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ABSTRACT 
Hyder supports reads and writes on indexed records within classi-

cal multi-step transactions. It is designed to run on a cluster of 

servers that have shared access to a large pool of network-

addressable raw flash chips. The flash chips store the indexed 

records as a multiversion log-structured database. Log-structuring 

leverages the high random I/O rate of flash and automatically 

wear-levels it.  Hyder uses a data-sharing architecture that scales 

out without partitioning the database or application. Each transac-

tion executes on a snapshot, logs its updates in one record, and 

broadcasts the log record to all servers. Each server rolls forward 

the log against its locally-cached partial-copy of the last 

committed state, using optimistic concurrency control to 

determine whether each transaction commits. This paper explains 

the architecture of the overall system and its three main 

components: the log, the index, and the roll-forward algorithm. 

Simulations and prototype measurements are presented that show 

Hyder can scale out to support high transaction rates. 

1. INTRODUCTION 
The hardware platform for database systems is undergoing major 

changes with the advent of solid-state storage devices, high-speed 

data center networks, large main memories, and multi-core pro-

cessors. These changes enable new database software architec-

tures. This paper 

explores one such 

architecture: a log-

structured multiversion 

database, stored in flash 

memory, and shared by 

many multi-core servers 

over a data center net-

work. The architecture, 

shown in Figure 1, is 

embodied in a prototype 

system called Hyder. 

Hyder is a transactional indexed-record manager. It supports read 

and write operations on indexed records within classical multi-

step transactions. This is the basic functionality of the storage 

engine of a SQL database system. Hyder is designed to run on a 

cluster of servers that have shared access to a large pool of net-

work-addressable storage, commonly known as a data-sharing 

architecture. Ideally, the storage is comprised of raw flash chips, 

although solid-state disks and possibly hard disks could work as 

well. Its main feature is that it scales out without partitioning the 

database or application. It is therefore well-suited to a data center 

environment, where scaling out is important and where 

specialized flash hardware and networking can be cost-effective.  

1.1 Today’s Alternative to Hyder 
To understand the value of Hyder’s no-partition scale-out feature, 

consider today’s alternative: a data center architecture for data-

base-based services, shown in Figure 2. The database is partition-

ed across multiple servers. The parts of the application that make 

frequent access to the database are encapsulated in stored proce-

dures. The rest of the application runs in servers, either co-located 

with the web server or 

in a separate layer of 

servers (as shown). 

The application serv-

ers usually have a 

cache (denoted ―$‖ in 
the figure) to mini-

mize accesses to the 

database. Often, the 

application servers are 

partitioned, so their 

caches can be parti-

tioned, thus enabling 

more of the database 

to be cached. Typical-

ly the application is 

responsible to choose 

which data to cache, to 

refresh this cache peri-

odically, and to main-

tain cache coherence 

across the servers.  

Some data that needs to be cached cannot be partitioned, such as a 

many-to-many relationship that is traversed in both directions. 

The friend-status relation for social networking is a well-known 

example. Such data is stored in separate cache servers.  

Designing such systems is hard and requires special skills. The 

designer needs to choose a partition strategy that balances the load 

across servers, and minimizes or avoids distributed transactions 

(primarily due to the expense of two-phase commit). Migration 

mechanisms are needed to enable the system to grow by splitting 

and relocating overloaded partitions. And the application 

programmer needs to split application logic between the layers of 

servers, which implies distributed debugging.  

1.2 Benefits of Hyder Architecture 
Hyder simplifies application design by avoiding partitioning, 

distributed programming, layers of caching, and load balancing. 

Since it uses a data-sharing architecture, all servers can read from 

and write to the entire database (see Figure 1). This enables the 

database software to run in the application process, which 

simplifies application development by avoiding any distributed 

programming. It also avoids the expense of remote procedure calls 
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between the application and database. Since each server caches 

data it recently accessed or updated, the content of each server’s 
cache reflects the accesses of transactions that ran recently on that 

server. So there is no need to partition the cache, either across 

servers of a given type or across layers of processes, because there 

are no layers. And since any transaction can execute on any 

server, load balancing is simply a matter of directing each 

transaction request to a lightly-loaded server. 

In Hyder, each update transaction executes on one machine and 

writes to one shared log. Hence, it does not require two-phase 

commit. This saves message delays. It also avoids two-phase 

commit’s blocking behavior, which requires operator intervention 

or heuristic decisions, both of which are undesirable, especially in 

a cloud-computing system. 

Hyder simplifies cache coherence by using a multi-versioned 

database. This means there is no update-in-place. Therefore, 

although caches on different servers can have different versions of 

data, the caches are inherently coherent in that all copies of a 

given version are identical. Therefore, a query can be decomposed 

into subqueries that run against the same database version on 

different servers, e.g., to improve the response time of a query that 

accesses a lot of data. Moreover, each server continually and 

eagerly refreshes its cache, so it is rarely more than a few tenths of 

a second behind the last committed database state in the log. 

Hyder scales out well without partitioning. Hyder’s scaling limit 

of update transactions depends mostly on total update-transaction 

workload across all servers and on network and storage perfor-

mance. Since there is no server-to-server communication, it does 

not depend on the number of servers.  

Hyder’s scale-out limits can be increased through careful applica-

tion partitioning. However, most applications will never require it. 

For example, the effort to design a partitioned application is a 

wasted expense for a new application that never becomes popular, 

or whose popularity can be served by Hyder’s scale-out limits. An 

application that experiences a few days of fame may need to scale 

out on short notice to avoid a success-disaster. Moreover, if an 

application does become popular quickly, Hyder can scale out 

without application redesign, thereby buying time for the 

application vendor to redesign for greater scale-out.  

Some application scenarios that might benefit from Hyder’s 
ability to scale out without partitioning are as follows: 

 A cloud-based service for database applications may run 

tenants on a large cluster of servers. Most of these 

applications are likely to be small and can easily run on a 

single server, but some will need to scale out quickly. 

 A packaged system that has a small number of servers can be 

purchased to run transaction processing applications. As us-

age increases, the system can grow incrementally by adding 

servers, without any software or database reconfiguration. 

 An application that processes updates from social networks 

that form dynamically is not easily partitioned. Examples 

include multi-player games, real-time advertising of short-

term sales events, and on-line news of a real-world disaster. 

1.3 Hyder Software Layers 
Data-sharing architectures are not new. They are supported by 

IBM DB2 Data Sharing [18], Oracle RAC [9], and Oracle 

(formerly DEC) Rdb [23]. Hyder differs from these systems in 

two ways. First, these systems usually require a soft partitioning 

of the applications, so that ownership of database pages does not 

have to move too frequently between servers. By contrast, Hyder 

requires no partitioning of applications to run well, though it can 

benefit from such partitioning. Second, Hyder uses a radically 

different architecture, with no lock manager. We therefore expect 

it to exhibit different performance tradeoffs than locking-based 

solutions; such a comparison is postponed as future work.  

 

Figure 3 Hyder software layers 

Hyder has the following three layers, shown in Figure 3:  

 The storage layer offers a highly-available, load-balanced, 

self-managing, cached, log-structured store mapped to shared 

flash storage. The log is the database.  

