
HyCC: Compilation of Hybrid Protocols for
Practical Secure Computation

Niklas Büscher
Technische Universität Darmstadt

buescher@seceng.informatik.tu-darmstadt.de

Daniel Demmler
Technische Universität Darmstadt

demmler@encrypto.cs.tu-darmstadt.de

Stefan Katzenbeisser
Technische Universität Darmstadt

skatzenbeisser@acm.org

David Kretzmer
Technische Universität Darmstadt

david.k@posteo.de

Thomas Schneider
Technische Universität Darmstadt
schneider@encrypto.cs.tu-darmstadt.de

ABSTRACT

While secure multi-party computation (MPC) is a vibrant research

topic and a multitude of practical MPC applications have been

presented recently, their development is still a tedious task that

requires expert knowledge. Previous works have made �rst steps in

compiling high-level descriptions from various source descriptions

into MPC protocols, but only looked at a limited set of protocols.

In this work we present HyCC, a tool-chain for automated com-

pilation of ANSI C programs into hybrid protocols that e�ciently

and securely combine multiple MPC protocols with optimizing

compilation, scheduling, and partitioning. As a result, our compiled

protocols are able to achieve performance numbers that are com-

parable to hand-built solutions. For the MiniONN neural network

(Liu et al., CCS 2017), our compiler improves performance of the

resulting protocol by more than a factor of 3. Thus, for the �rst

time, highly e�cient hybrid MPC becomes accessible for developers

without cryptographic background.

CCS CONCEPTS

• Security and privacy → Privacy-preserving protocols; •

Software and its engineering → Compilers;

KEYWORDS

secure multi-party computation; MPC; secure computation; com-

piler; hybrid protocols; automatization

ACM Reference Format:

Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kret-

zmer, and Thomas Schneider. 2018. HyCC: Compilation of Hybrid Pro-

tocols for, Practical Secure Computation. In 2018 ACM SIGSAC Con-

ference on Computer and Communications Security (CCS ’18), October

15–19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3243734.3243786

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5693-0/18/10. . .$15.00
https://doi.org/10.1145/3243734.3243786

1 INTRODUCTION

First considered a purely theoretic result, secure multi-party com-

putation (MPC) over arithmetic and Boolean circuits became prac-

tical in the last decade and emerged as a powerful tool to realize

privacy-enhancing technologies. Recently, many new protocols

with continuously improved e�ciency have been proposed, e.g.,

Furukawa et al. [20] showed how billions of gates can be evalu-

ated per second, and also “classic” protocols, such as Yao’s garbled

circuits [51] or GMW [23], have seen signi�cant algorithmic and

practical optimizations, e.g., [2, 5, 15, 25, 28, 47, 53]. It has also

been shown that hybrid protocols, i.e., protocols that mix multiple

di�erent MPC protocols, are desirable because they outperform

standalone protocols in various settings [18, 24, 32, 38, 43]. For

example, for an application that consists of numerical computation

and a combinatorial problem, it is bene�cial to evaluate the former

part with an arithmetic circuit-based MPC protocol and the latter

part with a Boolean circuit-based protocol.

The continuous increase in the number of protocols and opti-

mizations has led to a signi�cant improvement in the performance

of MPC, yet also has the drawback that MPC becomes harder and

harder to access for people outside the �eld. Identifying a (near)

optimal choice of MPC protocols for a desired application requires

experience with di�erent MPC protocols, their optimizations, their

programming models, and the conversion costs to securely switch

between protocols when performing a hybrid computation. Fur-

thermore, for realizing an actual application not only expert knowl-

edge in MPC, but also substantial knowledge in hardware design is

needed to implement the application in an e�cient Boolean and/or

arithmetic circuit representation, which are the most common func-

tion representations in MPC. Consequently, creating e�cient ap-

plications by hand is a tedious and error-prone task and therefore

multiple compilers have been proposed, which share similarities

with high-level synthesis from the area of hardware design.

Previous MPC compilers either only targeted a single class of

protocols, e.g., Yao’s garbled circuits [26, 39, 48], the GMW proto-

col [9, 17], or linear secret-sharing-based MPC [7], or the compilers

required the developer to use speci�c annotations to mark which

protocol is used for each statement, e.g., [18, 24]. The only other

compiler that addresses the compilation of a program using two

MPC protocols (Yao’s gabled circuits and arithmetic sharing) is

EzPC [14]. However, EzPC only provides semi-automation for a do-

main speci�c language (DSL), as the input code has to be manually

decomposed, array accesses have to be manually resolved into mul-

tiplexer structures, and the compiled circuits are left unoptimized.

Session 5B: SecComp 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

847

https://doi.org/10.1145/3243734.3243786
https://doi.org/10.1145/3243734.3243786

Moreover, EzPC supports only two MPC protocols, which are se-

lected statically and independently of the execution environment,

by following a strict set of rules for each expression in the program.

Compilation for hybrid MPC. In this work, we propose a novel

hybrid circuit compiler, named HyCC, that is capable of compiling

and optimizing applications written in standard ANSI C code into

a combination of MPC protocols. In contrast to previous work, we

present a fully automated approach that decomposes the source

code, translates the decomposed code into Boolean and arithmetic

circuits, optimizes these circuits, and �nally selects suitable MPC

protocols for a given deployment scenario, optimizing the selec-

tion for a given criterion, such as latency (minimal total runtime),

throughput (minimal per-operation runtime), or communication.

Fig. 1 illustrates the two major components of this approach. The

�rst component is the (one-time) compilation of the input source

code into a decomposed program description in form of circuits.

We refer to the di�erent parts of a decomposed program, i.e., the

compact logical building blocks a larger application consists of,

as modules. Each module is compiled into multiple circuit repre-

sentations. Our implementation compiles arithmetic circuits (A),

depth-optimized circuits for GMW (B), and size-optimized circuits

for Yao’s protocol (Y). The second component in HyCC is the pro-

tocol selection step in which the most suitable combination of MPC

protocols is selected for a decomposed program depending on the

computational environment. We note that this protocol selection

can be part of an MPC framework and does not necessarily need to

be performed during compilation.

Environment C Program

Circuit Compiler

Protocol Selection

Hybrid Protocol Description

CompilationCompilation Compilation

Program Decomposition

B CircuitsA Circuits Y Circuits

Figure 1: High-level overview of our compilation architec-

ture. The circuit compiler decomposes an input program

and compiles each part intomultiple circuit representations.

The protocol selection recombines the di�erent parts.

Optimizing circuit compiler. MPC is still signi�cantly slower and

more expensive than generic plaintext computation in terms of both

computation and communication. Thus, a tool-chain is required

that optimizes the compilation of a program description into an

e�cient MPC protocol and its corresponding circuits. Even though

the optimization of an input program has limits, i.e., an ine�cient

algorithmic representation cannot automatically be translated into

a fast algorithm, a programmer expects the compiler to not only

translate every statement of a high-level description of an appli-

cation or algorithm for a selected target architecture, but also to

optimize the given representation, e.g., by removing unnecessary

computations. This is of special interest for MPC compilers, be-

cause code optimization techniques that are too expensive to be

applied in traditional compilers become a�ordable when consid-

ering the trade-o� between compile time and evaluation costs of

the program on the circuit level. For example, in Yao’s protocol a

32 × 32 bit signed integer multiplication requires the evaluation

of ≈ 1,000 non-linear Boolean gates (when using the best known

circuit), which results in ≈ 5,000 symmetric encryptions during

the protocol run. Consequently, the removal of any unnecessary

operation in MPC is more vital than in traditional compilation,

where only a single CPU cycle is lost during program execution.

We also observe that optimization techniques performed on the

source code level, e.g., constant propagation, are cheaper in com-

putational resources than minimization techniques applied on the

gate level after the compilation to circuits.

These observations are re�ected in our compiler architecture:

Before decomposing the input source code into di�erent parts, a rig-

orous static analysis is performed to realize constant propagation,

detect parallelism, and determine the granularity of decomposition.

The optimization then continues on the circuit level, where logic

optimization techniques are gradually applied. To achieve a scal-

able and optimizing compilation, we guide the logic optimization

e�orts based on the results of static analysis of the source code.

For example, loop bodies with a large number of iterations will be

optimized with more e�ort than a piece of code that is only rarely

used. Thus, in contrast to classic logic optimization or arithmetic

expression rewriting, we make use of the structural information

given by the programmer in the high-level code.

Summarizing the compiler’s functionality, HyCC is capable of

compiling optimized Boolean and arithmetic circuits suiting the

requirements of most constant- and multi-round MPC protocols.

Our tool-chain is highly �exible and independent of the underlying

MPC protocols, as only the respective cost models for primitive

operations, e.g., addition or Boolean AND, have to be adapted to

re�ect future protocol developments in MPC.

Protocol selection. Protocol selection is the task of mapping each

part of a decomposed program to a MPC protocol representation.

The circuits created by our compiler for each module and the map-

ping of modules into MPC protocols is su�cient to evaluate an

application in a hybrid MPC framework. Optimal protocol selection

is an optimization problem, where the best mapping is identi�ed in

regard to the cost model that considers the cost to evaluate each

circuit in the respective MPC protocol as well as the conversion

costs between the di�erent representations. The concept of pro-

tocol selection has previously been studied independently from

compilation in [32, 44]. Kerschbaum et al. [32] investigated proto-

col selection for a combination of Yao’s garbled circuits and additive

homomorphic encryption. They conjectured that the optimization

problem is NP-hard and proposed two heuristic approaches. First,

they presented a transformation of the combinatorial optimization

problem into an integer linear programming task by linearization

of the cost model. Second, they presented a greedy optimization

algorithm, which is capable of optimizing larger functionalities.

Pattku et al. [44] used similar heuristics to optimize the protocol

selection for minimal cloud computing costs, i.e., the price to pay a

cloud provider to perform a computation, as a cost model.

We follow an approach that is di�erent in multiple aspects. First,

we show that the synthesis of an e�cient hybrid MPC protocol is

not only a protocol selection problem, but also a scheduling problem.

Second, in contrast to the work mentioned above, we make use of

structural information in the source code before its translation into

Session 5B: SecComp 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

848

circuits. By grouping expressions that perform similar operations,

e.g., loops, it becomes possible to perform an exhaustive search

over the problem state for many practically relevant applications.

Applications that cannot be optimized to the full extent with the

available optimization time are approached by a combination of

exhaustive search with heuristics.

