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Abstract – Examination timetabling is one of the most 
important administrative tasks in academic institutions. 
They are used to schedule examinations into timeslots and 
rooms. Many methods have been developed to solve 
examination timetabling problems. Metaheuristics have 
shown good results especially if they are hybridized with 
other methods. Genetic Algorithms (GAs) are one of the 
techniques that have been used in optimization problems. 
Record-to-Record Travel (RRT) is another optimization 
method that has been introduced for local search. In this 
paper, we  describe the combined use of GA and RRT, called 
GARRT. In particular, the process of hybridization of the 
two algorithms to solve the uncapacitated examination 
timetabling problem is discussed. GARRT aims to balance 
the global search (by GA) and the local search (by RRT). 
This work uses Carter’s benchmark datasets as the testbed. 
Simulation results showed that GARRT performed better 
when compared to the results generated by the GA approach 
alone. A good result is achieved by minimizing the violation 
of the soft constraints. 

Keywords – Examination timetabling; Genetic Algorithm; 
Record To Record Travel; Optimization  

I. INTRODUCTION 

The timetabling problem is one of the most difficult NP-
hard problems that universities and educational 
institutions have to face every semester. Timetabling is 
the process of scheduling for a set of classes or 
examinations which are organized into several timeslots, 
subject to numerous constraints [1]. The difficulty in 
solving problems of examination timetabling is due to the 
numerous parameters that must be taken into 
consideration, and a variety of violations in the 
examination timetable of the various institutions that have 
different constraints [2]. Examination timetabling can also 
be described as a process of allocating examinations to 
fixed venues and timeslots to avoid conflicts. 

This ‘conflict’ can arise when students are 
simultaneously arranged to be in the same venue that has 
been scheduled for the usage of other students or when a 
student has two examinations at the same time [3]. 
Planning the examination schedules manually has been 
widely used to solve the timetabling problem. However, 
manual approaches are not always feasible as it needs 
plenty of manpower and the process is time consuming. 
Metaheuristic methods have been used to overcome the 
manual solution [4]. A metaheuristic approach is widely 
used because it usually gives a good solution compared to 
the sequential heuristic approach within an acceptable 
time frame [5]. The main advantage of metaheuristic 
techniques is that they have the ability to handle a wide 

range of constraints efficiently. Metaheuristic is defined as 
follows: "A metaheuristic refers to a master strategy that 
guides and modifies other heuristics to produce solutions 
beyond those that are normally generated in a quest for 
local optimality". In this paper we discuss a hybrid 
metaheuristic approach to solve the uncapacitated 
examination timetabling problem, where the capacity of 
the room is not taken into account because there are many 
rooms usable for examinations. Meanwhile in the 
capacitated problem, the capacity of the room is regarded 
as a hard constraint. The proposed algorithm combines 
two metaheuristic, namely the Genetic Algorithm and 
Record to Record travel algorithm (GARRT). In the first 
phase, GA is used to generate a population of solutions in 
order to maintain the solutions diversity. While in the 
second phase, RRT is used to enhance the solutions 
generated by the GA. We choose RRT due to its ability to 
tune a single parameter [6]. There are many parameters to 
consider when solving uncapacitated examination 
timetabling problems such as huge numbers of 
examinations, insufficient numbers of timeslots to 
schedule of the examinations and a very large number of 
students, where each student has one or more 
examinations but must not have more than one 
examination in the same timeslot [7]. 

II. RELATED WORK 

Many algorithms have been deliberated on the timetabling 
problem. According to Wren [8]: 
 
“Timetabling is the allocation, subject to constraints, of 
given resources to objects being placed in space time, in 
such a way as to satisfy as nearly as possible a set of 
desirable objectives”. 
 
Timetable scheduling problems can be divided into 
several types, and these include education, transport, 
industry and sport [8]. The educational timetabling can be 
divided into school timetabling and university timetabling 
which comprises of course timetabling and examination 
timetabling. The school timetabling is the problems faced 
by school, and are related to the weekly scheduling for all 
the lessons of a school. This problem involves a group of 
teachers, classes, lessons and weekly periods since they 
are predefined. The university timetabling has two 
problems particularly course and examination timetabling, 
where the problem concerning the course is the procedure 
of allocating timeslots and rooms to enable students and 
lecturers meeting. Meanwhile the problem concerning the 
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examination timetabling is the venue and timeslots 
allocations for the student examinations. The examination 
timetabling is one of the most substantial administrative 
tasks in universities. This task requires every examination 
to be allocated to a set of timeslots under certain 
constraints. The examination timetabling problem can be 
described as [9]: “The assigning of examinations to a 
limited number of available time periods in such a way 
that there are no conflicts or clashes”. 