 The indexed record layer supports multi-versioned binary 

search trees mapped to log-structured storage.  

 The transaction layer executes transactions. It runs a log roll-

forward algorithm that continually refreshes the database 

cache. It uses optimistic concurrency control [20] to ensure 

transaction isolation.  

This layering covers the functionality in the box labeled Hyder in 

Figure 1. There needs to be an application programming interface 

on top, such as SQL, but that is outside the scope of Hyder. It 

should be straightforward for Hyder to support an ISAM API or 

an API implementation that is layered on a narrow storage 

interface, such as that of MySQL [24]. Unfortunately, not all SQL 

database systems are so well modularized. 

1.4 The Life of a Transaction 
The life of an update transaction T is illustrated in Figure 4. T 

executes on one server, called T’s executer. When T starts, it is 

given the latest local copy of the database root, which defines a 

static snapshot of the entire database (step (1) in Figure 4). T’s 
updates are stored in a transaction-local cache. When T finishes 

executing, the after-images of its updates are gathered into a 

record called its intention (step (2)), which is broadcast to all 

servers (step (3)) and appended to the log (step (4)). For 

serializable isolation, T’s readset is included in the intention too.  

 

Figure 4 Steps in the life of a transaction 

Storage – cached, log-structured store mapped to flash storage 

Indexed records – a multi-versioned search tree 

Transactions – executes transactions and runs meld algorithm 

Application programs 
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The log protocol ensures intentions are totally ordered, none are 

lost, and the offset of each intention is made known to all servers 

(step (5)). Since each server receives every intention and its offset, 

it can assemble a local copy of the tail of the log (step (6)). A 

server can detect if it failed to receive an intention from a hole in 

the sequence. In that case it can read the missing intention from 

the log.  

Each server rolls forward the log on its cached partial-copy of the 

last committed state (step (7)). Unlike conventional database 

systems, appending T’s intention record I to the log does not 

commit T. Instead, when a server rolls forward I, it runs a 

procedure called meld that determines whether T actually 

committed. Conceptually speaking, I contains a reference R to T’s 

snapshot, which is the last committed transaction in the log that 

contributed to the database state that T read (Figure 5). The 

intentions between R and I are called T’s conflict zone. The meld 

procedure determines if any committed transaction in T’s conflict 

zone includes an operation that conflicts with T with respect to T’s 

isolation level. If there are no conflicts, then T is committed and 

the meld procedure merges I into the server’s cached partial-copy 

of the database (the output of step (7)). Otherwise, T aborted. 

Since all servers (including T’s executer) read the same log, they 

all make the same commit/abort decision regarding T.  

 
A transaction T executes in only one server (i.e., steps 1-3). 

However, all servers roll forward T using the meld procedure, 

including T’s executor. Thus, even T’s executor does not know 

whether T committed or aborted until after it melds T’s intention. 

At that point, it can notify T’s outcome to T’s caller. 

Each server runs independently with no cross-talk to other servers. 

In particular, there is no lock manager and hence no locking 

bottleneck to constrain scale-out. Moreover, there is no two-phase 

commit. The only point of arbitration between servers is the 

atomic append of an intention to the log. 

Of course, the architecture does have points of contention that can 

limit performance of update transactions: appending intentions to 

the log, broadcasting intentions to all servers, melding the log at 

each server, and aborting transactions due to conflicts.  We quan-

tify their effect in Section 5. Our measurements and simulations 

show that with today’s technology, the system’s throughput can 

reach 80K transactions per second (TPS) using a micro-bench-

mark of transactions with ten operations. Scale-out is practically 

unlimited for read-only transactions, since they do not consume 

any critical system resource; in particular, they are not melded. 

They can read a recent snapshot—the same snapshot at all servers, 

since all servers can access all versions of the whole database. 

1.5 Hardware Trends 
Hyder’s architecture is enabled by four main hardware trends: 
high performance data center networks, large main memory, 

many-core processors, and solid state storage.  

Networks – Commodity data center networks are 1 Gb/sec, with 

10 Gb/sec available now and 40 and 100 Gb/sec already standard-

ized. This enables many servers to share storage and broadcast the 

log with high performance. Network broadcasts are a bottleneck, 

but network bandwidth and latency will improve over time. 

Main memory – At today’s DRAM prices and with 64-bit 

processors, commodity servers can maintain huge in-memory 

caches. This reduces the rate at which servers need to access 

storage for cache misses. 

Many-core – Given the declining cost of computation, Hyder can 

afford to squander computation by rolling forward the log on all 

servers to maintain consistent views across servers without server-

to-server communication and by dedicating several cores per 

server to the meld activity.  

Storage – Raw flash memory offers ~104 more I/O operations per 

second per gigabyte (GB) than hard disks. It costs ~100µs to read 

a 4KB page, ~200µs to write one, and there is no performance 

benefit to sequential access. This makes it feasible to spread the 

database across a log with less concern for physical contiguity 

than with hard disks. Solid-state disks (SSDs) are slower, but are 

improving. Sequential writes on some SSDs are already faster. 

Although flash densities can double only two or three more times, 

other nonvolatile technologies are coming, notably phase-change 

memory (PCM). Instead of flash, Hyder might work with hard 

disks if servers have a large enough database cache to avoid too 

many cache misses, since they generate random reads, though 

some aspects of the storage layer would have to change.  

Flash has two weaknesses that influence the Hyder design. First, 

pages cannot be destructively updated. A block of 64 pages must 

be erased before programming (writing) each page once. Erases 

are slow, ~2ms, and blocks other operations to a large portion of 

the chip. Second, flash has limited erase durability. MLC (cheap 

flash) can be erased ~10K times. For SLC (3x the price of MLC), 

it is ~100K times. Thus, flash needs wear-leveling, to ensure all 

pages are erased at about the same rate.  

These two weaknesses are mitigated by Hyder’s use of log-

structured (i.e., append-only) storage, which allows the head of 

the log to be garbage-collected and cleaned while the tail is being 

written, and which spreads writes evenly across storage 

By contrast, SSDs are not append-only; they support update-in-

place. To support update-in-place while mitigating the weaknesses 

of flash, an SSD typically implements a log-structured file system 

[28]. This allows it to turn random page-writes into page-appends 

and automatically wear-levels the flash. This requires address 

mapping logic, garbage collection, and storage headroom. This 

functionality adds cost and can degrade performance, all in 

support of an update-in-place operation that Hyder does not need. 

Although Hyder can work well on SSDs, we believe it will per-

form better when implemented on raw flash. This is a classic end-

to-end argument, where the application uses an append operation 

and the flash hardware works best as append-only, so there is no 

value in inserting an update-in-place operation in between. 

1.6 Contributions 
A short abstract about Hyder appeared in [4]. This paper expands 

that overview with descriptions of the following contributions: 

 A fault-tolerant append-only log that offers an arbitration 

point between independent transaction servers. 

 A log-structured multi-version binary-search-tree index 

 An efficient meld algorithm that detects conflicts and merges 

committed updates into the last-committed state. 