Finally, by separating compilation and protocol selection, an

optimized selection can be determined during protocol deployment,

which allows to adapt to the given deployment scenario. For this

purpose, we implement a probing technique, which evaluates the

computational power and network capabilities, for precise cost

estimation during protocol selection.

Our Contributions. We make the following contributions:

• We present the �rst complete tool-chain that automatically

creates partitioned circuits and optimizes their selection for

hybrid MPC protocols from standard ANSI C code, which

makes hybrid MPC accessible to non-domain experts.

• We contribute techniques and heuristics for e�cient decom-

position of the code, scalable compilation, and protocol se-

lection.

• We propose to separate compilation from protocol selection.

This allows us to introduce a probing technique for MPC

protocol implementations to optimize the protocol selection

at runtime for the actual deployment scenario.

• We report speed-ups for our automatically compiled hybrid

protocols of more than one order of magnitude over stand-

alone protocol compilers, and factor three over previous

handmade protocols for an exemplary machine learning

application [38].

Outline. The paper is organized as follows: In §2 we discuss pre-

liminaries of MPC and related work. Our compilation architecture

is presented in §3, followed by a discussion of protocol selection

and partitioning in §4. An evaluation and comparison of HyCC

with related work is given in §5. We conclude in §6.

2 PRELIMINARIES AND RELATEDWORK

In this section we provide a brief overview of the foundations of

HyCC and related work from the �eld.

2.1 MPC Protocols

For simplicity reasons, in this work, we focus on MPC with two

parties, also known as secure two-party computation, with security

against semi-honest (passive) adversaries. Yet, we remark that the

ideas and our compiler are a �rst starting point and can be extended

to computations with more than two parties and stronger adversar-

ial models with some engineering e�ort. MPC started as a �eld of

research in the 1980s with Yao’s garbled circuits protocol [51] and

the protocol of Goldreich, Micali, and Wigderson (GMW) [23]. A

comparison of both protocols is given in [47].

In Yao’s garbled circuits [51], two parties interactively evaluate

a garbled version of a Boolean circuit. One party, called garbler,

creates the garbled circuit and encodes its inputs according to the

garbled circuit. The other party, called evaluator, receives the gar-

bled circuit as well as encodings of its inputs via oblivious transfer

(OT) [2, 30, 42]. The evaluator then evaluates the circuit gate by
gate to compute the encoding of the output, which is �nally de-

coded. Yao’s protocol has only a constant number of communication

rounds and the complexity stems from the total number of AND

gates in the circuit, as XOR gates can be evaluated for free [33].

Other state-of-the-art optimizations of garbled circuits that are used

in today’s implementations are point-and-permute [4], �xed-key

AES garbling [5], and half-gates [53].

In the GMW protocol [23], XOR-secret-sharing is used to hide

intermediate values. A Boolean circuit is interactively evaluated

on the secret-shared data. Similar to Yao’s protocol, XOR gates can

be evaluated for free. AND gates require one round of communi-

cation between the parties and multiplication triples [3], that can

be precomputed using OTs [2]. Thus, the complexity results from

both the total number of AND gates in the circuit as well as the

multiplicative depth of the circuit, i.e., the maximum number of

AND gates on the critical path from any input to any output.

Arithmetic sharing works similar to the GMW protocol and uses

modular addition to secret-share arithmetic values in Z2ℓ for a

bit length ℓ. Addition can be done for free, while multiplication

requires one round of interaction and arithmetic multiplication

triples, that can be e�ciently precomputed using OTs [18, 22].

The aforementioned protocols protect the privacy of the pro-

cessed data by sharing it between two parties either by using secret-

sharing (GMW and arithmetic sharing) or garbling and evaluating

a Boolean circuit (Yao’s garbled circuits). Thus, we also refer to data

processed in the respective protocols as sharings.

While all three sharings allow private computations, they have

certain properties that make them preferable in certain scenarios.

Arithmetic sharing and GMW strongly depend on low-depth cir-

cuits and a low network latency to perform well. However, they

do not require symmetric cryptographic operations in the online

phase, which makes them better-suited for weaker devices than

Yao’s protocol. Yao’s protocol on the other hand is bene�cial if

the latency between the two parties is high, since it only requires

a low constant number of communication rounds. When using

arithmetic sharing, additions and multiplications are very e�cient,

while bit-operations require expensive bit-decomposition and are

thus preferably realized with a Boolean circuit-based protocol.

Private conversion between these sharings was shown to be

very e�cient and can be implemented using OT [18]. However, the

conversion time is non-negligible and needs to be considered when

determining the overall protocol cost.

Determining an e�cient combination of protocols for a given

optimization goal is a challenging task. It depends on the use case

and its complexity, the available hardware, and network connection

between the parties. We automate this process and describe it in §4.

2.2 MPC Frameworks

Multiple frameworks provide practical implementations of MPC,

e.g., Fairplay [39] and FastGC [28, 25] presented the �rst implemen-

tations of Yao’s garbled circuits. Sharemind [7], SPDZ [16], and [36]

are frameworks for secret sharing over arithmetic circuit-based

MPC protocols. Moreover, frameworks have been proposed for dif-

ferent deployment scenarios, e.g., outsourcing [11, 12, 13], mobile

devices [27], or to combine oblivious RAM with MPC [37].

Session 5B: SecComp 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

849

Yet, to the best of our knowledge, only a few support hybrid MPC

protocols. TASTY [24] combines Yao’s garbled circuits with addi-

tively homomorphic encryption. The ABY framework [18] is a more

recent framework that provides state-of-the-art implementations

of Yao’s garbled circuits, the GMW protocol, and arithmetic sharing

for arithmetic circuits, as well as e�cient conversions between

these three protocols (see §2.1) in the 2-party setting. ABY 3 [40] is

a novel framework for hybrid secure 3-party computation with an

honest majority. The circuits generated from HyCC can directly be

used by ABY and ABY 3.

2.3 Compilation for MPC

When presenting Fairplay [39], the authors realized the need for

compilation for MPC, and thus not only provided a protocol im-

plementation but also a circuit compiler for a domain speci�c lan-

guage (DSL). Subsequently, multiple Boolean circuit compilers have

been presented that improved the compilation result by using logic

minimization techniques (e.g., TinyGarble [17, 48]), improved the

compiler’s scalability (e.g., KSS [35], Obliv-C [52], and Frigate [41]),

targeted standard programming languages (e.g., CBMC-GC [26],

and PCF [34]), or provided a formally veri�ed tool-chain (e.g., Circ-

Gen [1]). Examples for arithmetic circuit compilers that target linear

secret sharing-based MPC protocols are the Sharemind compiler [7]

for a DSL and the PICCO compiler [54] for C.

TASTY [24] was the �rst hybrid protocol compiler creating cir-

cuits for its own framework (cf. §2.2), where the programmer has to

manually select the respective protocol per operation. Very recently,

the authors of [14] proposed a solution for hybrid compilation of

MPC protocols called EzPC. However, while their main motivation

is similar to ours, our results di�er in several key points. In EzPC, a

developer needs to invest much more work to manually split the

input program into suitable modules and needs to manually re-

solve private array accesses into multiplexer-like structures, which

hardly goes beyond what’s already possible using the underlying

ABY framework. Furthermore, EzPC does not apply circuit opti-

mizations and does not consider depth-optimized Boolean circuits,

as required for an e�cient execution with the GMW protocol in

low-latency networks.

2.4 The CBMC-GC Compiler

Our work on hybrid compilation is built on top of the compiler

CBMC-GC [26], which provides a tool-chain from a (comparably)

high-level language, i.e., ANSI C, to Boolean circuits. CBMC-GC

has recently been extended to not only optimize circuits for size, de-

scribed in [8], but also for depth [9], which jointly with its powerful

symbolic execution, makes it a perfect candidate for hybrid compi-

lation. Building on top of CBMC-GC, HyCC considers the complete

input code as private functionality, i.e., public computations that

are performed locally by each party are not supported. The compi-

lation of mixed-mode languages, i.e., languages that combine public

and private computation, is discussed for example in [37, 45]. We

remark that common compilers like LLVM or gcc are not directly

suited for MPC compilation, as they target register-based process-

ing architectures. The creation of circuits requires a bit-precise

transformation of the input source into circuits, which is closer to

high-level synthesis used in hardware design.

I/O notation. In MPC the only available inputs and outputs of a

program are the input/output (I/O) wires of the circuit. To realize

the I/O mapping between C code and circuits, CBMC-GC uses a

special naming convention.

For example, the source code of the millionaires’ problem is

given in Listing 1. The function shown is a standard C function,

where only the input and output variables are speci�cally annotated

as designated input of party A (Line 2) or party B (Line 3), or as

common output for both parties (Line 4). We note that outputs can

also be assigned to speci�c parties only. Aside from this naming

convention arbitrary computations described in ANSI C are allowed,

excluding �oating-point operations.

1 void millionaires_problem () {

2 int INPUT_A_income; // Input of Party A

3 int INPUT_B_income; // Input of Party B

4 int OUTPUT_result = 0; // Output to both Parties

5

6 if (INPUT_A_income > INPUT_B_income) {

7 OUTPUT_result = 1;

8 }

9 }

Listing 1: CBMC-GC [26] code example for Yao’s

Millionaires’ problem.

3 THE HYCC MPC COMPILER

Here we describe our hybrid compiler1. After introducing the chal-

lenges, we provide details on every step of the compilation chain.

3.1 Hybrid Compilation and its Challenges

We begin with a description of a straight-forward (unoptimized)

approach to compile hybrid MPC protocols from standard source

code in order to illustrate the challenges of achieving e�cient

hybrid compilation. We will then re�ne this approach throughout

this section and describe a more advanced compilation approach.

An exemplary illustration of the necessary steps for a straight-

forward compilation is given in Fig. 2. First, the input source code

is decomposed into multiple parts, henceforth referred to as mod-

ules. Modules are the �nest level of granularity used in the later

protocol selection. Thus, all code within a module is guaranteed to

be evaluated with the same MPC protocol. We remark that during

protocol evaluation this level of granularity is only forming a lower

bound. In principle, a program can also be evaluated with only a

single MPC protocol. The decomposition can be made directly on

the source code level or on an intermediate representation of the

code, e.g., Single Static Assignment (SSA) form. Given a decom-

posed application description, each module is compiled into the

circuit representations for the di�erent MPC protocols forming

the hybrid protocol and then optimized. In this work, we consider

size-optimized Boolean circuits required for Yao sharing (Y), depth-

optimized Boolean circuits required for GMW style protocols (B),

and arithmetic circuits (A). Finally, the hybrid protocol is synthe-

sized during protocol selection and scheduling (cf. §4).