During the last decade, there have been several 
algorithms to solve examination timetabling problems. In 
1975, an initial survey proposed by Miles [10] identified a 
beneficial bibliography of computer aided timetabling 
early development. In 1979, Schmidt and Strohlein 
proposed another survey comprising more than 200 
references of timetabling works before that particular year 
[11]. Numerous mathematical models have been 
developed to tackle course timetabling and examination 
timetabling using graph coloring based method [12].  

The survey mentioned above was updated to concise 
algorithmic methods from 1986 to 1996. Those methods 
can be classified into four categories: sequential methods, 
metaheuristics methods, constraint-based methods, and 
cluster methods [9]. The recent research was outlined on 
examination timetabling and course timetabling that had 
been carried out consisting of hybrid evolutionary 
algorithms, metaheuristics, multi-criteria techniques, case-
based reasoning methods and adaptive techniques [13]. 
Most of the approaches have been tested on the 13 
instances that were introduced by Carter [9] in 1996. 
Table 1 shows the 13 datasets. 
 

Table 1. Carter benchmark examination timetabling dataset 

Data 
No. of 

Timeslots 
No. of 
Exams 

No. of 
Students 

car-f-92 32 543 18419 

car-s-91 35 682 16925 

ear-f-83 24 190 1125 

hec-s-92 18 81 2823 

kfu-s-93 20 461 5349 

lse-f-91 18 381 2726 

pur-s-93 42 2419 30032 

rye-s-93 23 486 11483 

sta-f-83 13 139 611 

tre-s-92 23 261 4360 

uta-s-92 35 622 21266 

ute-s-92 10 184 2750 

yor-f-83 21 181 941 

 

III. PROBLEM DEFINITION AND FORMULATION 

A set of examinations = (e1 … eE) are required to be 
scheduled within a certain number of timeslots = (t1 … tT), 
which may or may not be fixed beforehand subject to a 
variety of hard and soft constraints. Hard constraints must 
be satisfied in order to produce a feasible timetable, whilst 
violation of soft constraints should be minimized and 
provides a measure of how good the solution is via the 
objective function. The uncapacitated examination 
timetabling problem of Carter benchmark datasets are 

used which contain 13 real world examinations 
timetabling problems from various instances, where room 
capacity requirement is unnecessary because it has a large 
number of rooms usable for examinations. To calculate 
the objective function for each instance, we use the 
following inputs [4]: 
   

 E: Number of examinations 
 T: Number of timeslots 
 S: Number of students 
 C: Conflict matrix, each element in conflict 

matrix are representative by Cij, and i,j {1….. 
E}. A group of students takes the examinations i 
and j. 
 

The hard constraint in uncapacitated examination 
timetabling is usually represented by the following:  
 

“A student must not have two or more examinations 
scheduled in same timeslot”. 

 
A clash-free requirement is illustrated in (1), in which the 
students will not be asked to take two examinations at the 
same time.  
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Soft constraints refer to those that are desirable to be 
fulfilled but cannot be entirely fulfilled in general. Soft 
constraint are diversified and dependent on the 
particularities of each university since it will assess the 
most desirable and feasible timetable. Soft constraints 
generally deal with the Objective function that measures a 
given feasible solution, in addition to the different 
solutions which can be compared and improved. The main 
soft constraint in uncapacitated examination timetabling is 
as follows: 

 

“Spreading examinations over timeslots which attempts to 
give students enough time for revision.” 
 

The Objective function was used to calculate the cost of 
the resulting timetables, and to minimize the average cost 
per student. The cost was assigned by using proximity 
values between two examinations [14]. To find the cost 
for an examination i, (3) is applied: 
 

ሻ࢏ሺ࢔࢕࢏࢚ࢉ࢔࢛ࡲ࢚࢙࢕࡯ ൌ෍ܿ௜௝ ൈ ,௜ݐሺ	ݕݐ݅݉݅ݔ݋ݎ݌ ௝ሻݐ

ா

௝ୀ௜

						ሺ3ሻ 

 

Where the (cij) is the number of students in conflict that 
equal to 0 when i = j, and the proximity value is as shown 
in (4). 



