE works only at

specified intervals to fine tune the personal best particle po-

sitions [121], and most of the time, the PSO dominates the

evolutionary process. Accordingly, the DE and PSO also hold a

collaboration relationship.

Liu et al. incorporated DE/rand/1/bin and PSO into the frame-

work of cultural algorithm [122], and the resultant hybrid is

named DEPSO-LWY here. A primary operation is shown in

(36), which reflects the hybridization of DE and PSO based on

both embedding (DE’s mutation is perturbed by PSO’s velocity)

and collaboration (PSO and perturbed DE are further hybridized

on component level). Besides, unlike most PSO variants, the par-

Fig. 1. Hybridization levels: Black spots represent contemporary solutions
that are distributed in search space. X represents a solution in D-dimensional
space and xi (i = 1, 2, . . . , D) are the components of X.

ticle positions and velocities are modulated according to four

kinds of knowledge sources that are contained in the belief space

of the cultural algorithm. Particle positions will be drawn toward

the global best position (i.e., gbest), and particle velocities will

be confined by lower and upper bounds that are dependent on

personal best particle positions. In this sense, the PSO is fur-

ther hybridized with the DEPSO that is shown in (36) under a

collaboration relationship:

xk+1
i,d =

⎧

⎪⎨

⎪⎩

xk
r1,d + F · (xk

r2,d − xk
r3,d) + vk+1

i,d , (perturbed DE)

if rand < CR or d = rni

xk
i,d + vk+1

i,d , (PSO)otherwise.
(36)

Although the aforementioned multifarious DEPSOs were con-

structed with the same purpose to combine two or more excellent

optimizers to create a more advanced one, they have more or

less differences in their hybridization strategies and parent op-

timizers. A systematic taxonomy, as shown in the next section,

will be beneficial to analyze different kinds of DEPSOs in a

comprehensive way.

IV. TAXONOMY ON HYBRIDIZATION STRATEGIES

A favorable taxonomy of hybridization strategies should be

capable of differentiating different strategies as well as provid-

ing designers a convenient and efficient means of determining

a hybridization scheme. In this section, we will set forth the

elements of a hybridization strategy (i.e., hybridization factors)

and give a classification of existing DEPSOs and some other

prevailing hybrids.

A. Hybridization Factors

In Section III, we have revealed a basic classification

criterion—the relationship between parent optimizers. Here,

another four hybridization factors are taken into account: the

hybridization level (HL) of parent optimizers, the OO of parent

optimizers, the TIT, and the TTI.

1) Hybridization Level: The HL of parent optimizers, which

are highly dependent on their respective operating levels (OLs),

refers to the OL at which they are hybridized, indicating the

spatial assignment of parent optimizers. As illustrated in Fig. 1,

there are four kinds of HLs—component level, individual level,

subpopulation level, and population level (in order from the

lowest to the highest level). This classification is also applicable

to the OL. The OL of a parent optimizer is determined by the

XIN et al.: HYBRIDIZING DIFFERENTIAL EVOLUTION AND PARTICLE SWARM OPTIMIZATION TO DESIGN POWERFUL OPTIMIZERS 753

object, which can, according to hybridization design, apply the

optimizer without being required to use the same optimizer with

any other objects. If the object is a whole population, we say the

parent operates at population level. Likewise, a parent operates

at subpopulation level, individual level, or component level, if

the corresponding object is a subpopulation, an individual, or a

solution component (or multiple components), respectively.

Operating at component level, a parent optimizer will be used

to regulate one or more components of candidate solutions rather

than an entire solution (individual). Besides, different compo-

nents of an individual can be evolved by different methods,

that is to say, the individual will be evolved by multiple meth-

ods simultaneously. In this case, designers may specify some

evolution methods for different components or grant them the

freedom to opt for their evolution methods according to some

indices (e.g., some predefined selection probability). DEPSO-

HGH provides an example of the hybrid whose parents operate

at component level [see (11)–(13)]. In contrast, each time a par-

ent optimizer works, operating at individual level, it will evolve

an entire solution (individual), but usually not all solutions in

the population. In this case, the individual can independently

apply the parent optimizer without being required to adopt the

same evolution method with any other individuals. The indi-

vidual may have the freedom to choose its evolution methods

according to some selection rules. For example, the individu-

als in DEPSO-XCPP independently choose their own evolution

methods (PSO or DE) according to the success ratio of candidate

methods [109].

If a parent optimizer operates at population level, the evolu-

tion method once applied will simultaneously act on all indi-

viduals in the population; howbeit, different methods may work

on the whole population alternately at different generations.

For example, the parents of DEPSO-ZX operate at population

level since its PSO parent evolves the entire population and DE

follows to further improve the personal best positions of all

particles [28]. As an intermediate case between individual and

population levels, subpopulation level indicates a division of the

whole population, which is often termed as multispecies strat-

egy or multiswarm strategy (aka, the niching technique in GAs

research) [136]. Parents that operate at subpopulation level will

be applied to different subpopulations. DEPSO-ZZS provides

an example of the hybridization at subpopulation level [94].

It is worthwhile to mention that the niching technique is usu-

ally applied to homogeneous optimizers, such as GAs, giving

birth to many niching-based EAs (e.g., the niching GA [136],

niching PSO [137], [138], and niching DE [139], [140]). From

a broader perspective, hybridization with parents that operate

at subpopulation level can be deemed as an extension of the

niching technique (see also the definition of homogeneity that

is given by Talbi [15]). Particularly, as for multiobjective op-

timization, the parent optimizers can be assigned to different

objectives with each parent manipulating its own subpopulation

(e.g., DEPSO-GE [90]). The subpopulation level with appro-

priate division of labor based on specialization of parents is

also a nice choice to design a hybrid to solve constrained op-

timization problems or track multiple optima in multimodal

landscapes.

If parents work at the same OL, we term the resultant

hybridization as homogeneous-level hybridization (HOLH),

and the OL of parents is regarded as their HL. In contrast,

heterogeneous-level hybridization (HELH) means that the OLs

of parents are different. For example, regarding the hybridization

between a PO and a trajectory search method (TSM), i.e., single-

point-based optimizer [17], in which the PO usually operates at

population level, the TSM will be regarded to be hybridized

with the PO at individual level if a TSM manipulates only one

solution at each generation. As a rule, the HL in HELH between

two optimizers is determined by the lower OL of parents. Fur-

thermore, some special HOLH can be termed as homogeneous-

object hybridization (HOOH), if parents share the same object

to determine their OLs, which means that they are employed to

evolve the same object at their HL. In contrast, heterogeneous-

object hybridization (HEOH) implies that the objects, which

determine the OLs of parents are different even though the ob-

jects may be of the same type (e.g., subpopulation type). For

example, parents that operate on different subpopulations give

birth to HEOH (e.g., DEPSO-ZZS [94]). Besides, undoubtedly

we can categorize any HELH as HEOH.

2) Operating Order: The OO of parent optimizers refers to

the temporal assignment of parent optimizers. Parents can work

in a sequential (alternate) or parallel order. Talbi terms the se-

quential OO type as relay, meaning that a set of metaheuristics is

applied one after another, each using the output of the previous

as its input, acting in a pipeline fashion [15]. Das categorizes

hybrids based on the two OO types as serial hybridization and

parallel hybridization, respectively [144]. Particularly, parents

of embedding-based hybrids work together as an ensemble, re-

gardless of the OO. Das terms embedding-based hybrids as im-

plicit hybridization [144]. For clarity of classification, we term

the case of being unable to distinguish the order of parents as

“no order”.

The OO regarding a hybrid should be canonically analyzed at

its HL, which is a crucial rule to identify the OO of parents since

different angles of view may lead to different conclusions with

respect to OO. For example, the parents in DEPSO-OES1 [103],

from a population perspective, hold a parallel OO as they can

simultaneously operate on different individuals at each gen-

eration; howbeit, they act alternately on any single individual

from the perspective of their HL (i.e., individual level). To avoid

confusion, we will treat the analysis of OO regarding HOOH

and HEOH in different ways. For HOOH, parents hold a par-

allel OO if and only if they can simultaneously operate on the

same object that determines their OLs. If the parents evolve

the object in a “relay” manner as Talbi claimed [15], we say

they hold a sequential OO. For HEOH, parents usually hold

a parallel OO as they operate on different objects, facilitating

the implementation of parallel OO. However, some special in-

terdependence between parents may force them to carry out a

sequential OO. For example, in assistance-based hybrids, the

master parent and its assistant usually operate on different ob-

jects (e.g., in DEPSO-KSSP [117], a population of parameter

vectors for DE and a solution population for PSO), and the par-

ents definitely hold a sequential OO since the master relies on

the information that is supplied by its assistant to implement its

754 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 5, SEPTEMBER 2012

Fig. 2. Illustration of the individual-level self-adaptation and the component-
level self-adaptation. The variables p and pi , i ∈ {1, 2, . . . , D}, represent the
choice of parent optimizers for the evolution of an individual and a component,
respectively. Taking DEPSO for an example, the variables can be set to PSO
(0) or DE (1). The extended individual X′ will undergo the evolutionary oper-
ations. As opposed to the individual-level self-adaptation, the component-level
self-adaptation brings more diversity of evolutionary operations. The quality
of the extended individuals is evaluated by the fitness of corresponding real
solutions. It is implicitly acknowledged that high-quality solutions come along
with appropriate evolution methods.

operations. Another example is the CPSO-SK that is proposed

by Bergh and Engelbrecht [46] in which multiple homogeneous

PSOs (parents) operate on different solution components and

share them through a context vector for fitness evaluation. The

PSO parents will one by one, rather than simultaneously, evolve

their respective swarm and update the corresponding solution

components of the context vector. The sequential OO, here, is

advantageous to restrain different PSOs from the utilization of

the same context vector for fitness evaluation and yield a fine-

grained search [46].

As for the sequential OO, the alternation of parents, viz.,

choosing parents to run at different intervals, can be achieved in

different ways. Referring to the assortment of alternation, it is

worthwhile to mention the classification of adaptive MAs that

are proposed by Ong et al. [133]. The classification takes into

account two criterions to sort different adaptive MAs: adap-

tation type (static/adaptive/self-adaptive) and adaptation level

(external/local/global). The adaptation type is identified to be

static if the feedback from the search process regarding the

online performance of different memes (i.e., local IMs) is not

utilized for the choice of memes. In contrast, both adaptive and

self-adaptive types utilize the feedback to guide the choice of

memes. However, the self-adaptive type integrates (encodes) the

choice of memes into the representation of individual solutions.

The conceptually extended “individual” involves not only a real

solution but also its local IM (meme). Fig. 2 is an illustration

of the individual-level self-adaptation and the component-level

self-adaptation. The adaptation level refers to the extent of prior

knowledge about memes. External-level adaptation usually de-

pends on the experiences of human experts, instead of online

knowledge, to choose the memes. Local-level and global-level

adaptations, which are differentiated by the range of utilized his-

torical knowledge, choose the memes according to their online

performance. The aforementioned classification is also applica-

ble to different types of alternation since the alternation of parent

optimizers is de facto an adaptation behavior. In the following,

we provide a subdivision of static alternation and adaptive al-

ternation to reveal more design issues regarding hybrids based

on the sequential OO.