T’s intention I 
T’s updates R 

Other transactions’ intentions 

Figure 5 Detecting a transaction's conflicts 

T’s conflict zone 

start of 

log 

end of 

log 
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 A simulation analysis of the Hyder architecture under a 

variety of workloads and system configurations. 

We describe Hyder’s three layers bottom-up in Sections 2-4. 

Section 5 covers performance, Section 6 discusses related work, 

and Section 7 is the conclusion. 

2. THE LOG 
The log is comprised of multiple flash storage units, which we call 

segments. A segment could be a solid-state disk, a flash chip, or 

some other non-volatile solid-state storage component.  

Each log record is a multi-page stripe, where each page of a stripe 

is written to a different segment. The pages of a stripe are written 

using a RAID-like erasure code, to enable recovery from a 

corrupted page, failed segment, or lost message.  

A failure zone is a set of segments that can fail together due to a 

single-point failure, such as all of the segments in a rack (because 

they share a power supply and network connection). The best 

fault-tolerance is obtained when segments storing a stripe are all 

in different failure zones. A set of segments that store stripes is 

called a stripe set. 

To enable a stripe set to be allocated in a dense sequence of seg-

ments, segments are addressed round-robin across failure zones. 

That is, they are assigned segment IDs such that if there are n 

failure zones, no two segments in any sequence of n segments are 

in the same failure zone. For example, if n = 8, then the first 

failure zone has segment IDs 0, 8, 16, ..., the second failure zone 

has segment IDs 1, 9, 17, …, etc. This arrangement ensures that 
the failure of a failure zone loses at most one page in any stripe. 

2.1 Implementing AppendStripe 
The log operations are AppendStripe and GetStripe. AppendStripe 

takes a stripe and stripe id as parameters and returns a stripe 

reference, which tells where the stripe was stored on each 

segment of the stripe set. AppendStripe is atomic. It is also 

idempotent, so a caller that fails to receive a reply from an 

AppendStripe can simply reissue the operation. GetStripe returns 

the stripe identified by a given stripe reference.  

Log operations could be implemented by a server process or 

storage device that stores all pages of each stripe at the same 

offset of each segment. This requires the storage device to support 

an operation to write pages to a specific location, as is offered by 

SSDs. Given the widespread availability of SSDs, we believe such 

an implementation is worthwhile, as suggested in [2]. However, as 

discussed in Section 1.5, we believe that raw flash can offer better 

performance by mapping log-appends directly into storage-

appends. We describe a log design for raw flash in this section. 

To implement log operations on stripes, we propose to use a 

custom controller to access pages on flash storage using the opera-

tions AppendPage, GetPage, and EraseSegment. AppendPage 

appends a given page to a given segment and returns its address. 

GetPage returns a copy of the page stored at a given address. 

EraseSegment erases the entire content of the segment. A 

controller design that implements atomic and idempotent 

AppendPage and GetPage operations is sketched in [26]. 

The AppendPage operation is the only synchronization point 

between servers. If two servers append a page concurrently to the 

same segment, the segment’s controller will serialize the 
operations and write the pages to successive storage locations. 

The usual technique of checksums on pages can be used to ensure 

that AppendPage is atomic.  

If a stripe is comprised of n pages, then an AppendStripe 

operation is implemented by invoking n AppendPage operations 

on n segments in n different failure zones. Since failure zones are 

physically far apart, each segment must be updated via a different 

segment controller. Servers execute AppendStripe operations 

concurrently, which may execute in different orders in different 

controllers. Thus, in general, the pages of a stripe are not at the 

same offset of different segments of the stripe set. That is why 

AppendStripe returns a stripe reference and not a single offset. 

If a log record is too large to fit in one stripe, then it needs to be 

split into multiple stripes. One of the log record’s stripes contains 

the root of the log record. The other stripes can be appended to the 

log. Large, cold objects contained in the log record can be stored 

on hard disks, which are cheaper per-GB. All log-record data 

outside the root stripe must be written before the root stripe, so 

their addresses can be included in the root stripe.  As we will see 

in Section 3, the log record is structured as a tree. Thus, the root 

stripe contains an upper portion of the tree that includes the root 

and points to subtrees that are stored in other stripes. 

Each log record is a stripe, and log records must be totally 

ordered. This order is not self-evident from the order of a stripe’s 
pages, since the order of its pages is different on different 

segments. To resolve this ambiguity, we define the relative order 

of stripes by the order of their pages in the first segment of the 

stripe set. This segment is called the edge of the stripe set. 

Since a failure may prevent all pages of a stripe to be appended to 

its stripe set, some bookkeeping is required for servers to agree 

whether or not all of the pages of a stripe were written. This is 

done by maintaining a persistent log of stripe references, called 

the end-write log. After the AppendStripe operation receives 

acknowledgments for all of its corresponding AppendPage 

operations, it appends to the end-write log an end-write record 

that contains the stripe reference for the appended stripe. For fault 

tolerance, the end-write record must be appended to multiple 

segments. The choice of the number of segments should be based 

on an analysis of flash device failure rates and end-write log 

recovery time. We expect three will be enough. For multi-stripe 

log records, a server should wait to receive end-write acknowledg-

ments for all of the non-root stripes before it appends the root 

stripe, to ensure that the root stripe has no dangling references. 

Each log record is broadcast to all servers. First, the stripe is 

broadcast. After the stripe’s end-write has been written, it too is 

broadcast so that servers know the stripe was successfully written.  

The number of physical messages that are broadcast depends on 

several factors: the size of a log record, the size of a network 

packet, and the amount of batching of records into packets. In 

particular, end-writes are small, so many can be stored in a packet, 

at the cost of some latency to wait until the packet fills.  

2.2 Failure Handling 
There are three types of failures to consider: message loss, server 

failure, and segment failure. A short preview of our solution is in 

[2]. We discuss some basic cases here. For simplicity of 

exposition, we assume the log record fits in one stripe. 

In many cases, lost messages can be retrieved by accessing the 

log. For example, if a server receives an end-write for a stripe but 

not all of the pages that the end-write references, then it can 

retrieve the missing pages from the log. If it receives a partial log 
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record that does not include an edge page, then it can simply 

ignore the record (unless and until the edge page shows up). If it 

detects a hole in the sequence of end-writes it has received, it 

should read the missing page(s) from an end-write segment.  

However, what if it receives an edge page E, but does not receive 

an end-write for a stripe that includes E (within a timeout period)? 

Edge page E has reserved a slot in the log-record sequence, so 

later log records cannot be processed until it is known whether E’s 
stripe will show up. Therefore, if it does not receive the rest of E’s 
log record with a timeout period, it declares a log failure and 

initiates a recovery protocol.  

Our recovery protocol is a variation on Vertical Paxos [22]. It 

seals the edge segment from further appends (e.g., set the 

segment’s class to ―sealed,‖ as described below) and runs a 

consensus protocol to reach agreement on which stripes near the 

end of the log are complete and should be included. It then creates 

a new configuration of segments for the log and resumes normal 

operation. A similar process is used to cope with a permanent 

segment failure. There are many details to consider, which will be 

the subject of a future paper. 