M. H. Abed and 

࢏࢚൫࢚࢟࢏࢓࢏࢞࢕࢘࢖

 
The Objectiv
examinations 
limited numb
measure the q
proximity cos
a student has 
a proximity v
between each
proximity val
of 2 and fou
results calcu
summation o
students (S), 
where the pe
equation (5). 

 

࢔ࢋࡼ
 

Figure 1 show
proximity co
cost for eac
timetabling p
on equations 
 
 

Begin 
 

     Assign 0 to 
 

For all examin
 

For all examin
 

If (Conflict Ma
 

 Perform  weig
 

If (weight 1 to 
 

 perform  Proxi
 

Else 
 

             Assign
 

             Perform
                        
 

     End for 
 

     End for 
 

Perform  Penal
 

End  
[  

Figu

 
Conflict dens
complexity o
illustrates the

 
 

݈݂݊݋ܥ
 

electron

 A. Y. C. Tang,  H

,࢏ ൯࢐࢚ ൌ ቐ
2ହ

2ห௧೔ି	௧

								

ve function 
for students 

ber of times
quality of a so
sts. For examp
two successi

value of 8, a 
h two examin
lue of 4, three
ur timeslots g
ulated by (3)
of the values 

to give an av
enalty cost ca

࢚࢙࢕ࢉ࢚࢟࢒ࢇ࢔ ൌ 	
∑

ws the pseud
efficient matr
ch solution 

problems. This
(3) – (5). 

Cost 

nation ei 

nation ej 

atrix [ei][ ej] not

ght=Absolute va

5) 

imity Matrix [e

n 0 to Proximity

m Cost + =  Con
                    M

lty = Cost / (Nu

ure 1. Pseudo cod

sity is used 
of each datas
 conflict dens

ݕݐ݅ݏ݊݁ܦ	ݐ݈ܿ݅

nic Journal of Co

Hybridizing Gene

௧ೕห
	݂݅			1	 ൑ หݐ௜ െ

݄ݐ݋						0											

is also use
as much as 

lots. It is us
olution depend
ple, for a prox
ive examinatio
student will h

nations. Two 
e timeslots giv
give proximit
) are obtaine
divided by th

verage penalty
an be formul

∑ ாܿ݊ݑܨݐݏ݋ܥ
௜ୀଵ

ܵ

docode for the
rix and calcu
in uncapacit
s pseudocode 

t equal to  0) 

alue of (Timeslo

ei][ej]= 2 ^ (5 – 

y Matrix [ei][ej] 

nflict Matrix [e
atrix [ei][ej] 

umber of Studen

de of calculate Pe

to determine
set as shown 
ity for Carter 

ൌ
݂݋	ݎܾ݁݉ݑ݊
ሺ݊ݎܾ݁݉ݑ	݋

 
 

omputer Science a

etic Algorithm an

െ ௝หݐ ൑ 5

݁ݏ݅ݓݎ݁

									

d to spread
possible with

sed by Carte
ding on the su
ximity value o
ons, and to re
have free tim
timeslots give

ve proximity v
ty value of 1
ed by taking
he number o
y per student 
lated as show

ሺ݅ሻ݊݋݅ݐܿ
												

e constructing
ulating the pen
tated examin
is designed b

ot[ei]-Timeslot[

weight) 

ei][ej] * Proximi

nt *2) 

enalty cost 

e the degree
in (6). Tabl

datasets. 

ݏݐ݈݂ܿ݅݊݋ܿ	݂
ሻଶݏ݉ܽݔ݁	݂݋

		

and Information T

 

nd Record-to-Rec

		ሺ4ሻ 

d the 
hin a 
er to 
um of 
of 16, 
ealize 

meslot 
e the 
value 
1.The 
g the 
f the 
[15], 

wn in 

			ሺ5ሻ 

g the 
nalty 

nation 
based 

[ej]) 

ity 

e of 
le 2 

		ሺ6ሻ 

IV

The 
prob
loca
First
time
Sub
obta
proc
Figu
 

 

Technology (eJC

cord Travel Algor

T

Dataset 

car-f-92 

car-s-91 
ear-f-83 
hec-s-92 
kfu-s-93 
lse-f-91 
pur-s-93 
rye-s-93 
sta-f-83 
tre-s-92 
uta-s-92 
ute-s-92 
yor-f-83 

V. THE PROPO

successes of 
blems are the 
al search algo
t, GA is used
etabling prob
sequently, RR

ained by GA
cess is applie
ure 2. 