Static alternation can take different forms, such as deter-

ministic alternation and stochastic alternation. The determin-

istic alternation means that parents will alternate according to

a predefined deterministic order. Therefore, the timetable by

which each parent runs and terminates is prepared in advance.

For example, in the two-phase DEPSO-CNT, PSO runs first,

providing DE with the so-called super-fit individual [87]. In

DEPSO-ZX, PSO, and DE also alternate regularly in a deter-

ministic order [28]. Usually, the deterministic execution order of

parents stems from the insight and experience of designers. For

example, the idea behind DEPSO-APA is that DE/rand/1/bin

is more suitable for early-stage exploration than the basic PSO

(Gbest topology), while the latter is more competent for ex-

ploitation [88]. Stochastic alternation means that the execution

of parents is a random event that is dependent on the selec-

tion probability of different parents, which may be constant or

change with evolution stages. The setting of the selection prob-

ability that pertains to static alternation is also a pure human

factor, which is unrelated to the online performance of parents.

Regarding adaptive alternation, we can adopt various schemes

of utilization of feedback information to conduct the selection

of parents in the alternation process. The evolution process can

switch from one parent to another when it is identified that the

in-service parent cannot bring fitness improvement. This scheme

seems conservative as it does not care about the performance

difference of parents. In contrast, a greedy scheme only chooses

the parent, which performs the best according to search history,

resulting in a strong competition among parents. A moderate

alternative is to adjust the selection probability of parents in light

of their relative performance. For example, the PSO and DE in

DEPSO-XCPP are adaptively chosen according to their relative

success ratio of improvement of the fitness of individuals [109].

To date, how to utilize the feedback from search process to

choose competent parents is still an open issue.

For the parallel OO, attention should be paid to the inter-

action of parents, including the information shared between

parents and the occasions on which the information is shared.

The parallel order can be implemented with the support of hard-

ware architecture being capable of achieving parallel comput-

ing (e.g., single-instruction stream with multiple-data stream

and multiple-instruction stream with multiple-data stream). A

further discussion on the parallel architecture for the implemen-

tation of hybrid metaheuristics can be found in [15].

3) Type of Information Transfer: The TIT refers to the in-

terconnection structure of parent optimizers, concerning the in-

formation flow between them. By regarding each parent as an

“individual (particle),” we can equate the TIT with the popula-

tion topology of parent optimizers. Fig. 3 provides four typical

interconnection structures. Pertaining to the hybridization be-

tween two parent optimizers, what concerns the classification of

the TIT is the direction of information flow, either unidirectional

(simplex TIT) or bidirectional (duplex TIT). Generally speak-

ing, the duplex TIT leads to a stronger coupling between parents

than the simplex TIT. Most existing DEPSOs employ the duplex

TIT, manifesting that the interactive influence between DE and

XIN et al.: HYBRIDIZING DIFFERENTIAL EVOLUTION AND PARTICLE SWARM OPTIMIZATION TO DESIGN POWERFUL OPTIMIZERS 755

Fig. 3. Typical interconnection structures: Arrows represent the direction of
the information flows between two parents. A bidirectional arrow indicates that
the related parents transfer information in a duplex manner. In the structure that
is shown on the far left, Parent P1 works independently since it does not receive
any information from the other two parents. The behavior of P2 is affected by P1
as P2 utilizes the information from P1 to guide its search. In the second structure,
P1 and P2 interact and jointly guide the search of P3. The third structure looks
like the well-known Ring topology in PSO research. Moreover, it defines the
information flow between parents, giving birth to a unidirectional flow of the
mutual influence of parents. The final cube structure is termed as the island
model in niching GA research [15], [136].

PSO has drawn more attention from DEPSO designers. DEPSO-

CNT [87], DEPSO-APA [88], and DEPSO-KSSP [117] are the

three examples of the simplex TIT. In addition, if the parents

in a duplex TIT transfer information of the same type, the TIT

will be termed as the homogeneous TIT, and heterogeneous TIT

otherwise.

It should be stressed that the goal of information transfer

in hybridization is the information utilization that is linked to

interactions between parents. If the transferred information is

merely shared but not utilized to affect the search behavior of

other parents, the parents will work independently. In this case,

the hybridization without interactions cannot bring the expected

performance emergence since it can be easily derived that

PerfAB (m + n) = PerfA (m) + PerfB (n)

≤ max{PerfA (m + n),PerfB (m + n)}

where AB is the hybrid of the parents A and B, PerfAB (m + n)
is the performance index of AB with m + n function evaluations

(FEs), andPerfA (m) and PerfB (n) are the performance indices

of A with m FEs and B with n FEs, respectively.

The aforementioned inequality holds for the optimization

of any problem, indicating that the hybrid AB cannot outper-

form both parents at the same time. Therefore, the hybridization

without interactions is meaningless and the utilization of trans-

ferred information is essential. To conclude, no interaction, no

hybridization!

4) Type of Transferred Information: As a crucial design el-

ement of hybrid optimizers, the TTI is the most complicated

factor among the aforementioned hybridization factors. It is not

only related to specific optimizers, but also to the type of the

problems to be solved. Common TTIs include current solutions

(aka, target vectors for DE and current particle positions for

PSO), group of elite solutions, so-far-best solution (gbest), so-

lution components, and control parameters. Regarding PSO, the

alternative for the TTI can also be pbest, nbest, or particle

velocities. For DE, its base vectors, difference vectors, mutant

vectors, and trial vectors can be the candidate TTIs as well.

Besides, the transferred information may be a combination of

the TTIs mentioned earlier.

As for multiobjective optimization, the external archive that

is used to store high-quality (Pareto optimal) nondominated

solutions is also a common TTI (e.g., DEPSO-GZQ [89] and

DEPSO-GE [90]). For constrained optimization, high-quality

feasible and infeasible solutions can be treated as the candidate

TTIs. For example, Yang et al. proposed a master–slave PSO

algorithm to solve constrained optimization problems with two

PSOs, a master and a slave, manipulating their own subpopu-

lations and cooperatively updating a feasible leader set (FLS)

and an infeasible leader set (ILS) [141]. The FLS and ILS are

expected to record elite feasible solutions and high-quality in-

feasible solutions, respectively. The master PSO and the slave

choose nbest from the FLS and ILS, respectively. Resembling

the master–slave PSO, a new DEPSO for constrained optimiza-

tion can be constructed by enabling DE and PSO to be guided

by FLS and ILS, respectively (vice versa).

Some special TTIs can be introduced by specific approaches.

For example, in the coevolutionary PSO algorithm that is pro-

posed by Krohling and Coelho to solve constraint optimiza-

tion problems [142], two PSOs operate on real solutions and

Lagrange multipliers, respectively. The Lagrange multipliers

are introduced by a Lagrange approach, which formulates con-

strained optimization problems into min–max problems. The

two PSOs, which are hybridized in a sequential OO, share and

utilize the real solutions and the Lagrange multipliers during

fitness evaluations. A similar instance is the hybrid of SA and

GA for nonlinear constrained optimization [143].

From the earlier discussion, it can be seen that the TTI is a

complicated hybridization factor with plentiful options, making

it very hard to enumerate all TTIs. Instead, a coarse-grained

classification of the TTI is provided, covering the following TTI

types: 1) solutions (e.g., gbest, pbest, nbest, DE’s target

vectors and trial vectors, the archive of nondominated solutions,

and the FLS and ILS mentioned earlier); 2) fitness information;

3) solution components; 4) algorithm-induced in-betweens (e.g.,

DE’s base vectors, mutant vectors, difference vectors, PSO’s

particle velocities); 5) auxiliaries (e.g., Lagrange multipliers);

and 6) control parameters.

The difference between solutions and algorithm-induced in-

betweens lies in that solutions are expected to have gone through

fitness evaluation but algorithm-induced in-betweens are merely

intermediate variables that are introduced by specific optimizers

and usually taken as ingredients for generation of new solutions.

B. Taxonomy

By the combination of the aforementioned hybridization fac-

tors, we build a taxonomy of different hybridization strategies.

First of all, we will introduce some concise notations to express

the candidate classes with respect to each factor as follows.

1) Parent relationship (PR)

Collaboration: 〈C〉, Embedding: 〈E〉, Assistance: 〈A〉.
2) Hybridization level (HL)

Population level: 〈P〉, Subpopulation level: 〈S〉
Individual level: 〈I〉, Component level: 〈C〉.

3) Operating order (OO)

Sequential order: 〈S〉, Parallel order: 〈P〉, No order: 〈N〉.

756 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 5, SEPTEMBER 2012

Fig. 4. Taxonomy of hybridization strategies. Each string connecting four hybridization factors corresponds to a class of hybridization strategies.

4) Type of information transfer (TIT)

Simplex TIT: 〈S〉, Duplex TIT: 〈D〉.
Remark 1: The simple classification of the TIT, here, is

only appropriate for hybridization between two parents. For hy-

bridization that involves more than two parents, designers will

have more choices with the TIT in respect that the information

topology of parents can be flexibly configured in a variety of

ways (see Fig. 3). In the generalized case, we can resort to a

graph representation of the TIT.

5) Type of transferred information (TTI)

Solutions: 〈S〉, Fitness information: 〈F〉, Solution compo-

nents: 〈Sc〉, Auxiliaries: 〈A〉, Control parameters: 〈Cp〉,
Algorithm-induced in-betweens: 〈Ai〉.

Remark 2: The six TTI types that are mentioned earlier are

not mutually exclusive, that is to say, a hybridization strategy

may involve multiple TTI types simultaneously. For example,

solutions 〈S〉 are usually transferred along with their fitness in-

formation 〈F〉. In some special cases, the fitness information

may be transferred alone. For brevity, the transferred fitness

information will not be labeled in the following TTI classifica-

tion of different hybrids unless its corresponding solution is not

transferred.

Here, we also provide notations for some specific TTIs as fol-

lows: current solutions 〈x〉, group of elite solutions 〈e〉, gbest

〈g〉, pbest 〈p〉, nbest 〈n〉, base vectors (DE) 〈b〉, difference

vectors (DE) 〈d〉, mutant vectors 〈m〉, trial vectors 〈t〉, particle

velocities 〈v〉, archive of nondominated solutions 〈a〉, feasible

solutions 〈fs〉, infeasible solutions 〈is〉, Lagrange multipliers

〈lm〉.
The five hybridization factors that are mentioned earlier are

either fine grained or coarse grained, covering primary elements

to be considered in hybridization design and exhibiting a hi-

erarchical feature (see Fig. 4). PR is a rough but fundamen-

tal classification criterion, grouping hybrids into three general

categories—collaboration, embedding, and assistance. The HL

that is based on the OLs of parent optimizers helps to differenti-

ate the spatial assignment of parents, while the OO indicates the

temporal assignment of parents. Both of them are crucial factors

for the design of hybrid optimizers. In contrast, the TIT and TTI

are mainly associated with details in hybridization design. With

this taxonomy, one can differentiate various hybridization strate-

gies in more details and easily compare different hybridization

schemes. Due to the hierarchical feature of the taxonomy, one

can also take it as a reference of a step-by-step procedure to

design any hybrid optimization algorithms, by determining in

Fig. 5. Number of times each PR has been employed among all DEPSOs that
are surveyed.

turn PR, HL, OO, TIT, and TTI. The template 〈PR, HL, OO,

TIT〉 that incorporates the first four factors will be utilized to

represent various sorts of hybridization strategies. The reason

that the TTI is not included in this template is that different TTI

types in the classification of the TTI are not mutually exclusive

for the construction of a hybridization strategy. In the proposed

taxonomy, the TTI will be treated as a complementary criterion

for the detailed analysis of or to design a hybridization strategy.