2.3 Sliding Window Striping 
Allowing multiple servers to write stripes independently intro-

duces some storage management problems. First, since flash stor-

age is not cheap per-GB, variable-length stripes should be 

supported. This implies that initial segments of a stripe set will fill 

up faster than later ones. When the initial segment fills up, a new 

configuration must be allocated and all servers must agree to it.  

Second, all servers have to agree on which segments are being 

used for each type of data: end-write records, totally-ordered root 

log stripes, and unordered non-root log stripes.  

To coordinate server agreement, each controller maintains a 

persistent integer state-variable for each segment it manages, 

called its class. The integer value describes the type of data that 

can currently be appended to the segment. For concreteness, let us 

use zero for empty, one for a segment that stores pages of unor-

dered (i.e., non-root) log stripes, two for ordered (i.e., root) log 

stripes, three for end-writes, and four for ―sealed‖ (i.e., where no 

more appends are possible).  

 
Figure 6 Sliding-window striping 

We assign stripe sets to successive segment ranges in decreasing 

order of class. For example, there might be 3 segments for end-

write stripes, then 4 for root stripes, and then 6 for non-root stripes 

(see Figure 6). Segments before the first end-write segment are 

sealed and those after the last non-root segment are empty.  

A class variable is added as a parameter to the AppendStripe 

operation. AppendStripe(C, S) for class C and segment S behaves 

as follows. If C < class(S), then do not perform the append and 

return an exception to the caller. If C = class(S) (i.e., the class of 

S), then perform the append. If C > class(S), then set class(S) to C 

and perform the append. This mechanism is used to ensure that all 

servers agree on which type of data to append to each segment.  

Suppose the first segment of the end-write class fills up. Then the 

end-write stripe set would advance, thereby ―capturing‖ the first 
segment (i.e., edge) of the ordered class (see Figure 6). The order-

ed class is now short by one segment, so it advances, capturing the 

first segment of the unordered class, and so on. In this sense, the 

stripe sets behave like sliding windows over the segments. 

Higher layers of the system are responsible for garbage collection 

by copying reachable data in the first sealed segment to the end of 

storage and ensuring there is an ample supply of empty segments. 

3. INDEX STRUCTURE 
The index layer of Hyder stores the database as a search tree, 

where each node is a <key, payload> pair. For concreteness, we 

use a binary search tree in this paper. The tree is marshaled into 

the log (see Figure 7). Its basic operations are get, insert, delete 

and update of nodes and ranges of nodes, identified by their keys. 

The index layer also maintains a node cache of recently accessed 

parts of the tree.  

 

Figure 7 Marshaling a search tree into the log 

If the tree stores a relational database, the key would be compo-

site, beginning with the ID of a database, followed (for example) 

by sub-schemas, tables, and key values. Nodes in upper levels of 

the tree would span the set of databases. Their descendants would 

span sub-schemas, then tables, and then rows with key values. 

Each table can have secondary (i.e., non-clustered) indices, each 

of which is a table that maps a secondary key to the primary keys 

of rows that contain that secondary key, as is done in Microsoft 

SQL Server. Prefix and suffix truncation should be used to 

conserve space.  

A node of the tree cannot be updated in place. To modify a node 

n, a new copy n of n is created. Since n’s parent p needs to be 

updated with a new pointer to n, a new copy p of p is needed. 

And so on, up the tree. An example is shown in Figure 8. Notice 

that D is the root of a complete tree, which shares the unmodified 

parts of the tree with its previous version, rooted at D.  

 
Insert and delete operations may trigger tree rebalancing, which 

updates more nodes than those on the path to the node being 

inserted or deleted. It may therefore be beneficial to rebalance 

periodically, rather than on every insert and delete. 

Binary search tree 
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Search tree marshaled into log 
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Figure 8 Copy-on-write 

To update C’s value, create a new version C and 

replace C’s ancestors up to the root. 
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An updated tree is logged in a transaction’s intention. For good 
performance, it is important to minimize its size. For this reason, 

binary trees are a good choice. A binary tree over a billion keys 

has depth 30. A similar number of keys can be indexed by a four-

layer B-tree with 200-key pages. But an update of that B-tree 

creates a new version of four pages comprising the root-to-leaf 

path, which consumes much more space than a 30-node path.  

On the other hand, binary trees are known to have poor processor 

cache performance. In this respect, B-trees perform better and 

therefore may be preferable for a read-intensive workload, where 

it is important to optimize processor performance. For update-

heavy workloads, we are experimenting with B+-trees that have 

low fanout and use prefix and suffix key-compression. Initial 

results suggest it might be able to generate intentions whose size 

is competitive with binary trees. B-trees also may be preferable in 

an implementation over hard disks, to reduce the random seeks, 

especially for sequential access in key-order. A comparative 

evaluation of these tradeoffs would be a worthwhile investigation. 

So would an evaluation of the many known optimizations for 

improving the processor performance of binary trees [19], since 

those optimizations may be less effective on trees that are 

fragmented in intentions spread across a log. 

To simplify garbage collection of the log, each node pointer 

includes the segment ID of its earliest reachable segment. This is 

easy to maintain, as each new node simply picks the minimum of 

its two children. A segment that is older than any segment pointed 

to by a node is garbage. A simple tree traversal can identify all 

nodes in the oldest segment. They can be copied to the end of the 

log by a copier transaction, thereby freeing up the segment for 

reuse. Since the copier does not update the data it is copying, a 

write-conflict with an active transaction does not cause it to abort. 

4. MELD  
The transaction layer has two components. The executor runs new 

transactions, as described in the beginning of Section 1.4. The 

second component is the meld procedure, which is described here. 

The meld procedure detects whether an intention experienced a 

conflict, and if not, merges its updates into the local copy of the 

last committed state (LCS). Rather than scanning the intention’s 
conflict zone to determine whether the transaction experienced a 

conflict, meld is made more efficient by maintaining metadata in 

LCS that is sufficient to detect conflicts accurately. Thus, meld 

takes an intention and its server’s LCS as input, and it returns a 

new version of LCS. That is, meld is a function—non-destructive 

with no side effects.  

Meld is optimized further by not having to consider every item in 

the readset and writeset. It stops looking for conflicts as soon as it 

encounters a subtree of an intention whose corresponding LCS 

subtree did not change while the transaction executed. The speed-

up from this optimization is significant for transactions that 

operate on non-hot data. In particular, it implies that for multi-

stripe log records, meld often only needs to read the root stripe to 

process the log record’s intention. 
Meld must be deterministic. That is, it must produce exactly the 

same sequence of states on all servers. Otherwise, an intention 

generated by a transaction on one server might not be properly 

interpreted by meld running on another server. Hence, meld runs 

sequentially, processing intentions in log order. Meld can be 

parallelized to some extent, at least by parsing log records into 

objects on one thread before interpreting the log records (i.e., the 

roll forward activity) on another thread.  

The update-transaction throughput across all servers is limited by 

the speed of meld. Therefore, meld must be fast. This is especially 

important because single-threaded processor performance is not 

expected to improve much for some time. Our current 

implementation can meld up to 400K TPS for small transactions. 

A serial intention is an intention whose conflict zone is empty. 