Figu

No 

Sto

Update o
(Apply 
operato

ind

Termi

SIT), Vol. 4, No.

rithm

Table 2. Conflict m

No. of
Examinat

543 

682 
190 
81 
461 
381 

2419 
486 
139 
261 
622 
184 
181 

OSED HYBRID 

GA in solvin
main goal fo

orithm to ob
d to solve the 
blem of Ca
RT is used 
. The RRT i

ed, as shown 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

ure 2. Flow chart 

Sta

op 

Generation
Popul

Assign fitne
chromo

Select two ch

Use crossov

of population 
replacement 
or with new 
ividual) 

Use repair 
function

Yes

R

A

U

inate? 

. 1, 2013 

matrix density 

f 
tion 

Co
De

0

0
0
0
0
0
0
0
0
0
0
0
0

 ALGORITHM 

ng a number o
or hybridizing
btain the opti
 uncapacitate
arter benchm
to improve 

is used after 
in the dotte

t of GA and RRT 

art 

n of Initial 
lation 

ess for each 
osome 

hromosomes 

ver operator 

Assig
each

Use mu

 
 
 

 
 

 
RRT Algorithm

Assign fitness
to Record 

Use perturbatio
process 

 2

nflict 
ensity 

0.14 

0.13 
0.27 
0.42 
. 06 

0.06 
0.03 
0.07 
0.14 
0.18 
0.13 
0.08 
0.29 

(GARRT) 

of optimization
g it with RRT
imal solution
d examination
mark dataset

the solution
the mutation

d line box in

n fitness for 
h offspring 

utation operat

m 

s 

on 

27 

n 
T 
n. 
n 
t. 
s 
n 
n 

tor 



electronic Journal of Computer Science and Information Technology (eJCSIT), Vol. 4, No. 1, 2013 

 

M. H. Abed and  A. Y. C. Tang,  Hybridizing Genetic Algorithm and Record-to-Record Travel Algorithm  28 

A. Genetic Algorithm (GA) 
 

GA is one of the best optimization algorithms. It is a 
general algorithm that works well in any search space and 
is able to produce a high quality solution [16]. GA 
employs the principles of selection and evolution to create 
several solutions to a particular problem.  

 
a) Chromosome Encoding 

Chromosome encoding is a method that is required to 
encode the possible solutions to any problem in a form so 
that a computer can process it. A chromosome consists of 
a set of genes that contain information about the problem 
needed to be solved. Each gene is a variable in the search 
space to this problem. Chromosome encoding is the first 
process in implementing genetic algorithms. In this paper 
the chromosome representation depend on the number of 
examinations for each dataset. Each gene contains 
information on what examinations are scheduled for a 
certain timeslot, where every gene is represented by the 
two variables (i.e. the number of examination and 
timeslot). The permutation encoding is used since it deals 
with only numbers. Figure 3 shows the chromosome 
encoding used in this research, where a vertical line 
“│”represents the chosen crossover point.  
 

 

 
 

Figure 3. Chromosome encoding 

 

b) Initial Population  

The initial population is known as accepted solutions that 
started the GA. Each solution is denoted by a 
chromosome. Generally, this initial population is 
produced randomly to generate all possible solutions. 
Initial population has a large number of potential 
solutions. Optimal solutions may already exist within 
those potential solutions. 
 
c) Fitness Function 

The fitness function is one of the most important parts in 
GA implementation. Fitness function allows the algorithm 
to characterize the fittest chromosome among others and 
leads the GA into a better solution [17]. Every 
chromosome needs to be evaluated according to the 
assumed constraints in order to identify the fittest 
chromosome among others. The fitness function can be 
used by GA to select the chromosome for crossover and 
mutation processes. In this work, the fitness function is 
used to calculate the cost of the resulting timetables, and 
to minimize the average cost per student as shown in (3). 

 
d) Roulette Wheel Selection Operator 

Roulette wheel selection is considered the most popular 
type of selection (Figure 4). It is used for selecting 
possibly useful solutions for crossover and it is also the 
best standard approach for parent selection [18]. The 

purpose of a selection is to provide parents (individuals) 
for crossover and mutation operations to build a new 
population. The individuals that have high fitness may be 
chosen many times. The probability for each individual is 
calculated based on (7). 
 