Multiple challenges (besides the complexity of compiling e�-

cient Boolean or arithmetic circuits itself) arise when following this

1An open source implementation will be made available at
https://gitlab.com/securityengineering/HyCC.

Session 5B: SecComp 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

850

https://gitlab.com/securityengineering/HyCC

1 long pow(unsigned b, unsigned exp) {

2 /* Computationally expensive code */

3 }

4

5 void main(){ /* Some code */

6 t1 = pow(x, y);

7 t2 = pow(2, y);

8 /* Some code */

9 unsigned c = 1;

10 if (condition)

11 c += 1;

12 res = pow(x, c);

13 /* Some code */

14 }

Listing 2: Example source code to illustrate the con�ict

between local and inter-procedural optimization.

loop(){

 ...

}

Decomposition

funcA(...){

 ...

}

main() {

 funcA(...);

 for(...) {

 ...

 }

 ...

 funcA(...)

}

Source DAG & Modules Circuits

funcA()

loop
iteration

main1()

funcA()

N x

main0(){

 ...

}

funcA(){

 ...

}

main1(){

 ...

}

Translation

main0()

Outputs

Inputs A

B

Y

A

B

Y

A

B

Y

A

B

Y

Figure 2: Naïve compilation of hybrid protocols from input

source code to a decomposed circuit description. First, the

code is decomposed intomultiple modules. Then, eachmod-

ule is translated into three di�erent circuit formats.

straight-forward approach. All challenges relate to a trade-o� be-

tween compilation resources, i.e., time and storage, and compilation

result, i.e., circuit size and depth. We describe identi�ed challenges

and propose solutions, which motivate our actual compilation ar-

chitecture:

• Granularity of decomposition. Automatically decomposing

input code into multiple modules is a non-trivial task, as a

�ne-grained decomposition limits the possibility of circuit

level optimizations and increases the complexity of the com-

putationally expensive protocol selection problem, whereas a

coarse-grained decomposition risks to miss the most e�cient

selection. We tackle this challenge by the use of heuristics

based on static analysis of the source code.

• Local versus inter-procedural optimization. Optimizing an ap-

plication as a whole or optimizing its modules independently

can lead to circuits of di�erent sizes. The former allows more

optimizations, whereas the latter is typically more e�cient

w.r.t. compilation because each module will only be compiled

and optimized once.

We illustrate this con�ict with the example in Listing 2. This

example consists of a function main() that performsmultiple

calls to a function pow(), which computes the power of two

integers. A function-wise decomposition approach would

separate the two functions to compile them independently.

However, a careful study of the source code reveals that the

pow() function is called with a constant argument in Line 7,

and with the second argument being either one or two in

Line 12, which simpli�es the computation of the exponentia-

tion function on the circuit level signi�cantly. An optimizer

with an inter-procedural (context-sensitive) or holistic view

could detect this fact and optimize the created circuit ac-

cordingly. To �nd a trade-o� between modular and holistic

optimization, i.e., compile time and circuit size, we rely on

static analysis and source code optimization techniques in

our compilation framework.
• Loop handling. Loops are an essential part of many programs.

To create circuits with low complexity, it is best to �rst unroll

(inline) all loop iterations, before translating them into a

circuit, as this allows to apply optimizations, such as constant

propagation, over all iterations. However, for compilation

e�ciency, for the exploitation of parallelism, and for a more

compact circuit representation, it can be useful to avoid loop

unrolling. Therefore, instead of choosing either technique

we propose an adaptive approach that distinguishes di�erent

loop types and then decides for or against loop unrolling.

• E�cient logic minimization. Even though we consider com-

pilation to be a one-time task, which in theory allows to use

arbitrary resources, in practice compilation e�ciency is of

relevance. Optimizing circuits on the gate-level is a resource-

consuming task that can become practically infeasible when

considering circuits with Billions of gates. Therefore, we

adapt and improve a technique referred to as Source-guided

optimization [10] to optimize circuits under con�gurable

time constraints by distributing an optimization budget in a

controlled manner.

The sketched solutions can be realized using static source code

analysis techniques only. This is su�cient because MPC applica-

tions have to be bound (�nite and deterministic runtime), as they

are evaluated independently of the program’s input to avoid any

form of information leakage. Using the side-channel free circuit

computation model, all possible program paths are visited during

protocol runtime and thus can already be studied at compile time.

3.2 Architecture

We describe our compilation architecture for a resource-constrained

environment that expects a source code with a pointer to an entry

function f as input, and a compilation and optimization time limitT .

The compiler outputs a program description consisting of multiple

modules, compiled to di�erent circuit representations, and a direct

acyclic dependency graph that describes the dependencies between

the di�erent modules. The combination of dependency graph and

modules can be used to evaluate the program in a hybrid MPC

framework.

The compilation architecture consists of multiple compilation

phases shown in the next paragraph, which themselves can consist

of multiple compilation passes. The phases are:

Session 5B: SecComp 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

851

(1) Automated Parallelization (§3.2.1): Automated identi�cation of

code blocks that can be evaluated in parallel using external

tools.

(2) Preprocessing, Lexing and Parsing (§3.2.2): Construction of an

Abstract Syntax Tree (AST) from the input code.

(3) Source Code Optimization and Loop Unrolling (§3.2.3): Source-

to-source compilation using static analysis.

(4) Code Decomposition (§3.2.4): Decomposition of the input pro-

gram into multiple modules.

(5) Circuit Compilation (§3.2.5): Compilation of each module in the

di�erent circuit representations.

(6) Inter-Procedural Circuit Optimization (§3.2.6): Optimization of

Boolean and arithmetic circuits across multiple modules.

(7) Circuit Export (§3.2.7): Writing the decomposed circuit to a �le,

ready for reconstruction in protocol selection.

Note that steps 2, 3, and 5 are also part of CBMC-GC’s original

tool-chain [26], whereas the others have been added for the com-

pilation of hybrid protocols. We describe the steps in detail in the

following subsections.

3.2.1 Automated Parallelization. Parallel code segments allow ef-

�cient compilation and protocol selection. Moreover, most MPC

protocols pro�t from parallelized functionalities. Therefore, their

detection is of relevance in compilation for hybrid MPC. Due to the

availability and maturity of automated parallelization tools, e.g., [29,

50], we rely on these for the detection of parallel loops, i.e., loops

that have independent loop iterations. These tools are able to detect

parallelism and to annotate parallelism using source-to-source com-

pilation techniques, independent of the HyCC compilation chain.

For annotations, HyCC relies on the OpenMP notation, which is

the de-facto application programming interface for shared mem-

ory multiprocessing programming in C and supported by most

parallelization tools. Speci�c preprocessing notations, e.g., #omp

parallel for, are added in the code line before each parallel loop.

The annotations are parsed in the next compilation phase.

3.2.2 Preprocessing, Lexing and Parsing. The preprocessing, lexing,

and parsing of source code is realized as in CBMC-GC [26]. We re-

mark that, as in CBMC-GC and typical for MPC, the given program

has to be bound to avoid leaking information through the program

runtime. Furthermore, global variables are not supported, which,

however, is an implementation limitation and not a limitation of

our approach. The only di�erence between HyCC and CBMC-GC

is that the annotated parallelism is parsed.

3.2.3 Source Code Optimization and Loop Unrolling. In this compi-

lation step the intermediate code is analyzed and optimized using

static analysis. The results are subsequently used as a preparation

step for the later code decomposition and parallelization. In detail, to

overcome the optimization limits of (context-insensitive) modular

compilation, rigorous source code optimization in form of a partial

evaluation is performed. Thus, all variables known to be constant

are propagated, such that every remaining expression (indirectly)

depends on at least one input variable (dynamic variable).

To achieve an e�cient compilation result, partial evaluation re-

quires a symbolic execution of the complete source code, which

limits compilation scalability. A faster compile time can be achieved,
under a (often signi�cant) circuit-size trade-o�, when not optimiz-

ing across function or loop boundaries. For example, the circuit

compiler Frigate [41] follows this approach. To achieve the best of

both worlds, we propose a time-constrained multi-pass optimiza-

tion routine, which can be interrupted at any point in time. Given

su�cient compile time, the iterative approach converges to the

same result as a holistic optimization.

In the �rst pass, partial evaluation is only performed with a local

scope, yet not across function or loop boundaries. In the second

pass, constants are propagated within every function body and

between multiple functions (inter-procedural constant propagation),

yet not between multiple loop iterations or in recursive function

calls to avoid loop unrolling. This form of program specialization

can lead to an increase in the code size (function cloning), as the

same function may now appear multiple times with di�erent signa-

tures. For example, in Listing 2, we observe that the pow() function

is called with none, either of the two, and both arguments being

constant. Hence, in this example, two, namely one with the �rst

argument and one with the second argument being constant, addi-

tional copies of the function will be introduced, partially evaluated,

and compiled individually.

In the third optimization pass, all (possibly nested) loops are

visited. We distinguish three types of loops: Parallel, simple, and

complex loops. Parallel loops have already been identi�ed in the

�rst compilation phase. We refer to a for loop as simple if the

loop guard is constant and the iterator variable is incremented

(or decremented) in a constant interval and not written inside the

loop body. Furthermore, simple loops cannot have return or break

statements. Hence, the loop range of simple loops can be derived

without a complete symbolic execution of the loop itself. Complex

loops are all remaining loops, which require a complete unrolling

of all iterations using symbolic execution to determine their termi-

nation.

Simple and parallel loops do not need to be unrolled during

compilation, as it is su�cient to compile a single circuit for all iter-

ations that are instantiated multiple times within an MPC protocol

with the loop iterator variable as input. Nevertheless, similar to

function specialization, loop specialization is desirable for an e�-

cient compilation result. Therefore, in HyCC, loops are optimized

in an iterative approach. First, all constants that are independent

of the loop iterator variable are propagated in the loop body. This

allows an e�ective optimization of multiple loop iterations at the

same time. Afterwards, the �rst iteration of every loop is partially

evaluated. In contrast to the previous symbolic execution, the loop

iterator variable is now initialized with a constant and can lead to

further program specialization. If symbolic execution of the �rst

iteration leads to improvements, i.e., an expression can be evalu-

ated or removed, then the loop becomes a candidate for unrolling.

By unrolling the �rst loop iteration, an estimate on the computa-

tional resources required to unroll all iterations can be made. Given

su�cient remaining compile-time (and memory), the loop will be

unrolled and optimized.