That is, its snapshot is the transaction that immediately precedes it 

in the log. In that case, meld is trivial, since the intention’s root 
defines its output’s LCS. This case arises only when the update 

load is very light—when the transaction inter-arrival time is more 

than the end-to-end processing time of a transaction.  

Melding a non-serial intention I is more complex, because LCS 

includes updates that were not in I’s snapshot. Meld must check 

that these updates do not conflict with I, and if they do not, then it 

must merge I’s updates into LCS. That is, it cannot simply replace 

LCS by I, as in the serial case. 

For example, suppose transaction T1 executes on an empty 

database, inserting nodes B, C, D, and E. (See Figure 9.) Then 

transactions T2 and T3 execute on T1’s output. T2 inserts node A, 

and T3 inserts F. T2 and T3 do not conflict, so after melding them 

LCS should include both of their updates.  

Each node n in an intention I has a unique version number (VN), 

which is calculated based on the number of updated descendants 

in I and the LCS version against which I is melded. It also has a 

source content VN (SCV) that refers to the previous version of 

the node (i.e., the version in I’s snapshot), and a flag DependsOn 

that is TRUE if I depends on n not having changed during T(I)’s 
execution. We denote node n in Ij by nj. We denote its VN, SCV, 

and DependsOn flag by VN(nj), SCV(nj), and DependsOn(nj). 

Similarly, VN of node n in the LCS is denoted VN(nLCS). 

 

Figure 9 Example transactions to be melded 

The need for DependsOn arises in part because some nodes in I 

were updated only because a descendant was updated. For exam-

ple, in Figure 8, B was updated only because C was updated. In 

this case, DependsOn(C) = TRUE while DependsOn(B) = FALSE. 

VN, SCV, and DependsOn enable meld to detect conflicts. If 

SCV(nI) ≠ VN(nLCS), then a committed transaction modified n 

while T(I) was executing. In this case, if DependsOn(nI) = TRUE, 

then T(I) experienced a conflict and should be aborted. 

This is an oversimplification, because it might be that SCV(nI) ≠ 
VN(nLCS) only because one of n’s descendants was updated, not 

because n’s content changed. If DependsOn(nI) = TRUE because I 

depends on the content of n, then such an update does not con-

stitute a conflict, since n’s content in LCS has not changed. On the 

other hand, if DependsOn(nI) = TRUE because T(I) read the entire 

key range rooted at n and T(I) uses serializable isolation, then 

SCV(nI) ≠ VN(nLCS) does imply a conflict since the content of 
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some record in the subtree rooted at n changed. By enriching the 

definition of SCV(n) and adding other metadata to n, we can 

distinguish these cases, but for pedagogical simplicity we will not 

make this distinction here. Details are in [5]. 
 

 

Figure 10 Log of the transactions of Figure 6 

Suppose transactions T1-T3 (from Figure 9) are sequenced in the 

log as shown in Figure 10. Meld processes the log as follows: 

1. Meld deduces that T1 is serial, because SCV(D1) = 50 =  

VN(DLCS), which means T0 immediately precedes T1. So it 

melds T1 by returning a new LCS whose root is D1, where 

VN(D1) = 54. Notice that this step required examining D1 but 

none of its descendants. 

2. Similarly, meld deduces that T2 is serial and returns a new 

LCS whose root is D2, where VN(D2) = 57.  

3. For T3, meld sees that SCV(D3) ≠ VN(DLCS) (i.e., 54 ≠ 57). 
Since DependsOn(D3) = FALSE, these unequal VN’s do not 
indicate a conflict. However, a descendant of D3 might 

depend on a node in LCS that was updated in T3’s conflict 
zone. So meld has to drill deeper into I3 by visiting E3. 

4. Meld sees that SCV(E3) = VN(ELCS) = 53. Thus, the subtree 

rooted at E did not change while T3 was executing. So there 

is no conflict and meld can declare T3 as committed.  

In (1), (2), and (4) above, meld is able to truncate the traversal of 

I. This happens whenever meld encounters a subtree of the inten-

tion that did not change while its transaction was executing. This 

is a very important optimization, which significantly reduces the 

time to meld the intention compared to a naïve algorithm that tests 

every node in the intention for a conflict. For example, consider 

the performance benefit if nodes A and F were leaves of very long 

paths and meld were truncated high in the tree, like it was here. 

Now that meld knows that T3 committed, it has to merge T3’s 
updates into LCS. Unlike the serial cases of T1 and T2, it cannot 

simply return D3 as the root of the new LCS, because SCV(D3) ≠ 
VN(DLCS). This means that before melding I3, LCS includes 

updates that are not in I3, namely, T2’s insertion of node A. 
Therefore, meld must create a new copy D of D that points to B2 

on the left and E3 on the right.  

Since every node must reside in some intention, meld creates a 

new intention that contains the new D. This is called an ephemer-

al intention, because it exists only in main memory. It is uniquely 

associated with the transaction that caused it to be created, in this 

case T3, and logically commits immediately after T3. In this case, 

it has just one node D, but in general it can have many nodes. 

An ephemeral intention’s nodes, called ephemeral nodes, must 

have unique VN’s, since they are needed by meld to process the 

next intention that follows it. To do this, meld dynamically as-

signs VNs to nodes when it processes each intention (as it does for 

nodes physically in the intention). Like all of meld’s activities, the 

generation of ephemeral intentions, ephemeral nodes, and their 

VN’s is done deterministically, so that all servers produce 
identical states against which new transactions can execute. 

There are many other details of meld that are needed for more 

precise detection of conflicts (i.e., with no false positives), 

coverage of all isolation levels including proper handling of 

phantoms, optimized per-node and per-intention metadata to 

minimize the size of intention records, flushing of ephemeral 

nodes, checkpointing, server initialization and fast recovery, and 

garbage collection. These topics are covered in [5]. 

5. PERFORMANCE 
We cannot report yet on the performance of an end-to-end 

prototype, because our implementation of the transaction and 

indexed record layers is not yet integrated with a flash-based 

implementation of the log. However, through a combination of 

measurements of implemented components, known hardware 

speeds, mathematical analysis, and fairly extensive simulations, 

we can predict how a complete implementation would perform. 

5.1 Bottleneck Analysis 
As mentioned in Section 1.4, Hyder has four potential bottle-

necks: appending intentions to the log, broadcasting intentions to 

all servers, melding the log at each server, and aborting 

transactions due to conflicts. We discuss each one in turn. 

Logging – Although the log could be stored on solid-state disks, 

raw flash chips with a custom controller are preferred. Custom 

hardware is quite feasible, given today’s rapid innovation in flash 
board products and use of custom hardware in data centers and 

database appliances. One benefit of custom hardware is speed. For 

example, putting nonvolatile write buffers in front of 20 flash 

chips that are served round-robin would reduce the 200 μs write 
latency of raw flash to 10 μs. Since log-appends are a bottleneck, 

this speedup over SSDs can be very important. If each log stripe 

contains one intention, then 10 μs write latency implies a limit of 

100K TPS. Batching multiple intentions per log stripe can 

improve throughput further. 