According to the classification of each factor in the template,

there seem to be total 3 × 4 × 3 × 2 = 72 classes of hybridiza-

tion strategies. However, there exist some special connections

(constraints) between the hybridization factors, which make it

impossible to arbitrarily combine these factors. For example,

parents in embedding- or assistance-based hybridization cannot

hold a parallel OO (see Section IV-A).

According to the taxonomy, existing DEPSOs are sorted in

Table I with their parents, applications, and inventors’ ideas pro-

vided. The frequencies of three PRs being employed among all

DEPSOs that are surveyed are compared in Fig. 5, from which

it can be seen that the collaboration PR was widely employed

by DEPSO designers. In contrast, fewer DEPSOs hold the em-

bedding PR or assistance PR. Furthermore, the distribution of

existing collaboration-based DEPSOs at four kinds of HLs is

shown in Fig. 6. According to the statistical results, the popula-

tion level has received more attention, while the other three HLs

XIN et al.: HYBRIDIZING DIFFERENTIAL EVOLUTION AND PARTICLE SWARM OPTIMIZATION TO DESIGN POWERFUL OPTIMIZERS 757

TABLE I
CLASSIFICATION OF EXISTING DEPSOS

relatively lack the concern of researchers. The distribution of ex-

isting DEPSOs on nine hybridization-strategy classes involved

is shown in Fig. 7. Among all classes of hybridization strate-

gies that are involved in the proposed taxonomy, 〈C,P,S,D〉 is the

most favored. Besides, 〈C,S,P,D〉 and 〈C,I,S,D〉 also have gained

more concern from researchers. On one hand, this can reflect

the popularity and potential advantages of these hybridization

strategies. On the other hand, however, the unbalanced situation

may conceal the potential superiority of some other promising

strategies. On the whole, there are more hybridization-strategy

classes that are involved in the proposed taxonomy but not re-

ported in the DEPSO literature, such as 〈C,C,P,D〉, 〈C,I,P,D〉,
〈C,P,P,D〉, 〈E,I,N,D〉, and 〈A,I,S,D〉.

The proposed taxonomy can be easily applied to the analysis

of hybridization strategies regarding various hybrid optimizers.

In the following, we utilize the proposed taxonomy and related

notations to classify several representative hybrids that are re-

ported in frequently cited works. In addition to the classification,

the main ideas in each hybrid are also summarized as a reference

for interested researchers.

1) HGAPSO (hybrid of genetic algorithm and particle swarm

optimization) Proposed by Juang [20]: GA⊕PSO〈C,P,S,D〉:
[HOLH], [HOOH], [deterministic static alternation], [hetero-

geneous TIT], [TTI: 〈S〉, PSO
〈p〉
⇀↽
〈e〉

GA].

Inventor’s ideas: Elite individuals in a generalized popula-

tion, which occupy half of the population, will be evolved by

PSO. The GA operates on the evolved elites to generate some

offspring. The enhanced individuals that are generated by PSO

and the GA offspring will compete through a ranking selection,

and only the better half of the generalized population (PSO-

enhanced elites plus GA-generated offspring) will enter the next

generation. Note that the HL of this hybrid is regarded as pop-

ulation level since the worse half of the generalized population

will be always eliminated and the better half can be viewed as a

whole population for both GA and PSO.

2) GQL (hybrid of Genetic Algorithm and Quasi-Newton

Inspired by Lamarckian Evolution) and GQD (hybrid of Genetic

Algorithm and Quasi-Newton Inspired by Darwinian Evolution)

Proposed by Renders and Flasse [21]: GA⊕QN(quasi-Newton

method).

758 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 5, SEPTEMBER 2012

TABLE I
(Continued.)

Fig. 6. Number of times each HL has been employed among all collaboration-
based DEPSOs that are surveyed.

a) GQD (Darwin-inspired hybrid): 〈C,P,S,D〉: [HOLH],

[HOOH], [deterministic static alternation], [heterogeneous

TIT], [TTI: 〈S〉&〈F〉, GA
〈x〉
⇀↽
〈F 〉

QN].

Inventors’ ideas: The GA provides QN with starting points,

and the fitness of any GA individual will be evaluated by that of

its corresponding enhanced individual that is generated by QN.

However, the GA will operate on the original individuals rather

than the improved ones. The hybridization strategy is termed

Fig. 7. Number of times each involved hybridization strategy has been em-
ployed among all DEPSOs that are surveyed.

as Baldwinian learning in the research of MAs. Although QN

is, in nature, a TSM, we identify the OL of GQD to be the

population level (〈P〉) since all individuals in each generation

will go through the improvement of QN.

b) GQL (Lamark-inspired hybrid): 〈C,P,S,D〉: [HOLH],

[HOOH], [deterministic static alternation], [homogeneous TIT],

[TTI: 〈S〉, GA
〈x〉
⇀↽
〈x〉

QN].

XIN et al.: HYBRIDIZING DIFFERENTIAL EVOLUTION AND PARTICLE SWARM OPTIMIZATION TO DESIGN POWERFUL OPTIMIZERS 759

TABLE I
(Continued.)

Inventors’ ideas: The GA operates on the enhanced individu-

als that are improved by QN and provides QN with initial points.

As opposed to GQD, the improvement of individuals in GQL

is inherited into the chromosomes in the GA. The hybridization

strategy is termed as Lamarckian learning in the research of

MAs. Both GQD and GQL are expected to combine the advan-

tage of the GA in exploration with that of QN in exploitation.

3) MOGLS (Multi-Objective Genetic Local Search) Pro-

posed by Ishibuchi and Murata [22]: GA⊕LS〈C,P,S,D〉:
[HOLH], [HOOH], [deterministic static alternation], [homoge-

neous TIT], [TTI:〈S〉, GA
〈x〉
⇀↽
〈x〉

LS].

Inventors’ ideas: A truncated LS is employed with the goal

to alleviate the great burden of computation-intensive local ex-

ploitation and to achieve a better tradeoff between exploration

and exploitation (Tr:Er&Ei). The LS is implemented by a shift

mutation to solve the multiobjective flowshop scheduling prob-

lem. Except for some special techniques to handle multiple

objectives (e.g., a random weighting technique) and the trun-

cated LS, the MOGLS shares the same idea with the GQL that

is proposed by Renders and Flasse [21]. In fact, both of them

belong to the family of MAs.

4) CPSO (Chaotic Particle Swarm Optimization) Proposed

by Liu et al. [23]: PSO⊕CS (chaotic search) 〈C,I,S,D〉: [HELH

(PSO’s OL: 〈P〉, CS’s OL: 〈I〉)], [HEOH], [deterministic static

alternation], [homogeneous TIT], [TTI: 〈S〉, PSO
〈g〉
⇀↽
〈g〉

CS].

Inventors’ ideas: Chaotic dynamics is incorporated into a

PSO with adaptive inertia weight to enrich the searching be-

havior and avoid being trapped into local optimum. The global

best particle in PSO is further improved and updated by CS.

Note that the chaotic search is de facto an explorative TSM as

it does not exploit local information. Liu et al. also employed

a gbest-centered space contraction strategy to accelerate the

exploration. Besides, in each generation, only a group of elite

solutions will enter the new generation with the other solutions

760 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 5, SEPTEMBER 2012

TABLE I
(Continued.)

being replaced by new solutions that are randomly generated

within contracted space.

5) MA-S1 and MA-S2 Proposed by Ong and Keane [24]:

GA⊕multiple LSs 〈C,I,S,D〉: [HELH (GA’s OL: 〈P〉, each LS’s

OL: 〈I〉)], [HEOH], [deterministic static alternation], [homoge-

neous TIT], [TTI: 〈S〉, GA
〈x〉
⇀↽
〈x〉
{LS1 ,LS2 , . . . ,LSm}].

Inventors’ ideas: The two MAs are de facto two frameworks

to hybridize multiple LS methods (memes) with the GA in a

meta-Lamarckian manner, which is primarily related to the topic

of how to choose LSs according to their online performance.

The core of MA-S1 is a subproblem decomposition strategy,

which uses a distance metric to define the neighborhood of any

individual. The LS for a given individual will be chosen from

those employed by its neighbors according to their performance.

In contrast, MA-S2 employs a biased roulette wheel scheme

to bias the choice of LSs by accumulated knowledge on the

performance of each LS candidate.

6) GASA Proposed by Wang and Zheng [25]: GA⊕SA (sim-

ulated annealing) 〈C,P,S,D〉: [HOLH], [HOOH], [deterministic

static alternation], [homogeneous TIT], [TTI:〈S〉, GA
〈x〉
⇀↽
〈x〉

SA].

XIN et al.: HYBRIDIZING DIFFERENTIAL EVOLUTION AND PARTICLE SWARM OPTIMIZATION TO DESIGN POWERFUL OPTIMIZERS 761

Inventors’ ideas: The GA provides SA with a set of initial so-

lutions at each scheduled temperature. SA performs a Metropo-

lis sampling for each solution until a predefined equilibrium

condition is reached. The GA uses the solutions that are found

by the SA to continue its parallel evolution. In fact, the SA here

plays the role of an IM, carrying out a neighborhood search,

though it has excellent exploration capability.

Another well-known hybrid of the GA and SA was proposed

by Mahfoud and Goldberg [145]. In this GASA, a temperature-

regulated selection that originates from SA operates on parent

and offspring solutions in the GA to choose the solutions for the

next generation. Therefore, the SA in essence is embedded as a

selection mechanism into the GA. Accordingly, this GASA can

be categorized into 〈E,P,N,D〉.
7) Simplex-GA Proposed by Yen et al. [26]: GA⊕CPS (con-

current probabilistic simplex), 〈C,S,P,D〉: [HELH (GA’s OL:〈P〉,
CPS’s OL:〈S〉)], [HEOH], [heterogeneous TIT], [TTI:〈S〉,

GA
〈e〉
⇀↽
〈x〉

CPS].

Inventors’ ideas: The hybrid implies a hierarchical fitness-

ranking-based division of the whole population. The GA evolves

the whole population, and meanwhile, CPS operates on a group

of top-ranking solutions. Besides, a part of the best solutions in

the CPS subpopulation directly enter the next generation. The

CPS is an exploitative optimizer that is expected to search the

local space around some high-quality solutions.

8) DE/EDA Proposed by Sun et al. [27]: EDA⊕DE

(DE/mid-to-better/1/bin), 〈C,C,S,D〉: [HOLH], [HOOH],

[stochastic static alternation], [heterogeneous TIT], [TTI:〈S〉,

〈Sc〉, EDA
〈Sc〉
⇀↽

〈e〉,〈Sc〉
DE].

Inventors’ ideas: DE/EDA combines global information that

is extracted by the EDA with differential information that is

obtained by DE to create promising solutions and explore

the search space more effectively. In the DE/EDA offspring-

generation scheme, one part of a new solution is generated in

the DE way, while the other part is sampled from a probabil-

ity model based on elite solutions. In such a way, both global

information and local information are used to guide the further

search.