Function and loop specialization may reveal constants relevant

for other code parts. Therefore, given su�cient remaining compile-

time, a further round of partial evaluation is initiated until no

further improvements are observed. Finally, a call-graph is exported

for usage in the following decomposition. Statements within loops

that have been unrolled are enriched with information about their

Session 5B: SecComp 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

852

1 unsigned scalar = x1 * y1 + x2 * y2;

2 if(scalar > min) {

3 count = count + 1;

4 }

Listing 3: Code excerpt to illustrate code decomposition.

The scalar product of two two-dimensional vectors is

computed and compared to a reference value.

original position in the loop, to re-identify loops and their iterations

during decomposition.

3.2.4 Code Decomposition. Identifying a suitable decomposition is

the major challenge for e�cient protocol partitioning. The task of

automated decomposition is to identify which parts of a code should

jointly be compiled as one module, which forms the �nest level of

granularity of protocol selection. Each module has an input and

an output interface, where a module can receive input from one or

more modules and provide output to one or more modules. We refer

to the separation points between two modules as interface. Hence,

a decomposed code forms a directed acyclic graph (DAG) consisting

of modules with interfaces in-between (similar to a call-graph or

dependency graph). The �rst input and last output interface of the

graph are the program input and output variables, respectively.

The overall goal of a good decomposition heuristic is to identify

modules of a program that can be evaluated e�ciently in a speci�c

circuit representation. A �rst example of such a heuristic are ex-

pressions consisting only of arithmetic statements. Naturally, these

should pro�t from processing in MPC protocols based on arithmetic

circuits. In contrast, control �ow operations or comparisons are

evaluated more e�ciently with Boolean circuit-based protocols.

Consequently, arithmetic and combinatorial statements should be

in di�erent modules. We follow a multi-pass decomposition ap-

proach that starts with the complete source code as a module that

is split into more �ne-granular modules in every pass.

Function decomposition. Functions already give programs a form

of modularization and hence they can be used as natural boundaries

for decomposition. Therefore, in the �rst compilation pass, each

function (considering the function specialization described in §3.2.3)

becomes amodule. The input interface to a functionmodule consists

of the arguments that are read in the function body and assigned to

other variables. The output interface are all pointers and variables

passed by reference that are written to in the function body, as well

as the return statement. This form of recursive decomposition

leads to three modules per (possibly nested) function call, one

module for the callee itself, one for the code before and one after

the function call.

Technically, this decomposition becomes challenging when

pointers or references are passed to a function. Using the results

of the previous (exhaustive) symbolic execution, input and output

variables can be di�erentiated, and array sizes can be determined

during compile time. We note that dynamic memory management,

i.e., memory that is allocated based on (private) input variables, is

impossible to be realized in the circuit computation model and is

thus outside the scope of circuit compilers.

Loop decomposition. Loops also give code a structure and are

therefore a good heuristic for decomposition. Consequently, in

the second compilation pass, every module is further decomposed

according to its loops, such that every loop iteration becomes its

own module, where all variables that are read from an outer scope

and the iterator variable form the input interface and all variables

that are written to, but de�ned in an outer scope, form the output

interface.
Loops might have been unrolled during code optimization

(cf. §3.2.3). For their re-identi�cation during decomposition, loop it-

erations are marked as such during loop unrolling. Loops that have

not been unrolled during code optimization require a dedicated

handling of array accesses before decomposition, i.e., a pointer

analysis. Otherwise, array accesses that depend on the iterator

variable, which is an input variable after decomposition, would

compile into private array accesses that are of signi�cant circuit

size [26]. For better e�ciency, in HyCC these array accesses are

extracted from the loop iteration and placed in the module that

encapsulates the iteration. Consequently, these array accesses are

evaluated as accesses with publicly known index, and as such

without any gates.

Decomposition by loops is especially bene�cial for parallel loops,

as it allows to derive the placement costs of MPC protocols during

protocol selection from the analysis of only one loop iteration.

Arithmetic decomposition. In the last decomposition pass, con-

nected arithmetic expressions are extracted, as they are candidates

for arithmetic circuits. Therefore, all expressions in each module

are visited to extract expressions that purely consists of arithmetic

operations (supported by the used MPC protocol). This decomposi-

tion is realized as follows: For each module, a data �ow dependency

graph is constructed from the output to the input interface. Each

node in the dependency graph is an elementary expression and an

edge represents the data that is computed on. By iterating over all

nodes, two sets of sub-graphs are formed. The �rst contains sub-

graphs consisting of connected arithmetic expressions, whereas

the second contains sub-graphs consisting of connected remaining

expressions. Each sub-graph forms its own module, where edges

between the sub-graphs de�ne the respective I/O interfaces. This

form of decomposition is illustrated in Fig. 3 for the code excerpt

given in Listing 3 that computes a scalar multiplication.

We remark that during protocol selection, multiple (or even

all) modules can be merged to larger modules, that are jointly

evaluated with the same MPC protocol. Finally, the created DAG

that represents the modules and their I/O dependencies is exported

for the next compilation steps.

3.2.5 Circuit Compilation. The di�erent modules identi�ed in the

previous step are compiled separately into two or three circuit rep-

resentations. Namely, every module is compiled into size-optimized

Boolean circuits using the circuit compiler of CBMC-GC and into

depth-optimized Boolean circuits using its ShallowCC extension [9],

which uses depth-optimized building blocks (cf. §2.4). Moreover,

every module that can be represented with the arithmetic opera-

tions supported by ABY (cf. §2.2) is also compiled into an arithmetic

circuit using a straight-forward mapping of arithmetic expressions

to arithmetic gates. Note that modules representing functions or

loops that have not been unrolled are only compiled once.

Session 5B: SecComp 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

853

x1 y1 x2 y2 min count

MUL

1

MUL

ADD

GT

MUX

ADD

count

Figure 3: Code dependency graph and decomposition for

the code excerpt in Listing 3. Connected statements that

can e�ciently be expressed as arithmetic circuits, i.e., ad-

dition (ADD) and multiplication (MUL), marked with a red

dashed circle, form sub-graphs. Statements that pro�t from

a Boolean representation, marked with a blue dotted circle,

i.e., greater-than (GT) and multiplexer (MUX), are grouped.

3.2.6 Inter-Procedural Circuit Optimization. So far, the compiled

circuits have only be optimized on the source code level, cf. §3.2.3.

After their creation, all Boolean circuits are optimized on the gate-

level, e.g., by removing unused bits (gates). Constants are propa-

gated between di�erent modules and circuit types, including the

arithmetic circuits when applicable.

The scalability of logic minimization techniques for Boolean

circuits is limited, because these techniques are applied in a gate-

by-gate manner and some techniques involve computationally ex-

pensive operations, such as SAT sweeping to identify unnecessary

gates [8]. Thus, to distribute the available computational resources

onto all modules e�ciently, we adapt a technique called source-

code guided optimization [10]. Here, over multiple time-constrained

optimization passes, the available computing time is distributed

using the structural information present on the source-code level

and the information about previous optimization passes. Namely,

in each pass, the available budget, which is a fraction of the total

upper compile time speci�ed by the user, is distributed according to

the unrolled circuit size of each module. Thus, modules originating

from loops or function bodies are optimized with an e�ort that is

proportional to the number of their iterations or calls. Moreover,

outputs of modules identi�ed as constant are propagated to sub-

sequent modules and optimization preference is given to modules

with many constant input gates.

In contrast to [10], which did not target hybrid compilation, we

optimize all types of circuits independently with a shared opti-

mization budget. Thus, the di�erent optimizations are performed

separately. Yet, the information about identi�ed constant output

variables or module outputs is propagated between optimization

routines, and will also be used to improve the arithmetic circuits, if

all bits of an output variable are identi�ed as constant. We remark

that this form of cross propagation maintains functional correctness

because all circuits for one module are logically equivalent.

3.2.7 Circuit Export. Once a user-de�ned compile time has been

reached, the optimization routine is stopped and the DAG, con-

sisting of modules with optimized circuit representations and I/O

interfaces as well as information about identi�ed parallel loops,

is exported. Given the circuits, an MPC framework can choose a

protocol selection to perform the computation as described next.

4 PROTOCOL SELECTION AND SCHEDULING

In this section, we describe how to determine an optimized sched-

uling and mapping of the modules that were created during compi-

lation to MPC protocols.

4.1 Problem De�nition

We optimize evaluation costs of a hybrid MPC application by choos-

ing an e�cient protocol representation and evaluation order of

all modules for a given program description. For this, we present

heuristics considering a user-speci�ed cost model. A very interest-

ing use case is the optimization of the protocol’s online runtime,

yet, various other cost models are also of interest. For example

optimizing the cloud computing costs, i.e., the price to pay for com-

putational power and tra�c to perform a computation using cloud

service providers, has been discussed in [44]. Further examples are

the total protocol runtime including or excluding the time spent

on preprocessing depending on the use case of the application, the

pure communication costs when considering a constrained network

connection, or the power consumption when considering mobile

devices. All these minimization problems can also be formulated as

constrained problems, e.g., minimizing the communication costs

while keeping the protocol runtime below a user-de�ned threshold.

The computation and communication costs of a hybrid MPC pro-

tocol depend on the combined costs to evaluate each module in the

selected protocol plus the time to convert between modules, when

evaluating them with di�erent protocols. However, in contrast to

previous works, i.e., [32] and [44], we observe that the optimization

problem, i.e., achieving minimal costs for a given decomposition, is

not only a protocol selection problem but also a scheduling prob-

lem. Namely, the evaluation order of parallel modules, i.e., modules

without sequential dependencies, can signi�cantly in�uence the

e�ectiveness of protocol selection, and thus the overall protocol

runtime. This is because of the non-linearity of computation and

communication costs of MPC protocols (e.g., parallel computations

in the program can be performed in the same communication round

or packed in the same cryptographic operation), as well as the

trade-o� that has to be taken into account when converting be-

tween di�erent MPC protocols. Fig. 4 illustrates this scheduling

problem for an example program description and naïve cost model.

Namely, Fig. 4a shows an exemplary program DAG resembling a

computation from inputs (top) to outputs (bottom) with di�erent

modules (nodes) in between. For simplicity, we assume that mod-

ules illustrated as squares pro�t from an evaluation in a sharing

type A (e.g., arithmetic), whereas modules represented by circles

pro�t from a di�erent sharing type B (e.g., Boolean). Furthermore,

for illustration purposes, we assume that a conversion between two

di�erent sharings is reducing the total evaluation costs if at least

three modules are evaluated in the same sharing. The result of an

exemplary as-soon-as-possible (ASAP) scheduling followed by a

protocol selection is shown in Fig. 4b. Two groups of nodes (marked

with dashed lines) become a candidate for being evaluated in shar-

ing type B. However, when considering the assumption above, an

optimal protocol selection algorithm will propose to evaluate all

modules with type A, as the conversion is too expensive for only

two modules. An optimal scheduling is shown in Fig. 4c. In this

case, three modules that can jointly be evaluated in sharing type B

can be identi�ed during protocol selection and are consequently

evaluated in sharing type B.