Networking – Switched networks process point-to-point messages 

in parallel. Therefore, with large server buffer caches, reads will 

not significantly reduce throughput for Hyder. By contrast, 

broadcasts block the network—a major bottleneck. The switching-

time of current network switches is under 1 μs for 10 Gb Ethernet. 

Interconnect, protocol, and distance delays add to that. On the 

other hand, technology improvements continue to reduce latency. 

Switching time on 40 Gbps Ethernet is already under 400 ns. 

Meld – Our current meld implementation can meld up to 400K 

TPS for transactions with two operations, dropping to 130K TPS 

for transactions with eight operations. Although single-threaded 

processor performance is not expected to improve much, meld can 

be parallelized further, which should yield a several-fold speedup. 

We report on extensive meld performance experiments in [5]. 

Optimistic Concurrency Control – Like any concurrency control 

algorithm, the abort rate of Hyder’s optimistic concurrency 

control depends on the fraction of concurrently-executing 

transactions that conflict [20]. In turn, this depends on the 

probability that two randomly-selected transactions conflict, and 

the average number of transactions that execute concurrently at 

any given time. For a given arrival rate of new transactions, the 

faster they execute, the fewer that execute concurrently, and hence 

the smaller their conflict zones and the lower their abort rate. 
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The worst case consists of concurrent transactions that read and 

write the same data. In that case, a serializable execution must be 

serial, so the maximum throughput is the inverse of execution 

time. For example, with 200 μs transaction latency as observed in 
our prototype, the maximum throughput on a single write-hot data 

item is 5K TPS. Assuming Poisson arrivals and exponential 

service times, a naïve analysis predicts throughput of ~1.6K TPS 

per write-hot data item. Clearly, it is beneficial to detect such 

high-conflict transactions and run them on one server, which 

serializes and batches the transactions to obtain higher throughput. 

5.2 Simulation Analysis 
We present a detailed analysis of Hyder’s performance at high 

loads using different workloads, access patterns, and isolation 

levels. The first part of our analysis focuses on system 

performance when there are no resource bottlenecks. Later, we 

evaluate and analyze Hyder’s behavior in the presence of high 

data contention and resource contention. 

We developed a simulation for Hyder using a discrete event 

simulator. The simulation model has three main modules: 

compute nodes, a network, and a log, representing the components 

in the system as shown in Figure 1. The compute nodes execute 

transactions, maintain a cache of recently accessed database 

objects using a least-recently-used replacement policy, and run the 

meld procedure. Each node has limited processing capacity; we 

use a four-core processor.  

We model the database as a set of integer keys. The combined 

size of the key and payload is set to 100 bytes.  

Each transaction is comprised of a fixed number of reads and 

writes controlled by the read/write ratio. Keys accessed by a trans-

action depend on the access distribution: We use hotspot (   

operations accessing    data) and uniform access distributions.  

A transaction consumes 2 s of latency for each read that is 

serviced from cache and 10 s of latency for each write. A cache 

miss results in reading the missing intention from the log. Each 

update transaction uses two broadcasts to all servers: one to 

broadcast the intention and one for the log to broadcast the 

intention’s offset. 
We model the network as a switch that simulates network delays. 

The network allows concurrent unicast messages to different 

destinations while a broadcast ties up the entire network. We use a 

switching delay of 400 ns for a 1500 byte frame resulting in a 

broadcast throughput of 40 Gbps, assuming 80% utilization. A 

much higher unicast throughput is supported. If we used a 10 

Gbps network instead, it would be the bottleneck. If 80% utilized, 

it would reduce throughput by 1/3, compared to 40Gbp at 30%. 

The log simulates appends to the flash by a 10 µs delay. Each 

intention is appended within a single append latency. That is, we 

assume an intention fits in one log stripe. 

The meld process performs explicit conflict detection by checking 

a new transaction for conflicts against the set of committed 

transactions in its conflict zone. We use serializable and snapshot 

isolation. Meld processing is simulated by a latency of 10 µs as 

measured in our prototype implementation of meld. 

Under the configurations used, the peak capacity of the system is 

100K TPS. We therefore use a peak offered load of 80K TPS to 

ensure the resources are appropriately exercised without 

overloading them. We set the database size to 1 million elements, 

the transaction size to 10 operations (8 reads and 2 writes), and 

the cache size to 300K elements, with serializable as the default 

isolation level.  

We compute the intention record sizes as a function of the depth 

of the database tree and the number of operations in the 

transactions that must be included in the intention; serializable 

isolation requires both the readsets and writesets, while snapshot 

isolation requires only the writeset. If an intention does not fit into 

a network frame, we use multi-frame messages and assume that 

the network guarantees their in-order delivery.  

We use the following convention for series names in the graphs: 

Hot-x-y refers to hotspot access patterns with    operations 

accessing    data items and Uniform represents uniform access 

patterns; SI and SR represent snapshot and serializable isolation.  

5.2.1 Abundant Resources 

Effect of Skew 
To analyze the effect of skew in access patterns, we use hotspot 

and uniform access distributions. For hotspot distributions, we 

vary   from 80% to 95% and we vary   from 5% to 20%. In all 

experiments, the throughput increases linearly with the offered 

load and is almost equal to the offered load. Figure 11 plots 

throughput as a function of the offered load and access 

distributions using serializable isolation. The linear increase in 

throughput with offered load is evident from the linear fit curve 

on the throughput values. This linear increase is observed for all 

access distributions and isolation levels.  

 

Figure 11 Transaction throughput (in TPS) as a function of 

the offered load and access distributions. 

 

Figure 12 Percent transactions aborting as a function of 

offered load and access distributions. 

Figure 12 plots the abort rate. It shows that although the abort rate 

increases with an increase in load, it is still negligibly small (in 

the range of 0.25%) at the peak offered load of 80K TPS. Though 

not shown, snapshot isolation has even lower abort rates, as 

expected. Furthermore, as long as the skew is not very high, the 

abort rate does not increase significantly with an increase in 
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offered load. This shows that given abundant network and flash 

capacity, the Hyder architecture can process a high volume of 

update transactions, and the throughput increases linearly with the 

offered load and is almost equal to the offered load. 

We observed an average cache miss penalty of ~20 µs and an 

average transaction latency of ~50-60 µs for hotspot distributions 

and ~180 µs for uniform distributions. Due to the small cache 

miss rates for hotspot access distributions, the network throughput 

is dominated by broadcasts of intentions; peak network utilization 

for serializable isolation was ~10-12 Gbps, of which more than 

90% was due to broadcasts. For uniform access distributions, 

unicast traffic is much higher as a result of cache misses; peak 

network utilization for serializable isolation was on the order of 

65 Gbps, of which only 15% were broadcasts. Similarly, for 

hotspot access, less than 1% of the requests to the log are reads, 

while for uniform, this load rises to 80%.  

The intention record size measured for serializable isolation was 

~15.7 KB and for snapshot isolation was ~3.6 KB. The smaller 

intention size with snapshot isolation results in lower network 

load; for SI, network utilization peaks at about 3 Gbps and 15.5 

Gbps for skewed and uniform distributions respectively with a 

share of broadcast and unicast traffic similar to that with 

serializable isolation.  