 

࢏࢖ ൌ 	
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∑ ௙೔
೙
೔సభ

																																															(7) 
 
 

In the equation, fi is the value of fitness for each 
individual, n is the number of individuals in population 
also called population size and ∑ f୧

୬
୧ୀଵ  is the total of fitness 

to individuals.  
 
 
 
 
 
 
 

 
 
 

 

Figure 4. Roulette wheel selection example 

 
e) Uniform Crossover Operator 

Crossover is a major operator in the genetic algorithm that 
combines two individuals (parents) to create a new 
individual (offspring) [19], where genes are selected from 
both parents to produce a new offspring. The main 
purpose of crossover is to produce a new individual which 
is possible to be superior to their parents if it takes the 
good characteristics of each parent. Uniform crossover 
determines what are the values given to gene in the 
offspring individuals with some probability- known as the 
crossover rate. It also permits the parent individuals to be 
combined at the gene level unlike some crossover types 
which is combined at the segment level (Figure 5). An 
examination is chosen from one of the chromosomes 
(parent) and set in the one of the chromosomes 
(offspring). Another examination of the other 
chromosome (parent) is to be set to the other chromosome 
(offspring). The choice of the examination is random 
depending on the crossover rate. 
 

 

Figure 5. Uniform crossover 
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f) Mutation Operator 

Mutation is employed to keep genetic diversity from one 
population of chromosomes generation to the other. 
Mutation changes one or more chromosome gene values 
from its initial state (Figure 6). The new gene values may 
enable genetic algorithm to reach a solution better than the 
previous solution. In general the mutation avoids genetic 
algorithm from falling in local optima. This type of 
mutation is called insertion mutation where the 
examination is randomly selected from one of timeslot 
and its insertion in another timeslot, which does not cause 
a conflict. Mutation process is very important to give the 
individual good fitness which may be better than the 
previous individual. 

 

 

Figure 6. Mutation operator 

g) Repair Function 

After the end of crossover operation, is the possible 
appearance of the errors in the timetable. Some of the 
errors are the repetition or loss of one examination, and 
some students have two or more examinations at the same 
time. Therefore, the repair function is used to prevent 
infeasible timetables to survive in subsequent generations. 
The function guarantees that all the constraints that need 
to be satisfied will be fulfilled.  
 
h) Genetic Algorithm Parameters  

Crossover rate, mutation rate and population size are 
among the many parameters of GA. The crossover rate 
aims to determine amount chromosomes, which will 
remain for the next generation. The offspring can be a 
replica of their parents if there is no crossover. If the 
crossover exist, the offspring can be considered as made 
of both parent’s chromosome. The rate of crossover 
occurring is usually 60% to 70% [20]. The mutation rate 
is used to determine the frequency of the mutated 
chromosome part. If the mutation does not exist, the 
offspring are created directly after crossover without any 
alteration (replica). If the rate of the mutation is 100%, 
then the entire chromosome will be altered. The rate of 
mutation occurring is usually 0.1% to 1% [20]. The 
population size is considered one of the important 

parameters in genetic algorithm that is used to determine 
the number of chromosomes in the population (in one 
generation). The population size relies on the nature and 
the form of the problem. If population size is small, the 
search process in the genetic algorithm is fast because a 
small part of search space is explored. Conversely, the 
search process slows down if the population size is big 
because the number of exploration is large. 

 

B. Record to Record Travel (RRT) Algorithm 

RRT algorithm is a local search method. It is a 
deterministic optimization algorithm which is inspired 
from simulated annealing. The algorithm depends on the 
cost function which is gradually improved by exploring 
the neighborhoods. Initial solutions of the algorithm are 
usually randomly selected, and then apply a perturbation 
mechanism to obtain a better solution compared to the 
current best solution found so far (called a “record”). This 
process is done by searching for the neighborhood of the 
current best solution. If the new solution is better than the 
current solution, then the new solution will be marked as a 
“record”, otherwise the current solution will remain 
(without being replaced). 

If the new solution is not much worse than the current 
solution, it  will be accepted as a neighborhood[21]. RRT 
has only one parameter (i.e., deviation value). In this case, 
if the deviation value is small it will generate poor results 
within a reduced search time, while if the value is  high it 
will generate good results after an important 
computational time. The deviation value used in this work 
is d ൌ 0.01	 ൈ Record		 , and d represents the maximum 
allowed deviation that determines the amount of worse 
value which is acceptable as compared to the current 
record [20]. 