Session 5B: SecComp 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

854

(a) Example DAG

with protocol

preferences

(b) ASAP scheduling

and subsequent pro-

tocol selection

(c) Optimal schedul-

ing and subsequent

protocol selection

Figure 4: Exemplary DAG with di�erent evaluation sched-

ules and protocol selections described §4.1.

Thus, we remark that optimal runtime can only be achievedwhen

optimizing both protocol selection and scheduling of modules. Next,

we present a formalization of the optimization problem, before

presenting optimization routines in the following subsections.

Formalization. We formalize the cost model and optimization

problem as follows. Given is a program description in the form

of a DAG G from inputs i ∈ In to outputs o ∈ Out with modules

m ∈ M in between. Cost minimization for hybrid MPC consists of

two interleaving tasks, namely protocol selection and scheduling.

Protocol selection is an assignment that maps every module to an

MPC protocol, also referred to as sharing type t : M → {A,B,Y }.

We denote the set of protocols representing each modules in the se-

lected sharing with Π
t
M
. Moreover, we denote the set of conversion

protocols required to convert between adjacent modules evaluated

with di�erent MPC protocols with Π
t
C
.

Scheduling is the task of assigning an evaluation order to all

modules for a given protocol selection. Modules and their conver-

sions form the set of elementary protocols Πt
= Π

t
M
∪ Π

t
C
that

are the atomic units of scheduling. As it is common in scheduling,

we use the notion of instructions I , which is the set of protocols

that are performed in parallel in hybrid MPC. Furthermore, note

that most modules and their conversions have data dependencies

to other modules, i.e., modulem2 is dependent onm1, if the result

ofm1 is needed to computem2. Therefore, scheduling is the task of

creating a sequence of k instructions (I1, I2, . . . , Ik) and assigning

protocols to instructions s : Πt → I1, . . . , Ik . This assignment must

guarantee that every protocol only appears in one instruction, pro-

tocols in each instruction are pairwise mutually independent, and

the order of protocols induced through the order of instructions

con�rms to the dependencies between modules and conversions.

Given a schedule, i.e., an ordered list of instructions IL, the total

evaluation cost is the sum of the evaluation costs of all protocols

representing a module π tm ∈ Π
t
M

and their respective conversions

π
t
c ∈ Π

t
C
according to IL plus the cost to input, i.e., share, values

into the protocol, plus the costs to reveal all outputs. In §4.3, we

illustrate the computation of the evaluation cost in more detail by

performing a runtime prediction for a given evaluation schedule.

In summary, the goal of optimized protocol selection and schedul-

ing is to minimize the total evaluation cost by choosing a schedule s

and protocol selection t . Next, we present approaches to achieve

e�cient protocol selection and scheduling.

4.2 Protocol Selection in HyCC

Scheduling and protocol selection are tightly coupled problems,

where the latter alone is conjectured to be NP-hard [32, 44]. There-

fore, in HyCCwe �rst select an evaluation schedule using a heuristic

for a given program decomposition. The schedule is then used in a

second step to optimally solve the protocol selection problem.

Scheduling. In HyCC, protocol scheduling is performed with

respect to the parallelism present on the source code level. Conse-

quently, the identi�ed parallelism, which has been annotated in the

program’s DAG during compilation, is used to schedule modules

in parallel. This explicit scheduling of parallel code structures is

necessary, as the straight forward application of an ASAP or other

scheduling algorithm cannot guarantee that parallel code state-

ments will be evaluated in parallel, as shown in Fig. 4. Moreover,

this approach is bene�cial for hybrid MPC, as the MPC protocols,

conversion protocols, and their implementations bene�t from paral-

lel execution. For example, n sequentially scheduled multiplications

in an arithmetic circuit require n communication rounds, whereas a

parallel alignment allows to perform all multiplications in a single

communication round, which leads to very di�erent runtimes in an

high-latency network. Furthermore, parallelization is bene�cial for

the later protocol selections, as multiple modules can be grouped

together and thus, optimized more e�ciently.

Besides parallelization, modules are scheduled in an ASAP man-

ner. To combine both strategies in a single algorithm, parallel mod-

ules are merged in a single module when creating an ASAP schedule.

Afterwards, themergedmodules are restored and placed in the same

instruction of the evaluation schedule. We leave more advanced

scheduling algorithms for future work.

Protocol selection. Even though in the general case protocol se-

lection is conjectured to be NP-hard, given a coarse-grained decom-

position, such as the one created by HyCC, an optimal protocol

selection can be computed under reasonable computational e�ort

for many practical applications, as we show in §5.1. This is because

the complexity of the protocol selection routine is dominated by the

width of the program’s DAG G rather than its size. Consequently,

all applications that only moderately divert in their data and control

�ow are candidate problems for optimal protocol selection.

To identify the optimal protocol selection for a given DAG G,

we apply a straight-forward combinatorial optimization approach

by enumerating all possible protocol combinations using dynamic

programming. The core concept of the optimization routine is to

iteratively optimize the selection of protocols up to a certainmodule,

following the order of modules generated by the instruction list IL.

In every step, one module is added and modules that do not have

any open outputs, i.e., outputs that are required for subsequent

modules, are removed. We refer to the set of modules with open

outputs as the working setWS . For everyWS , the best protocol

selection for every possible sharing combination is computed and

stored. When going fromWS to the nextWS ′, the best protocol

selection to represent the newWS ′ in every sharing combination

is computed by identifying the least cost to computeWS ′ from

any con�guration ofWS . Thus, the complexity of this optimization

approach for a givenDAGG withnmodules, amaximumwidth ofw ,

and s di�erent sharing types is in O(nsw), and thus exponential in

the size of the largest working set, i.e., the width ofG . Consequently,

for a small number of sharing types and for DAGs with moderate

width, the protocol selection problem can be solved optimally in

seconds, as evaluated in §5.1.

Session 5B: SecComp 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

855

eval_costs(WS,WS ′, c ′, cost_table)
1 : min ←∞

2 : forea� c ∈ share_combinations(WS)

3 : cost ← cost_step(WS,WS ′, c, c ′)

4 : if cost + cost_table[c] < min then

5 : min ← cost + cost_table[c]

6 : endif

7 : returnmin

8 : endfor

Algorithm 2: Algorithm to compute the cheapest evaluation

cost to compute the nextWS ′ in a speci�c sharing con�gura-

tion. The algorithm takes as input the two working setsWS ,

WS ′, the designated sharing con�guration forWS ′ denoted

with c ′, as well as a table with the cheapest cost to compute

all possible sharing con�gurations c ofWS .

protocol_selection(DAG G, instruction list IL)
1 : WS ← G .inputs

2 : forea� c in share_combinations(WS) do

3 : cost_table[c] ← cost_input_sharing(c)

4 : endfor

5 : forea�m inG .modules ordered by I L do

6 : WS ′ ← remove_completed(WS ∪m)

7 : forea� c ′ ∈ share_combination(WS ′) do

8 : cost_table ′[c ′] ← eval_costs(WS,WS ′, c ′, cost_table)

9 : endfor

10 : WS ←WS ′

11 : cost_table ← cost_table ′

12 : endfor

13 : returnmin(cost_table)

Algorithm 1: Optimal protocol selection algorithm. The al-

gorithm takes as input the DAG of the programwith the cir-

cuit descriptions of all modules. It returns the protocol cost

for the optimal protocol selection.

Algorithmic implementation. The protocol selection algorithm is

given in Algorithm 1 and described next. The initialWS consists of

all inputs of the DAG G. Consequently, the cost to represent aWS

in a speci�c sharing combination is the cost to share each input

with the speci�ed sharing (Line 2). Next, the iterative optimization

routine is initiated. A module from the ordered G is added to the

WS and completed modules are removed to create the next working

setWS ′ (Line 6). Then, all possible sharing combinations of the

next WS ′ are enumerated. For each of these combinations, the

best protocol selection based on all sharing con�gurations of the

previousWS is computed (Line 8). This task is realized in function

eval_costs(), outlined in Algorithm 2, which takes as input the

two working sets, as well as the desired sharing con�guration

c ′ of WS ′ and a cost table that stores the costs to compute all

possible con�gurations ofWS . The costs to evaluate the newly

added module, re�ecting the sharings inWS andWS ′ is computed

in function cost_step(), which models the evaluation costs of MPC

protocols. A discussion on cost models is given in §4.3. Once all

possible sharings ofWS ′ are computed,WS is replaced byWS ′

to add a further module. The algorithm ends, once all modules

have been visited, and thus an optimal output sharing has been

identi�ed.

Scalable protocol selection. In cases where the DAG exceeds the

computationally manageable width, the optimization algorithm can

compute the optimal protocol selection for all sub-graphs, which

have a width that is solvable. For the remaining sub-graphs, or

the combination of multiple sub-graphs, heuristics, such as the

hill-climbing heuristic proposed in [32] could be used to search for

an optimized selection in the combination of di�erent optimally

solved sub-graphs.

4.3 Cost Model and Probing

The most relevant cost factors of MPC are the total protocol run-

time, the bandwidth requirement and the number of communication
rounds between theMPC parties. An accurate cost model is required

for an optimized protocol selection. The total communication com-

plexity can precisely be predicted by summing the communication

costs of all individual building blocks of a hybrid protocol, whereas

the runtime prediction is more complex. For large circuits (i.e., sev-

eral million non-linear gates) a simple approach can give a rough

estimate, where the circuit depth d is multiplied by the communica-

tion latencyTlat and addedwith the number of non-linear gatesGnl

divided by the maximum throughput of non-linear gates per sec-

ond TPnl to get a runtime estimate Testim = d · Tlat + Gnl /TPnl .