C. Differences and Connections With Previous Taxonomies

There exist several taxonomies in the literature, which present

certain classification of hybrid metaheurisitcs [15], [18], [146],

EAs [60], or MAs [19]. Talbi proposed a taxonomy for hybrid

metaheuristics, which considers solutions to design and imple-

mentation issues [15]. Regarding each issue, Talbi adopted both

a hierarchical classification and a flat one. Jourdan et al. ex-

tended Talbi’s taxonomy to the case of cooperation between

metaheuristics and exact methods [146]. The taxonomy that is

proposed by Raidl [18] is very similar to Talbi’s taxonomy, but

it removes some flat classification mechanisms and introduces a

new classification mechanism, i.e., control strategy, to differen-

tiate integrative hybridization and collaborative hybridization.

In integrative hybridization, one parent is considered as a sub-

ordinate, embedded component of another parent. In collabo-

rative hybridization, parents exchange information, but are not

part of each other. The collaborative hybridization and the in-

tegrative hybridization reflect the collaboration-based PR and

the embedding-based PR, respectively. Krasnogor and Smith

proposed a scheduler-based taxonomy for the classification of

different MAs [19]. The MA taxonomy provides a very useful

tool to capture the interaction between LS and standard evo-

lutionary operators (mutation, crossover, selection). Calégari

et al. proposed a taxonomy of EAs, namely table of EAs (TEA),

to distinguish different classes of EAs by the enumeration of

the fundamental ingredients of each of these algorithms [60].

The TEA is competent for the identification of the differences

between EAs in detail; however, it does not provide any classifi-

cation mechanisms of hybridization strategies. In the following,

the new taxonomy that we proposed will be compared with

Talbi’s taxonomy.

Talbi introduced many classification criteria in his taxonomy,

including “low level versus high level,” “relay versus team-

work,” “homogeneous versus heterogeneous,” “global versus

partial,” “specialist versus general,” etc. Distinct from the no-

tions of HL and OL, the low/high level that Talbi mentioned

refers to the issue of whether a given function of a parent opti-

mizer is replaced by another one (low level: replaced; high level:

self-contained). Relay is de facto equivalent to the sequential

OO. In contrast, teamwork hybridization represents “coopera-

tive optimization models, which involve many parallel cooper-

ating agents, where each agent carries out a search in a solution

space” [15]. Therefore, the term “teamwork” does not refer to

the parallel OO of parents but highlights the feature of coop-

eratively improving multiple solutions. The homogeneity here

(homogeneous/heterogeneous) indicates whether the parent op-

timizers are same or not. A global hybrid means that all parent

optimizers work in the whole search space. In contrast, par-

ents of a partial hybrid are designated to different subproblems,

which are determined by a decomposition of the original prob-

lem. Obviously, partial hybrids can be categorized into the class

〈C,C,?,?〉. The criterion “specialist/general” indicates whether

or not some parent optimizers are used to solve other problems

beyond searching in solution space (general: no; specialist: yes).

In particular, a hybrid in which a parent is used to optimize an-

other one can be classified as a specialist hybrid. Therefore,

the specialist hybridization conceptually shares much similarity

with the assistance-based hybridization. The OL of parents, the

TIT, and the TTI are not considered in Talbi’s taxonomy.

According to Talbi’s taxonomy, the well-known MA will be

placed within the low-level teamwork class [15], [19]. In con-

trast, the new taxonomy indicates that the MA is a hybridization

framework with diversified implementation schemes. An MA

can be an instance of 〈C,?,?,?〉, where the mapping (operations)

of global search and LS can be separated, and for example, LS

can be implemented in each generation after a GA completes

all of its operations. In this case, the mapping of the MA can

be denoted by (GA : fS ◦ fC ◦ fM) ◦ fLS , where fS , fC , fM ,

and fLS represent the mapping of selection, crossover, mutation,

and LS operators, respectively. The GA’s original consecutive

operation can be extracted from the composite mapping and sep-

arated from LS. An MA can also be embedding based, where the

762 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 5, SEPTEMBER 2012

mappings of global search and LS cannot be separated. For ex-

ample, if LS is implemented after both crossover and mutation

of the GA [147], the mapping of LS will be integrated (inserted)

into the GA, that is to say, the GA’s mapping in this case can-

not be extracted from the MA as fS ◦ fC ◦ fM . The mapping

of this MA can be denoted by fS ◦ (fC ◦ fLS) ◦ (fM ◦ fLS). It

is obvious that the original consecutive operation of the GA,

which is denoted by fS ◦ fC ◦ fM , is broken by LS. In addi-

tion, even within 〈C,?,?,?〉, an MA can be achieved by different

schemes, such as 〈C,P,S,S〉 (e.g., GQD [21]), 〈C,P,S,D〉 (e.g.,

MOGLS [22]), and 〈C,I,S,D〉 (e.g., MA-S1 and MA-S2 [24]).

By comparison, the five hybridization factors in the new tax-

onomy that is proposed in this paper give rise to a more com-

prehensive, coherent, hierarchical classification tool, benefiting

a step-by-step analysis/design of any hybrid.

V. DISCUSSION AND FUTURE RESEARCH

ON HYBRID OPTIMIZATION

As can be seen from the proposed taxonomy, designers have

manifold choices to design a hybrid optimizer. Here, we have no

preferential weighting of any hybridization scheme and try to

keep an open mind on different hybridization strategies. Besides,

we have no intention to identify the performance differences of

various hybridization strategies through some benchmark tests,

since an incomplete comparison may mislead other researchers

into a prejudice against some hybridization strategies. After all,

a successful implementation of certain hybridization strategy is

related to many design issues, such as the selection of parent

optimizers and the aforementioned design details. Exactly as

is claimed at the outset, the review paper aims at to unfold

a broader and systematic view of hybridization strategies, as

well as to promote the development of more efficient hybrid

optimizers. In the following, we will discuss a pivotal issue

regarding the design of hybrid optimizers, i.e., the Tr:Er&Ei, as

well as point out some research lines about hybrid optimizers.

A. Tradeoff Between Exploration and Exploitation

Exploration and exploitation are also referred to as diversi-

fication (breadth first) and intensification (depth first), respec-

tively [16], [148]. In [148], through an extensive investigation

of hybrid metaheuristics that are based on EAs, Lozano and

Martı́nez concluded that the use of EAs specializing in diversi-

fication and intensification (Er&Ei) to build hybrid metaheuris-

tics becomes a prospective line of research to obtain effective

search algorithms.

Admittedly, the Tr:Er&Ei is a core of all kinds of optimizers,

which can be seen from the ideas of the inventors of different

hybrids. Generally, excessive exploitation will depress diversity

and induce premature convergence. Excessive exploration will

result in slow convergence. Therefore, an appropriate Tr:Er&Ei

is essential for efficient problem solving. Chen et al. pointed out

that the best Tr:Er&Ei is dominated by the optimization hardness

of problems to be optimized, and it will gradually lean toward

exploration as optimization hardness increases [149]. The di-

versity of practical problems gives rise to diverse demands on

the Tr:Er&Ei. In essence, the hybridization of optimizers is a

means of adjusting the Tr:Er&Ei. Usually, various optimizers

differ in their exploration and exploitation patterns, as well as the

Tr:Er&Ei. For example, an important motivation behind many

hybrids, such as MAs, is the synergy of explorative (global)

search and exploitative (local) search. However, the rationale

in terms of the Tr:Er&Ei is not very clear in embedding-based

hybridization and assistance-based hybridization. It is hard to

predict the performance of an embedding-based hybrid accord-

ing to the performance of its parents, since the hybridization

is neither a temporal assignment nor a spatial assignment of

the parents in search space, but an integration that gives birth

to a new holistic optimizer. In this sense, embedding-based hy-

bridization usually implies more empirical attempts and a higher

risk of design failure. As for assistance-based hybrids, the as-

sistant parent is expected to improve the search behavior of the

master parent, and its contribution to performance improvement

has to be attached to the framework of its master, consequently

being hard to estimate. Therefore, the Tr:Er&Ei in assistance-

based hybrids essentially relies much on a delicate regulation of

the Tr:Er&Ei about the master parent. Note that the statement

given earlier is not negating the embedding PR or assistance

PR, but reminding designers of the two hybridization schemes’

basic features.

In most cases, incorporation of LSs into explorative opti-

mizers is a promising, feasible, and efficient hybridization pat-

tern to draw a better Tr:Er&Ei, especially to solve complex

combinatorial optimization problems. This is one of the impor-

tant reasons for the success of many efficient hybrid optimiz-

ers, especially those that are frequently cited and whose high

quality and efficiency have been proved in practice [20]–[27].

Like other population-based global optimizers, DE and PSO

stress on exploration and lack exploitation; therefore, many

researchers have tried to hybridize them with LS to strike a

balance [67]–[71], [150]–[153]. However, how to incorporate

LSs to ensure the expected problem-solving efficiency is still

an open issue. See the MA tutorial of Krasnogor and Smith for

more design issues on how to balance global search and LS [19].

Although we focus in this paper on the hybridization of two

parent optimizers, the proposed taxonomy can also be utilized to

analyze some intricate hybridization that involves more parents.

One can also follow the hierarchical framework that is shown

in Fig. 4 to determine primary hybridization factors one by one

to design a hybrid that involves more parent optimizers. When

designing a hybrid, one should also consider the computation

complexity that is possibly introduced by the incorporation of

too many optimizers. However, a sophisticated hybridization

that is based on multiple parents may be prospective for time-

consuming high-dimensional numerical optimization, since the

computational cost that is introduced by complicated hybridiza-

tion is usually insignificant in contrast to the inherent computa-

tion complexity and optimization hardness of high-dimensional

problems.

B. Some Topics Worthy of Future Research

1) 〈C,C,?,?〉 Needs to be more explored: According to

the analysis of existing DEPSOs and other representa-

XIN et al.: HYBRIDIZING DIFFERENTIAL EVOLUTION AND PARTICLE SWARM OPTIMIZATION TO DESIGN POWERFUL OPTIMIZERS 763

tive hybrids, the hybridization patterns 〈C,P,?,?〉 (especially,

〈C,P,S,D〉), 〈C,S,?,?〉 (especially, 〈C,S,P,D〉), 〈C,I,?,?〉 (espe-

cially, 〈C,I,S,D〉) have attracted more attention of researchers.

It is expected that more efficient hybrids utilizing the pat-

tern 〈C,C,?,?〉 will emerge in the future. For example, the

component-level adaptive or self-adaptive alternation of par-

ents, which are mentioned in Section IV-A (see Fig. 2), is a

promising research line as it enriches the diversity of evolu-

tionary operations to a large extent. Besides, the cooperative

coevolution (CC) that is often employed for high-dimensional

numerical optimization is an instance of the hybridization strat-

egy 〈C,C,S,D〉 [46], [154]. However, it has merely been success-

fully implemented on homogeneous optimizers, such as multi-

ple PSOs [46], [154] and multiple DEs [155]. It is possible that

the CC’s efficiency can be enhanced by the hybridization of

diverse optimizers that have different features in exploration–

exploitation patterns and the Tr:Er&Ei. In addition, the hy-

bridization of global search (especially, POs) and LS methods

at component level is also a very interesting topic for future

research.