V. EXPERIMENTAL RESULTS 

The GARRT approach was experimented for 13 Carter 
benchmark datasets. Table 3 illustrates the parameters 
used in our approach. 
 

Table 3. Parameters setting for GARRT 

No. of iteration 10000 

Crossover rate 0.7 

Mutation rate 0.01 

Population size 20 

Deviation value 0.01 × record 

 
 

In the approach, the current solutions in the population are 
used to produce new solutions. The best solution is then 
determined, and the other solutions are ignored based on 
the minimization criteria. Table 4 shows the results for 
each of the best penalty, average penalty and standard 
deviation for GARRT that are applied to the 13 
benchmark dataset. The GARRT algorithm was run 5 
times for each dataset. 
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Table 4. The results obtained by GARRT 

 
The best results were obtained by running the GARRT 
algorithm for each of the 13 Carter’s datasets, as 

presented in Table 5. The approaches selected for 
comparison with GARRT algorithm are: Carter’s 
sequencing heuristics with backtracking [15]; Tabu search 
by Di Gaspero and Schearf [22]; Local search-based 
method which includes an optimization step after 
allocating each examination by Caramia et al. [23]; 
Hybrid constraint programming, simulated annealing and 
hill climbing by Merlot et al. [24]; GRASP [25]; 
Asmuni’s fuzzy multiple ordering criteria [26]; Ahuja–
Orlin’s large neighbourhood search approach [3]; A new 
neural network based construction heuristic by Corr et al. 
[27], and a graph-based hyper heuristic by Burke et al. 
[28].  

The last row in the Table 5 shows the results of the 
approach used in this research. As shown in Table 2, 
GARRT outperformed some of the results generated by 
other approaches in terms of smaller penalty values 
obtained. The good result is achieved by minimizing the 
violation of the soft constraints.  

 

Table 5. Comparison of GARRT with other approaches 

 car-f-92 car-s-91  ear-f-83  hec-s-92 kfu-s-93 lse-f-91 rye-s-93 sta-f-83 tre-s-92 uta-s-92 ute-s-92  yor-f-83

Carter et al, 1996 6.2 7.1 36.4 10.8 14 10.5 7.3 161.5 9.6 3.5 25.8 41.7 
Di Gaspero&Schearf, 
2001 

5.2 6.2 45.7 12.4 18 15.5 - 160.8 10 4.2 29 41 

Caramia et al, 2001 6 6.6 29.3 9.2 13.8 9.6 6.8 158.2 9.4 3.5 24.4 36.2 
Metrol et al, 2003 4.3 5.1 35.1 10.6 13.5 10.5 8.4 157.3 8.4 3.5 25.1 37.4 
Casy& Thompson, 
2003 

4.4 5.4 34.8 10.8 14.1 14.7 - 134.9 8.7 - 25.4 37.5 

Asmuni et al, 2004 4.56 5.29 37.02 11.78 15.81 12.09 10.35 160.42 8.67 3.57 27.78 40.66 
Abdullah et al, 2006 4.4 5.2 34.9 10.3 13.5 10.2 8.7 159.2 8.4 3.6 26 36.2 
Corr et al, 2006 6.24 7.21 49.44 13.57 19.9 14.99 - 159.28 10.77 4.48 31.25 - 
Burke et al, 2007 4.53 5.36 37.92 12.25 15.2 11.33 - 158.19 8.92 2.88 28.01 41.37 
GARRT 4.54 5.38 36.27 10.73 15.17 11.87 8.6 158.16 8.86 3.59 25.34 40.26 

 

VI. CONCLUSION AND FUTURE WORK 

The combined use of GA and RRT (GARRT) for solving 
uncapacitated examination timetabling problem using the 
Carter’s datasets has been described. The proposed 
approach aimed to enhance GA efficiency by minimizing 
the penalty cost for each dataset. To accomplish this aim, 
GA is used in the first stage to explore the search space 
while RRT algorithm is used in the second stage to 
enhance the solution generated by the GA operators. The 
paper also presented comparison results of GARRT with 
various approaches used by other researchers. 
Experimental results showed that GARRT performed 
better than most of the approaches described in this paper 
in which the number of violation is significantly reduced. 
The good performance can be attributed to the nature of 
GA and RRT, which tries to balance the global search (by 
GA) and the local search (by RRT). In future work, we 
will apply GARRT to solve the capacitated examination 
timetabling problem and courses timetabling problem. 
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