However, this does not work for smaller circuits, as these do not

fully saturate the network connection. We follow a more complex

approach, where the input of the runtime prediction is the compu-

tation and communication costs of the individual protocol building

blocks, i.e., input and output sharing, AND and XOR gates, arith-

metic addition and multiplication gates, share conversions, as well

as the available computation and communication resources. We au-

tomatically measure runtime, required communication and circuit

depth, i.e., round complexity, of each individual building block for

di�erent input sizes and all available sharing types. Moreover, we

evaluate them with di�erent degrees of parallelism, to consider the

e�ciency gain of parallelization and also to determine the limits

of the available resources. To optimize for the best possible per-

formance, this probing takes place on the systems where the �nal

hybrid protocol will be deployed. By doing this, we can provide

an estimate for the runtime and bandwidth requirement of the

compiled hybrid MPC protocols without actually running them by

linear inter- and extrapolation of the previously measured smaller

building blocks.

Fig. 5 shows a comparison of empirically measured runtimes

(solid lines) and estimated runtimes (dashed lines) for three use

cases: Minimum-Euclidean-Distance (described in §5.2.1) and AES

evaluated with Yao’s garbled circuits and the GMWprotocol, respec-

tively. We benchmark the building blocks for di�erent input sizes,

which are evaluated in parallel. Extrapolating from runtime that

was measured on small building blocks to a full-sized circuit and the

in�uence of the network connection between the MPC parties leads

to imprecision in the runtime prediction. In our measurements we

found that the prediction was always within −50% and +50% of

the actual achieved runtime. For better runtime prediction a larger

Session 5B: SecComp 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

856

128 256 512 1024 20484096 8192 16384

102

103

104

Input size

R
u
n
ti
m
e
[m

s]

Total Runtime and Estimates for LAN connection

128 256 512 1024 2048 4096 8192 16384

104

105

Input size

R
u
n
ti
m
e
[m

s]

Total Runtime and Estimates for WAN connection

AES GMW AES Yao Min. Euclidean Dist.

Figure 5: Comparison ofmeasured runtimes (solid lines) and

corresponding estimates (dashed lines) using a log-log plot.

number of measurements and more data points of the underlying

building blocks are required to limit the in�uence of noise on a busy

network or on shared hardware. As our results show, the runtime

estimate that is interpolated from measuring the underlying build-

ing blocks captures the relative runtime between the protocols well

and allows for identifying the most e�cient sharing in the protocol

selection step for a given deployment scenario.

5 BENCHMARKS

In this section, we present an experimental evaluation of HyCC.

We study the e�ciency of protocol selection, the circuits created

by HyCC, and their performance in hybrid MPC protocols for var-

ious use cases in two di�erent deployment scenarios. The goal

of this evaluation is to illustrate that the circuits that were auto-

matically created by HyCC from ANSI C code are comparable to

hand-crafted hybrid circuits and signi�cantly more e�cient than

previous single-protocol compilers. As such, we are able to show

that HyCC is simplifying the ease-of-use of hybrid MPC, and is

thus a powerful tool to prototype a solution for a privacy problem,

which allows to identify whether generic MPC protocols achieve

su�cient e�ciency or whether dedicated protocols need to be de-

veloped. We remark that the goal of this work is not to outperform

dedicated secure computation protocols, which are optimized to

achieve maximum e�ciency for a speci�c use case. We begin with

an evaluation of the runtime of the protocol selection algorithm

presented in §4.2.

5.1 Protocol Selection

To illustrate that an exhaustive search is a su�cient solution for

the protocol selection problem in most practical cases, we measure

the runtime of the protocol selection algorithm in Fig. 6. Shown are
the runtimes averaged over k = 10 executions of a straight forward

(unoptimized) implementation running on a commodity laptop for

randomly generated graphs with n = 2 ·w modules and increasing

graph width w . We observe the expected exponential growth in

runtime when increasing w . Albeit being a limiting factor of our

approach, to the best of our knowledge all applications in privacy

research studied so far have a very small branching factor in their

functionalities, which leads to very small width w . For example,

all use cases in this work have a width of at mostw = 3, which is

solved in less than 0.01 seconds and we remark that even larger

graphs with a width ofw = 10 are solved in seconds.

2 4 6 8 10 12 14

10−3

10−1

101

Graph widthw

R
u
n
ti
m
e
[s
]

Figure 6: Runtime of the protocol selection algorithm for

di�erent graph widthsw .

5.2 Use Cases

Next, we evaluate the generated circuits and protocol selections

made by HyCC for di�erent use cases in the ABY framework [18].

The ABY framework provides state-of-the-art implementations for

Yao’s protocol, GMW, OT-based additive secret sharing protocols,

and the corresponding conversion protocols, which makes it an

ideal backend to evaluate the created circuits. For the evaluation, we

use applications that illustrate the versatility of HyCC or that have

previously been used to benchmark MPC protocols and compilers.

Experimental setup. All applications are implemented based on

textbook algorithms and compiled with HyCC using a total opti-

mization time of T = 10 minutes. The generated circuits are eval-

uated on two identical machines with an Intel Core i7-4790 CPU

and 32GiB RAM, connected via a 1Gbps local network, denoted as

LAN. To simulate an Internet connection between the MPC parties,

denoted as WAN, we use the Linux tool tc to set a latency of 50ms

(100ms RTT) and limit the throughput to 100Mbps. We set the

symmetric security parameter to 128 bit. Running times are median

numbers from 10 measurements. “—” denotes that no values were

given or benchmarked.

For all applications the number of non-linear (multiplicative)

gates, communication rounds, transferred bytes, and the protocol

runtime of the setup phase and of the online phase are measured.

For comparison purposes we provide these numbers not only for

the best protocol selection but also for di�erent instantiations of the

same functionality, e.g., all modules evaluated in a Boolean circuit-

based protocol, or a hybrid of a Boolean circuit and arithmetic

sharing. As before, we use A for arithmetic sharing, B for Boolean

sharing using the GMW protocol, and Y for Yao’s garbled circuits.

We omitted A-only measurements for use cases that include bit-

operations (e.g., minimum, comparison), since these are extremely

costly in A sharing and therefore not implemented in ABY [18].

Session 5B: SecComp 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

857

1 #define N 128

2 #define D 2

3

4 #include <inttypes.h>

5 typedef int32_t DT;

6

7 DT match(DT db1 , DT db2 , DT s1 , DT s2) {

8 DT dist1 = db1 - s1;

9 DT dist2 = db2 - s2;

10 return dist1 * dist1 + dist2 * dist2;

11 }

12

13 void mpc_main () {

14 DT INPUT_A_db[N][D];

15 DT INPUT_B_sample[D];

16 DT matches[N];

17

18 DT min = match(INPUT_A_db [0][0] , \

19 INPUT_A_db [0][1] , INPUT_B_sample [0], \

20 INPUT_B_sample [1]);

21

22 for(int i = 1; i < N; i++) {

23 DT dist = match(INPUT_A_db[i][0], \

24 INPUT_A_db[i][1], INPUT_B_sample [0], \

25 INPUT_B_sample [1]);

26

27 if(dist < min) {

28 min = dist;

29 }

30 }

31 DT OUTPUT_res = min;

32 }

Listing 4: Biometric matching code example.

Table 1: Modules and their circuit sizes when compiling the

biometric matching example with HyCC.

Module non-linear gates non-lin. # bits
A B Y depth Inputs Outputs

mpc_main 0 0 0 0 8,256 32

match (×128) 2 1,785 1,536 20 128 32

loop1 (×127) — 120 64 10 64 32

total 128 2 · 105 2 · 105 909 8,256 32

5.2.1 Biometric Matching (Minimum Euclidean Distance). The min-

imum Euclidean distance is the minimum of the distances from a

single coordinate to a list of coordinates. It is used in biometric

matching between a sample and a database, and is a well-known

benchmark for MPC, e.g., [9, 18, 24]. For illustration purposes a

code example for the biometric matching functionality is shown in

Listing 4 for a database of size n = 128 and dimension d = 2. The

identi�ed modules and their circuit sizes when compiling this code

with HyCC are given in Tab. 1.

For the experimental evaluation we use databases consisting of

n ∈ {1,000; 4,096; 16,384} samples with dimension d = 4, where

each coordinate has bit length b = 32 bits. The performance results

are given in Tab. 2. We compare a hand-built hybrid ABY circuit [18]

with a circuit that is compiled with HyCC. The results show that

the circuits that we automatically compiled from a standard ANSI C

description achieve the same complexity as the circuits that were

hand-built and manually optimized in ABY. Here, a combination

of arithmetic sharing and Yao’s protocol (A+Y) achieves the best

runtime in all settings. The runtimes in both implementations show

a slight variation that is due to variance of the network connection.

We remark that the setup phase of the ABY circuit is more e�-

cient, because ABY allows single-instruction-multiple-data (SIMD)

preprocessing, which is currently not implemented in HyCC.

To show the e�ciency gain of hybrid protocols over standalone

protocols, we give experiments using B or Y sharing only. These

protocols are signi�cantly less e�cient and for larger input sizes

even exceed the memory resources of our benchmark hardware.

5.2.2 Machine Learning. Machine learning (ML) has many appli-

cations and is a very active �eld of research. Protecting the privacy

of training data or ML inputs is also an active research area.

Supervised machine learning – Neural networks. Deep (Convolu-

tional) Neural Networks (CNNs) are one of the most powerful ML

techniques. Therefore many dedicated protocols for private data

classi�cation using CNNs have been proposed recently [21, 38, 46].

We implemented CryptoNets [21] and the very recent MiniONN

CNN [38], which both have been proposed to detect characters

from the MNIST handwriting data set. Previously these use cases

needed to be carefully built by hand, while we achieve even better

performance when conveniently compiling easily understandable

C source code to a hybrid MPC protocol.

Tab. 3 shows machine learning performance results. For Cryp-

tonets, HyCC automatically determined A as the best sharing in

the LAN setting. When changing the activation function (from the

square function to f (x) =max(0,x), known as RELU function), or

when changing the number representation (�xed-point instead of

integer), a hybrid A+Y protocol becomes the fastest option.

For the MiniONN CNN, HyCC proposes to use A+Y , where Y

is mainly used to compute the RELU activation function, which

results in a hybrid protocol that requires only a third of the on-

line runtime, total runtime, and total communication compared to

the original MiniONN protocol [38]. When expressing the entire

MiniONN functionality solely as a Boolean circuit, more than 250

million non-linear gates are used. Using Yao’s protocol in the LAN

setting, sending the corresponding garbled circuit would take more

than one minute, assuming perfect bandwidth utilization. Thus, in

comparison to all existing Boolean circuit compilers for MPC, i.e.,

single protocol compilers, HyCC achieves a runtime that is more

than one order of magnitude faster.