Even at an offered load of 80K TPS, the mean conflict zone 

length was 7-10 intentions. This small conflict zone length is 

because transaction latencies were in the range of hundreds of 

microseconds. The conflict zone length also depends on the 

whether requests arrive in bursts or are spread out. 

Effect of Cache Size 
We now analyze the impact of cache hit rates on Hyder’s 
performance. We vary the cache size from 50K to 300K items. At 

50K items, the entire hot set does not fit in the cache (for the 

access patterns used in the experiments) resulting in a low cache 

hit rate, while at 300K elements, the hot set fits in the cache, 

resulting in a higher cache rate. A larger cache results in higher 

cache hit rates which reduce transaction latency, which in turn 

results in smaller conflict zones and lower abort rates. 

 

Figure 13 Percent transactions aborting as a function of 

offered load for different access distributions and cache sizes. 

Figure 13 shows an interesting interplay between cache size and 

data skew and its impact on the abort rate. In each experiment, the 

cache size is set to the size of the hot set. For instance, a cache of 

100K items is used for an access distribution where the hot set 

size is 10% of the database. The naming convention for the series 

is: ―Access Distribution‖-―Cache size‖; thus, Hot95-10-CS100k 

refers to Hotspot distribution with 95% of operations accessing 

10% of the data items, and with a cache size of 100K elements.  

When the size of the hot set is kept constant and the percentage of 

operations accessing the cold set is increased, an increase in the 

abort rate is observed. Referring to Figure 13, the abort rate for 

the 80-10 access distribution is higher than that of the 95-10 

distribution. This increased abort rate is counter-intuitive since a 

decrease in skew of the data items accessed should reduce the 

probability of a conflict. A closer analysis reveals that the 80-10 

distribution has more accesses to the cold set. This increases the 

number of cache misses, which increases transaction latency, and 

in turn increases the conflict zone length and hence the conflict 

probability. This increase in transaction latency and conflict zone 

length is evident from Figure 14 which plots transaction latency as 

the primary vertical axis (on the left) and conflict zone length as 

the secondary vertical axis. This behavior is observed until the 

skew reduces to a point where the effect of higher conflict rate 

swamps the effect of shorter conflict zone. However, this 

counterintuitive behavior is not observed when the cache size is 

big enough to easily fit the hot set, as in Figure 12; the reason is 

that the larger cache is able to accommodate a small portion of the 

cold set and the entire hot set, which reduces the impact of skew 

on the cache hit rate and hence on the conflict zone length. 

 

Figure 14 Transaction latency as a function of offered load for 

different access distributions and cache sizes. 

 

Figure 15 Percent transactions aborting as a function of cache 

size for different access distributions. 

Figure 15 plots the abort rate as a function of cache size for 

different access distributions using serializable isolation; the 

offered load is kept constant at 80K TPS. As expected, as cache 

size increases the abort rate decreases, since more requests are 

served from the cache which results in shorter transaction 

latencies and conflict zones. When the cache size is 50K elements, 

it equals the hot set size for the 95-5 and 80-5 access distributions. 

We therefore observe behavior similar to Figure 13 where lower 

skew results in a higher abort rate.  
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For the access distributions 95-5 and 80-5, as the cache size 

grows, the entire hot set fits into the cache. Now the reduction in 

transaction latency resulting from higher skew is insignificant and 

the impact of higher skew on conflict probability dominates. As a 

result, when the cache is larger than the hot set, a higher abort rate 

is observed for a more skewed distribution; in Figure 15, the 95-5 

distribution has a higher abort rate than the 80-5 distribution.  

When the cache is too small to fit the hot set, a higher skew in 

access distribution does not result in a higher cache hit rate, since 

elements in the hot set also incur cache misses. As a result, the 

transaction latency, and hence the conflict zone length, for more 

skewed distributions are approximately equal to those of less 

skewed distributions. Therefore, the effect of skew dominates, 

resulting in a higher abort rate for skewed distributions. This 

behavior is evident from the experiments with 95-20 and 80-20 

distributions where the hot set has 200K data items.  

When the cache size is under 200K elements, the more skewed 

distribution (95-20) has a higher abort rate. When the cache size 

equals 200K elements, as expected, the 80-20 distribution 

experiences a marginally higher abort rate. Beyond 200K 

elements, the abort rate of 80-20 is again lower compared to that 

of 95-20.  The cache size also impacts network utilization since 

cache misses result in unicast network messages to read the 

specified intention record from the log. 

Effect of other parameters 
For a given access distribution, increasing the number of reads 

reduces the abort rate. Similarly, increasing the transaction size 

increases the abort rate. Abort rates as high as 3.5% are observed 

for a skewed access distribution for transactions with 25 

operations where the hot set comprises only 5% of the database. 

However, the abort rate decreases considerably for distributions 

with less skew, accompanied by a smaller gradient of increase.  

We also experimented with a workload of variable-size 

transactions. As expected, increasing the average transaction size 

increases the abort rate. However, it is interesting that with 

variable-sized transactions whose average size is S, the abort rate 

is lower than with fixed-size transactions of size S. A closer 

analysis reveals that variable-size transactions broadcast fewer 

messages on average than fixed-size transactions, which reduces 

transaction latency, conflict zones, and hence conflict probability. 

5.2.2 Data Contention 
In the previous experiments, data contention was low and had an 

insignificant effect on throughput, even at the peak offered load of 

80K TPS and with 95% of the operations accessing 5% of the 

database. Now, we focus on the performance of workloads with 

high data contention. We use smaller databases (10K to 100K), 

higher skew (99% of operations accessing 1% of the data items), 

more writes per transaction (1:1 read/write ratio), and larger 

transaction size. Figure 16 plots the throughput as a function of 

offered load. We use serializable isolation for all the experiments.  

The first three series correspond to database sizes of 10K, 50K, 

and 100K and use transactions with 8 reads and 2 writes. The 

database size is kept constant of 100K for the remaining two 

experiments. The fourth series corresponds to transactions with 5 

reads and 5 writes (1:1 read/write ratio), while the fifth series uses 

transactions with 16 reads and 4 writes.  

We observe a significant impact of abort rate on throughput; the 

throughput curve plateaus out only for a database size of 10k or 

transaction size of 20 where abort rates are as high as 50-60%. As 

expected, the impact is much less for snapshot isolation, where no 

significant effect on throughput was observed (not shown). 

 

Figure 16 Transaction throughput (in tps) as a function of 

offered load for Serializable Isolation. Triangular markers 

correspond to Database size of 100k elements with different 

read/write ratios and transaction sizes. 

5.2.3 Resource Contention 
Pure data contention resulting from conflicting accesses does not 

significantly affect performance. However, heavy resource 

contention causes thrashing. For example, if the transaction 

execution rate reaches the maximum rate of log appends, 

throughput drops sharply (see Figure 17). Overloading the 

network or meld algorithm results in similar behavior. During an 

overload, transactions execute longer (latency of ~100 ms vs. 

~200 μs under normal load), which increases the abort rate. 
Aborted transactions consume resources, which increases resource 

contention, resulting in a negative feedback loop. The effect is 

stronger for transactions with skewed access, because of their 

higher abort rate for a given conflict zone length. 