2) Exploration Pattern in Memetic Algorithms Can be En-

riched: Although the concept of MAs has been extended with

its global search being achieved by any explorative PO [156],

the current focus of MAs is on the coevolution (adaptation) of

different LS methods (LSMs), i.e., individual learning meth-

ods [19], [24], [133], [134], [156], [157], which takes into ac-

count the diversity of LSMs and the improvement in exploita-

tion. However, the adaptation of global search methods (GSMs)

within the MA framework, i.e., the coevolution of multiple

GSMs, is seldom considered, which may limit the exploration

capability of MAs. A sophisticated tuning of the Tr:Er&Ei in

MAs is still worth investigation. In fact, MAs usually represent

a paradigm of achieving a better Tr:Er&Ei by combining GSMs

and LSMs in a deterministic alternation, though some recent

MA researches have provided new schemes to balance evolu-

tion (global search) and individual learning (LS) [156], [157].

3) Typical Hybridization Frameworks Beyond Memetic Al-

gorithms: In contrast to MAs, parent optimizers within some

different hybridization frameworks [108], [158], [159], regard-

less of their explorative or exploitative nature, will be chosen

through competition or switch adaptively, running in the form

of adaptive alternation. In particular, the hyperheuristics [160],

[161], which is also termed as superheuristics [162], represent

a hierarchical hybridization framework, which employs a high-

level methodology (e.g., machine-learning techniques and evo-

lutionary algorithms) to schedule a set of low-level heuristics.

Different low-level heuristics will be applied at any given time,

depending on the current problem state or search stage [161].

An important motivation behind hyperheuristics is to devise an

advanced algorithm (system), which can handle classes of prob-

lems rather than to solve only one problem, by combining the

strength and compensating for the weakness of known heuris-

tics [161], [163]. The choice of low-level heuristics can also

be encoded and evolved in a self-adaptive manner (see Fig. 2).

Obviously, hybridization in hyperheuristics involves both as-

sistance and collaboration. The high-level methodology serves

as an assistant/scheduler of all low-level heuristics, while these

heuristics collaborate with each other in search space. It is ex-

pected that a sophisticated ensemble based on the hyperheuris-

tic framework can be built to hybridize and coordinate different

explorative or/and exploitative optimizers for a wide range of

problem solving.

4) Adapting the Tr:Ei&Er to Problems: The well-known No

Free Lunch (NFL) theorem states that no optimizer could keep

optimal over all problems, alluding to a compromise between

the generality and specialty of an optimizer [164]. However, the

following question overriding the NFL theorem may hopefully

lead to some powerful hybrid optimizers that are capable of

handling a wide range of problems efficiently:

How to choose the most suitable optimizer in different cases to solve

the problem in hand or specific problem instances?

No doubt that the choice of the “best” optimizer is problem de-

pendent, and even instance dependent. Therefore, the adaptation

of the Tr:Er&Ei of hybrids to the features of specific problems,

such as parameter combinations and optimization hardness, by

the utilization of problem-specific knowledge beforehand or in

search process is also a challenging research line worthy of

devotion.

VI. CONCLUSION

Hybridization has turned out to be an effective and efficient

way to design high-performance optimizers, which is witnessed

by the rapid evolution of diverse hybrid optimizers in the past

decade. As a special and representative member in the family

of hybrid optimizers, DEPSO has received much attention from

researchers that are interested in optimization, problem solving,

and algorithm design. Based on a comprehensive survey on

existing DEPSOs, this paper builds a systematic hierarchical

taxonomy of hybridization strategies, providing both a tool to

analyze hybridization strategies and a reference for designing

new optimizers. The proposed taxonomy was utilized to make

an analysis of the status quo of DEPSO research, indicating

that there is still a major part of hybridization strategies that

is involved in the taxonomy, which has not been explored yet.

At present, three collaboration-based hybridization strategies,

namely 〈C,P,S,D〉, 〈C,S,P,D〉, and 〈C,I,S,D〉, largely dominate

the existing DEPSOs. The taxonomy of hybridization strategies,

though built on the basis of DEPSO, can be applied to analyze a

large spectrum of hybrid optimizers. Finally, this paper presents

a discussion on a crucial issue in hybridization design, i.e.,

the Tr:Er&Ei, and unfolds some promising research directions

worthy of future devotion.

ACKNOWLEDGMENT

The authors would like to thank the Editor-in-Chief, the As-

sociate Editor, and anonymous reviewers for their constructive

suggestions to improve the quality of this paper. They would

also like to thank the two authors of [39], Prof. Z. F. Hao and

Mr. G. H. Guo, who provided very useful materials about their

hybrid algorithm.

764 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 5, SEPTEMBER 2012

REFERENCES

[1] G. B. Dantzig, Linear Programming and Extensions. Reading, NJ:
Princeton University Press, 1963.

[2] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Reading, MA: Addison-Wesley, 1989.
[3] H. P. Schwefel, “Evolution strategies: A family of nonlinear optimization

techniques based on imitating some principles of organic evolution,”
Ann. Oper. Res., vol. 1, no. 2, pp. 165–167, 1984.

[4] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation dis-
tribution in evolution strategies: The covariance matrix adaptation,” in
Proc. IEEE Conf. Evol. Comput., Nagoya, Japan, May 1996, pp. 312–
317.

[5] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, Jul. 1999.

[6] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simu-
lated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[7] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE

Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006.
[8] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.

IEEE Int. Conf. Neural Netw., Perth, WA, Nov./Dec. 1995, pp. 1942–
1948.

[9] R. Storn and K. Price, “Differential evolution—A simple and efficient
heuristics for global optimization over continuous spaces,” J. Global

Optim., vol. 11, no. 4, pp. 341–359, 1997.
[10] P. Larrañaga and J. A. Lozano, Estimation of Distribution Algorithms: A

New Tool for Evolutionary Computation. Boston, MA: Kluwer, 2002.
[11] C. Blum, M. J. Blesa Aguilera, A. Roli, and M. Sampels, Eds., Hy-

brid Metaheuristics: An Emerging Approach To Optimization (Studies
in Computational Intelligence Series 114). Berlin: Springer-Verlag,
2008.

[12] S. Voβ . (2006). “Hybridizing metaheuristics: The road to success in
problem solving,” in 6th Eur. Conf. Evol. Comput. Combinat. Optim.

(Slides of an invited talk at the EvoCOP 2006), Budapest, Hungary.
[Online]. Available: http://www.ads.tuwien.ac.at/evocop/Media:Invited-
talk-EvoCOP2006-voss.pdf

[13] M. J. Blesa Aguilera, C. Blum, C. Cotta, A. J. Fernández Leiva, J. E.
Gallardo Ruiz, A. Roli, and M. Sampels, Eds., Proceedings of the. 5th In-

ternational Workshop on Hybrid Metaheuristics (Lecture Notes in Com-
puter Science Series 5296). Berlin: Springer-Verlag, 2008.

[14] M. J. Blesa Aguilera, C. Blum, L. Gaspero, A. Roli, M. Sampels, and
A. Schaerf, Eds., Proceedings of the 6th International Workshop on

Hybrid Metaheuristics (Lecture Notes in Computer Science Series 5818).
Berlin: Springer-Verlag, 2009.

[15] E. G. Talbi, “A taxonomy of hybrid metaheuristics,” J. Heur., vol. 8,
no. 5, pp. 541–564, 2002.

[16] M. Gendreau and J. Y. Potvin, “Metaheuristics in combinatorial opti-
mization,” Ann. Oper. Res., vol. 140, no. 1, pp. 189–213, 2005.

[17] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM Comput. Surv., vol. 35,
no. 3, pp. 268–308, 2003.

[18] G. R. Raidl, “A unified view on hybrid metaheuristics,” in Proc 3rd

Int. Workshop Hybrid Metaheuristics, Gran Canaria, Spain, Oct. 2006,
pp. 1–12.

[19] N. Krasnogor and J. Smith, “A tutorial for competent memetic algo-
rithms: Model, taxonomy, and design issues,” IEEE Trans. Evol. Com-

put., vol. 9, no. 5, pp. 474–488, Oct. 2005.
[20] C. F. Juang, “A hybrid of genetic algorithm and particle swarm optimiza-

tion for recurrent network design,” IEEE Trans. Syst., Man, Cybern. B,

Cybern., vol. 34, no. 2, pp. 997–1006, Apr. 2004.
[21] J. M. Renders and S. P. Flasse, “Hybrid methods using genetic algorithms

for global optimization,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 26, no. 2, pp. 243–258, Apr. 1996.

[22] H. Ishibuchi and T. Murata, “A multi-objective genetic local search
algorithm and its application to flowshop scheduling,” IEEE Trans.

Syst., Man, Cybern. C, Appl. Rev., vol. 28, no. 3, pp. 392–403, Aug.
1998.

[23] B. Liu, L. Wang, Y. H. Jin, F. Tang, and D. X. Huang, “Improved particle
swarm optimization combined with chaos,” Chaos Soliton. Fract.,
vol. 25, no. 5, pp. 1261–1271, 2005.

[24] Y. S. Ong and A. J. Keane, “Meta-Lamarckian learning in memetic
algorithms,” IEEE Trans. Evol. Comput., vol. 8, no. 2, pp. 99–110, Apr.
2004.

[25] L. Wang and D. Z. Zheng, “An effective hybrid optimization strategy
for job-shop scheduling problems,” Comput. Oper. Res., vol. 28, no. 6,
pp. 585–596, 2001.

[26] J. Yen, J. C. Liao, B. J. Lee, and D. Randolph, “A hybrid approach
to modeling metabolic systems using a genetic algorithm and simplex
method,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 28, no. 2,
pp. 173–191, Apr. 1998.

[27] J. Y. Sun, Q. F. Zhang, and E. P. K. Tsang, “DE/EDA: A new evolutionary
algorithm for global optimization,” Inf. Sci., vol. 169, no. 3–4, pp. 249–
262, 2005.

[28] W. J. Zhang and X. F. Xie, “DEPSO: Hybrid particle swarm with differ-
ential evolution operator,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
Washington, DC, Oct. 2003, pp. 3816–3821.

[29] Y. S. Ong, N. Krasnogor, and H. Ishibuchi, “Special issue on memetic
algorithms,” IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 37, no. 1,
pp. 2–5, Feb. 2007.

[30] K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A

Practical Approach to Global Optimization (Natural Computing Series),
1st ed. New York: Springer-Verlag, 2005.

[31] U. K. Chakraborty, Ed., Advances in Differential Evolution. Berlin:
Springer-Verlag, 2008.

[32] S. Das and P. N. Suganthan, “Differential evolution: A survey of the state
of the art,” IEEE Tran. Evol. Comput., vol. 5, no. 1, pp. 4–31, Feb. 2011.

[33] S. Das, A. Abraham, and A. Konar, “Automatic clustering using an
improved differential evolution algorithm,” IEEE Trans. Syst., Man,

Cybern. A, Syst. Humans, vol. 38, no. 1, pp. 218–237, Jan. 2008.
[34] C. M. Kwan and C. S. Chang, “Timetable synchronization of mass rapid

transit system using multiobjective evolutionary approach,” IEEE Trans.

Syst., Man, Cybern. C, Appl. Rev., vol. 38, no. 5, pp. 636–648, Sep.
2008.

[35] C. H. Chen, C. J. Lin, and C. T. Lin, “Nonlinear system control using
adaptive neural fuzzy networks based on a modified differential evolu-
tion,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 39, no. 4,
pp. 459–473, Jul. 2009.