Unsupervised machine learning – k-means. Clustering is another

data mining task, frequently used to identify centroids in unstruc-

tured data. One of the most well known clustering algorithms is k-

means, and multiple works proposed dedicated privacy-preserving

k-means protocols, e.g., [31, 49]. We evaluate a textbook algorithm

that detects c = 4 clusters in 2-dimensional data sets of size n = 500

using i = 8 iterations and show our results in Tab. 3. Also in this

use case, a hybrid A+Y protocol achieves the best runtime.

5.2.3 Gaussian elimination. Solving linear equations is required in

many applications with Gaussian elimination being the most well

known solving algorithm. We implement a textbook Gauss solver

with partial pivoting for n ∈ {10, 16} equations using a �xed-point

number representation and present results in Tab. 4. Fixed-point

numbers can be implemented in software, and thus also in HyCC,

with only a few lines of code, which is illustrated in Appendix A.

In all scenarios, HyCC identi�es A+Y as the most e�cient protocol,

where Y is mainly used to compute the row permutations and

divisions. Note that due to the signi�cant circuit depth, we did not

Session 5B: SecComp 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

858

Table 2: Minimum Euclidean distance benchmarks comparing a hand-built circuit (ABY [18]) with a compilation from HyCC

(best values marked in bold).

Setup Phase Online Phase
Circuit Sharing non-linear Interaction LAN WAN Comm. LAN WAN Comm.

Gates Rounds [ms] [ms] [MiB] [ms] [ms] [KiB]

min. Euclid ABY [18] (n = 1,000) A+Y 98,936 6 167 2,878 8 55 557 1,567

min. Euclid HyCC (n = 1,000) A+Y 98,936 10 175 1,920 8 70 584 1,582
min. Euclid ABY [18] (n = 1,000) A+B 155,879 78 151 2,206 9 73 3,971 1,620

min. Euclid HyCC (n = 1,000) A+B 155,879 80 190 3,622 10 131 4,249 1,643
min. Euclid HyCC (n = 1,000) Y 3,166,936 3 1,498 10,239 99 1,177 1,789 4,016
min. Euclid HyCC (n = 1,000) B 3,497,879 93 550 8,228 107 2,932 7,974 1,725

min. Euclid ABY [18] (n = 4,096) A+Y 405,440 6 420 7,336 34 211 1,234 6,416

min. Euclid HyCC (n = 4,096) A+Y 405,440 10 536 5,162 34 330 1,406 6,480
min. Euclid ABY [18] (n = 4,096) A+B 638,855 92 417 8,016 37 303 5,606 6,629

min. Euclid HyCC (n = 4,096) A+B 635,020 94 555 4,337 41 689 5,802 6,722

min. Euclid HyCC (n = 16,384) A+Y 1,621,952 10 2,239 13,522 112 1,419 4,041 25,920
min. Euclid HyCC (n = 16,384) A+B 2,540,935 108 2,286 15,179 164 3,155 11,024 26,883

Table 3: Machine learning nenchmarks comparing with MiniONN [38] and CryptoNets [21]

(best values marked in bold).

Setup Phase Online Phase
Circuit Sharing non-linear Interaction LAN WAN Comm. LAN WAN Comm.

Gates Rounds [ms] [ms] [MiB] [ms] [ms] [KiB]

MiniONN MNIST [38] — — — 3,580 — 21 5,740 — 651,877
MiniONN MNIST HyCC A+B 2,275,880 90 1,750 14,469 165 2,689 9,443 35,864
MiniONN MNIST HyCC A+Y 1,838,120 34 1,825 14,041 150 1,621 5,882 35,094

CryptoNets Square [21] — — — 0 — 0 297,500 — 381,133
CryptoNets Square HyCC A 107,570 7 683 10,348 131 134 1,359 2,018

CryptoNets RELU HyCC A+Y 195,455 19 784 11,238 134 163 1,297 3,330
CryptoNets RELU HyCC A+B 195,455 33 735 11,298 134 187 1,917 3,360

CryptoNets Fix-Point HyCC A+B 195,455 33 765 11,416 134 187 1,910 3,694
CryptoNets Fix-Point HyCC A+Y 195,455 19 780 11,264 134 162 1,296 3,330

k-means HyCC (n = 500) A+B 7,894,592 6,578 3,453 21,887 293 5,917 337,083 30,473

k-means HyCC (n = 500) A+Y 4,991,816 125 4,414 21,007 206 3,748 10,503 38,915

Table 4: Gaussian elimination benchmarks (best values marked in bold).

Setup Phase Online Phase
Circuit Sharing non-linear Interaction LAN WAN Comm. LAN WAN Comm.

Gates Rounds [ms] [ms] [MiB] [ms] [ms] [KiB]

Gauss 10 × 10 HyCC A+B 555,611 41,305 340 — 29 5,843 — 2,989
Gauss 10 × 10 HyCC B 1,158,995 41,829 268 — 23 6,020 — 1,412
Gauss 10 × 10 HyCC A+Y 494,215 147 348 2,849 17 256 4,235 1,997
Gauss 10 × 10 HyCC Y 1,030,225 3 561 3,850 31 429 631 101

Gauss 16 × 16 HyCC A+B 2,516,310 67,920 1,245 — 57 11,182 — 10,031
Gauss 16 × 16 HyCC A+Y 2,294,615 243 1,515 8,842 79 1,258 8,126 7,740
Gauss 16 × 16 HyCC Y 4,393,173 3 2,445 13,749 134 1,957 2,190 257

measure the runtime for Boolean circuits evaluated with the GMW

protocol in the WAN setting.

5.2.4 Database analytics. Performing data analytics on sensitive

data has numerous applications and therefore many privacy-

preserving protocols and use cases have been studied, e.g., [6, 19].

Using generic MPC techniques is of interest for database analytics,

as it allows to perform arbitrary analytics, e.g., hypothesis testing,

or allows to add data perturbation techniques, e.g., di�erential

privacy, before releasing the result with minimal e�ort. We study

exemplary use cases, where each party provides a database (array)

of size nA and nB that has two columns each, which are concate-

nated (merged), leading to a database of size n = nA +nB , or joined
(inner join on one attribute) yielding a database of maximum size

n = nA · nB , and then the mean and variance of one column of the

combined database are computed. The performance evaluation is

shown in Tab. 5. We observe that in both use cases, a combination

of A+Y achieves minimal runtime in the LAN setting, with the

division (and join) being performed in Y . In the WAN setting, Y

achieves optimal runtime and minimal online communication.

5.2.5 Summary of Experiments. Summarizing the results obtained

in all use cases, we observe that hybrid protocols consisting of A+Y ,

achieve very e�cient runtime in the LAN deployment, whereasY is

often the fastest protocol in the WAN deployment. We observe that

the GMW protocol (B) has barely been identi�ed to achieve optimal

Session 5B: SecComp 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

859

Table 5: Database operation benchmarks (best values marked in bold).

Setup Phase Online Phase
Circuit Sharing non-linear Interaction LAN WAN Comm. LAN WAN Comm.

Gates Rounds [ms] [ms] [MiB] [ms] [ms] [KiB]

DB Merge 500 + 500 HyCC B 1,441,732 1,237 593 3,776 44 1,310 63,430 733
DB Merge 500 + 500 HyCC A+B 5,395 1,187 29 927 2 144 59,319 56
DB Merge 500 + 500 HyCC Y 849,711 3 858 3,619 26 679 886 752
DB Merge 500 + 500 HyCC A+Y 4,990 17 22 815 1 4 606 30

DB Join 50 × 50 HyCC B 4,429,046 765 1,645 13,312 135 4,219 43,090 2,179
DB Join 50 × 50 HyCC A+B 529,526 708 451 5,201 26 564 36,652 6,827
DB Join 50 × 50 HyCC Y 2,550,076 3 1,725 8,317 78 1,272 1,451 100

DB Join 50 × 50 HyCC A+Y 443,900 32 472 3,433 23 435 2,395 6,705

DB Join 25 × 200 HyCC B 8,981,870 767 3,521 26,766 274 9,846 48,937 4,403
DB Join 25 × 200 HyCC A+B 1,163,575 708 832 7,085 54 1,202 38,155 13,295
DB Join 25 × 200 HyCC Y 5,158,825 3 3,212 15,960 158 2,660 2,861 250

DB Join 25 × 200 HyCC A+Y 937,049 32 927 5,837 47 942 3,603 12,861

runtime for any of the benchmark applications. This is because we

performed all benchmarks in the function dependent preprocess-

ing model, which is the default setting in ABY, and which allows

to garble the circuit in the setup phase. When using a function

independent cost model for preprocessing, HyCC identi�es A+B

as the fastest protocol combination in the LAN setting for many

applications.

6 CONCLUSIONS AND FUTURE WORK

In our evaluation we observed that hybrid protocols can signi�-

cantly outperform standalone protocols. HyCC is capable of auto-

matically synthesizing the required hybrid protocols from a high-

level description and selecting them for a given deployment sce-

nario. As such, HyCC is even capable of outperforming certain

hand-optimized protocols. Moreover, as the manual creation of

circuits and their selection are tedious and error-prone tasks, we

conclude that HyCC makes hybrid MPC more practical and also

accessible to developers without expert-knowledge in MPC.

In future work, we will extend HyCC with �oating point opera-

tions and integrate more MPC protocols with di�erent cost models.

A natural candidate for extension is homomorphic encryption, simi-

lar to TASTY [24]. Another possibility would be integrating trusted

hardware environments such as Intel’s SGX.

ACKNOWLEDGMENTS

We thank all anonymous reviewers for their helpful and construc-

tive comments. This work has been co-funded by the German

Federal Ministry of Education and Research (BMBF) and the Hes-

sen State Ministry for Higher Education, Research and the Arts

(HMWK) within CRISP, by the DFG as part of projects E4 and S5

within the CRC 1119 CROSSING, and by the DFG as part of project

A.1 within the RTG 2050 “Privacy and Trust for Mobile User”.

REFERENCES
[1] J. B. Almeida et al. Jasmin: high-assurance and high-speed cryptography. In

ACM CCS’17, pp. 1807–1823. ACM Press, 2017.
[2] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More e�cient oblivious

transfer and extensions for faster secure computation. In ACM CCS’13, pp. 535–
548. ACM Press, 2013.

[3] D. Beaver. Correlated pseudorandomness and the complexity of private com-
putations. In ACM STOC’96, pp. 479–488. ACM Press, 1996.

[4] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols
(extended abstract). In ACM STOC’90, pp. 503–513. ACM Press, 1990.

[5] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. E�cient garbling from
a �xed-key blockcipher. In IEEE S&P’13, pp. 478–492. IEEE Computer Society
Press, 2013.