Figure 17 Thrashing resulting from resource contention. 

Of course, Hyder should back off the workload when it detects 

thrashing. Moreover, it should do a trial meld before appending a 

transaction to the log. If it detects a conflict, it will not waste a 

broadcast slot and log append, thereby defeating the negative 

feedback loop, making the throughput drop-off much less steep. 

5.3 Future Performance Work 
Our simulation analysis shows that for practical workloads, such 

as highly-skewed hotspot access patterns and a database of 1M 

items, data contention induced by resource contention occurs long 

before ―pure‖ data contention due to conflicts. Therefore, it is 

essential to use load-control to prevent resource contention. 

Moreover, to deal with very high conflict rates (as in Section 

5.2.2), techniques for advanced transaction scheduling cognizant 

of conflict patterns will be useful. For example, a soft partitioning 
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of transactions that access write-hot data could enable them to be 

synchronized in the server before appending their intentions to the 

log. In turn, this will complicate load balancing, since the 

partitioning will constrain where such transactions should run.  

The critical resources in Hyder—the network, log, and meld—
have hard scaling limits imposed by the underlying hardware, 

which limits Hyder’s scalability and peak capacity. Parallelism 

can be explored to increase the peak capacity of these critical 

resources. One such extension is to partition the database to 

enable parallel logging and melding. These extensions are 

worthwhile areas for future work. 

6. RELATED WORK 
Hyder is a data-sharing system. Other well-known data-sharing 

systems are Oracle RAC [9], Oracle Rdb [23] and IBM DB2 [18]. 

These systems use a shared lock manager to ensure that at most 

one server at a time has access to a page. If a server releases its 

write lock on a page, it must make the updated page available to 

other servers either by writing the page to disk or servicing reads 

from other servers. Thus, the granularity of data sharing between 

servers is a page, rather than an indexed record in Hyder. A failure 

that affects the lock table requires server coordination to recover, 

which is not needed in Hyder since servers are independent. On 

the other hand, the failure of a log segment in Hyder requires 

coordinated recovery, which is not required in systems that use 

server-local logs. These locking-based systems are known to 

require soft partitioning of the transaction load to avoid having 

pages ping-pong between servers. While Hyder can benefit from 

such partitioning, it performs well without it. The performance of 

these systems was studied in [25]. A comparison of their behavior 

to Hyder is suggested as future work. 

There are many shared-nothing database systems designed for 

scale-out. The benefits of this architecture were demonstrated in 

the 1980s in many systems, such as Bubba, Gamma, Tandem, and 

Teradata. DeWitt and Gray [16] provide an excellent summary of 

that work. More recently, shared-nothing key-value stores have 

been developed for cloud computing with similar goals, such as 

Google’s Bigtable [8], Amazon’s Dynamo [15], Facebook’s Cas-

sandra [21], and Yahoo!’s PNUTS [10]. However, unlike Hyder, 

these systems do not support ACID transactions and they require 

the database to be partitioned. Microsoft’s SQL Azure [3][6] and 

ElasTraS [14] are cloud-oriented database systems that do support 

ACID transactions but restrict each one to access one partition. 

The partitioned access requirement is relaxed somewhat in G-

Store [13], since data access groups can be reformed dynamically.  

A transactional, partitioned, key-value store that does not restrict a 

transaction’s access pattern is described in [1]. Like Hyder, it uses 

optimistic concurrency control. Unlike Hyder, it is a shared-

nothing system and hence requires two-phase commit. During its 

execution, a transaction tracks the versions of data it reads and 

writes. At commit time it sends this information to each server it 

accessed; the server either validates its readset and applies its 

writes as part of phase one, or detects a readset item changed and 

tells the transaction to abort. Among the key-value stores 

mentioned in the previous paragraph, its functionality is most 

similar to Hyder’s, but its mechanisms are quite different. It 

would be interesting to compare their performance.  

Another transactional, partitioned key-value store that uses 

optimistic concurrency control to synchronize transactions with 

two-phase commit for atomicity is ecStore [31]. 

Hyder strongly resembles a primary-copy replicated database, in 

the sense that it generates a single log and sends it to many 

servers, each of which applies updates to its local copy (i.e., a 

replica). However, Hyder is different from primary-copy 

replication in two ways. First, Hyder does not use a primary copy! 

Second, log records include the updates of both committed and 

aborted transactions. In most primary-copy replication systems, 

only committed transactions are sent to replicas. We do not know 

of any replication systems with the latter two properties. Gupta et 

al. [17] propose a replication mechanism similar to Hyder, but 

different in that it uses a single server as the serialization point 

and supports weaker forms of consistency that are sufficient for 

their application domain. A survey of recent work on primary-

copy replication can be found in [7].  

Multi-master replication, sometimes called optimistic replication, 

is similar to Hyder in that conflicting transactions can run to 

completion and their conflicts are detected later. Unlike Hyder, 

these mechanisms do not support standard isolation levels. 

Surveys of this work appear in [29] and [30]. 

The startup company RethinkDB has built a log-structured storage 

engine for MySQL, targeted for use on solid-state storage [27]. 

The database is append-only and ―lock-free.‖  However, they have 
not yet published details about their index structure or 

concurrency control algorithm. They support primary-copy 

replication, but are apparently not a data-sharing system. 

Dan et al. [11] present an analytical model and simulation study of 

the effect of data and resource contention on transaction through-

put for optimistic concurrency control (OCC) [20]. We observed 

similar behavior in our simulations: data contention alone causes 

system throughput to plateau out and resource contention causes 

thrashing. Transaction latency during high resource contention in 

Hyder also has behavior similar to that reported in [11].  

The interplay of skew in data access distribution, cache hit ratio, 

and abort probability for lock-based concurrency control was 

studied by Dan et al. [12]. Our experimental study extends these 

results by demonstrating a similar interplay when using OCC. We 

further analyze the interplay of cache size with working set size 

for a hotspot distribution. Yu et al. [32] model the impact of im-

proved cache hit rate for transactions restarted after an abort and 

study its effect on system throughput. If an aborted transaction 

restarts at the same compute node in Hyder, we expect to observe 

a similar behavior; however, we did not observe a significant im-

pact since most of our simulations observed very low abort rates. 

7. CONCLUSION 
We have described the architecture and major algorithms of 

Hyder, a transactional record manager that scales out without 

partitioning. It uses a novel architecture: a log-structured multi-

version database, stored in flash memory, and shared by many 

multi-core servers over a data center network. We demonstrated 

the feasibility of the architecture by describing two new mecha-

nisms, a shared striped log and a meld algorithm for performing 

optimistic concurrency control and applying committed updates to 

each server’s cached partial copy of the database. We presented 

performance measurements and simulations that demonstrate 

linear scalability up to the limits of the underlying hardware.  

Many variations of the Hyder architecture and algorithms would 

be worth exploring. There may also be opportunities to use 

Hyder’s logging and meld algorithms with some modification in 
other contexts, such as file systems and middleware. We 
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suggested a number of directions for future work throughout the 

paper. No doubt there are many other directions as well. 
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