[36] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer, “Self-
adapting control parameters in differential evolution: a comparative study
on numerical benchmark problems,” IEEE Trans. Evol. Comput., vol. 10,
no. 6, pp. 646–657, Dec. 2006.

[37] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolu-
tion algorithm with strategy adaptation for global numerical optimiza-
tion,” IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, Apr.
2009.

[38] K. V. Price, “Differential evolution vs. the functions of the 2nd ICEO,”
in Proc. IEEE Int. Conf. Evol. Comput., Indianapolis, IN, Apr. 1997,
pp. 153–157.

[39] Z. F. Hao, G. H. Guo, and H. Huang, “A particle swarm optimization
algorithm with differential evolution,” in Proc. 6th Int. Conf. Mach.

Learn. Cybern., Hong Kong, China, Aug. 2007, pp. 1031–1035.
[40] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence. San Fran-

cisco, CA: Morgan Kaufmann, 2001.
[41] Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J. C. Hernandez,

and R. G. Harley, “Particle swarm optimization: Basic concepts, variants
and applications in power systems,” IEEE Trans. Evol. Comput., vol. 12,
no. 2, pp. 171–195, Apr. 2008.

[42] P. Kanakasabapathy and K. S. Swarup, “Evolutionary tristate PSO
for strategic bidding of pumped-storage hydroelectric plant,” IEEE

Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 4, pp. 460–471,
Jul. 2010.

[43] C. J. Lin, C. H. Chen, and C. T. Lin, “A hybrid of cooperative particle
swarm optimization and cultural algorithm for neural fuzzy networks and
its prediction applications,” IEEE Trans. Syst., Man, Cybern. C, Appl.

Rev., vol. 39, no. 1, pp. 55–68, Jan. 2009.
[44] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constric-

tion factors in particle swarm optimization,” in Proc. IEEE Cong. Evol.

Comput., La Jolla, CA, Jul. 2000, pp. 84–88.
[45] M. Clerc and J. Kennedy, “The particle swarm: Explosion, stability and

convergence in a multidimensional complex space,” IEEE Trans. Evol.

Comput., vol. 6, no. 1, pp. 58–73, Feb. 2002.
[46] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to

particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, Jun. 2004.

[47] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281–295, Jun.
2006.

[48] J. Kennedy, “Small world and mega-minds: Effects of neighborhood
topology on particle swarm performance,” in Proc. IEEE Cong. Evol.

Comput., Washington, DC, Jul. 1999, pp. 1931–1938.

XIN et al.: HYBRIDIZING DIFFERENTIAL EVOLUTION AND PARTICLE SWARM OPTIMIZATION TO DESIGN POWERFUL OPTIMIZERS 765

[49] J. Kennedy and R. Mendes, “Population structure and particle swarm
performance,” in Proc. IEEE Cong. Evol. Comput., Honolulu, HI, May
2002, pp. 1671–1676.

[50] J. Kennedy and R. Mendes, “Neighborhood topologies in fully informed
and best-of-neighborhood particle swarms,” IEEE Trans. Syst. Man

Cybern. C, Appl. Rev., vol. 36, no. 4, pp. 515–519, Jul. 2006.
[51] J. Sun, Q. C. Zhao, and P. B. Luh, “A unified optimization framework

for population-based methods,” in Proc. 4th IEEE Int. Conf. Autom. Sci.

Eng., Arlington, VA, Aug. 2008, pp. 383–387.
[52] M. M. Ali and L. P. Fatti, “A differential free point generation scheme

in the differential evolution algorithm,” J. Global Optim., vol. 35, no. 4,
pp. 551–572, 2006.

[53] R. Poli, “Mean and variance of the sampling distribution of particle
swarm optimizers during stagnation,” IEEE Trans. Evol. Comput.,
vol. 13, no. 4, pp. 712–721, Aug. 2009.

[54] J. Kennedy, “Bare bones particle swarms,” in Proc. IEEE Swarm Intell.

Symp., Indianapolis, IN, Apr. 2003, pp. 80–87.
[55] J. Kennedy, “The particle swarm as collaborative sampling of the search

space,” Adv. Complex Syst., vol. 10, no. 1, pp. 191–213, 2007.
[56] M. G. H. Omran, A. P. Engelbrecht, and A. Salman, “Self-adaptive

barebones differential evolution,” in Proc. IEEE Cong. Evol. Comput.,
Singapore, Sep. 2007, pp. 2858–2865.

[57] X. F. Xie and W. J. Zhang, “SWAF: Swarm algorithm framework for
numerical optimization,” in Proc. 6th Ann. Conf. Genetic Evol. Comput.,
Seattle, WA, Jun. 2004, pp. 238–250.

[58] É. D. Taillard, L. M. Gambardella, M. Gendreau, and J. Y. Potvin, “Adap-
tive memory programming: a unified view of metaheuristics,” Eur. J.

Oper. Res., vol. 135, no. 1, pp. 1–16, 2001.
[59] F. Glover, “Tabu search—Part I,” ORSA J. Comput., vol. 1, no. 3,

pp. 190–206, 1989.
[60] P. Calégari, G. Coray, A. Hertz, D. Kobler, and P. Kuonen, “A taxonomy

of evolutionary algorithms in combinatorial optimization,” J. Heur.,
vol. 5, no. 2, pp. 145–158, 1999.

[61] J. Teo, “Exploring dynamic self-adaptive populations in differential evo-
lution,” Soft Comput. A, Fusion Found. Method. Appl., vol. 10, no. 8,
pp. 673–686, 2006.

[62] N. S. Teng, J. Teo, and M. H. A. Hijazi, “Self-adaptive population sizing
for a tune-free differential evolution,” Soft Comput. A, Fusion Found.

Methodol. Appl., vol. 13, no. 7, pp. 709–724, 2009.
[63] J. Brest and M. S. Maučec, “Population size reduction for the differ-

ential evolution algorithm,” Appl. Intell., vol. 29, no. 3, pp. 228–247,
2008.

[64] S. T. Hsieh, T. Y. Sun, C. C. Liu, and S. J. Tsai, “Efficient population
utilization strategy for particle swarm optimizer,” IEEE Trans. Syst.,

Man, Cybern. B, Cybern., vol. 39, no. 2, pp. 444–456, Apr. 2009.
[65] W. F. Leong and G. G. Yen, “PSO-based multiobjective optimization

with dynamic population size and adaptive local archives,” IEEE Trans.

Syst., Man, Cybern. B, Cybern., vol. 38, no. 5, pp. 1270–1293, Oct. 2008.
[66] P. Greistorfer and S. Voß, “Controlled pool maintenance for metaheuris-

tics,” in Metaheuristic Optimization via Memory and Evolution: Tabu

Search and Scatter Search (Operations Research/Computer Science In-
terfaces Series 30), R. Sharda, S. Voß, C. Rego, and B. Alidaee, Eds.
Berlin: Springer-Verlag, 2005, part V, pp. 387–424.

[67] N. Noman and H. Iba, “Accelerating differential evolution using an adap-
tive local search,” IEEE Trans. Evol. Comput., vol. 12, no. 1, pp. 107–
125, Feb. 2008.

[68] B. Qian, L. Wang, D. X. Huang, W. L. Wang, and X. Wang, “An effective
hybrid DE-based algorithm for multi-objective flow shop scheduling with
limited buffers,” Comput. Oper. Res., vol. 36, no. 1, pp. 209–233, 2009.

[69] F. Neri and E. Mininno, “Memetic compact differential evolution for
Cartesian robot control,” IEEE Comput. Intell. Mag., vol. 5, no. 2,
pp. 54–65, May 2010.

[70] B. Liu, L. Wang, and Y. H. Jin, “An effective PSO-based memetic al-
gorithm for flow shop scheduling,” IEEE Trans. Syst., Man, Cybern. B,

Cybern., vol. 37, no. 1, pp. 18–27, Feb. 2007.
[71] B. B. Li, L. Wang, and B. Liu, “An effective PSO-based hybrid algorithm

for multiobjective permutation flow shop scheduling,” IEEE Trans. Syst.,

Man, Cybern. A, Syst. Humans, vol. 38, no. 4, pp. 818–831, Jul. 2008.
[72] T. Hendtlass, “A combined swarm differential evolution algorithm for

optimization problems,” Lecture Notes Comput. Sci., vol. 2070, pp. 11–
18, 2001.

[73] V. Ramesh, T. Jayabarathi, S. Asthana, S. Mital, and S. Basu, “Combined
hybrid differential particle swarm optimization approach for economic
dispatch problems,” Elec. Power Compon. Syst., vol. 38, no. 5, pp. 545–
557, 2010.

[74] H. Talbi and M. Batouche, “Hybrid particle swarm with differential
evolution for multimodal image registration,” in Proc. IEEE Conf. Ind.

Tech., Hammamet, Tunisia, Dec. 2004, pp. 1567–1572.
[75] R. Xu, G. K. Venayagamoorthy, and D. C. WunschII, “Modeling of gene

regulatory networks with hybrid differential evolution and particle swarm
optimization,” Neural Netw., vol. 20, no. 8, pp. 917–927, 2007.

[76] S. Wang, X. Liu, J. Qiu, J. G. Zhu, Y. Guo, and Z. W. Lin, “Robust
optimization in HTS cable based on DEPSO and design for six sigma,”
in Proc. IEEE Ind. Appl. Soc. Ann. Meeting, Alberta, Canada, Oct. 2008,
pp. 1–5.

[77] B. Luitel and G. K. Venayagamoorthy, “Differential evolution particle
swarm optimization for digital filter design,” in Proc. IEEE Cong. Evol.

Comput., Hong Kong, China, Jun. 2008, pp. 3954–3961.
[78] P. W. Moore and G. K. Venayagamoorthy, “Evolving digital circuit using

hybrid particle swarm optimization and differential evolution,” Int. J.

Neural Syst., vol. 16, no. 3, pp. 163–177, 2006.
[79] B. Liu, L. Wang, Y. H. Jin, and D. X. Huang, “Designing neural networks

using hybrid particle swarm optimization,” Lecture Notes Comput. Sci.,
vol. 3496, pp. 391–397, 2005.

[80] H. Huang, Z. H. Wei, Z. Q. Li, and W. B. Rao, “The back analysis of
mechanics parameters based on DEPSO algorithm and parallel FEM,”
in Proc. Int. Conf. Comput. Intell. Natur. Comput., Wuhan, China, Jun.
2009, pp. 81–84.

[81] H. Liu, Z. X. Cai, and Y. Wang, “Hybridizing particle swarm optimization
with differential evolution for constrained numerical and engineering
optimization,” Appl. Soft Comput., vol. 10, no. 2, pp. 629–640, 2010.

[82] R. Xu, J. Xu, and D. C. WunschII, “Clustering with differential evolu-
tion particle swarm optimization,” in Proc. IEEE Cong. Evol. Comput.,
Barcelona, Spain, Jul. 2010, pp. 1–8.

[83] M. G. Epitropakis, V. P. Plagianakos, and M. N. Vrahatis, “Evolving
cognitive and social experience in particle swarm optimization through
differential evolution,” in Proc. IEEE Cong. Evol. Comput., Barcelona,
Spain, Jul. 2010, pp. 1–8.