[6] D. Bogdanov, M. Jõemets, S. Siim, and M. Vaht. How the estonian tax and
customs board evaluated a tax fraud detection system based on secure multi-
party computation. In FC’15, pp. 227–234. Springer, 2015.

[7] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: a framework for fast
privacy-preserving computations. In ESORICS’08, pp. 192–206. Springer, 2008.

[8] N. Büscher, M. Franz, A. Holzer, H. Veith, and S. Katzenbeisser. On compiling
boolean circuits optimized for secure multi-party computation. Formal Methods
in System Design, 51(2):308–331, 2017.

[9] N. Büscher, A. Holzer, A. Weber, and S. Katzenbeisser. Compiling low depth
circuits for practical secure computation. In ESORICS’16, pp. 80–98. Springer,
2016.

[10] N. Büscher, D. Kretzmer, A. Jindal, and S. Katzenbeisser. Scalable secure com-
putation from ANSI-C. In IEEE International Workshop on Information Forensics
and Security (WIFS’16), pp. 1–6. IEEE, 2016.

[11] H. Carter, C. Lever, and P. Traynor. Whitewash: outsourcing garbled circuit
generation for mobile devices. In ACM ACSAC’14, pp. 266–275. ACM Press,
2014.

[12] H. Carter, B. Mood, P. Traynor, and K. Butler. Outsourcing secure two-party
computation as a black box. In Security and Communication Networks (SCN’16),
pp. 2261–2275. Wiley Online Library, 2016.

[13] H. Carter, B. Mood, P. Traynor, and K. Butler. Secure outsourced garbled circuit
evaluation for mobile devices. In USENIX Security’13, pp. 289–304. USENIX
Association, 2013.

[14] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi. EzPC: pro-
grammable, e�cient, and scalable secure two-party computation. Cryptology
ePrint Archive, Report 2017/1109, 2017. http://eprint.iacr.org/2017/
1109.

[15] S. G. Choi, K.-W. Hwang, J. Katz, T. Malkin, and D. Rubenstein. Secure multi-
party computation of Boolean circuits with applications to privacy in on-line
marketplaces. In CT-RSA’12, pp. 416–432. Springer, 2012.

[16] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. In CRYPTO’12, pp. 643–662. Springer,
2012.

[17] D. Demmler, G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider, and
S. Zeitouni. Automated synthesis of optimized circuits for secure computation.
In ACM CCS’15, pp. 1504–1517. ACM Press, 2015.

[18] D. Demmler, T. Schneider, and M. Zohner. ABY - A framework for e�cient
mixed-protocol secure two-party computation. In NDSS 2015. The Internet
Society, 2015.

[19] W. Du, Y. S. Han, and S. Chen. Privacy-preserving multivariate statistical
analysis: linear regression and classi�cation. In SIAM International Conference
on Data Mining’04, pp. 222–233, 2004.

[20] J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein. High-throughput secure
three-party computation for malicious adversaries and an honest majority. In
EUROCRYPT’17, pp. 225–255. Springer, 2017.

[21] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig, and J. Werns-
ing. Cryptonets: applying neural networks to encrypted data with high through-
put and accuracy. In International Conference on Machine Learning, ICML’16,
pp. 201–210, 2016.

[22] N. Gilboa. Two party RSA key generation. In CRYPTO’99, pp. 116–129. Springer,
1999.

Session 5B: SecComp 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

860

http://eprint.iacr.org/2017/1109
http://eprint.iacr.org/2017/1109

[23] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In STOC’87,
pp. 218–229. ACM Press, 1987.

[24] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY:
tool for automating secure two-party computations. In ACM CCS’10, pp. 451–
462. ACM Press, 2010.

[25] W. Henecka and T. Schneider. Faster secure two-party computation with less
memory. In ASIACCS’13, pp. 437–446. ACM Press, 2013.

[26] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith. Secure two-party computa-
tions in ANSI C. In ACM CCS’12, pp. 772–783. ACM Press, 2012.

[27] Y. Huang, P. Chapman, and D. Evans. Privacy-preserving applications on
smartphones. In USENIX Conference on Hot Topics in Security (HotSec’13), pp. 4–
4. USENIX Association, 2011.

[28] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation
using garbled circuits. In USENIX Security’11, pp. 331–335. USENIX Association,
2011.

[29] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization:
an overview of the PIPS project. In International Conference on Supercomputing
(ICS’91), pp. 244–251. ACM Press, 1991.

[30] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
e�ciently. In CRYPTO 2003, pp. 145–161. Springer, 2003.

[31] G. Jagannathan and R. N. Wright. Privacy-preserving distributed k-means
clustering over arbitrarily partitioned data. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining’05, pp. 593–599, 2005.

[32] F. Kerschbaum, T. Schneider, and A. Schröpfer. Automatic protocol selection
in secure two-party computations. In ACNS 14, pp. 566–584. Springer, 2014.

[33] V. Kolesnikov and T. Schneider. Improved garbled circuit: free XOR gates and
applications. In ICALP’08, pp. 486–498. Springer, 2008.

[34] B. Kreuter, A. Shelat, B. Mood, and K. R. B. Butler. PCF: A portable circuit format
for scalable two-party secure computation. In USENIX Security’13, pp. 321–336.
USENIX Association, 2013.

[35] B. Kreuter, A. Shelat, and C. Shen. Billion-gate secure computation with ma-
licious adversaries. In USENIX Security’12, pp. 285–300. USENIX Association,
2012.

[36] Y. Lindell and A. Nof. A framework for constructing fast MPC over arithmetic
circuits with malicious adversaries and an honest-majority. In ACM CCS’17,
pp. 259–276. ACM Press, 2017.

[37] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM: A programming
framework for secure computation. In IEEE S&P’15, pp. 359–376. IEEE Com-
puter Society Press, 2015.

[38] J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural network predictions via
MiniONN transformations. In ACM CCS’17, pp. 619–631. ACM Press, 2017.

[39] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay – a secure two-party
computation system. In USENIX Security’04, pp. 287–302. USENIX Association,
2004.

[40] P. Mohassel and P. Rindal. ABY 3: a mixed protocol framework for machine
learning. Cryptology ePrint Archive, Report 2018/403, 2018. http://eprint.
iacr.org/2018/403.

[41] B.Mood, D. Gupta, H. Carter, K. R. B. Butler, and P. Traynor. Frigate: A validated,
extensible, and e�cient compiler and interpreter for secure computation. In
IEEE EuroS&P’16, pp. 112–127. IEEE, 2016.

[42] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism
design. In ACM Conference on Electronic Commerce’99, pp. 129–139. ACM, 1999.

[43] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft.
Privacy-preserving ridge regression on hundreds of millions of records. In IEEE
S&P’13, pp. 334–348. IEEE Computer Society Press, 2013.

[44] E. Pattuk, M. Kantarcioglu, H. Ulusoy, and B. Malin. CheapSMC: A framework
to minimize secure multiparty computation cost in the cloud. In DBSec’16,
pp. 285–294. Springer, 2016.

[45] A. Rastogi, M. A. Hammer, and M. Hicks. Wysteria: A programming language
for generic, mixed-mode multiparty computations. In IEEE S&P’14, pp. 655–670.
IEEE Computer Society Press, 2014.

[46] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and F.
Koushanfar. Chameleon: a hybrid secure computation framework for machine
learning applications. In ACM ASIACCS’18. ACM Press, 2018.

[47] T. Schneider and M. Zohner. GMW vs. Yao? E�cient secure two-party compu-
tation with low depth circuits. In FC’13, pp. 275–292. Springer, 2013.

[48] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and F. Koushanfar.
TinyGarble: highly compressed and scalable sequential garbled circuits. In IEEE
S&P’15, pp. 411–428. IEEE Computer Society Press, 2015.

[49] J. Vaidya and C. Clifton. Privacy-preserving k-means clustering over verti-
cally partitioned data. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining’13, pp. 206–215. ACM Press, 2003.

[50] R. P. Wilson et al. SUIF: an infrastructure for research on parallelizing and
optimizing compilers. ACM SIGPLAN Notices, 29(12):31–37, 1994.

[51] A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In
IEEE FOCS’86, pp. 162–167. IEEE Computer Society Press, 1986.

[52] S. Zahur and D. Evans. Obliv-C: A language for extensible data-oblivious
computation. Cryptology ePrint Archive, Report 2015/1153, 2015. http://
eprint.iacr.org/2015/1153.

[53] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In EUROCRYPT’15, pp. 220–250.
Springer, 2015.

[54] Y. Zhang, A. Steele, and M. Blanton. PICCO: a general-purpose compiler for
private distributed computation. In ACM CCS’13, pp. 813–826. ACM Press,
2013.

A FIXED-POINT COMPUTATIONS IN HYCC

In Listing 5 a code example is shown that implements 32 bit �xed-

point numbers for ANSI C that can be used in any application

compiled with HyCC.

1 #include <inttypes.h>

2

3 #define FP_BITS 32

4 #define FP_INTEGER_BITS 24

5 #define FP_FRACTION_BITS (FP_BITS - FP_INTEGER_BITS)

6

7 typedef int32_t fixedpt;

8 typedef int64_t fixedptd;

9

10 fixedpt fixedpt_mul(fixedpt a, fixedpt b)

11 {

12 return ((fixedptd)a * (fixedptd)b) >> \

13 (fixedptd)FP_FRACTION_BITS);

14 }

15

16 fixedpt fixedpt_div(fixedpt a, fixedpt b)

17 {

18 return ((fixedptd)a<<(fixedptd)FP_FRACTION_BITS)/b;

19 }

Listing 5: Code to add �xed-point support in ANSI C and

thus, also applications compiled with HyCC.

Session 5B: SecComp 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

861

http://eprint.iacr.org/2018/403
http://eprint.iacr.org/2018/403
http://eprint.iacr.org/2015/1153
http://eprint.iacr.org/2015/1153

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 MPC Protocols
	2.2 MPC Frameworks
	2.3 Compilation for MPC
	2.4 The CBMC-GC Compiler

	3 The HyCC MPC Compiler
	3.1 Hybrid Compilation and its Challenges
	3.2 Architecture

	4 Protocol Selection and Scheduling
	4.1 Problem Definition
	4.2 Protocol Selection in HyCC
	4.3 Cost Model and Probing

	5 Benchmarks
	5.1 Protocol Selection
	5.2 Use Cases

	6 Conclusions and Future Work
	A Fixed-Point Computations in HyCC