[84] D. Liu, D. Huang, Y. Tian, and Y. Chen, “Multistage inventory hybrid
intelligent optimization under grey fuzzy uncertainty,” in Proc. Int. Conf.

Comput. Intell. Secur., Guangdong, China, Nov. 2006, pp. 514–519.
[85] W. Xu and X. S. Gu, “A hybrid particle swarm optimization approach

with prior crossover differential evolution,” in Proc. 1st ACM/SIGEVO

Summit Genetic Evol. Comput., Shanghai, China, Jun. 2009, pp. 671–
677.

[86] D. F. Ning, W. G. Zhang, and B. Li, “Differential evolution based particle
swarm optimizer for neural network learning,” in Proc. 7th World Cong.

Intell. Contr. Autom., Chongqing, China, Jun. 2008, pp. 4444–4447.
[87] A. Caponio, F. Neri, and V. Tirronen, “Super-fit control adaptation in

memetic differential evolution frameworks,” Soft Comput. A, Fusion

Found. Method. Appl., vol. 13, no. 8–9, pp. 811–831, 2009.
[88] M. Ali, M. Pant, and A. Abraham, “Inserting information sharing mech-

anism of PSO to improve the convergence of DE,” in Proc. World Cong.

Natur. Bio. Inspir. Comput., Coimbatore, India, Dec. 2009, pp. 282–
287.

[89] D. W. Gong, Y. Zhang, and C. L. Qi, “Environmental/economic power
dispatch using a hybrid multi-objective optimization algorithm,” Int. J.

Elec. Power Energy Syst., vol. 32, no. 6, pp. 607–614, 2010.
[90] J. Grobler and A. P. Engelbrecht, “Hybridizing PSO and DE for improved

vector evaluated multi-objective optimization,” in Proc. IEEE Cong.

Evol. Comput., Trondheim, Norway, May 2009, pp. 1255–1262.
[91] S. W. Jiang and Z. H. Cai, “A novel hybrid particle swarm optimization

for multi-objective problems,” Lecture Notes Comput. Sci., vol. 5855,
pp. 28–37, 2009.

[92] B. Niu and L. Li, “A novel PSO-DE-based hybrid algorithm for global
optimization,” in Proc. 4th Int. Conf. Intell. Comput., Shanghai, China,
Sep. 2008, pp. 156–163.

[93] B. Niu and L. Li, “Design of T–S fuzzy model based on PSODE algo-
rithm,” in Proc. 4th Int. Conf. Intell. Comput., Shanghai, China, Sep.
2008, pp. 384–390.

[94] M. Zhang, W. Zhang, and Y. Sun, “Chaotic co-evolutionary algorithm
based on differential evolution and particle swarm optimization,” in
Proc. IEEE Conf. Autom. Logist., Shenyang, China, Aug. 2009, pp. 885–
889.

[95] X. Wang, Q. Yang, and Y. Zhao, “Research on hybrid PSODE with triple
populations based on multiple differential evolutionary models,” in Proc.

Int. Conf. Elec. Contr. Eng., Wuhan, China, Jun. 2010, pp. 1692–1696.
[96] M. R. Sentinella and L. Casalino, “Hybrid evolutionary algorithm for

the optimization of interplanetary trajectories,” J. Spacecraft Rockets,
vol. 46, no. 2, pp. 365–372, 2009.

766 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 5, SEPTEMBER 2012

[97] M. R. Sentinella and L. Casalino, “Cooperative evolutionary algorithm
for space trajectory optimization,” Celest. Mech. Dyn. Astr., vol. 105,
no. 1–3, pp. 211–227, 2009.

[98] K. Yang, K. Maginu, and H. Nomura, “Cultural algorithm-based
quantum-behaved particle swarm optimization,” Int. J. Comput. Math.,
vol. 87, no. 10, pp. 2143–2157, 2010.

[99] F. Peng, K. Tang, G. L. Chen, and X. Yao, “Population-based algorithm
portfolios for numerical optimization,” IEEE Trans. Evol. Comput.,
vol. 14, no. 5, pp. 782–800, Oct. 2010.

[100] F. Hu and F. Wu, “Diploid hybrid particle swarm optimization with
differential evolution for open vehicle routing problem,” in Proc. 8th

World Cong. Intell. Contr. Autom., Jinan, China, Jul. 2010, pp. 2692–
2697.

[101] Y. Wu, X. Z. Gao, X. L. Huang, and K. Zenger, “A hybrid optimization
method of particle swarm optimization and cultural algorithm,” in Proc.

6th Int. Conf. Natur. Comput., Yantai, China, Aug. 2010, pp. 2515–2519.
[102] D. De, S. Ray, A. Konar, and A. Chatterjee, “An evolutionary SPDE

breeding-based hybrid particle swarm optimizer: application in coordi-
nation of robot ants for camera coverage area optimization,” in Proc.

1st Int. Conf. Pattern Recog. Mach. Intell., Kolkata, India, Dec. 2005,
pp. 413–416.

[103] M. G. H. Omran, A. P. Engelbrecht, and A. Salman, “Differential evo-
lution based particle swarm optimization,” in Proc. IEEE Swarm Intell.

Symp., Honolulu, HI, Apr. 2007, pp. 112–119.
[104] P. Kim and J. Lee, “An integrated method of particle swarm optimization

and differential evolution,” J. Mech. Sci. Tech., vol. 23, no. 2, pp. 426–
434, 2009.

[105] H. Dhahri, A. M. Alimi, and F. Karray, “The modified particle swarm
optimization for the design of the beta basis function neural networks,”
in Proc. IEEE Cong. Evol. Comput., Hong Kong, China, Jun. 2008,
pp. 3874–3880.

[106] M. Pant, R. Thangaraj, C. Grosan, and A. Abraham, “Hybrid differen-
tial evolution: Particle swarm optimization algorithm for solving global
optimization problems,” in Proc. 3rd Int. Conf. Digit. Info. Manage.,
London, U.K, Nov. 2008, pp. 18–24.

[107] S. Khamsawang, P. Wannakarn, and S. Jiriwibhakorn, “Hybrid PSO-DE
for solving the economic dispatch problem with generator constraints,”
in Proc. 2nd Int. Conf. Comput. Autom. Eng., Singapore, Feb. 2010,
pp. 135–139.

[108] K. Takano and M. Hagiwara, “An integrated framework of hybrid evolu-
tionary computations,” in Proc. IEEE Cong. Evol. Comput., Trondheim,
Norway, May 2009, pp. 838–845.

[109] B. Xin, J. Chen, Z. H. Peng, and F. Pan, “An adaptive hybrid opti-
mizer based on particle swarm and differential evolution for global
optimization,” Sci. China Inf. Sci., vol. 53, no. 5, pp. 980–989,
2010.

[110] S. Das, A. Konar, and U. K. Chakraborty, “Improving particle swarm
optimization with differentially perturbed velocity,” in Proc. Genetic

Evol. Comput. Conf., Washington, DC, Jun. 2005, pp. 177–184.
[111] X. P. Zhang, W. Ding, J. Y. Wang, Z. S. Fan, and G. F. Deng, “Spatial

clustering with obstacles constraints using PSO-DV and K-medoids,” in
Proc. 3rd Int. Conf. Intell. Syst. Know. Eng., Xiamen, China, Nov. 2008,
pp. 246–251.

[112] B. Liu and H. Pan, “A hybrid PSO-DV based intelligent method for fault
diagnosis of gear-box,” in Proc. IEEE Int. Symp. Comput. Intell. Robot.

Autom., Daejeon, Korea, Dec. 2009, pp. 451–456.
[113] J. Li, “A hybrid differential evolution method for practical engineering

problems,” in Proc. IITA Int. Conf. Contr. Autom. Syst. Eng., Zhangjiajie,
China, Jul. 2009, pp. 54–57.

[114] J. Shu and J. Li, “A hybrid of differential evolution and particle swarm
optimization for global optimization,” in Proc. 3rd Int. Symp. Intell. Info.

Tech. Appl., Nanchang, China, Nov. 2009, pp. 138–141.
[115] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar, “Differential

evolution using a neighborhood-based mutation operator,” IEEE Trans.

Evol. Comput., vol. 13, no. 3, pp. 526–553, Jun. 2009.
[116] X. Xu, Y. Li, S. Fang, Y. Wu, and F. Wang, “A novel differential evolution

scheme combined with particle swarm intelligence,” in Proc. IEEE Cong.

Evol. Comput., Hong Kong, China, Jun. 2008, pp. 1057–1062.
[117] S. Kannan, S. M. R. Slochanal, P. Subbaraj, and N. P. Padhy, “Application

of particle swarm optimization technique and its variants to generation
expansion planning,” Elec. Power Syst. Res., vol. 70, no. 3, pp. 203–210,
2004.

[118] S. Jiang, Q. Wang, and J. Jiang, “Particle swarm optimization algorithm
based on velocity differential mutation,” in Proc. 21st Chin. Contr. De-

cision Conf., Guilin, China, Jun. 2009, pp. 1860–1865, (in Chinese).

[119] M. G. H. Omran, A. P. Engelbrecht, and A. Salman, “Bare bones dif-
ferential evolution,” Eur. J. Oper. Res., vol. 196, no. 1, pp. 128–139,
2009.

[120] W. R. M. U. K. Wickramasinghe and X. Li, “Choosing leaders for multi-
objective PSO algorithms using differential evolution,” in Proc. 7th Int.

Conf. Simul. Evol. Learn., Melbourne, Australia, Dec. 2008, pp. 249–
258.

[121] C. Zhang, J. Ning, S. Lu, D. Ouyang, and T. Ding, “A novel hybrid
differential evolution and particle swarm optimization algorithm for un-
constrained optimization,” Oper. Res. Lett., vol. 37, no. 2, pp. 117–122,
2009.

[122] S. Liu, X. Wang, and X. You, “Cultured differential particle swarm
optimization for numerical optimization problems,” in Proc. Int. Conf.

Natur. Comput., Haikou, China, Aug. 2007, pp. 642–648.
[123] W. Yi, C. Cao, and C. Zhang, “The geometric constraint solving based on

hybrid differential evolution and particle swarm optimization algorithm,”
in Proc. Int. Conf. Intell. Contr. Info. Process., Dalian, China, Aug. 2010,
pp. 692–695.

[124] S. Das and S. Sil, “Kernel-induced fuzzy clustering of image pixels with
an improved differential evolution algorithm,” Inf. Sci., vol. 180, no. 8,
pp. 1237–1256, 2010.

[125] D. Liu, Y. Chen, H. Mao, Z. Zhang, and X. Gu, “Optimization of the
supply chain production planning programming under hybrid uncertain-
ties,” in Proc. Int. Conf. Intell. Comput. Tech. Autom., Hunan, China,
Oct. 2008, pp. 1235–1239.

[126] S. Wang, L. Ma, and D. Sun, “Hybrid differential evolution particle
swarm optimization algorithm for reactive power optimization,” in Proc.

Asia-Pacific Conf. Power Energy Eng., Chengdu, China, Mar. 2010,
pp. 1–4.

[127] K. Vaisakh, P. Praveena, and S. Rama Mohana Rao, “DEPSO and bacte-
rial foraging optimization based dynamic economic dispatch with non-
smooth fuel cost functions,” in Proc. World Cong. Natur. Bio. Inspir.

Comput., Coimbatore, India, Dec. 2009, pp. 152–157.
[128] C. Potter, G. K. Venayagamoorthy, and K. Kosbar, “MIMO beam-

forming with neural network channel prediction trained by a novel PSO-
EA-DEPSO algorithm,” in Proc. Int. Joint Conf. Neur. Netw., Hong Kong,
China, Jun. 2008, pp. 3338–3344.

[129] C. Potter, G. K. Venayagamoorthy, and K. Kosbar, “RNN based MIMO
channel prediction,” Signal Process., vol. 90, no. 2, pp. 440–450,
2010.

[130] Y. C. Lin, K. S. Hwang, and F. S. Wang, “Co-evolutionary hybrid differ-
ential evolution for mixed-integer optimization problems,” Eng. Optim.,
vol. 33, no. 6, pp. 663–682, 2001.

[131] H. A. Abbass, “The self-adaptive Pareto differential evolution algo-
rithm,” in Proc. Cong. Evol. Comput., Honolulu, HI, May 2002, pp. 831–
836.

[132] M. G. Epitropakis, V. P. Plagianakos, and M. N. Vrahatis, “Balancing
the exploration and exploitation capabilities of the differential evolution
algorithm,” in Proc. IEEE Cong. Evol. Comput., Hong Kong, China, Jun.
2008, pp. 2686–2693.

[133] Y. S. Ong, M. H. Lim, N. Zhu, and K. W. Wong, “Classification of
adaptive memetic algorithms: A comparative study,” IEEE Trans. Syst.,

Man, Cybern. B, Cybern., vol. 36, no. 1, pp. 141–152, Feb. 2006.
[134] J. E. Smith, “Co-evolving memetic algorithms: a review and progress

report,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 37, no. 1,
pp. 6–17, Feb. 2007.

[135] J. J. Grefenstette, “Optimization of control parameters for genetic algo-
rithms,” IEEE Trans. Syst., Man, Cybern., vol. 16, no. 1, pp. 122–128,
Jan. 1986.

[136] E. Cantú-Paz, Efficient and Accurate Parallel Genetic Algorithms.
Norwell, MA: Kluwer, 2000.

[137] I. L. Schoeman and A. P. Engelbrecht, “A novel particle swarm niching
technique based on extensive vector operations,” Natur. Comput., vol. 9,
no. 3, pp. 683–701, 2010.

[138] R. Brits, A. P. Engelbrecht, and F. van den Bergh, “Locating multiple op-
tima using particle swarm optimization,” Appl. Math. Comput., vol. 189,
no. 2, pp. 1859–1883, 2007.

[139] M. Weber, V. Tirronen, and F. Neri, “Scale factor inheritance mechanism
in distributed differential evolution,,” Soft Comput. A, Fusion Found.

Method. Appl., vol. 14, no. 11, pp. 1187–1207, 2010.
[140] X. D. Li, “Efficient differential evolution using speciation for multi-

modal function optimization,,” in Proc. Genetic Evol. Comput., Conf.,
Washington, DC, Jun. 2005, pp. 873–880.

[141] B. Yang, Y. Chen, Z. Zhao, and Q. Han, “A master-slave particle swarm
optimization algorithm for solving constrained optimization problems,”

XIN et al.: HYBRIDIZING DIFFERENTIAL EVOLUTION AND PARTICLE SWARM OPTIMIZATION TO DESIGN POWERFUL OPTIMIZERS 767

in Proc. 6th World Cong. Intell. Contr. Autom., Dalian, China, Jun. 2006,
pp. 3208–3212.

[142] and L. dos R. A. Krohling and S. Coelho, “Coevolutionary particle
swarm optimization using Gaussian distribution for solving constrained
optimization problems,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 36, no. 6, pp. 1407–1416, Dec. 2006.

[143] B. W. Wah and Y. Chen, “Hybrid constrained simulated annealing and ge-
netic algorithms for nonlinear constrained optimization,” in Proc. IEEE

Cong. Evol. Comput., May, 2001, pp. 925–932.
[144] S. Das, “Nelder–Mead evolutionary hybrid algorithms,” in Encyclopedia

of Artificial Intelligence, vol. 3, J. R. R. Dopico, J. D. de la Calle, and A.
P. Sierra, Eds. New York: IGI Global, 2009, pp. 1191–1196.

[145] S. W. Mahfoud and D. E. Goldberg, “Parallel recombinative simulated
annealing: A genetic algorithm,” Parallel Comput., vol. 21, no. 1, pp. 1–
28, 1995.

[146] L. Jourdan, M. Basseur, and E. G. Talbi, “Hybridizing exact methods
and metaheuristics: A taxonomy,” Eur. J. Oper. Res., vol. 199, no. 3,
pp. 620–629, 2009.

[147] P. Merz and B. Freisleben, “Fitness landscape analysis and memetic
algorithms for the quadratic assignment problem,” IEEE Trans. Evol.

Comput., vol. 4, no. 4, pp. 337–352, Nov. 2000.
[148] M. Lozano and C. Garcı́a-Martı́nez, “Hybrid metaheuristics with evo-

lutionary algorithms specializing in intensification and diversification:
Overview and progress report,” Comput. Oper. Res., vol. 37, no. 3,
pp. 481–497, 2010.

[149] J. Chen, B. Xin, Z. Peng, L. Dou, and J. Zhang, “Optimal contraction
theorem for exploration–exploitation tradeoff in search and optimiza-
tion,” IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 39, no. 3,
pp. 680–691, May 2009.

[150] J. Knowles, “ParEGO: A hybrid algorithm with on-line landscape ap-
proximation for expensive multiobjective optimization problems,” IEEE

Trans. Evol. Comput., vol. 10, no. 1, pp. 50–66, Feb. 2005.
[151] P. Koduru, S. Das, and S. M. Welch, “Multi-objective hybrid PSO using

ε-Fuzzy dominance,” in Proc. Genetic Evol. Comput. Conf., London,
U.K, Jul. 2007, pp. 853–860.

[152] P. Koduru, Z. Dong, S. Das, S. M. Welch, J. L. Roe, and E. Charbit,
“Multi-objective evolutionary-simplex hybrid approach for the optimiza-
tion of differential equation models of gene networks,” IEEE Trans. Evol.

Comput., vol. 12, no. 5, pp. 572–590, Oct. 2008.
[153] S. Das, P. Koduru, M. Gui, M. Cochran, A. Wareing, S. M. Welch, and

B. R. Babin, “Adding local search to particle swarm optimization,” in
Proc. IEEE Cong. Evol. Comput., Vancouver, BC, Canada, Jul. 2006,
pp. 428–433.

[154] X. D. Li and X. Yao, “Tackling high-dimensional nonseparable optimiza-
tion problems by cooperatively coevolving particle swarms,” in Proc.

IEEE Cong. Evol. Comput., Trondheim, Norway, May 2009, pp. 1546–
1553.

[155] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Inf. Sci., vol. 178, no. 15, pp. 2985–
2999, 2008.

[156] Q. H. Nguyen, Y. S. Ong, and M. H. Lim, “A probabilistic memetic
framework,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp. 604–623,
Jun. 2009.

[157] Z. Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum, “Combining
global and local surrogate models to accelerate evolutionary optimiza-
tion,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 37, no. 1,
pp. 66–76, Jan. 2007.

[158] M. J. Colaco, G. S. Dulikravich, and T. J. Martin, “Control of unsteady
solidification via optimized magnetic fields,” Mater. Manuf. Process.,
vol. 20, no. 3, pp. 435–458, 2005.

[159] G. S. Dulikravich, T. J. Martin, B. H. Dennis, and N. F. Foster, “Multidis-
ciplinary hybrid constrained GA optimization,” in EUROGEN’99—Evol.

Algorithm Eng. Comput. Sci.: Recent Adv. Ind. App., K. Miettinen, M.
M. Makela, P. Neittaanmaki, and J. Periaux, Eds. New York, Finland:
Wiley, Jyvaskyla, May 1999, pp. 233–259.

[160] E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg,
“Hyper-heuristics: An emerging direction in modern search technology,”
in Handbook of Metaheuristics, F. Glover and G. Kochenberger, Eds.
Norwell, MA: Kluwer, 2003, pp. 457–474.

[161] P. Ross, “Hyperheuristics,” in Search Methodologies: Introductory Tu-

torials in Optimization and Decision Support Techniques, E. K. Burke
and G. Kendall, Eds. Berlin: Springer-Verlag, 2005, pp. 529–556.

[162] D. Corne, K. Deb, J. Knowles, and X. Yao. (2011). “Selected applications
of natural computing,” in Handbook of Natural Computing, G. Rozen-
berg, T. Bäck, and J. N. Kok, Eds. Berlin: Springer-Verlag. [Online].
Available: http://www.macs.hw.ac.uk/∼dwcorne/Teaching/SANC.pdf

[163] E. Özcan, B. Bilgin, and E. E. Korkmaz, “Hill climbers and mutational
heuristics in hyperheuristics,” Lecture Notes Comput. Sci., vol. 4193,
pp. 202–211, 2006.

[164] D. H. Wolpert and W. G. Macready, “No free lunch theorems for opti-
mization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr.
1997.

Bin Xin (S’09–M’10) received the B.S. degree in in-
formation engineering from the Beijing Institute of
Technology, Beijing, China, in 2004. He is currently
working toward the Ph.D. degree at the School of
Automation, Beijing Institute of Technology.

His research interests include search and optimiza-
tion, evolutionary computation, operations research,
and combinatorial optimization.

Jie Chen (M’09) received the B.S., M.S., and Ph.D.
degrees all in control theory and control engineer-
ing from the Beijing Institute of Technology, Beijing,
China, in 1986, 1993, and 2000, respectively.

He is currently a Professor of Control Science
and Engineering, Beijing Institute of Technology. His
main research interests include complicated system
multiobjective optimization and decision, intelligent
control, constrained nonlinear control, and optimiza-
tion methods.

Juan Zhang received the B.S. and Ph.D. degrees
in control theory and control engineering from the
Beijing Institute of Technology, Beijing, China, in
1997 and 2002, respectively.

She is currently an Associate Professor of Con-
trol Science and Engineering, the Beijing Institute
of Technology. Her research interests include op-
erations research, intelligent decision makings, dis-
tributed simulation, and image processing.

Hao Fang received the B.S. degree from the Xi’an
University of Technology, Xi’an, China, in 1995, and
the M.S. and Ph.D. degrees from the Xi’an Jiao-
tong University, Xi’an, China, in 1998 and 2002,
respectively.

He held two Postdoctoral appointments at the
INRIA/France Research Group of COPRIN and at
the LASMEA, UNR6602 CNRS/Blaise Pascal Uni-
versity, Clermont-Ferrand, France. Since 2005, he has
been an Assistant Professor with the Beijing Institute
of Technology, Beijing, China. His research interests

include all-terrain mobile robots, robotic control, robotic behavior optimization,
and parallel manipulators.

Zhihong Peng received the Ph.D. degree in con-
trol theory and control engineering from the Central
South University, Changsha, China, in 2000.

From December 2000 to February 2003, she was
a Postdoctoral Research Associate with Beijing Insti-
tute of Technology, Beijing, China. She is currently
an Associate Professor with Beijing Institute of Tech-
nology. Her current research interests include intelli-
gent information processing and intelligent control.

